
RAD Studio

Copyright(C) 2008 CodeGear(TM). All Rights Reserved.

Table of Contents

Concepts 1

Debugging C++ Applications with CodeGuard Error Reporting 3

CodeGuard Errors 3

Access Errors 4

Exception Errors 5

Function Failure Errors 6

Resource Errors 7

CodeGuard Overview 9

CodeGuard Warnings 10

Memory Block Comparison Warnings 11

Pathname Merging and Splitting Warnings 11

String Comparison Warnings 11

Developing Database Applications for the Win32 Platform 13

dbGo Overview 14

BDE Overview 15

dbExpress Components 15

Getting Started with InterBase Express 16

dbExpress 4 New Feature Overview 21

Developing Interoperable Applications 26

Developing COM Applications 26

Developing Reports for Your Win32 Applications 32

Using Rave Reports in RAD Studio 32

Developing Applications with VCL Components 33

VCL Overview 33

Developing Web Applications with WebSnap 36

Win32 Web Applications Overview 36

Developing Web Services with Win32 Applications 39

Web Services Overview 39

Developing Windows Applications 40

Windows Overview 40

Procedures 43

RAD Studio

iii

CodeGuard Procedures 44

Using CodeGuard 44

Database Procedures 46

Accessing Schema Information 47

Configuring TSQL Connection 48

Connecting to the Application Server using DataSnap Components 50

Debugging dbExpress Applications using TSQLMonitor 50

Executing the Commands using TSQLDataSet 51

Fetching the Data using TSQLDataSet 52

Specifying the Data to Display using TSQLDataSet 53

Specifying the Provider using TLocalConnection or TConnectionBroker 54

Using BDE 55

Using DataSnap 56

Using TBatchMove 56

Connecting to Databases with TDatabase 57

Using TQuery 59

Using TSQLQuery 60

Using TSQLStoredProc 61

Using TSQLTable 62

Managing Database Sessions Using TSession 62

Using TSimpleDataSet 63

Using TSimpleObjectBroker 64

Using TStoredProc 64

Using TTable 65

Using TUpdateSQL to Update a Dataset 67

Using dbExpress 68

Using Data Explorer to Obtain Connection Information 69

Interoperable Applications Procedures 70

Using COM Wizards 70

Reporting Procedures 72

Adding Rave Reports to RAD Studio 72

VCL Procedures 73

Building a Windows "Hello World" Console Application 79

Developing a Windows Application 79

Building Application Menus 80

Building a VCL Forms Application with Decision Support Components 82

Building VCL Forms Applications With Graphics 83

RAD Studio

iv

Building a VCL Forms MDI Application Using a Wizard 84

Building a VCL Forms MDI Application Without Using a Wizard 84

Building a VCL Forms SDI Application 87

Creating a New VCL Component 87

Building a VCL Forms ADO Database Application 88

Building a VCL Forms Application 89

Creating Actions in a VCL Forms Application 90

Building a VCL Forms "Hello World" Application 91

Using ActionManager to Create Actions in a VCL Forms Application 92

Building a VCL Forms dbExpress Database Application 93

Building an Application with XML Components 94

Copying Data From One Stream To Another 96

Copying a Complete String List 98

Creating Strings 99

Creating a VCL Form Instance Using a Local Variable 101

Deleting Strings 102

Displaying an Auto-Created VCL Form 104

Displaying a Bitmap Image in a VCL Forms Application 105

Displaying a Full View Bitmap Image in a VCL Forms Application 106

Drawing a Polygon in a VCL Forms Application 107

Drawing Rectangles and Ellipses in a VCL Forms Application 108

Drawing a Rounded Rectangle in a VCL Forms Application 109

Drawing Straight Lines In a VCL Forms Application 109

Dynamically Creating a VCL Modal Form 110

Dynamically Creating a VCL Modeless Form 112

Iterating Through Strings in a List 113

Building a Multithreaded Application 114

Writing Cleanup Code 115

Avoiding Simultaneous Thread Access to the Same Memory 115

Defining the Thread Object 116

Handling Exceptions 119

Initializing a Thread 120

Using the Main VCL Thread 121

Waiting for Threads 122

Writing the Thread Function 124

Placing A Bitmap Image in a Control in a VCL Forms Application 125

Reading a String and Writing It To a File 126

Renaming Files 127

Adding and Sorting Strings 128

RAD Studio

v

Creating a VCL Forms ActiveX Button 129

Creating a VCL Forms ActiveX Active Form 130

Building a VCL Forms Web Browser Application 132

WebSnap Procedures 133

Building a WebSnap Application 133

Building a WebSnap "Hello World" Application 134

Debugging a WebSnap Application using the Web Application Debugger 136

Web Services Procedures 138

Building a "Hello World" Web Services Application 138

Accessing an ASP.NET "HelloWorld" Web Services Application 139

Building an ASP.NET "Hello World" Web Services Application 141

Reference 143

C++ Reference 144

Command Line Utilities 144

BCC32, the C++ Command-Line Compiler 146

BRC32, the Resource Shell 150

BRCC32.EXE, the Resource Compiler 152

COFF2OMF.EXE, the Import Library Conversion Tool 153

CPP32.EXE, the C Compiler Preprocessor 153

DCC32.EXE, the Delphi Command Line Compiler 155

DCCIL.EXE, the Delphi for .NET Command Line Compiler 157

GREP.EXE, the text search utility 158

ILINK32.EXE, the Incremental Linker 162

IMPDEF.EXE, the Module Definition Manager 167

IMPLIB.EXE, the Import Library Tool 169

Using Include Files 170

MAKE 171

MAKE Directives 174

MAKE Macros 179

MAKE Rules (Explicit and Implicit) and Commands 181

Message Options 185

Module Definition Files 187

Using Precompiled Header Files 191

RLINK32.DLL, the Resource Linker (C++) 192

TDUMP.EXE, the File Dumping Utility 192

TLIB.EXE, the Library Manager 196

Using TOUCH.EXE 200

RAD Studio

vi

TRIGRAPH 200

List Of All C++ Compiler Errors And Warnings 201

E2066: Invalid MOM inheritance 239

E2525: You must define _PCH_STATIC_CONST before including xstring to use this feature 240

E2526: Property 'name' uses another property as getter/setter; Not allowed 240

E2008: Published property access functions must use __fastcall calling convention 240

E2122: Function call terminated by unhandled exception 'value' at address 'addr' 240

E2506: Explicit specialization of 'specifier' is ambiguous: must specify template arguments 240

E2483: Array dimension 'specifier' could not be determined 241

E2509: Value out of range 241

E2510: Operand size mismatch 241

E2050: __declspec(delphireturn) class 'class' must have exactly one data member 241

E2530: Unrecognized option, or no help available 241

E2527: Option 'name' cannot be set via 'name' 241

E2528: Option 'name' must be set before compilation begins 241

E2074: Value after -g or -j should be between 0 and 255 inclusive 242

E2492: Properties may only be assigned using a simple statement, e.g. \"prop = value;\" 242

E2505: Explicit instantiation requires an elaborated type specifier (i.e.,"class foo<int>") 242

E2100: Invalid template declarator list 242

E2102: Cannot use template 'template' without specifying specialization parameters 243

E2107: Invalid use of template 'template' 243

E2105: 'template' qualifier must specify a member template name 243

E2066: Information not available 244

E2471: pragma checkoption failed: options are not as expected 244

E2504: 'dynamic' can only be used with non-template member functions 244

E2191: '__far16' may only be used with '__pascal' or '__cdecl' 244

E2199: Template friend function 'function' must be previously declared 245

E2502: Error resolving #import: problem 245

E2501: Unable to open import file 'filename' 245

E2494: Unrecognized __declspec modifier 245

E2493: Invalid GUID string 246

E2499: Invalid __declspec(uuid(GuidString)) format 246

E2496: Invalid call to uuidof(struct type|variable) 246

E2511: Unterminated macro argument 246

E2489: Maximum option context replay depth exceeded; check for recursion 246

E2488: Maximum token reply depth exceeded; check for recursion 246

E2491: Maximum VIRDEF count exceeded; check for recursion 246

E2230: In-line data member initialization requires an integral constant expression 247

E2241: VCL style classes need virtual destructors 247

RAD Studio

vii

E2524: Anonymous structs/unions not allowed to have anonymous members in C++ 247

E2246: x is not abstract public single inheritance class hierarchy with no data 247

E2249: = expected 247

E2267: First base must be VCL class 247

E2472: Cannot declare a member function via instantiation 247

E2515: Cannot explicitly specialize a member of a generic template class 248

E2474: 'function' cannot be declared as static or inline 248

E2498: Need previously defined struct GUID 248

E2295: Too many candidate template specializations from 'specifier' 249

E2475: 'function' cannot be a template function 249

E2299: Cannot generate template specialization from 'specifier' 249

E2300: Could not generate a specialization matching type for 'specifier' 250

E2497: No GUID associated with type:'type' 250

E2522: Non-const function 'function' called for const object 250

E2523: Non-volatile function 'name' called for volatile object 250

E2513: Cannot emit RTTI for 'parameter' in 'function' 250

E2512: Cannot emit RTTI for return type of 'function' 250

E2507: 'class' is not a direct base class of 'class' 250

E2529: Path 'path' exceeds maximum size of 'n' 250

E2495: Redefinition of uuid is not identical 251

E2500: __declspec(selectany) is only for initialized and externally visible variables 251

E2482: String constant expected 251

E2481: Unexpected string constant 251

E2386: Cannot involve parameter 'parameter' in a complex partial specialization expression 251

E2387: Partial specializations may not specialize dependent non-type parameters ('parameter') 251

E2388: Argument list of specialization cannot be identical to the parameter list of primary template 252

E2389: Mismatch in kind of substitution argument and template parameter 'parameter' 252

E2480: Cannot involve template parameters in complex partial specialization arguments 252

E2392: Template instance 'template' is already instantiated 252

E2393: Cannot take the address of non-type, non-reference template parameter 'parameter' 253

E2399: Cannot reference template argument 'arg' in template class 'class' this way 253

E2397: Template argument cannot have static or local linkage 253

E2485: Cannot use address of array element as non-type template argument 253

E2402: Illegal base class type: formal type 'type' resolves to 'type' 253

E2403: Dependent call specifier yields non-function 'name' 254

E2404: Dependent type qualifier 'qualifier' has no member type named 'name' 254

E2405: Dependent template reference 'identifier' yields non-template symbol 254

E2406: Dependent type qualifier 'qualifier' is not a class or struct type 254

E2407: Dependent type qualifier 'qualifier' has no member symbol named 'name' 255

RAD Studio

viii

E2408: Default values may be specified only in primary class template declarations 255

E2409: Cannot find a valid specialization for 'specifier' 255

E2410: Missing template parameters for friend template 'template' 255

E2486: Cannot use address of class member as non-type template argument 255

E2411: Declaration of member function default parameters after a specialization has already been
expanded

256

E2412: Attempting to bind a member reference to a dependent type 256

E2414: Destructors cannot be declared as template functions 256

E2473: Invalid explicit specialization of 'specifier' 256

E2490: Specialization within template classes not yet implemented 256

E2416: Invalid template function declaration 256

E2417: Cannot specify template parameters in explicit specialization of 'specifier' 257

E2418: Maximum instantiation depth exceeded; check for recursion 257

E2420: Explicit instantiation can only be used at global scope 257

E2422: Argument kind mismatch in redeclaration of template parameter 'parameter' 257

E2423: Explicit specialization or instantiation of non-existing template 'template' 258

E2479: Cannot have both a template class and function named 'name' 258

E2484: The name of template class 'class' cannot be overloaded 258

E2426: Explicit specialization of 'specifier' requires 'template<>' declaration 258

E2487: Cannot specify default function arguments for explicit specializations 258

E2427: 'main' cannot be a template function 259

E2429: Not a valid partial specialization of 'specifier' 259

E2430: Number of template parameters does not match in redeclaration of 'specifier' 259

E2477: Too few template parameters were declared for template 'template' 259

E2478: Too many template parameters were declared for template 'template' 259

E2431: Non-type template parameters cannot be of floating point, class, or void type 260

E2434: Template declaration missing template parameters ('template<...>') 260

E2435: Too many template parameter sets were specified 260

E2436: Default type for template template argument 'arg' does not name a primary template class 260

E2437: 'typename' should be followed by a qualified, dependent type name 260

E2438: Template template arguments must name a class 261

E2439: 'typename' is only allowed in template declarations 261

E2440: Cannot generate specialization from 'specifier' because that type is not yet defined 261

E2441: Instantiating 'specifier' 261

E2503: Missing or incorrect version of TypeLibImport.dll 261

E2470: Need to include header <typeinfo> to use typeid 261

E2514: Cannot (yet) use member overload resolution during template instantiation 262

E2508: 'using' cannot refer to a template specialization 262

E2462: 'virtual' can only be used with non-template member functions 262

RAD Studio

ix

W8086: Incorrect use of #pragma alias "aliasName"="substituteName" 262

W8099: Static main is not treated as an entry point 262

W8093: Incorrect use of #pragma codeseg [seg_name] ["seg_class"] [group] 263

W8094: Incorrect use of #pragma comment(<type> [,"string"]) 263

W8085: Function 'function' redefined as non-inline 263

W8105: %s member '%s' in class without constructors 263

W8095: Incorrect use of #pragma message("string") 264

W8098: Multi-character character constant 264

W8096: Incorrect use of #pragma code_seg(["seg_name"[,"seg_class"]]) 264

W8083: Pragma pack pop with no matching pack push 264

W8097: Not all options can be restored at this time 264

W8084: Suggest parentheses to clarify precedence 265

W8092: 'type' argument 'specifier' passed to 'function' is not an iterator: 'type' iterator required 265

W8087: 'operator::operator==' must be publicly visible to be contained by a 'type' 265

W8090: 'type::operator<' must be publicly visible to be used with 'type' 265

W8089: 'type::operator<' must be publicly visible to be contained by a 'type' 265

W8091: 'type' argument 'specifier' passed to 'function' is a 'iterator category' iterator: 'iterator category'
iterator required

266

W8076: Template instance 'specifier' is already instantiated 266

W8077: Explicitly specializing an explicitly specialized class member makes no sense 266

Informational messages 266

E2196: Cannot take address of member function 'function' 266

F1002: Unable to create output file 'filename' 266

F1003: Error directive: 'message' 267

F1004: Internal compiler error 267

F1006: Bad call of intrinsic function 267

F1007: Irreducible expression tree 267

F1009: Unable to open input file 'filename' 267

F1011: Register allocation failure 267

F1012: Compiler stack overflow 268

F1013: Error writing output file 268

F1000: Compiler table limit exceeded 268

F1005: Include files nested too deep 268

F1008: Out of memory 268

F1010: Unable to open 'filename' 268

E2000: 286/287 instructions not enabled 269

Abnormal program termination 269

E2009: Attempt to grant or reduce access to 'identifier' 269

E2011: Illegal to take address of bit field 269

RAD Studio

x

E2010: Cannot add or subtract relocatable symbols 269

E2013: 'function1' cannot be distinguished from 'function2' 269

E2014: Member is ambiguous: 'member1' and 'member2' 269

E2015: Ambiguity between 'function1' and 'function2' 270

E2017: Ambiguous member name 'name' 270

E2019: 'identifier' cannot be declared in an anonymous union 270

E2020: Global anonymous union not static 270

E2022: Array size too large 270

E2024: Cannot modify a const object 270

E2025: Assignment to 'this' not allowed, use X::operator new instead 271

E2026: Assembler statement too long 271

E2001: Constructors and destructors not allowed in __automated section 271

E2002: Only __fastcall functions allowed in __automated section 271

E2003: Data member definition not allowed in __automated section 271

E2004: Only read or write clause allowed in property declaration in __automated section 272

E2005: Redeclaration of property not allowed in __automated section 272

E2027: Must take address of a memory location 272

E2028: operator -> must return a pointer or a class 272

E2029: 'identifier' must be a previously defined class or struct 273

E2030: Misplaced break 273

E2031: Cannot cast from 'type1' to 'type2' 273

E2033: Misplaced continue 274

E2034: Cannot convert 'type1' to 'type2' 274

E2036: Conversion operator cannot have a return type specification 274

E2037: The constructor 'constructor' is not allowed 274

E2039: Misplaced decimal point 275

E2041: Incorrect use of default 275

E2042: Declare operator delete (void*) or (void*, size_t) 275

E2044: operator delete must return void 275

E2045: Destructor name must match the class name 275

E2048: Unknown preprocessor directive: 'identifier' 276

E2046: Bad file name format in include directive OR Bad file name format in line directive 276

E2051: Invalid use of dot 276

E2053: Misplaced elif directive 276

E2054: Misplaced else 277

E2055: Misplaced else directive 277

E2056: Misplaced endif directive 277

E2059: Unknown language, must be C or C++ 277

E2060: Illegal use of floating point 277

RAD Studio

xi

E2061: Friends must be functions or classes 278

E2062: Invalid indirection 278

E2063: Illegal initialization 278

E2064: Cannot initialize 'type1' with 'type2' 278

E2068: 'identifier' is not a non-static data member and can't be initialized here 278

E2069: Illegal use of member pointer 278

E2071: operator new must have an initial parameter of type size_t 279

E2072: Operator new[] must return an object of type void 279

E2075: Incorrect 'type' option: option 279

E2076: Overloadable operator expected 280

E2080: 'function' must be declared with one parameter 280

E2077: 'operator' must be declared with one or no parameters 280

E2079: 'function' must be declared with no parameters 280

E2078: 'operator' must be declared with one or two parameters 280

E2081: 'function' must be declared with two parameters 280

E2082: 'identifier' must be a member function or have a parameter of class type 281

E2083: Last parameter of 'operator' must have type 'int' 281

E2084: Parameter names are used only with a function body 281

E2085: Invalid pointer addition 281

E2086: Illegal pointer subtraction 281

E2087: Illegal use of pointer 281

E2088: Bad syntax for pure function definition 282

E2089: Identifier 'identifier' cannot have a type qualifier 282

E2090: Qualifier 'identifier' is not a class or namespace name 282

E2092: Storage class 'storage class' is not allowed here 282

E2096: Illegal structure operation 282

E2104: Invalid use of template keyword 282

E2108: Improper use of typedef 'identifier' 283

E2109: Not an allowed type 283

E2110: Incompatible type conversion 283

E2113: Virtual function 'function1' conflicts with base class 'base' 283

E2114: Multiple base classes require explicit class names 283

E2115: Bit field too large 283

E2116: Bit fields must contain at least one bit 283

W8005: Bit fields must be signed or unsigned int 284

E2119: User break 284

E2111: Type 'typename' may not be defined here 284

E2121: Function call missing) 284

E2123: Class 'class' may not contain pure functions 284

RAD Studio

xii

E2126: Case bypasses initialization of a local variable 284

E2127: Case statement missing : 284

E2128: Case outside of switch 284

E2129: Character constant too long (or empty) 285

E2133: Unable to execute command 'command' 285

E2134: Compound statement missing closing brace 285

E2137: Destructor for 'class' required in conditional expression 285

E2135: Constructor/Destructor cannot be declared 'const' or 'volatile' 285

E2138: Conflicting type modifiers 285

E2136: Constructor cannot have a return type specification 285

E2038: Cannot declare or define 'identifier' here: wrong namespace 286

E2154: Cannot define 'identifier' using a namespace alias 286

E2421: Cannot use local type 'identifier' as template argument 286

E2035: Conversions of class to itself or base class not allowed 286

E2139: Declaration missing ; 286

E2140: Declaration is not allowed here 286

E2141: Declaration syntax error 286

E2142: Base class 'class' contains dynamically dispatchable functions 286

E2143: Matching base class function 'function' has different dispatch number 287

E2144: Matching base class function 'function' is not dynamic 287

E2145: Functions 'function1' and 'function2' both use the same dispatch number 287

E2146: Need an identifier to declare 287

E2147: 'identifier' cannot start a parameter declaration 287

E2150: Type mismatch in default argument value 287

E2152: Default expression may not use local variables 288

E2153: Define directive needs an identifier 288

E2155: Too many default cases 288

E2156: Default outside of switch 288

E2158: Operand of 'delete' must be non-const pointer 288

E2159: Trying to derive a far class from the huge base 'base' 288

E2160: Trying to derive a far class from the near base 'base' 288

E2161: Trying to derive a huge class from the far base 'base' 289

E2162: Trying to derive a huge class from the near base 'base' 289

E2163: Trying to derive a near class from the far base 'base' 289

E2164: Trying to derive a near class from the huge base 'base' 289

E2165: Destructor cannot have a return type specification 289

E2166: Destructor for 'class' is not accessible 289

E2167: 'function' was previously declared with the language 'language' 289

E2168: Division by zero 290

RAD Studio

xiii

E2169: 'identifier' specifies multiple or duplicate access 290

E2170: Base class 'class' is included more than once 290

E2171: Body has already been defined for function 'function' 290

E2172: Duplicate case 290

E2175: Too many storage classes in declaration 290

E2176: Too many types in declaration 291

E2179: virtual specified more than once 291

E2007: Dispid only allowed in __automated sections 291

Divide error 291

E2182: Illegal parameter to __emit__ 291

E2183: File must contain at least one external declaration 291

E2184: Enum syntax error 292

E2185: The value for 'identifier' is not within the range of an int 292

E2186: Unexpected end of file in comment started on line 'number' 292

E2187: Unexpected end of file in conditional started on line 'number' 292

E2188: Expression syntax 292

E2190: Unexpected closing brace 293

E2189: extern variable cannot be initialized 293

E2344: Earlier declaration of 'identifier' 293

E2192: Too few parameters in call 293

E2193: Too few parameters in call to 'function' 293

E2194: Could not find file 'filename' 293

E2197: File name too long 293

E2195: Cannot evaluate function call 294

E2198: Not a valid expression format type 294

E2200: Functions may not be part of a struct or union 294

Floating point error: Divide by 0 OR Floating point error: Domain OR Floating point error: Overflow 294

Floating point error: Stack fault 294

Floating point error: Partial loss of precision OR Floating point error: Underflow 294

E2201: Too much global data defined in file 295

E2203: Goto bypasses initialization of a local variable 295

E2204: Group overflowed maximum size: 'name' 295

E2206: Illegal character 'character' (0x'value') 295

E2207: Implicit conversion of 'type1' to 'type2' not allowed 295

E2208: Cannot access an inactive scope 295

E2209: Unable to open include file 'filename' 296

E2210: Reference member 'member' is not initialized 296

E2212: Function defined inline after use as extern 296

E2211: Inline assembly not allowed in inline and template functions 296

RAD Studio

xiv

F1001: Internal code generator error 297

E2413: Invalid template declaration 297

E2070: Invalid use of namespace 'identifier' 297

E2214: Cannot have a 'non-inline function/static data' in a local class 297

E2215: Linkage specification not allowed 297

E2216: Unable to create turboc.$ln 297

E2218: Templates can only be declared at namespace or class scope 297

E2217: Local data exceeds segment size limit 298

E2219: Wrong number of arguments in call of macro 'macro' 298

E2220: Invalid macro argument separator 298

E2221: Macro argument syntax error 298

E2222: Macro expansion too long 298

E2223: Too many decimal points 298

E2224: Too many exponents 298

E2225: Too many initializers 298

E2226: Extra parameter in call 299

E2227: Extra parameter in call to function 299

E2228: Too many error or warning messages 299

E2233: Cannot initialize a class member here 299

E2232: Constant/Reference member 'member' in class without constructors 299

E2229: Member 'member' has the same name as its class 299

E2234: Memory reference expected 299

E2231: Member 'member' cannot be used without an object 299

E2235: Member function must be called or its address taken 300

O2237: DPMI programs must use the large memory model 300

E2238: Multiple declaration for 'identifier' 300

E2239: 'identifier' must be a member function 301

E2240: Conversion of near pointer not allowed 301

E2243: Array allocated using 'new' may not have an initializer 301

E2244: 'new' and 'delete' not supported 301

E2245: Cannot allocate a reference 301

E2309: Inline assembly not allowed 301

E2250: No base class to initialize 302

E2254: : expected after private/protected/private 302

E2255: Use :: to take the address of a member function 302

E2256: No : following the ? 302

E2257: , expected 302

E2258: Declaration was expected 302

E2259: Default value missing 302

RAD Studio

xv

E2260: Default value missing following parameter 'parameter' 303

E2263: Exception handling not enabled 303

E2264: Expression expected 303

E2266: No file names given 303

E2265: No file name ending 303

E2271: Goto statement missing label 303

E2272: Identifier expected 303

E2275: Opening brace expected 304

E2276: (expected 304

E2274: < expected 304

E2277: Lvalue required 304

E2278: Multiple base classes not supported for Delphi classes 304

E2280: Member identifier expected 304

E2279: Cannot find default constructor to initialize member 'identifier' 304

E2310: Only member functions may be 'const' or 'volatile' 305

E2311: Non-virtual function 'function' declared pure 305

E2283: Use . or -> to call 'function' 305

E2284: Use . or -> to call 'member', or & to take its address 305

E2285: Could not find a match for 'argument(s)' 305

E2286: Overloaded function resolution not supported 305

E2287: Parameter 'number' missing name 306

E2288: Pointer to structure required on left side of -> or ->* 306

E2290: 'code' missing] 306

E2291: brace expected 306

E2292: Function should return a value 306

E2293:) expected 306

E2294: Structure required on left side of . or .* 306

E2312: 'constructor' is not an unambiguous base class of 'class' 307

E2313: Constant expression required 307

E2296: Templates not supported 307

E2314: Call of nonfunction 307

E2321: Declaration does not specify a tag or an identifier 307

E2297: 'this' can only be used within a member function 307

E2316: 'identifier' is not a member of 'struct' 308

E2317: 'identifier' is not a parameter 308

E2319: 'identifier' is not a public base class of 'classtype' 308

E2320: Expression of scalar type expected 308

E2302: No type information 308

E2303: Type name expected 308

RAD Studio

xvi

E2304: 'Constant/Reference' variable 'variable' must be initialized 309

E2305: Cannot find 'class::class' ('class'&) to copy a vector OR Cannot find 'class'::operator=('class'&) to
copy a vector

309

E2306: Virtual base classes not supported for Delphi classes 309

E2308: do statement must have while 310

E2322: Incorrect number format 310

E2324: Numeric constant too large 310

E2282: Namespace name expected 310

E2334: Namespace member 'identifier' declared outside its namespace 310

E2325: Illegal octal digit 310

E2329: Invalid combination of opcode and operands 310

E2327: Operators may not have default argument values 311

E2330: Operator must be declared as function 311

E2333: Class member 'member' declared outside its class 311

E2335: Overloaded 'function name' ambiguous in this context 311

E2339: Cannot overload 'main' 311

E2336: Pointer to overloaded function 'function' doesn't match 'type' 312

E2337: Only one of a set of overloaded functions can be "C" 312

E2338: Overlays only supported in medium, large, and huge memory models 312

E2340: Type mismatch in parameter 'number' 312

E2341: Type mismatch in parameter 'number' in call to 'function' 312

E2342: Type mismatch in parameter 'parameter' 313

E2343: Type mismatch in parameter 'parameter' in call to 'function' 313

E2345: Access can only be changed to public or protected 313

E2349: Nonportable pointer conversion 313

E2350: Cannot define a pointer or reference to a reference 313

E2352: Cannot create instance of abstract class 'class' 313

E2354: Two operands must evaluate to the same type 314

E2355: Recursive template function: 'x' instantiated 'y' 314

E2356: Type mismatch in redeclaration of 'identifier' 315

E2357: Reference initialized with 'type1', needs lvalue of type 'type2' 315

E2358: Reference member 'member' needs a temporary for initialization 315

E2360: Invalid register combination (e.g. [BP+BX]) 315

E2361: 'specifier' has already been included 316

E2362: Repeat count needs an lvalue 316

E2363: Attempting to return a reference to local variable 'identifier' 316

E2364: Attempting to return a reference to a local object 316

E2365: Member pointer required on right side of .* or ->* 316

E2366: Can't inherit non-RTTI class from RTTI base OR E2367 Can't inherit RTTI class from non-RTTI
base

316

RAD Studio

xvii

E2368: RTTI not available for expression evaluation 316

E2371: sizeof may not be applied to a bit field 317

E2372: sizeof may not be applied to a function 317

E2373: Bit field cannot be static 317

E2374: Function 'function' cannot be static 317

Stack overflow 317

(E2376: statement missing 317

E2377: statement missing) 317

E2378: do-while or for statement missing ; 317

E2379: Statement missing ; 318

E2380: Unterminated string or character constant 318

E2381: Structure size too large 318

E2382: Side effects are not allowed 318

E2383: Switch selection expression must be of integral type 318

E2433: Specialization after first use of template 318

E2384: Cannot call near class member function with a pointer of type 'type' 318

E2390: Type mismatch in parameter 'number' in template class name 'template' 319

E2391: Type mismatch in parameter 'parameter' in template class name 'template' 319

E2394: Too few arguments passed to template 'template' 319

E2395: Too many arguments passed to template 'template' 319

E2396: Template argument must be a constant expression 319

E2401: Invalid template argument list 319

E2400: Nontype template argument must be of scalar type 319

E2415: Template functions may only have 'type-arguments' 320

E2425: 'member' is not a valid template type member 320

E2428: Templates must be classes or functions 320

E2432: 'template' qualifier must name a template class or function instance' 320

E2442: Two consecutive dots 320

E2443: Base class 'class' is initialized more than once 320

E2444: Member 'member' is initialized more than once 320

E2445: Variable 'identifier' is initialized more than once 320

E2446: Function definition cannot be a typedef'ed declaration 321

E2132: Templates and overloaded operators cannot have C linkage 321

E2447: 'identifier' must be a previously defined enumeration tag 321

E2448: Undefined label 'identifier' 321

E2449: Size of 'identifier' is unknown or zero 321

E2450: Undefined structure 'structure' 321

E2451: Undefined symbol 'identifier' 321

E2453: Size of the type 'identifier' is unknown or zero 322

RAD Studio

xviii

E2452: Size of the type is unknown or zero 322

E2454: union cannot be a base type 322

E2455: union cannot have a base type 322

E2456: Union member 'member' is of type class with 'constructor' (or destructor, or operator =) 322

E2461: '%s' requires run-time initialization/finalization 322

E2464: 'virtual' can only be used with member functions 323

E2465: unions cannot have virtual member functions 323

E2466: void & is not a valid type 323

E2467: 'Void function' cannot return a value 323

E2468: Value of type void is not allowed 323

E2469: Cannot use tiny or huge memory model with Windows 323

E2006: CodeGuarded programs must use the large memory model and be targeted for Windows 324

E2269: The function 'function' is not available 324

E2124: Invalid function call 324

E2213: Invalid 'expression' in scope override 324

E2236: Missing 'identifier' in scope override 324

Pure virtual function called 324

E2095: String literal not allowed in this context 324

Unexpected termination during compilation [Module Seg#:offset] OR Unexpected termination during linking
[Module Seg#:offset]

324

E2012: Cannot take address of 'main' 325

E2016: Ambiguous override of virtual base member 'base_function': 'derived_function' 325

E2018: Cannot throw 'type' -- ambiguous base class 'base' 325

E2021: Array must have at least one element 325

E2023: Array of references is not allowed 326

E2032: Illegal use of closure pointer 326

E2040: Declaration terminated incorrectly 326

E2047: Bad 'directive' directive syntax 326

E2049: Class type 'type' cannot be marked as __declspec(delphireturn) 326

E2052: Dynamic function 'function' conflicts with base class 'class' 327

E2057: Exception specification not allowed here 327

E2058: Exception handling variable may not be used here 327

E2065: Using namespace symbol 'symbol' conflicts with intrinsic of the same name 327

E2067: 'main' must have a return type of int 327

E2073: Nothing allowed after pragma option pop 327

E2091: Functions cannot return arrays or functions 328

E2093: Operator 'operator' not implemented in type 'type' for arguments of the same type 328

E2094: Operator 'operator' not implemented in type 'type' for arguments of type 'type' 328

E2097: Explicit instantiation only allowed at file or namespace scope 328

RAD Studio

xix

E2098: Explicit specialization declarator "template<>" now required 328

E2099: Explicit specialization only allowed at file or namespace scope 328

E2101: 'export' keyword must precede a template declaration 328

E2103: Explicit instantiation must be used with a template class or function 329

E2106: Explicit specialization must be used with a template class or function 329

E2112: Unknown unit directive: 'directive' 329

E2118: Bit fields must have integral type 329

E2120: Cannot call 'main' from within the program 329

E2125: Compiler could not generate copy constructor for class 'class' OR Compiler could not generate
default constructor for class 'class' OR Compiler could not generate operator = for class 'class'

329

E2130: Circular property definition 329

E2131: Objects of type 'type' cannot be initialized with { } 330

E2148: Default argument value redeclared for parameter 'parameter' 330

E2149: Default argument value redeclared 330

E2151: Type mismatch in default value for parameter 'parameter' 330

E2157: Deleting an object requires exactly one conversion to pointer operator 330

E2173: Duplicate handler for 'type1', already had 'type2' 331

E2174: The name handler must be last 331

E2177: Redeclaration of #pragma package with different arguments 331

E2178: VIRDEF name conflict for 'function' 331

E2180: Dispid number already used by identifier 331

E2181: Cannot override a 'dynamic/virtual' with a 'dynamic/virtual' function 331

E2202: Goto into an exception handler is not allowed 332

E2205: Illegal type type in __automated section 332

E2242: Specifier requires Delphi style class type 332

E2247: 'member' is not accessible 332

E2248: Cannot find default constructor to initialize array element of type 'class' 333

E2251: Cannot find default constructor to initialize base class 'class' 333

E2252: 'catch' expected 333

E2253: Calling convention must be attributed to the function type, not the closure 334

E2261: Use of dispid with a property requires a getter or setter 334

E2262: '__except' or '__finally' expected following '__try' 334

E2270: > expected 334

E2273: 'main' cannot be declared as static or inline 334

E2281: Identifier1 requires definition of Identifier2 as a pointer type 334

E2289: __published or __automated sections only supported for Delphi classes 335

E2298: Cannot generate 'function' from template function 'template' 335

E2301: Cannot use templates in closure arguments -- use a typedef 335

E2307: Type 'type' is not a defined class with virtual functions 335

RAD Studio

xx

E2315: 'Member' is not a member of 'class', because the type is not yet defined 335

E2318: 'type' is not a polymorphic class type 336

E2323: Illegal number suffix 336

E2326: Use __declspec(spec1[, spec2]) to combine multiple __declspecs 336

E2328: Classes with properties cannot be copied by value 336

E2331: Number of allowable option contexts exceeded 336

E2332: Variable 'variable' has been optimized and is not available 337

E2476: Cannot overload 'function' 337

E2346: 'x' access specifier of property 'property' must be a member function 337

E2347: Parameter mismatch in access specifier 'specifier' of property 'property' 337

E2348: Storage specifier not allowed for array properties 337

E2351: Static data members not allowed in __published or __automated sections 338

E2353: Class 'classname' is abstract because of 'member = 0' 338

E2359: Reference member 'member' initialized with a non-reference parameter 338

E2369: Cannot use the result of a property assignment as an rvalue' 339

E2370: Simple type name expected 339

E2398: Template function argument 'argument' not used in argument types 339

E2419: Error while instantiating template 'template' 339

E2424: Template class nesting too deep: 'class' 339

E2457: Delphi style classes must be caught by reference 340

E2458: Delphi classes have to be derived from Delphi classes 340

E2459: Delphi style classes must be constructed using operator new 340

E2460: Delphi style classes require exception handling to be enabled 340

E2463: 'base' is an indirect virtual base class of 'class' 341

Null pointer assignment 341

E2268: Call to undefined function 'function' 341

E2375: Assembler stack overflow 341

Initializing enumeration with type 341

<name> is not a valid identifier 341

Example for "Temporary used ..." error messages 342

Application is running 342

Printf/Scanf floating-point formats not linked 342

W8000: Ambiguous operators need parentheses 342

W8060: Possibly incorrect assignment 343

W8002: Restarting compile using assembly 343

W8003: Unknown assembler instruction 343

W8052: Base initialization without a class name is now obsolete 343

E2117: Bit fields must be signed or unsigned int 344

W8064: Call to function with no prototype 344

RAD Studio

xxi

W8065: Call to function 'function' with no prototype 344

W8009: Constant is long 344

W8008: Condition is always true OR W8008 Condition is always false 344

W8012: Comparing signed and unsigned values 345

W8010: Continuation character \ found in // comment 345

W8080: 'identifier' is declared but never used 345

W8014: Declaration ignored 345

W8068: Constant out of range in comparison 346

W8016: Array size for 'delete' ignored 346

W8082: Division by zero 346

W8018: Assigning 'type' to 'enumeration' 346

W8006: Initializing 'identifier' with 'identifier' 346

W8001: Superfluous & with function 347

W8020: 'identifier' is declared as both external and static 347

W8007: Hexadecimal value contains more than three digits 347

W8024: Base class 'class1' is also a base class of 'class2' 347

W8022: 'function1' hides virtual function 'function2' 347

W8023: Array variable 'identifier' is near 347

W8061: Initialization is only partially bracketed 348

W8038: constant member 'identifier' is not initialized 348

W8071: Conversion may lose significant digits 348

W8043: Macro definition ignored 348

W8017: Redefinition of 'x' is not identical 348

W8079: Mixing pointers to different 'char' types 349

W8067: Both return and return with a value used 349

W8048: Use qualified name to access member type 'identifier' 349

W8039: Constructor initializer list ignored 349

W8040: Function body ignored 349

W8042: Initializer for object 'x' ignored 349

W8044: #undef directive ignored 350

W8037: Non-const function 'function' called for const object 350

W8051: Non-volatile function 'function' called for volatile object 350

W8019: Code has no effect 350

W8057: Parameter 'parameter' is never used 351

W8070: Function should return a value 351

W8047: Declaration of static function function ignored 351

W8041: Negating unsigned value 351

W8054: Style of function definition is now obsolete 351

W8025: Ill-formed pragma 352

RAD Studio

xxii

W8063: Overloaded prefix operator 'operator' used as a postfix operator 352

W8015: Declare 'type' prior to use in prototype 352

W8069: Nonportable pointer conversion 352

W8066: Unreachable code 353

W8029: Temporary used for parameter '???' 353

W8031: Temporary used for parameter 'parameter' OR W8029 Temporary used for parameter 'number' OR
W8030 Temporary used for parameter 'parameter' in call to 'function' OR W8032 Temporary used for
parameter 'number' in call to 'function'

353

W8032: Temporary used for parameter 2 in call to '???' 353

W8028: Temporary used to initialize 'identifier' 354

W8074: Structure passed by value 354

W8011: Nonportable pointer comparison 354

W8075: Suspicious pointer conversion 355

W8059: Structure packing size has changed 355

W8045: No declaration for function 'function' 355

W8073: Undefined structure 'structure' 355

W8013: Possible use of 'identifier' before definition 356

W8004: 'identifier' is assigned a value that is never used 356

W8081: Void functions may not return a value 356

W8078: Throw expression violates exception specification 356

W8021: Handler for 'type1' hidden by previous handler for 'type2' 357

W8056: Integer arithmetic overflow 357

W8035: User-defined message 357

W8049: Use '> >' for nested templates Instead of '>>' 357

W8026: Functions with exception specifications are not expanded inline 357

W8058: Cannot create pre-compiled header: 'reason' 358

W8046: Pragma option pop with no matching option push 358

W8050: No type OBJ file present. Disabling external types option. 358

W8027: Functions containing 'statement' are not expanded inline 358

W8036: Non-ANSI keyword used: 'keyword' 359

W8053: 'ident' is obsolete 359

W8103: Path 'path' and filename 'filename' exceed maximum size of 'n' 360

W8062: Previous options and warnings not restored 360

W8055: Possible overflow in shift operation 360

W8072: Suspicious pointer arithmetic 360

W8033: Conversion to 'type' will fail for members of virtual base 'class' 360

W8034: Maximum precision used for member pointer type 'type' 361

C++ Examples 361

Remove and MessageDlg example 361

C++ Language Guide 361

RAD Studio

xxiii

C++ Specifics 362

Keywords, Alphabetical Listing 433

Keywords, By Category 484

Language Structure 489

Lexical Elements 564

The Preprocessor 590

C Runtime Library Reference 613

alloc.h 615

assert.h 632

conio.h 634

ctype.h 668

delayimp.h 689

direct.h 692

dirent.h 694

dir.h 701

dos.h 720

errno.h 733

except.h 740

fastmath.h 744

fcntl.h 746

float.h 755

io.h 766

limits.h 818

locale.h 820

malloc.h 825

math.h 826

mem.h 864

new.h 873

process.h 876

setjmp.h 898

share.h 901

signal.h 902

stdarg.h 908

stddef.h 909

stdio.h 911

stdlib.h 983

string.h 1042

sys\stat.h 1089

sys\timeb.h 1093

RAD Studio

xxiv

sys\types.h 1095

time.h 1096

typeinfo.h 1114

utime.h 1116

values.h 1117

Win32 Developer's Guide 1120

Component Writer's Guide 1120

Creating a graphic component 1121

Creating events 1134

Creating methods 1144

Creating properties 1148

Customizing a grid 1161

Extending the IDE 1179

Handling messages 1201

Introduction to component creation 1213

Making a control data aware 1228

Making components available at design time 1242

Making a dialog box a component 1261

Modifying an existing component 1266

Object-oriented programming for component writers 1270

Using graphics in components 1279

Developing COM-based Applications 1284

COM basics 1285

Creating an Active Server Page 1303

Using ActiveX controls 1309

Creating COM clients 1321

Creating simple COM servers 1335

Working with type libraries 1349

Developing Database Applications 1375

Working with ADO components 1376

Connecting to databases 1401

Creating multi-tiered applications 1416

Creating reports with Rave Reports 1458

Designing database applications 1462

Understanding datasets 1479

Using the Borland Database Engine 1543

Using client datasets 1606

Using data controls 1649

Using decision support components 1686

RAD Studio

xxv

Using provider components 1712

Using dbExpress Components 1728

Using XML in database applications 1747

Working with field components 1756

Programming with Delphi 1786

Building applications, components, and libraries 1786

Creating international applications 1827

Delphi programming fundamentals 1843

Deploying applications 1846

Developing the application user interface 1863

Exception handling 1922

Types of controls 1935

Understanding the component library 1957

Using the object model 1966

Using the VCL/RTL 1986

Working with components 2045

Working with controls 2052

Working with graphics and multimedia 2071

Working with packages and components 2110

Writing multi-threaded applications 2126

Writing Internet Applications 2145

Creating Internet server applications 2145

Using IntraWeb 2156

Using Web Broker 2162

Using Web Services 2191

Using WebSnap 2213

Working with sockets 2237

Working with XML documents 2253

Index a

RAD Studio

xxvi

1 Concepts

Topics

Name Description

Debugging C++ Applications with CodeGuard Error Reporting (see page 3) CodeGuard provides runtime debugging for C++ applications developed with
RAD Studio. CodeGuard reports errors that are not caught by the compiler
because they do not violate syntax rules. CodeGuard tracks runtime libraries with
full support for multithreaded applications.

Developing Database Applications for the Win32 Platform (see page 13) Database applications let users interact with the information that is stored in the
databases. Databases provide structure for the information, and allow it to be
shared among different applications.
Delphi provides support for relational database applications. Relational
databases organize information into tables, which contain rows (records) and
columns (fields). These tables can be manipulated by simple operations known
as the relational calculus.

Developing Interoperable Applications (see page 26) RAD Studio provides wizards and classes to make it easy to implement
applications based on the Component Object Model (COM) from Microsoft. With
these wizards, you can create COM-based classes and components to use within
applications or you can create fully functional COM clients or servers that
implement COM objects, Automation servers (including Active Server Objects),
ActiveX controls, or ActiveForms.

Developing Reports for Your Win32 Applications (see page 32) RAD Studio ships with Rave Reports from Nevrona. Using the report
components, you can build full-featured reports for your applications. You can
create solutions that include reporting capabilities which can be used and
customized by your customers. Additionally, the ComponentOne tools that ship
with RAD Studio include components for creating and generating reports.

Developing Applications with VCL Components (see page 33) The Visual Component Library (VCL) is a set of visual components for the rapid
development of Windows applications in the Delphi language.
VCL contains a wide variety of visual, non-visual, and utility classes for tasks
such as building Windows applications, web applications, database applications,
and console applications.

Developing Web Applications with WebSnap (see page 36) This section provides a conceptual background for building WebSnap
applications using RAD Studio. WebSnap makes it easier to build Web server
applications that deliver complex, data-driven Web pages. WebSnap's support
for multiple modules and for server-side scripting makes development and
maintenance easier for teams of developers and Web designers.
Please note that WebSnap is being deprecated in RAD Studio. Although
WebSnap is still documented in the online help, the WebSnap product is no
longer fully supported. As an alternative, you should begin using IntraWeb (VCL
for the Web). IntraWeb (see page 2156) is documented in this online help. For
more documentation on VCL... more (see page 36)

1 RAD Studio

1

1

Developing Web Services with Win32 Applications (see page 39) Web Services are self-contained modular applications that can be published and
invoked over the Internet. Web Services provide well-defined interfaces that
describe the services provided. Unlike Web server applications that generate
Web pages for client browsers, Web Services are not designed for direct human
interaction. Rather, they are accessed programmatically by client applications.
This section gives an overview of web services and web services support.

Developing Windows Applications (see page 40) Windows provides a traditional approach to developing user interfaces,
client/server applications, controls, and application logic. This section provides an
overview of Windows application development using RAD Studio for Win32 and
outlines the steps you would use to build a simple Windows project.

RAD Studio 1

2

1

1.1 Debugging C++ Applications with CodeGuard
Error Reporting

CodeGuard provides runtime debugging for C++ applications developed with RAD Studio. CodeGuard reports errors that are not
caught by the compiler because they do not violate syntax rules. CodeGuard tracks runtime libraries with full support for
multithreaded applications.

Topics

Name Description

CodeGuard Errors (see page 3) CodeGuard reports four types of runtime errors.

CodeGuard Overview (see page 9) CodeGuard provides runtime debugging for C++ applications developed with
RAD Studio. CodeGuard reports errors that are not caught by the compiler
because they do not violate syntax rules. CodeGuard tracks runtime libraries with
full support for multithreaded applications.
CodeGuard provides two principal types of coverage:

• Memory and Resource Use

• Function Call Validation

CodeGuard Warnings (see page 10) CodeGuard can report situations where your application may access memory
beyond a buffer's maximum size. Warnings are available for three types of
runtime library functions.

1.1.1 CodeGuard Errors

CodeGuard reports four types of runtime errors.

Topics

Name Description

Access Errors (see page 4) Access errors result from improper memory management.
When CodeGuard detects accesses to freed memory blocks or deleted objects, it
can identify where each block was allocated and deleted. Enable the Delay Free
option using the CodeGuard Configuration dialog box to use this feature.
The following are types of access errors:

• Access in freed memory

• Access in uninitialized stack

• Access in invalid stack

Exception Errors (see page 5) When a system exception occurs, CodeGuard reports the runtime error using
information provided by the operating system. If possible, the CodeGuard log
shows where your application caused the exception. CodeGuard does not trap or
redirect the exception or otherwise interfere with normal program behavior.
The following exceptions illustrate how CodeGuard exception reporting:

• General Protection Fault

• Divide by zero

Function Failure Errors (see page 6) CodeGuard reports function calls that fail, as indicated by their return value.
In the following example, the close function is given an invalid file handle, which
causes it to return a value indicating that it was unable to close a file.

1.1 Debugging C++ Applications with RAD Studio CodeGuard Errors

3

1

Resource Errors (see page 7) Resources are memory blocks (allocated with functions like malloc ,
GlobalAlloc) and object arrays, such as file handles, stream handles,
modules, and items returned by new[] .
The following runtime error examples illustrate how CodeGuard reports improper
use of resources:

• Bad parameter

• Reference to freed resource

• Resource type mismatch

• Resource leaks

• Resource from different RTL

1.1.1.1 Access Errors

Access errors result from improper memory management.

When CodeGuard detects accesses to freed memory blocks or deleted objects, it can identify where each block was allocated
and deleted. Enable the Delay Free option using the CodeGuard Configuration dialog box to use this feature.

The following are types of access errors:

• Access in freed memory

• Access in uninitialized stack

• Access in invalid stack

Access In Freed Memory

In the following example, CodeGuard identifies the line where an invalid access occurrs. CodeGuard then indicates where the
memory block was allocated and subsequently freed.

Error 00004. 0x100430 (Thread 0xFFF87283):
Access in freed memory: Attempt to access 19 byte(s) at 0x00B423DC.
strcpy(0x00B423DC, 0x004091CA ["Copy to free block"])
| lang.cpp line 106:
|
| free(buf_h);
|> strcpy(buf_h, "Copy to free block");
|
| //-----------------------//
Call Tree:
 0x004011F1(=LANG.EXE:0x01:0001F1) lang.cpp#106
 0x00407EE5(=LANG.EXE:0x01:006EE5)

The memory block (0x00B423DC) [size: 21 bytes] was allocated with malloc
| lang.cpp line 80:
| char * pad = (char *) malloc(200);
| // An array in the RTL heap.
|> char * buf_h = (char *) malloc(21);
| char * p;
| // A scratch buffer.
Call Tree:
 0x004011A1(=LANG.EXE:0x01:0001A1) lang.cpp#80
 0x00407EE5(=LANG.EXE:0x01:006EE5)

The memory block (0x00B423DC) was freed with free
| lang.cpp line 105:
| //-------------//
|
|> free(buf_h);
| strcpy(buf_h, "Copy to free block");

CodeGuard Errors RAD Studio 1.1 Debugging C++ Applications with

4

1

|
Call Tree:
 0x004011E5(=LANG.EXE:0x01:0001E5) lang.cpp#105
 0x00407EE5(=LANG.EXE:0x01:006EE5)

Access In Uninitialized Stack

In the following example, the pointer p became invalid when getBadLocal returned from execution. No additional information is
provided because the stack frame for getBadLocal was automatically removed.

Error 00005. 0x120400 (Thread 0xFFF87283):
Access in uninitialized stack: Attempt to access 20 byte(s) at 0x0072FC88.
memcpy(0x0072FCC4, 0x0072FC88, 0x14 [20])
| lang.cpp line 112:
| //-----------------------//
| p = getBadLocal();
|> memcpy(buffer, p, 20);
|
| //-------------//
Call Tree:
 0x00401208(=LANG.EXE:0x01:000208) lang.cpp#112
 0x00407EE5(=LANG.EXE:0x01:006EE5)

Access In Invalid Stack

In the following example, an allocation was made for buf_s on the stack. However, the strcpy function writes just below the
beginning of the valid stack region. CodeGuard identifies this as an error even if the string is only one byte long.

Error 00002. 0x110400 (Thread 0xFFF87283):
Access in invalid stack: Attempt to access 22 byte(s) at 0x0072FD8F.
strcpy(0x0072FD8F, 0x00409188 ["This string is long!\n"])
| LANG.CPP line 93:
|
| // Stack underrun:
|> strcpy(buf_s -1, "This string is long!\n");
|
| // Global data overrun:
Call Tree:
 0x004011C5(=LANG.EXE:0x01:0001C5) LANG.CPP#93
 0x00407EED(=LANG.EXE:0x01:006EED)

1.1.1.2 Exception Errors

When a system exception occurs, CodeGuard reports the runtime error using information provided by the operating system. If
possible, the CodeGuard log shows where your application caused the exception. CodeGuard does not trap or redirect the
exception or otherwise interfere with normal program behavior.

The following exceptions illustrate how CodeGuard exception reporting:

• General Protection Fault

• Divide by zero

General Protection Fault

In the following example, CodeGuard provides information on a general protection fault (Intel system exception 0xD). In addition
to the location of the source code that caused the exception, the log shows where the memory was allocated and subsequently
freed. The reported incorrect value is a result of accessing a byte pattern that CodeGuard uses to identify invalid memory
locations.

Error 00003. 0x400003 (Thread 0x0090):
Exception 0xC0000005: Access violation at 0x80828082.
| gpfault.c line 32:
| {¬
| q = p[3];

1.1 Debugging C++ Applications with RAD Studio CodeGuard Errors

5

1

|> *q = 1;
| }
| }
Call Tree:
 0x004010E5(=GPFAULT.EXE:0x01:0000E5) gpfault.c#32
 0x00406B29(=GPFAULT.EXE:0x01:005B29)

The bogus value (0x80828082) was most likely retrieved by accessing a(n)
 memory block that has already been freed
The memory block (0x008322A4) [size: 16 bytes] was allocated with malloc
| gpfault.c line 17:
| int *q;
|
|> p = malloc(sizeof(*p) * 4);
|
| /* Initialize p */
Call Tree:
 0x00401094(=GPFAULT.EXE:0x01:000094) gpfault.c#17
 0x00406B29(=GPFAULT.EXE:0x01:005B29)

The memory block (0x008322A4) was freed with free
| gpfault.c line 17:
| int *q;
|
|> p = malloc(sizeof(*p) * 4);
|
| /* Initialize p */
Call Tree:
 0x00401094(=GPFAULT.EXE:0x01:000094) gpfault.c#17
 0x00406B29(=GPFAULT.EXE:0x01:005B29)

Divide By Zero

In the following example, CodeGuard identifies the location in source code where division by zero (Intel system exception 0x0)
occurred.

Error 00001. 0x400000 (Thread 0x008B):
Exception 0xC0000094:
| ZERODIV.C line 9:
| {¬
| x = 1;
|> return x / y;
| }
|
Call Tree:
 0x0040109C(=ZERODIV.EXE:0x01:00009C) ZERODIV.C#9
 0x00406321(=ZERODIV.EXE:0x01:005321)

1.1.1.3 Function Failure Errors

CodeGuard reports function calls that fail, as indicated by their return value.

In the following example, the close function is given an invalid file handle, which causes it to return a value indicating that it was
unable to close a file.

Error 00009. 0x820000 (r) (Thread 0xFFF840F1):
Function failure:
close(0x80868086 [-2138668922])=0xFFFFFFFF [-1]
| lang.cpp line 125:
| // uninitialized data usage //
| //--------------------------//
|> close(m->handle);
|
|
Call Tree:

CodeGuard Errors RAD Studio 1.1 Debugging C++ Applications with

6

1

 0x00401236(=LANG.EXE:0x01:000236) lang.cpp#125
 0x00407EED(=LANG.EXE:0x01:006EED)

1.1.1.4 Resource Errors

Resources are memory blocks (allocated with functions like malloc , GlobalAlloc) and object arrays, such as file handles,
stream handles, modules, and items returned by new[] .

The following runtime error examples illustrate how CodeGuard reports improper use of resources:

• Bad parameter

• Reference to freed resource

• Resource type mismatch

• Resource leaks

• Resource from different RTL

Bad Parameter

When a resource is passed to a function, CodeGuard checks the runtime arguments. CodeGuard notifies you if it detects a bad
parameter.

Error 00017. 0x310000 (Thread 0xFFF87283):
Bad parameter: A bad file handle (0xEA) has been passed to the function.
close(0xEA [234])
| lang.cpp line 170:
| // using a bad handle //
| //--------------------//
|> close(234);
|
| //----------------------//
Call Tree:
 0x00401456(=LANG.EXE:0x01:000456) lang.cpp#170
 0x00407EE5(=LANG.EXE:0x01:006EE5)

Reference To Freed Resource

In the following example, CodeGuard reports an attempt to read from a file that has already been closed. The CodeGuard log
shows where the file was opened and subsequently closed.

Error 00020. 0x310030 (Thread 0xFFF840F1):
Reference to freed resource:
read(0x3 [3], 0x0072FCC4, 0x5 [5])
| lang.cpp line 177:
| int i = open("lang.cpp", 0);
| close(i);
|> read (i, buffer, 5);
|
| //--------------//
Call Tree:
 0x00401487(=LANG.EXE:0x01:000487) lang.cpp#177
 0x00407EED(=LANG.EXE:0x01:006EED)

The file handle (0x00000003) [name: 'lang.cpp'] was opened with open
| lang.cpp line 175:
| // using a freed handle //
| //----------------------//
|> int i = open("lang.cpp", 0);
| close(i);
| read (i, buffer, 5);
Call Tree:
 0x0040146C(=LANG.EXE:0x01:00046C) lang.cpp#175
 0x00407EED(=LANG.EXE:0x01:006EED)

1.1 Debugging C++ Applications with RAD Studio CodeGuard Errors

7

1

The file handle (0x00000003) was closed with close
| lang.cpp line 176:
| //----------------------//
| int i = open("lang.cpp", 0);
|> close(i);
| read (i, buffer, 5);
|
Call Tree:
 0x00401477(=LANG.EXE:0x01:000477) lang.cpp#176
 0x00407EED(=LANG.EXE:0x01:006EED)

Resource Type Mismatch

In the following example, a memory block that was allocated with the new[] operator, and should therefore be released with the
delete[] operator, is instead released with a call to the free function.

Error 00024. 0x350010 (Thread 0xFFF840F1):
Resource type mismatch: a(n) memory block was expected.
free(0x00B42464)
| lang.cpp line 188:
| //---------------//
| char * ss = new char[21];
|> free(ss);
|
| #ifdef __WIN32__
Call Tree:
 0x0040149F(=LANG.EXE:0x01:00049F) lang.cpp#188
 0x00407EED(=LANG.EXE:0x01:006EED)

The object array (0x00B42464) [size: 21 bytes] was created with new[]
| lang.cpp line 187:
| // type mismatch //
| //---------------//
|> char * ss = new char[21];
| free(ss);
|
Call Tree:
 0x00401498(=LANG.EXE:0x01:000498) lang.cpp#187
 0x00407EED(=LANG.EXE:0x01:006EED)

Resource Leaks

In the following example, memory has been allocated but is never freed.

The memory block (0x00B42310) [size: 200 bytes] was allocated with malloc
| lang.cpp line 78:
| // An array on the stack.
| char buf_s[21];
|> char * pad = (char *) malloc(200);
| // An array in the RTL heap.
| char * buf_h = (char *) malloc(21);
Call Tree:
 0x00401199(=LANG.EXE:0x01:000199) lang.cpp#78
 0x00407EE5(=LANG.EXE:0x01:006EE5)

Resource From Different RTL

CodeGuard reports an error if your application allocates, uses, or releases resources in different versions of the runtime library.
This can happen, as the following example illustrates, if you link with a static runtime library but call a DLL.

Note: CodeGuard detects resource type mismatches before it detects mixed versions of the RTL. When the two kinds of error
are combined, CodeGuard will not report the mixed RTLs until you correct the resource type mismatch.

Error 00001. 0x340010 (Thread 0x0062):
Resource from different RTL:

CodeGuard Errors RAD Studio 1.1 Debugging C++ Applications with

8

1

close(0x3 [3])
| testdll.cpp line 23:
| {¬
| MessageBox(NULL,"RTLMixHandle: DLL closing EXE handle", "TESTDLL.CPP", MB_OK);
|> close(handle);
| return 1;
| }
Call Tree:
 0x0032115A(=testdll.dll:0x01:00015A) testdll.cpp#23
 0x00401660(=WINAPI.EXE:0x01:000660) filescg.cpp#33
 0x00401271(=WINAPI.EXE:0x01:000271) winapi.cpp#122
 0x77EA15B3
 0x00408B9A(=WINAPI.EXE:0x01:007B9A)

The file handle (0x00000003) [name: 'test2.dat'] was opened with open
| filescg.cpp line 32:
|
| MessageBox(NULL,"FilesMixCG: Mixing RTL file handles", "FILESCG.CPP", MB_OK);
|> i = open("test2.dat", O_CREAT, S_IREAD | S_IWRITE);
| RTLMixHandle(i);
| }
Call Tree:
 0x00401657(=WINAPI.EXE:0x01:000657) filescg.cpp#32
 0x00401271(=WINAPI.EXE:0x01:000271) winapi.cpp#122
 0x77EA15B3
 0x00408B9A(=WINAPI.EXE:0x01:007B9A)

1.1.2 CodeGuard Overview

CodeGuard provides runtime debugging for C++ applications developed with RAD Studio. CodeGuard reports errors that are not
caught by the compiler because they do not violate syntax rules. CodeGuard tracks runtime libraries with full support for
multithreaded applications.

CodeGuard provides two principal types of coverage:

• Memory and Resource Use

• Function Call Validation

Memory and Resource Use

CodeGuard checks for faulty memory use, improper memory allocation or deallocation, invalid file streams or handles, and
resource leaks caused by improper use of file streams or handles. CodeGuard verifies pointer dereferencing and pointer
arithmetic. CodeGuard can report an error if your program tries to access memory or resources that have already been released.

Function Call Validation

CodeGuard verifies function arguments and reports function failure as indicated by the return value of the function. It validates
Windows resource handles used in function calls.

See Also

Errors reported by CodeGuard (see page 3)

Warnings reported by CodeGuard (see page 10)

Using CodeGuard (see page 44)

1.1 Debugging C++ Applications with RAD Studio CodeGuard Warnings

9

1

1.1.3 CodeGuard Warnings

CodeGuard can report situations where your application may access memory beyond a buffer's maximum size. Warnings are
available for three types of runtime library functions.

Topics

Name Description

Memory Block Comparison Warnings (see page 11) Each of the following functions has a parameter that determines the maximum
number of bytes it compares:

1. memcmp

2. memicmp

3. _fmemcmp

4. _fmemicmp

If the Warnings option is enabled for the functions listed
above, CodeGuard verifies that a comparison can be
performed for each memory block passed to the function.
If a memory block is too large, as determined by the
parameter passed to the function, CodeGuard generates
a warning.

If the Warnings option is disabled for the functions listed
above, CodeGuard checks the first byte in each memory
block passed to the function. If the memory block is
invalid, CodeGuard generates... more (see page 11)

Pathname Merging and Splitting Warnings (see page 11) Each of the following functions use constants defined in dir.h to determine the
maximum number of bytes to copy to or from a buffer:

1. fnmerge

2. fnsplit

3. getcurdir

String Comparison Warnings (see page 11) Each of the following functions has a parameter that determines the maximum
number of bytes it compares:

• strncmp

• strnicmp

• strncmpi

• _fstrncmp

• _fstrnicmp

If the Warnings option is enabled for the functions listed,
CodeGuard verifies that a string comparison can be
performed for each buffer passed to the function. If the
buffer size is too large, as determined by the parameter
passed to the function, and the buffer is not
null-terminated, CodeGuard generates a warning.

If the Warnings option is disabled for the functions listed
above, CodeGuard checks the first byte in each memory
block passed to the function. If the... more (see page 11)

CodeGuard Warnings RAD Studio 1.1 Debugging C++ Applications with

10

1

1.1.3.1 Memory Block Comparison Warnings

Each of the following functions has a parameter that determines the maximum number of bytes it compares:

1. memcmp

2. memicmp

3. _fmemcmp

4. _fmemicmp

If the Warnings option is enabled for the functions listed above, CodeGuard verifies that a comparison can be performed for
each memory block passed to the function. If a memory block is too large, as determined by the parameter passed to the
function, CodeGuard generates a warning.

If the Warnings option is disabled for the functions listed above, CodeGuard checks the first byte in each memory block passed
to the function. If the memory block is invalid, CodeGuard generates an error message.

1.1.3.2 Pathname Merging and Splitting Warnings

Each of the following functions use constants defined in dir.h to determine the maximum number of bytes to copy to or from a
buffer:

1. fnmerge

2. fnsplit

3. getcurdir

fnmerge

If the Warnings option is enabled, the output buffer is validated against MAXPATH before fnmerge is called.

If the Warnings option is disabled, the size of the output buffer is validated against the null-terminated string length after
fnmerge is called.

fnsplit

If the Warnings option is enabled, the input buffers are validated against MAXDRIVE, MAXDIR, MAXFILE, and MAXEXT before
fnsplit is called.

If the Warnings option is disabled, the input buffers are validated against the length of the null-terminated string after fnsplit
is called.

getcurdir

If the Warnings option is enabled, the output buffer is validated against MAXDIR before getcurdir is called.

If the Warnings option is disabled, the output buffer is validated against the length of the null-terminated string after getcurdir
is called.

1.1.3.3 String Comparison Warnings

Each of the following functions has a parameter that determines the maximum number of bytes it compares:

• strncmp

• strnicmp

• strncmpi

1.1 Debugging C++ Applications with RAD Studio CodeGuard Warnings

11

1

• _fstrncmp

• _fstrnicmp

If the Warnings option is enabled for the functions listed, CodeGuard verifies that a string comparison can be performed for
each buffer passed to the function. If the buffer size is too large, as determined by the parameter passed to the function, and
the buffer is not null-terminated, CodeGuard generates a warning.

If the Warnings option is disabled for the functions listed above, CodeGuard checks the first byte in each memory block passed
to the function. If the memory block is invalid, CodeGuard generates an error message.

CodeGuard Warnings RAD Studio 1.1 Debugging C++ Applications with

12

1

1.2 Developing Database Applications for the
Win32 Platform

Database applications let users interact with the information that is stored in the databases. Databases provide structure for the
information, and allow it to be shared among different applications.

Delphi provides support for relational database applications. Relational databases organize information into tables, which contain
rows (records) and columns (fields). These tables can be manipulated by simple operations known as the relational calculus.

Topics

Name Description

dbGo Overview (see page 14) dbGo provides the developers with a powerful and logical object model for
programmatically accessing, editing, and updating data from a wide variety of
data sources through OLE DB system interfaces. The most common usage of
dbGo is to query a table or tables in a relational database, retrieve and display
the results in an application, and perhaps allow users to make and save changes
to the data.
The ADO layer of an ADO-based application consists of the latest version of
Microsoft ADO, an OLE DB provider or ODBC driver for the data store access,
client software for the specific database... more (see page 14)

BDE Overview (see page 15) The Borland Database Engine (BDE) is a data-access mechanism that can be
shared by several applications. The BDE defines a powerful library of API calls
that can create, restructure, fetch data from, update, and otherwise manipulate
local and remote database servers. The BDE provides a uniform interface to
access a wide variety of database servers, using drivers to connect to different
databases. The components on the BDE category of the Tool Palette enable
you to connect to database information using the BDE.
When deploying BDE-based applications, you must include the BDE with your
application. While this increases the size of... more (see page 15)

dbExpress Components (see page 15) dbExpress is a set of lightweight database components that provide fast access
to SQL database servers. For each supported database, dbExpress provides a
driver framework that adapts the server-specific software to a set of uniform
dbExpress interfaces. When you deploy a database application that uses
dbExpress, you include a DLL(the server-specific driver) with the application files
you build.
dbExpress lets you access databases using unidirectional datasets.
Unidirectional datasets are designed for quick lightweight access to database
information, with minimal overhead. Like other datasets, they can send an SQL
command to the database server, and if the command returns a set... more (
see page 15)

Getting Started with InterBase Express (see page 16) InterBase Express (IBX) is a set of data access components that provide a
means of accessing data from InterBase databases. The InterBase
Administration Components, which require InterBase, are described after the
InterBase data access components.

dbExpress 4 New Feature Overview (see page 21) dbExpress's top level framework and metadata support has been rewritten in
Delphi.
It has new, richer metadata support.
The DbxClient driver remotes the dbExpress 4 framework interface over a
network based transport.
This document discusses the following features:

• dbExpress Framework

• dbExpress Metadata Improvements

• DBXClient Driver

• DBXDynalink Driver

• DBTest

1.2 Developing Database Applications for RAD Studio dbGo Overview

13

1

1.2.1 dbGo Overview

dbGo provides the developers with a powerful and logical object model for programmatically accessing, editing, and updating
data from a wide variety of data sources through OLE DB system interfaces. The most common usage of dbGo is to query a
table or tables in a relational database, retrieve and display the results in an application, and perhaps allow users to make and
save changes to the data.

The ADO layer of an ADO-based application consists of the latest version of Microsoft ADO, an OLE DB provider or ODBC
driver for the data store access, client software for the specific database system used (in the case of SQL databases), a
database back-end system accessible to the application (for SQL database systems), and a database. All of these must be
accessible to the ADO-based application for it to be fully functional.

The dbGo category of the Tool Palette hosts the dbGo components. These components let you connect to an ADO data store,
execute commands, and retrieve data from tables in databases using the ADO framework. The components require the latest
version of ADO to be installed on the host computer. Additionally, client software for the target database system (such as
Microsoft SQL Server) must be installed, as well as an OLE DB driver or ODBC driver specific to the particular database system.

Most dbGo components have direct counterparts in the components available for other data access mechanisms: a database
connection component, TADOConnection , and various types of datasets. In addition, dbGo includes TADOCommand , a
simple component that is not a dataset but which represents an SQL command to be executed on the ADO data store.

The main dbGo components are:

Components Function

TADOConnection A database connection component that establishes a connection with an ADO data store.

Multiple ADO dataset and command components can share this connection to execute commands,
retrieve data, and operate on metadata.

TRDSConnection A database connection component to marshal data in multi-tier database applications that are built using
ADO-based application servers.

TADODataSet Primary dataset used for retrieving and operating on data.

TADODataSet can retrieve data from a single or multiple tables, can connect directly to a data store, or
use a TADOConnection component

TADOTable A table-type dataset for retrieving and operating on a recordset produced by a single database table.

TADOTable can connect directly to a data store or use a TADOConnection component

TADOQuery A query-type dataset for retrieving and operating on a recordset produced by a valid SQL statement.

TADOQuery can also execute Data Definition Language (DDL) SQL statements. It can connect directly to
a data store or use a TADOConnection component.

TADOStoredProc A stored procedure-type dataset for executing stored procedures.

TADOStoredProc executes stored procedures that may or may not retrieve data. It can connect directly to
a data store or use a TADOConnection component.

TADOCommand A simple component for executing commands (SQL statements that do not return result sets).

TADOCommand can be used with a supporting dataset component, or retrieve a dataset from a table. It
can connect directly to a data store or use a TADOConnection component

See Also

Working with dbGo Components (see page 1400)

BDE Overview RAD Studio 1.2 Developing Database Applications for

14

1

1.2.2 BDE Overview

The Borland Database Engine (BDE) is a data-access mechanism that can be shared by several applications. The BDE defines
a powerful library of API calls that can create, restructure, fetch data from, update, and otherwise manipulate local and remote
database servers. The BDE provides a uniform interface to access a wide variety of database servers, using drivers to connect
to different databases. The components on the BDE category of the Tool Palette enable you to connect to database information
using the BDE.

When deploying BDE-based applications, you must include the BDE with your application. While this increases the size of the
application and the complexity of deployment, the BDE can be shared with other BDE-based applications and provides a broader
range of support for database manipulation. Although you can use the API of the BDE directly in your application, the
components on the BDE category of the Tool Palette wrap most of this functionality for you.

The main BDE components are:

Components Function

TTable Retrieves data from a physical database table via the BDE and supplies it to one or more data-aware
components through a DataSource component. Conversely, it also sends data received from a
component to a physical database via the BDE.

TQuery Uses SQL statements to retrieve data from a physical database table via the BDE and supplies it to one
or more data-aware components through a TDataSource component. Conversely, it uses SQL
statements to send data from a component to a physical database via the BDE.

TStoredProc Enables an application to access server stored procedures. It sends data received from a component to
a physical database via the BDE.

TDatabase Sets up a persistent connection to a database, especially a remote database requiring a user login and
password.

TSession Provides global control over a group of database components. A default TSession component is
automatically created for each database application. You must use the TSession component only if you
are creating a multithreaded database application. Each database thread requires its own session
component.

TBatchMove Copies a table structure or its data. It can be used to move entire tables from one database format to
another.

TUpdateSQL Lets you use cached updates support with read-only datasets.

TNestedTable Retrieves the data in a nested dataset field and supplies it to data-aware controls through a datasource
component.

See Also

Using BDE (see page 55)

Borland Database Engine (see page 1853)

1.2.3 dbExpress Components

dbExpress is a set of lightweight database components that provide fast access to SQL database servers. For each supported
database, dbExpress provides a driver framework that adapts the server-specific software to a set of uniform dbExpress
interfaces. When you deploy a database application that uses dbExpress, you include a DLL(the server-specific driver) with the

1.2 Developing Database Applications for RAD Studio dbExpress Components

15

1

application files you build.

dbExpress lets you access databases using unidirectional datasets. Unidirectional datasets are designed for quick lightweight
access to database information, with minimal overhead. Like other datasets, they can send an SQL command to the database
server, and if the command returns a set of records, retrieve those records. Unidirectional datasets do not buffer data in memory,
which makes them faster and less resource-intensive than other types of dataset. However, because there are no buffered
records, unidirectional datasets are also less flexible than other datasets.

dbExpress connections, tables, views, and stored procedures that show up in a data tree view support drag & drop with native
and managed vcl forms.

The dbExpress category of the Tool Palette contains components that use dbExpress to access database information. They
are:

Components Function

TSQLConnection Encapsulates a dbExpress connection to a database server

TSQLDataSet Represents any data available through dbExpress , or sends commands to a database
accessed through dbExpress

TSQLQuery A query-type dataset that encapsulates an SQL statement and enables applications to access
the resulting records, if any

TSQLTable A table-type dataset that represents all of the rows and columns of a single database table

TSQLStoredProc A stored procedure-type dataset that executes a stored procedure defined on a database
server

TSQLMonitor Intercepts messages that pass between an SQL connection component and a database
server and saves them in a string list

TSimpleDataSet A client dataset that uses an internal TSQLDataSet and TDataSetProvider for fetching data
and applying updates

See Also

Using dbExpress (see page 68)

Using dbExpress Datasets (see page 1730)

Configuring TSQL Connection (see page 48)

Using Data Explorer to get Connection Information (see page 69)

1.2.4 Getting Started with InterBase Express

InterBase Express (IBX) is a set of data access components that provide a means of accessing data from InterBase databases.
The InterBase Administration Components, which require InterBase, are described after the InterBase data access components.

IBX components

The following components are located on the InterBase tab of the component palette.

 TIBTable

 TIBQuery

 TIBStoredProc

 TIBDatabase

Getting Started with InterBase Express RAD Studio 1.2 Developing Database Applications for

16

1

 TIBTransaction

 TIBUpdateSQL

 TIBDataSet

 TIBSQL

 TIBDatabaseInfo

 IBSQLMonitor

 TIBEvents

 TIBExtract

 TIBCustomDataSet

Though they are similar to BDE components in name, the IBX components are somewhat different. For each component with a
BDE counterpart, the sections below give a discussion of these differences.

There is no simple migration from BDE to IBX applications. Generally, you must replace BDE components with the comparable
IBX components, and then recompile your applications. However, the speed you gain, along with the access you get to the
powerful InterBase features make migration well worth your time.

IBDatabase

Use a TIBDatabase component to establish connections to databases, which can involve one or more concurrent transactions.
Unlike BDE, IBX has a separate transaction component, which allows you to separate transactions and database connections.

To set up a database connection:

1. Drop an IBDatabase component onto a form or data module.

2. Fill out the DatabaseName property. For a local connection, this is the drive, path, and filename of the database file. Set the
Connected property to true.

3. Enter a valid username and password and click OK to establish the database connection.

Warning: Tip: You can store the username and password in the IBDatabase component's Params property by setting the
LoginPrompt property to false after logging in. For example, after logging in as the system administrator and setting the
LoginPrompt property to false, you may see the following when editing the Params property:

 user_name=sysdba
 password=masterkey

IBTransaction

Unlike the Borland Database Engine, IBX controls transactions with a separate component, TIBTransaction. This powerful
feature allows you to separate transactions and database connections, so you can take advantage of the InterBase two-phase
commit functionality (transactions that span multiple connections) and multiple concurrent transactions using the same
connection.

Use an IBTransaction component to handle transaction contexts, which might involve one or more database connections. In
most cases, a simple one database/one transaction model will do.

To set up a transaction:

1. Set up an IBDatabase connection as described above.

2. Drop an IBTransaction component onto the form or data module

3. Set the DefaultDatabase property to the name of your IBDatabase component.

1.2 Developing Database Applications for RAD Studio Getting Started with InterBase Express

17

1

4. Set the Active property to true to start the transaction.

IBX dataset components

There are a variety of dataset components from which to choose with IBX, each having their own characteristics and task
suitability:

IBTable

Use an TIBTable component to set up a live dataset on a table or view without having to enter any SQL statements.

IBTable components are easy to configure:

1. Add an IBTable component to your form or data module.

2. Specify the associated database and transaction components.

3. Specify the name of the relation from the TableName drop-down list.

4. Set the Active property to true.

IBQuery

Use an TIBQuery component to execute any InterBase DSQL statement, restrict your result set to only particular columns and
rows, use aggregate functions, and join multiple tables.

IBQuery components provide a read-only dataset, and adapt well to the InterBase client/server environment. To set up an
IBQuery component:

1. Set up an IBDatabase connection as described above.

2. Set up an IBTransaction connection as described above.

3. Add an IBQuery component to your form or data module.

4. Specify the associated database and transaction components.

5. Enter a valid SQL statement for the IBQuery's SQL property in the String list editor.

6. Set the Active property to true

IBDataSet

Use an TIBDataSet component to execute any InterBase DSQL statement, restrict your result set to only particular columns and
rows, use aggregate functions, and join multiple tables. IBDataSet components are similar to IBQuery components, except
that they support live datasets without the need of an IBUpdateSQL component.

The following is an example that provides a live dataset for the COUNTRY table in employee.gdb:

1. Set up an IBDatabase connection as described above.

2. Specify the associated database and transaction components.

3. Add an IBDataSet component to your form or data module.

4. Enter SQL statements for the following properties:

SelectSQL SELECT Country, Currency FROM Country

RefreshSQL SELECT Country, Currency FROM Country WHERE Country = :Country

ModifySQL UPDATE Country SET Country = :Country, Currency = :Currency WHERE Country = :Old_Country

DeleteSQL DELETE FROM Country WHERE Country = :Old_Country

InsertSQL INSERT INTO Country (Country, Currency) VALUES (:Country, :Currency)

1. Set the Active property to true.

2.

Note: Note: Parameters and fields passed to functions are case-sensitive in dialect 3. For example,

Getting Started with InterBase Express RAD Studio 1.2 Developing Database Applications for

18

1

FieldByName(EmpNo)

would return nothing in dialect 3 if the field was 'EMPNO'.

IBStoredProc

Use TIBStoredProc for InterBase executable procedures: procedures that return, at most, one row of information. For stored
procedures that return more than one row of data, or "Select" procedures, use either IBQuery or IBDataSet components.

IBSQL

Use an TIBSQL component for data operations that need to be fast and lightweight. Operations such as data definition and
pumping data from one database to another are suitable for IBSQL components.

In the following example, an IBSQL component is used to return the next value from a generator:

1. Set up an IBDatabase connection as described above.

2. Put an IBSQL component on the form or data module and set its Database property to the name of the database.

3. Add an SQL statement to the SQL property string list editor, for example:

 SELECT GEN_ID(MyGenerator, 1) FROM RDB$DATABASE

IBUpdateSQL

Use an TIBUpdateSQL component to update read-only datasets. You can update IBQuery output with an IBUpdateSQL
component:

1. Set up an IBQuery component as described above.

2. Add an IBUpdateSQL component to your form or data module.

3. Enter SQL statements for the following properties: DeleteSQL, InsertSQL, ModifySQL, and RefreshSQL.

4. Set the IBQuery component's UpdateObject property to the name of the IBUpdateSQL component.

5. Set the IBQuery component's Active property to true.

IBSQLMonitor

Use an TIBSQLMonitor component to develop diagnostic tools to monitor the communications between your application and the
InterBase server. When the TraceFlags properties of an IBDatabase component are turned on, active IBSQLMonitor
components can keep track of the connection's activity and send the output to a file or control.

A good example would be to create a separate application that has an IBSQLMonitor component and a Memo control. Run this
secondary application, and on the primary application, activate the TraceFlags of the IBDatabase component. Interact with the
primary application, and watch the second's memo control fill with data.

IBDatabaseInfo

Use an TIBDatabaseInfo component to retrieve information about a particular database, such as the sweep interval, ODS
version, and the user names of those currently attached to this database.

For example, to set up an IBDatabaseInfo component that displays the users currently connected to the database:

1. Set up an IBDatabase connection as described above.

2. Put an IBDatabaseInfo component on the form or data module and set its Database property to the name of the database.

3. Put a Memo component on the form.

4. Put a Timer component on the form and set its interval.

5. Double click on the Timer's OnTimer event field and enter code similar to the following:

 Memo1.Text := IBDatabaseInfo.UserNames.Text; // Delphi example
 Memo1->Text = IBDatabaseInfo->UserNames->Text; // C++ example

IBEvents

1.2 Developing Database Applications for RAD Studio Getting Started with InterBase Express

19

1

Use an IBEvents component to register interest in, and asynchronously handle, events posted by an InterBase server.

To set up an IBEvents component:

1. Set up an IBDatabase connection as described above.

2. Put an IBEvents component on the form or data module and set its Database property to the name of the database.

3. Enter events in the Events property string list editor, for example:

 IBEvents.Events.Add('EVENT_NAME'); // Delphi example
 IBEvents->Events->Add("EVENT_NAME"); // C++ Example

1. 4. Set the Registered property to true.

2. InterBase Administration Components

If you have InterBase installed, you can use the InterBase Administration components, which allow you to use access the
powerful InterBase Services API calls.

The components are located on the InterBase Admin tab of the IDE and include:

 TIBConfigService

 TIBBackupService

 TIBRestoreService

 TIBValidationService

 TIBStatisticalService

 TIBLogService

 TIBSecurityService

 TIBLicensingService

 TIBServerProperties

 TIBInstall

 TIBUnInstall

Note: You must install InterBase to use these features.

IBConfigService

Use an TIBConfigService object to configure database parameters, including page buffers, async mode, reserve space, and
sweep interval.

IBBackupService

Use an TIBBackupService object to back up your database. With IBBackupService, you can set such parameters as the blocking
factor, backup file name, and database backup options.

IBRestoreService

Use an TIBRestoreService object to restore your database. With IBRestoreService, you can set such options as page buffers,
page size, and database restore options.

IBValidationService

Use an TIBValidationService object to validate your database and reconcile your database transactions. With the
IBValidationService, you can set the default transaction action, return limbo transaction information, and set other database
validation options.

IBStatisticalService

Getting Started with InterBase Express RAD Studio 1.2 Developing Database Applications for

20

1

Use an TIBStatisticalService object to view database statistics, such as data pages, database log, header pages, index pages,
and system relations.

IBLogService

Use an TIBLogService object to create a log file.

IBSecurityService

Use an TIBSecurityService object to manage user access to the InterBase server. With the IBSecurityService, you can create,
delete, and modify user accounts, display all users, and set up work groups using SQL roles.

IBLicensingService

Use an TIBLicensingService component to add or remove InterBase software activation certificates.

IBServerProperties

Use an TIBServerProperties component to return database server information, including configuration parameters, and version
and license information.

IBInstall

Use an TIBInstall component to set up an InterBase installation component, including the installation source and destination
directories, and the components to be installed.

IBUnInstall

Use an TIBUnInstall component to set up an uninstall component.

1.2.5 dbExpress 4 New Feature Overview

dbExpress's top level framework and metadata support has been rewritten in Delphi.

It has new, richer metadata support.

The DbxClient driver remotes the dbExpress 4 framework interface over a network based transport.

This document discusses the following features:

• dbExpress Framework

• dbExpress Metadata Improvements

• DBXClient Driver

• DBXDynalink Driver

• DBTest

dbExpress Framework

VCL

The dbExpress VCL component's implementation has changed with minimal change to the API. Most applications are not
affected by changes to the dbExpress VCL. However, there are some new methods, properties, events, constants, and enums.

DBXCommon Unit Interface Compatibility (“Ex” classes)

In the DbxCommon unit, there are several new classes that extend existing classes and have a suffix of "Ex". These are

1.2 Developing Database Applications for RAD Studio dbExpress 4 New Feature Overview

21

1

temporary classes introduced to avoid breaking the interface compatibility with the versions shipped earlier in 2007. In the next
release, these additional fields and methods will be moved to the non-Ex version of the classes.

dbExpress Metadata Improvements

The dbExpress 3 metadata was not rich enough for database tooling and did not support all of the metadata types expected from
an ADO.NET 2.0 driver. New metadata providers support provides much greater capability.

New metadata providers for 9 different database backends are written completely in Delphi. Full source code to all metadata
providers is included in the product.

Separation of metadata read and write capabilities

Each provider is composed of a metadata reader and metadata writer implementation. The metadata readers are in the new
DbxReadOnlyMetaData package and the metadata writers are in the DbxMetaData package. The dbExpress drivers and the
new ADO.NET AdoDbx Client driver only need the metadata reader capabilities. Many database applications only need to read
metadata, not write to it. By separating read and write capabilities, application deployments sizes can be reduced.

Provider based approach

The metadata providers are detached from the driver, so that one metadata provider can be used for multiple driver
implementations as long as the database backend is the same. Data Explorer also takes advantage of metadata providers to
provide metadata support for other database ADO.NET drivers.

The provider is not bound to a driver, but to a database back end. There is a new property called
TDBXPropertyNames.MetaDataPackageLoader in the dbxdrivers.ini files that can be set to a TDBXCommandFactory object.
This command factory implementation creates a TDBXCommand that can execute metadata commands. This approach allows
multiple driver implementations for a specific database backend to use the same metadata provider. Data Explorer also takes
advantage of this architecture to provide dbExpress 4 structured metadata for ADO.NET drivers from other vendors. The
decoupling of driver and metadata provider also benefits "thin" driver implementations. If metadata commands can be serviced
on a server, there is no need to have the metadata provider logic on the client.

Provider source directory

There are several directories for the metadata provider source code. Units of interest to applications have been placed in the
"provider" directory. Applications should avoid creating dependencies on units outside of this directory. However, implementors
of dbExpress metadata must extend from abstract reader and writer base classes that are outside of the provider directory.

Reading metadata

A new unit DBXMetaDataNames has been provided to read metadata. The existing dbExpress class TDBXMetaDataCommands
and its extension, TDBXMetaDataCommandsEx, provide a set of constants to read various types of metadata. Set the
TDBXCommand.CommandType property to TDBXCommandTypes.DBXMetadata and set TDBXCommand.Text to one of the
constants in TDBXMetaDataCommands or TDBXMetaDataCommandsEx to acquire the designated metadata.
TDBXCommand.ExecuteQuery returns a TDBXReader to access the metadata. The new classes in DBXMetaDataNames
describe and provide access to this metadata's columns.

Writing metadata

Support for creating SQL dialect sensitive CREATE, ALTER, and DROP statements is provided in Data Explorer. dbExpress
also exposes a DbxMetaDataProvider class that surfaces this capability for applications. This slightly increases the size of
application, since the metadata writers must be included. The ability to generically create tables is useful for many applications.
The interface allows you to describe what a table and its columns look like and pass this description to the
TdbxMetaDataProvider.CreateTable method. Here is a simple example that shows how to create a table with an int32 column
named "C1", a decimal with a precision of 10 and scale of 2 named "C2", and a character based column with a precision of 32
named "C3".

dbExpress 4 New Feature Overview RAD Studio 1.2 Developing Database Applications for

22

1

var
 MetaDataTable: TDBXMetaDataTable;
 DataGenerator: TDbxDataGenerator;
 Command: TDBXCommand;
 Row: Integer;
begin
 MetaDataTable := TDBXMetaDataTable.Create;
 MetaDataTable.TableName := 'QCXXX_TABLE';
 MetaDataTable.AddColumn(TDBXInt32Column.Create('C1'));
 MetaDataTable.AddColumn(TDBXDecimalColumn.Create('C2', 10, 2));
 MetaDataTable.AddColumn(TDBXUnicodeCharColumn.Create('C3', 32));
 MetaDataProvider.CreateTable(MetaDataTable);
end

Note: DBXMetaDataProvider is only supported for managed code on the .NET platform.

Deployment

For package based deployment, the following packages must be included:

• Borland.Data.DBXClient.dll

• Borland.Data.DBXReadOnlyMetaData.dll

• Borland.Data.DBXCommonDriver.dll

• Borland.Data.DBXMetaData.dll

Creating new metadata providers

The bulk of the work in creating new metadata providers is extending the TDBXMetaDataReader and TDBXMetaDataWriter
abstract base classes.

Compatibility

The VCL components in the SqlExpr unit still work with drivers that provide the more limited dbExpress 3 metadata. However,
Data Explorer only works with dbExpress 4 metadata.

Note that Delphi includes metadata for 9 different database backends. Thus any dbExpress driver implementation for the 9
backends supported can reuse the metadata provider with their driver implementation.

DBXClient Driver

DBXClient is a thin dbExpress 4 driver that remotes the dbExpress 4 framework interface over a pluggable network based
transport. In this release, a TCP/IP transport is supported. The driver uses a JSON/RPC (Java Script Object Notation) based
streaming protocol.

The DBXClient is implemented in 100% Object Pascal. Its source code is included in the product.

Blackfish SQL

In this release, DBXClient can only connect to Blackfish SQL. Blackfish SQL is a Delphi for .NET version of JBuilder's
JDataStore.

To use the DBXClient driver with Blackfish SQL, add the DBXClient unit to the uses clause.

Deployment

DBXClient needs no database client library installed when you deploy your application. DBXClient is 100% Delphi and can be
directly linked into your application as a single .exe file.

If you prefer to use package based deployment, you need to include the following packages:

1.2 Developing Database Applications for RAD Studio dbExpress 4 New Feature Overview

23

1

• DBXClient100.bpl

• DBXReadOnlyMetaData100.bpl

• DBXCommonDriver100.bpl

DBXDynalink Driver

The DBXDynalink driver unit has been moved from the DBXCommonDriver package into the DBXDynalinkDriver package. With
the introduction of the DBXClient driver, CodeGear now provides non-Dynalink based drivers.

New Units

New units have been added in the DbxDynalinkDriver package for all 8 of Dynalink drivers:

• DBXDb2

• DBXInformix

• DBXInterbase

• DBXMsSql

• DBXMySql

• DBXOracle

• DBXSybaseASA

• DBXSybaseASE

Deployment

The Dynalink drivers can be linked into a single executable, but you still need to deploy the Dynalink libraries themselves and the
database vendor client libraries.

For package based deployment, the following packages must be included:

• DBXCommonDriver100.bpl

• DBXReadOnlyMetaData100.bpl

• DBXDynalinkDriver100.bpl

For package based deployment on the .NET platform, the following assemblies must be included:

• Borland.Data.DBXCommonDriver.dll

• Borland.Data.DBXReadOnlyMetaData.dll

• Borland.Data.DBXDynalinkDriver.dll

DBTest

This is a collection of classes that extend the capabilities of Dunit to facilitate database testing. The qcreport and cts sample
Dunit tests provide good examples of how to make use of DBTest. TestCaseExtension contains non-database related
extensions to Dunit and the DBXTest unit contains database related extensions.

Command line properties

New units have been added to the DbxDynalinkDriver package for all 8 of Dynalink drivers:

Test selection

-s:<TestName> command line can be used to execute just a single method in a Dunit test case. This is useful for debugging a
single bug. See the TestCaseExtension unit.

dbExpress 4 New Feature Overview RAD Studio 1.2 Developing Database Applications for

24

1

Convenience methods

There are several methods for creating default connection and metadata provider. See the DBXTest unit.

Data generator

There is a simple, extensible data generator. See the DBXDataGenerator unit.

See Also

dbExpress Framework

TDBXMetaDataCommands

TDBXMetaDataCommandsEx

1.2 Developing Database Applications for RAD Studio dbExpress 4 New Feature Overview

25

1

1.3 Developing Interoperable Applications
RAD Studio provides wizards and classes to make it easy to implement applications based on the Component Object Model
(COM) from Microsoft. With these wizards, you can create COM-based classes and components to use within applications or
you can create fully functional COM clients or servers that implement COM objects, Automation servers (including Active Server
Objects), ActiveX controls, or ActiveForms.

Topics

Name Description

Developing COM Applications (see page 26) Delphi provides wizards and classes to make it easy to implement applications
based on the Component Object Model (COM) from Microsoft. With these
wizards, you can create COM-based classes and components to use within
applications or you can create fully functional COM clients and servers that
implement COM objects, Automation servers (including Active Server Objects),
ActiveX controls, or ActiveForms.
This topic covers:

• COM Technologies Overview

• COM Interfaces

• COM Servers

• COM Clients

1.3.1 Developing COM Applications

Delphi provides wizards and classes to make it easy to implement applications based on the Component Object Model (COM)
from Microsoft. With these wizards, you can create COM-based classes and components to use within applications or you can
create fully functional COM clients and servers that implement COM objects, Automation servers (including Active Server
Objects), ActiveX controls, or ActiveForms.

This topic covers:

• COM Technologies Overview

• COM Interfaces

• COM Servers

• COM Clients

COM Technologies Overview

COM is a language-independent software component model that enables interaction between software components and
applications running on a Windows platform. The most important aspect of COM is that it enables communication between
components, between applications, and between clients and servers through clearly defined interfaces. Interfaces provide a way
for clients to ask a COM component which features it supports at runtime. To provide additional features for your component,
you simply add an additional interface for those features.

Applications can access the interfaces of COM components that exist on the same computer as the application or that exist on
another computer on the network using a mechanism called Distributed COM (DCOM).

COM is both a specification and an implementation. The COM specification defines how objects are created and how they
communicate with each other. According to this specification, COM objects can be written in different languages, run in different

Developing COM Applications RAD Studio 1.3 Developing Interoperable Applications

26

1

process spaces and on different platforms. As long as the objects conform to the written specification, they can communicate.
This allows you to integrate legacy code as a component with new components implemented in object-oriented languages.

The COM implementation is built into the Win32 subsystem, which provides a number of core services that support the
specification. The COM library contains a set of standard interfaces that define the core functionality of a COM object, and a
small set of API functions for creating and managing COM objects.

When you use Delphi wizards and VCL objects in your application, you are using Delphi’s implementation of the COM
specification. In addition, Delphi provides some wrappers for COM services for those features that it does not implement directly
(such as Active Documents). You can find these wrappers defined in the ComObj unit and the API definitions in the AxCtrls
unit.

Note: Delphi’s interfaces and language follow the COM specification. Delphi implements objects conforming to the COM spec
using a set of classes called the Delphi ActiveX framework (DAX). These classes are found in the AxCtrls , OleCtrls , and
OleServer units. In addition, the Delphi interface to the COM API is in ActiveX.pas and ComSvcs.pas .

COM Interfaces

COM clients communicate with objects through COM interfaces. Interfaces are groups of logically or semantically related
routines which provide communication between a provider of a service (server object) and its clients.

For example, every COM object must implement the basic interface, IUnknown . Through a routine called QueryInterface in
IUnknown , clients can request other interfaces implemented by the server.

Objects can have multiple interfaces, where each interface implements a feature. An interface provides a way to tell the client
what service it provides, without providing implementation details of how or where the object provides this service.

Key aspects of COM interfaces are as follows:

• Once published, interfaces do not change. You can rely on an interface to provide a specific set of functions. Additional
functionality is provided by additional interfaces.

• By convention, COM interface identifiers begin with a capital I and a symbolic name that defines the interface, such as
IMalloc or IPersist .

• Interfaces are guaranteed to have a unique identification, called a Globally Unique Identifier (GUID), which is a 128-bit
randomly generated number. Interface GUIDs are called Interface Identifiers (IIDs). This eliminates naming conflicts between
different versions of a product or different products.

• Interfaces are language independent. You can use any language to implement a COM interface as long as the language
supports a structure of pointers, and can call a function through a pointer, either explicitly or implicitly.

• Interfaces are not objects themselves, they provide a way to access an object. Therefore, clients do not access data directly,
they access data through an interface pointer. Windows 2000 adds another layer of indirection, known as an interceptor,
through which it provides COM+ features such as just-in-time activation and object pooling.

• Interfaces are always inherited from the base interface, IUnknown .

• Interfaces can be redirected by COM through proxies to enable interface method calls to call between threads, processes,
and networked machines, all without the client or server objects ever being aware of the redirection.

The IUnknown interface

All COM objects must support the fundamental interface, called IUnknown , a typedef to the base interface type IInterface .
IUnknown contains the following routines:

• QueryInterface : Provides pointers to other interfaces that the object supports.

• AddRef and Release : Simple reference counting methods that keep track of the object’s lifetime so that an object can delete
itself when the client no longer needs its service.

Clients obtain pointers to other interfaces through the IUnknown method, QueryInterface . QueryInterface knows about
every interface in the server object and can give a client a pointer to the requested interface. When receiving a pointer to an

1.3 Developing Interoperable Applications RAD Studio Developing COM Applications

27

1

interface, the client is assured that it can call any method of the interface.

Objects track their own lifetime through the IUnknown methods, AddRef and Release , which are simple reference counting
methods. As long as the reference count of an object is nonzero, the object remains in memory. Once the reference count
reaches zero, the interface implementation can safely dispose of the underlying object.

COM Interface Pointers

An interface pointer is a pointer to an object instance that points, in turn, to the implementation of each method in the interface.
The implementation is accessed through an array of pointers to these methods, which is called a vtable. Vtables are similar to
the mechanism used to support virtual functions in Delphi. Because of this similarity, the compiler can resolve calls to methods
on the interface the same way it resolves calls to methods on Delphi classes.

The vtable is shared among all instances of an object class, so for each object instance, the object code allocates a second
structure that contains its private data. The client’s interface pointer, then, is a pointer to the pointer to the vtable.

In Windows 2000 and subsequent versions of Windows, when an object is running under COM+, another level of indirection is
provided between the interface pointer and the vtable pointer. The interface pointer available to the client points at an interceptor,
which in turn points at the vtable. This allows COM+ to provide such services as just-in-time activation, where the server can be
deactivated and reactivated dynamically in a way that is opaque to the client. To achieve this, COM+ guarantees that the
interceptor behaves as if it were an ordinary vtable pointer.

COM Servers

A COM server is an application or a library that provides services to a client application or library. A COM server consists of one
or more COM objects, where a COM object is a set of properties and methods.

Clients do not know how a COM object performs its service; the object’s implementation remains hidden. An object makes its
services available through its interfaces as described previously.

In addition, clients do not need to know where a COM object resides. COM provides transparent access regardless of the
object’s location.

When a client requests a service from a COM object, the client passes a class identifier (CLSID) to COM. A CLSID is simply a
GUID that identifies a COM object. COM uses this CLSID, which is registered in the system registry, to locate the appropriate
server implementation. Once the server is located, COM brings the code into memory, and has the server create an object
instance for the client. This process is handled indirectly, through a special object called a class factory (based on interfaces)
that creates instances of objects on demand.

As a minimum, a COM server must perform the following:

• Register entries in the system registry that associate the server module with the class identifier (CLSID).

• Implement a class factory object, which creates another object of a particular CLSID.

• Expose the class factory to COM.

• Provide an unloading mechanism through which a server that is not servicing clients can be removed from memory.

COM Clients

COM clients are applications that make use of a COM object implemented by another application or library. The most common
types are Automation controllers, which control an Automation server and ActiveX containers, which host an ActiveX control.

There are two types of COM clients, controllers and containers. Controllers launch the server and interact with it through its
interface. They request services from the COM object or drive it as a separate process. Containers host visual controls or objects
that appear in the container’s user interface. They use predefined interfaces to negotiate display issues with server objects. It is
impossible to have a container relationship over DCOM; for example, visual controls that appear in the container's user interface
must be located locally. This is because the controls are expected to paint themselves, which requires that they have access to
local GDI resources.

The task of writing these two types of COM client is remarkably similar: The client application obtains an interface for the server

Developing COM Applications RAD Studio 1.3 Developing Interoperable Applications

28

1

object and uses its properties and methods. Delphi makes it easier for you to develop COM clients by letting you import a type
library or ActiveX control into a component wrapper so that server objects look like other VCL components. Delphi lets you wrap
the server CoClass in a component on the client, which you can even install on the Component palette. Samples of such
component wrappers appear on two pages of the Component palette, sample ActiveX wrappers appear on the ActiveX page,
and sample Automation objects appear on the Servers page.

Even if you do not choose to wrap a server object in a component wrapper and install it on the Component palette, you must
make its interface definition available to your application. To do this, you can import the server’s type information.

Clients can always query the interfaces of a COM object to determine what it is capable of providing. All COM objects allow
clients to request known interfaces. In addition, if the server supports the IDispatch interface, clients can query the server for
information about what methods the interface supports. Server objects have no expectations about the client using its objects.
Similarly, clients don’t need to know how an object provides the services, they simply rely on server objects to provide the
services they describe in their interfaces.

COM Extensions

As COM has evolved, it has been extended beyond the basic COM services. COM serves as the basis for other technologies
such as Automation, ActiveX controls, Active Documents, and Active Directories. In addition, when working in a large, distributed
environment, you can create transactional COM objects. Prior to Windows 2000, these objects were not an architectural part of
COM, but ran in the Microsoft Transaction Server (MTS) environment. As of Windows 2000, this support is integrated into
COM+. Delphi provides wizards to easily implement applications that use the above technologies in the Delphi environment.

Automation Servers

Automation refers to the ability of an application to control the objects in another application programmatically, such as a macro
that can manipulate more than one application at the same time. The server object being manipulated is called the Automation
object, and the client of the Automation object is referred to as an Automation controller. Automation can be used on in-process,
local, and remote servers.

Automation is defined by two major points:

• The Automation object defines a set of properties and commands, and describes their capabilities through type descriptions.
In order to do this, it must have a way to provide information about its interfaces, the interface methods, and the arguments to
those methods. Typically, this information is available in a type library. The Automation server can also generate type
information dynamically when queried via its IDispatch interface.

• Automation objects make their methods accessible so that other applications can use them. For this, they implement the
IDispatch interface. Through this interface an object can expose all of its methods and properties. Through the primary
method of this interface, the object’s methods can be invoked, once having been identified through type information.

Developers often use Automation to create and use non-visual OLE objects that run in any process space, because the
Automation IDispatch interface automates the marshaling process. Automation does, however, restrict the types that you
can use.

Active X Controls

Delphi wizards allow you to easily create ActiveX controls. ActiveX is a technology that allows COM components, especially
controls, to be more compact and efficient. This is especially necessary for controls that are intended for Intranet applications,
which need to be downloaded by a client before they are used.

ActiveX controls are visual controls that run only as in-process servers, and can be plugged into an ActiveX control container
application. They are not complete applications in themselves, but can be thought of as already written OLE controls that are
reusable in various applications. ActiveX controls have a visible user interface, and rely on predefined interfaces to negotiate I/O
and display issues with their host containers.

ActiveX controls make use of Automation to expose their properties, methods, and events. Features of ActiveX controls include
the ability to fire events, bind to data sources, and support licensing.

One use of ActiveX controls is on a Web site as interactive objects in a Web page. As such, ActiveX is a standard that targets

1.3 Developing Interoperable Applications RAD Studio Developing COM Applications

29

1

interactive content for the World Wide Web, including the use of ActiveX Documents used for viewing non-HTML documents
through a Web browser. For more information about ActiveX technology, see the Microsoft ActiveX Web site.

Active Documents

Active Documents (previously referred to as OLE documents) are a set of COM services that support linking and embedding,
drag-and-drop, and visual editing. Active Documents can seamlessly incorporate data or objects of different formats, such as
sound clips, spreadsheets, text, and bitmaps.

Unlike ActiveX controls, Active Documents are not limited to in-process servers; they can be used in cross-process applications.

Unlike Automation objects, which are almost never visual, Active Document objects can be visually active in another application.
Thus, Active Document objects are associated with two types of data: presentation data, used for visually displaying the object
on a display or output device, and native data, used to edit an object.

Active Document objects can be document containers or document servers. While Delphi does not provide an automatic wizard
for creating Active Documents, you can use the VCL class, TOleContainer, to support linking and embedding of existing Active
Documents.

You can also use TOleContainer as a basis for an Active Document container. To create objects for Active Document servers,
use the COM object wizard and add the appropriate interfaces, depending on the services the object needs to support. For more
information about creating and using Active Document servers, see the Microsoft ActiveX Web site.

Note: While the specification for Active Documents has built-in support for marshaling in cross-process applications, Active
Documents do not run on remote servers because they use types that are specific to a system on a given machine such as
window handles, menu handles, and so on.

Transactional Objects

Delphi uses the term "transactional objects" to refer to objects that take advantage of the transaction services, security, and
resource management supplied by Microsoft Transaction Server (MTS) (for versions of Windows prior to Windows 2000) or
COM+ (for Windows 2000 and later). These objects are designed to work in a large, distributed environment.

The transaction services provide robustness so that activities are always either completed or rolled back. The server never
partially completes an activity. The security services allow you to expose different levels of support to different classes of clients.
The resource management allows an object to handle more clients by pooling resources or keeping objects active only when
they are in use. To enable the system to provide these services, the object must implement the IObjectControl interface. To
access the services, transactional objects use an interface called IObjectContext , which is created for them by MTS or
COM+.

Under MTS, the server object must be built into a DLL library, which is then installed in the MTS runtime environment. That is,
the server object is an in-process server that runs in the MTS runtime process space. Under COM+, this restriction does not
apply because all COM calls are routed through an interceptor. To clients, the difference between MTS and COM+ is transparent.

MTS or COM+ servers group transactional objects that run in the same process space. Under MTS, this group is called an MTS
package, while under COM+ it is called a COM+ application. A single machine can be running several different MTS packages
(or COM+ applications), where each one is running in a separate process space.

To clients, the transactional object may appear like any other COM server object. The client does not need know about
transactions, security, or just-in-time activation unless it is initiating a transaction itself.

Both MTS and COM+ provide a separate tool for administering transactional objects. This tool lets you configure objects into
packages or COM+ applications, view the packages or COM+ applications installed on a computer, view or change the attributes
of the included objects, monitor and manage transactions, make objects available to clients, and so on. Under MTS, this tool is
the MTS Explorer. Under COM+ it is the COM+ Component Manager.

Developing COM Applications RAD Studio 1.3 Developing Interoperable Applications

30

1

Type Libraries

Type libraries provide a way to get more type information about an object than can be determined from an object’s interface. The
type information contained in type libraries provides needed information about objects and their interfaces, such as what
interfaces exist on what objects (given the CLSID), what member functions exist on each interface, and what arguments those
functions require.

You can obtain type information either by querying a running instance of an object or by loading and reading type libraries. With
this information, you can implement a client which uses a desired object, knowing specifically what member functions you need,
and what to pass those member functions.

Clients of Automation servers, ActiveX controls, and transactional objects expect type information to be available. All of Delphi’s
wizards generate a type library automatically, although the COM object wizard makes this optional. You can view or edit this type
information by using the Type Library Editor.

See Also

Using COM Wizards (see page 70)

1.3 Developing Interoperable Applications RAD Studio Developing COM Applications

31

1

1.4 Developing Reports for Your Win32
Applications

RAD Studio ships with Rave Reports from Nevrona. Using the report components, you can build full-featured reports for your
applications. You can create solutions that include reporting capabilities which can be used and customized by your customers.
Additionally, the ComponentOne tools that ship with RAD Studio include components for creating and generating reports.

Topics

Name Description

Using Rave Reports in RAD Studio (see page 32) The RAD Studio environment supports the integration of report objects in your
applications. This integration allows you to create a report using the Rave
Reports Designer directly from within the RAD Studio IDE. Your application users
can create and display their own reports, or display existing reports.

1.4.1 Using Rave Reports in RAD Studio

The RAD Studio environment supports the integration of report objects in your applications. This integration allows you to create
a report using the Rave Reports Designer directly from within the RAD Studio IDE. Your application users can create and display
their own reports, or display existing reports.

Creating New Reports in RAD Studio

You can include reports in RAD Studio just as you would other 3rd-party components. The report is stored as a separate Rave
Report object. You can reference the report in other applications that need to call or generate that report. When you create a
new application, you can include the report object by adding a reference to it in the Project Manager . Rave Reports also provide
the capability to connect your report object to a datasource, which allows your application to build the report dynamically, based
on current database information.

See Also

Adding Rave Reports to RAD Studio (see page 72)

Using Rave Reports in RAD Studio RAD Studio 1.4 Developing Reports for Your Win32

32

1

1.5 Developing Applications with VCL
Components

The Visual Component Library (VCL) is a set of visual components for the rapid development of Windows applications in the
Delphi language.

VCL contains a wide variety of visual, non-visual, and utility classes for tasks such as building Windows applications, web
applications, database applications, and console applications.

Topics

Name Description

VCL Overview (see page 33) This section introduces:

• VCL Architecture

• VCL versus VCL.NET

• VCL Components

• Working With Components

1.5.1 VCL Overview

This section introduces:

• VCL Architecture

• VCL versus VCL.NET

• VCL Components

• Working With Components

VCL Architecture

VCL is an acronym for the Visual Component Library, a set of visual components for rapid development of Windows applications
in the Delphi language. VCL contains a wide variety of visual, non-visual, and utility classes for tasks such as Windows
application building, web applications, database applications, and console applications. All classes descend from TObject.
TObject introduces methods that implement fundamental behavior like construction, destruction, and message handling.

VCL versus VCL.NET

VCL.Net contains only a subset of the full functionality available in VCL for Win32. The .NET Framework was architected to
accommodate any .NET-compliant language. In many cases, Delphi source code that operates on Win32 VCL classes and
functions recompiles with minimal changes on .NET. In some cases, the code recompiles with no changes at all. Since VCL.NET
is a large subset of VCL, it supports many of the existing VCL classes. However, source code that calls directly to the Win32 API
requires source code changes.

VCL Components

Components are a subset of the component library that descend from the class TComponent. You can place components on a
form or data module and manipulate them at designtime. Using the Object Inspector , you can assign property values without
writing code. Most components are either visual or nonvisual, depending on whether they are visible at runtime. Some

1.5 Developing Applications with VCL RAD Studio VCL Overview

33

1

components appear on the Component Palette .

Visual Components

Visual components, such as TForm and TSpeedButton, are called controls and descend from TControl. Controls are used in GUI
applications, and appear to the user at runtime. TControl provides properties that specify the visual attributes of controls, such as
their height and width.

NonVisual Components

Nonvisual components are used for a variety of tasks. For example, if you are writing an application that connects to a database,
you can place a TDataSource component on a form to connect a control and a dataset used by the control. This connection is
not visible to the user, so TDataSource is nonvisual. At designtime, nonvisual components are represented by an icon. This
allows you to manipulate their properties and events just as you would a visual control.

Other VCL Classes

Classes that are not components (that is, classes that descend from TObject but not TComponent) are also used for a variety of
tasks. Typically, these classes are used for accessing system objects (such as a file or the clipboard) or for transient tasks (such
as storing data in a list). You cannot create instances of these classes at designtime, although they are sometimes created by
the components that you add in the Form Designer .

Working With Components

Many components are provided in the IDE on the Component Palette . You select components from the Component Palette
and place them onto a form or data module. You design the user interface of an application by arranging the visual components
such as buttons and list boxes on a form. You can also place nonvisual components, such as data access components, on either
a form or a data module. At first, Delphi’s components appear to be just like any other classes. But there are differences between
components in Delphi and the standard class hierarchies that many programmers work with. Some differences are:

• All Delphi components descend from TComponent.

• Components are most often used as is. They are changed through their properties, rather than serving as base classes to be
subclassed to add or change functionality. When a component is inherited, it is usually to add specific code to existing event
handling member functions.

• Components can only be allocated on the heap, not on the stack.

• Properties of components contain runtime type information.

• Components can be added to the Component Palette in the IDE and manipulated on a form.

Components often achieve a better degree of encapsulation than is usually found in standard classes. For example, consider a
dialog box containing a button. In a Windows program developed using VCL components, when a user clicks the button, the
system generates a WM_LBUTTONDOWN message. The program must catch this message (typically in a switch statement, a
message map, or a response table) and send it to a routine that will execute in response to the message. Most Windows
messages (VCL applications) are handled by Delphi components. When you want to respond to a message or system event,
you only need to provide an event handler.

Using Events

Almost all the code you write is executed, directly or indirectly, in response to events. An event is a special kind of property that
represents a runtime occurrence, often a user action. The code that responds directly to an event, called an event handler, is a
Delphi procedure.

The Events page of the Object Inspector displays all events defined for a given component. Double-clicking an event in the
Object Inspector generates a skeleton event handling procedure, which you can fill in with code to respond to that event. Not all
components have events defined for them.

Some components have a default event, which is the event the component most commonly needs to handle. For example, the
default event for a button is OnClick . Double-clicking on a component with a default event in the Form Designer will generate a

VCL Overview RAD Studio 1.5 Developing Applications with VCL

34

1

skeleton event handling procedure for the default event.

You can reuse code by writing event handlers that respond to more than one event. For example, many applications provide
speed buttons that are equivalent to drop down menu commands. When a button performs the same action as a menu
command, you can write a single event handler and then assign it to the OnClick event for both the button and the menu item by
setting the event handler in the Object Inspector for both the events you want to respond to.

This is the simplest way to reuse event handlers. However, action lists, and in the VCL, action bands, provide powerful tools for
centrally organizing the code that responds to user commands. Action lists can be used in cross-platform applications; action
bands cannot.

Setting Component Properties

To set published properties at design time, you can use the Object Inspector and, in some cases, property editors. To set
properties at runtime, assign their values in your application source code.

When you select a component on a form at design time, the Object Inspector displays its published properties and, when
appropriate, allows you to edit them.

When more than one component is selected, the Object Inspector displays all properties—except Name—that are shared by the
selected components. If the value for a shared property differs among the selected components, the Object Inspector displays
either the default value or the value from the first component selected. When you change a shared property, the change applies
to all selected components.

Changing code-related properties, such as the name of an event handler, in the Object Inspector automatically changes the
corresponding source code. In addition, changes to the source code, such as renaming an event handler method in a form class
declaration, are immediately reflected in the Object Inspector .

See Also

Building a VCL Forms Application (see page 89)

Building a VCL Forms "Hello world" Application (see page 91)

Organizing Actions for Toolbars and Menus (see page 1900)

1.5 Developing Applications with VCL RAD Studio VCL Overview

35

1

1.6 Developing Web Applications with WebSnap
This section provides a conceptual background for building WebSnap applications using RAD Studio. WebSnap makes it easier
to build Web server applications that deliver complex, data-driven Web pages. WebSnap's support for multiple modules and for
server-side scripting makes development and maintenance easier for teams of developers and Web designers.

Please note that WebSnap is being deprecated in RAD Studio. Although WebSnap is still documented in the online help, the
WebSnap product is no longer fully supported. As an alternative, you should begin using IntraWeb (VCL for the Web). IntraWeb
(see page 2156) is documented in this online help. For more documentation on VCL for the Web, go to
http://www.atozed.com/intraweb/docs/.

Topics

Name Description

Win32 Web Applications Overview (see page 36) This section covers:

• Web Application Support

• Web Broker Overview

• Web Snap Overview

• Debugging With the Web Application Debugger

For more detailed information on web applications, please
see the Win32 Developers Guide in the Reference section
of this Help system.

1.6.1 Win32 Web Applications Overview

This section covers:

• Web Application Support

• Web Broker Overview

• Web Snap Overview

• Debugging With the Web Application Debugger

For more detailed information on web applications, please see the Win32 Developers Guide in the Reference section of this Help
system.

Win32 Web Application Support

The following types of web applications will be supported in RAD Studio.

• ISAPI

• CGI

• Web Application Debugger

Apache web applications are not supported for this release.

ISAPI

Selecting this type of application sets up your project as a DLL, with the exported methods expected by the Web server. It adds
the library header to the project file, and the required entries to the uses list and exports clause of the project file.

Win32 Web Applications Overview RAD Studio 1.6 Developing Web Applications with

36

1

http://www.atozed.com/intraweb/docs

CGI

Selecting this type of application sets up your project as a console application, and adds the required entries to the uses clause
of the project file.

Web Application Debugger

Selecting this type of application sets up an environment for developing and testing Web server applications. This type of
application is not intended for deployment.

Web Broker Overview

Web Broker components, located on the Internet tab of the Component Palette , enable you to create event handlers that are
associated with a specific Uniform Resource Identifier (URI). When processing is complete, you can construct HTML or XML
documents within your program and transfer them to the client. You can use Web Broker components for cross-platform
application development.

Frequently, the content of Web pages is drawn from databases. You can use Internet components to automatically manage
connections to databases, allowing a single DLL to handle multiple simultaneous, thread-safe, database connections.

Web Snap Overview

Note: WebSnap is being deprecated in RAD Studio. Although WebSnap is still documented in the online help, the WebSnap
product is no longer fully supported. As an alternative, you should begin using IntraWeb (VCL for the Web). IntraWeb (see
page 2156) is documented in this online help. For more documentation on VCL for the Web, go to
http://www.atozed.com/intraweb/docs/.

WebSnap augments Web Broker with additional components, wizards, and views, making it easier to build Web server
applications that deliver complex, data-driven Web pages. WebSnap's support for multiple modules and for server-side scripting
makes development and maintenance easier for teams of developers and Web designers. WebSnap allows HTML design
experts on your team to make a more effective contribution to Web server development and maintenance.

The final product of the WebSnap development process includes a series of scriptable HTML page templates. These pages can
be changed using HTML editors that support embedded script tags, like Microsoft FrontPage, or even a text editor. Changes can
be made to the templates as needed, even after the application is deployed. There is no need to modify the project source code
at all, which saves valuable development time. WebSnap’s multiple module support can be used to divide your application into
smaller pieces during the coding phases of your project, so that developers can work more independently.

Debugging With the Web Application Debugger

The Web Application Debugger provides an easy way to monitor HTTP requests, responses, and response times. The Web
Application Debugger takes the place of the Web server. Once you have debugged your application, you can convert it to one of
the supported types of Web application and install it with a commercial Web server.

To use the Web Application Debugger, you must first create your Web application as a Web Application Debugger executable.
Whether you are using Web Broker or WebSnap, the wizard that creates your Web server application includes this as an option
when you first begin the application. This creates a Web server application that is also a COM server. The first time you run your
application, it registers your COM server so that the Web Application Debugger can access it. Before you can run the Web
Application Debugger, you will need to run bin\serverinfo.exe once to register the ServerInfo application.

Launching your application with the Web Application Debugger

Once you have developed your Web server application, you can run and debug it using the Web Application Debugger. You can
set breakpoints in it just like any other executable. When you run your application, it displays the console window of the COM
server that is your Web server application. Once you start your application and run the Web App Debugger, the ServerInfo page
is displayed in your default browser, and you can select your application from a drop-down list. Once you have selected your
application, click the Go button. This launches your application in the Web Application Debugger, which provides you with details
on request and response messages that pass between your application and the Web Application Debugger.

1.6 Developing Web Applications with RAD Studio Win32 Web Applications Overview

37

1

http://www.atozed.com/intraweb/docs

Converting your application to another type of Web server application after debugging

When you have finished debugging your Web server application with the Web Application Debugger, you will need to convert it
to another type that can be installed on a commercial Web server.

See Also

Building a WebSnap Application (see page 133)

Building a WebSnap "Hello world" Application (see page 134)

Debugging a WebSnap Application Using the Web Application Debugger (see page 136)

Converting Your Application to Another Type of Web Server Application (see page 2147)

Using IntraWeb (see page 2156)

Win32 Web Applications Overview RAD Studio 1.6 Developing Web Applications with

38

1

1.7 Developing Web Services with Win32
Applications

Web Services are self-contained modular applications that can be published and invoked over the Internet. Web Services
provide well-defined interfaces that describe the services provided. Unlike Web server applications that generate Web pages for
client browsers, Web Services are not designed for direct human interaction. Rather, they are accessed programmatically by
client applications. This section gives an overview of web services and web services support.

Topics

Name Description

Web Services Overview (see page 39) Web Service applications are server implementations that do not require clients
to use a specific platform or programming language. These applications define
interfaces in a language-neutral document, and they allow multiple
communication mechanisms.
Web Services are designed to work using Simple Object Access Protocol
(SOAP). SOAP is a standard lightweight protocol for exchanging information in a
decentralized, distributed environment. SOAP uses XML to encode remote
procedure calls and typically uses HTTP as a communications protocol.
Web Service applications use a Web Service Definition Language (WSDL)
document to publish information on interfaces that are available and how to call
them. On... more (see page 39)

1.7.1 Web Services Overview

Web Service applications are server implementations that do not require clients to use a specific platform or programming
language. These applications define interfaces in a language-neutral document, and they allow multiple communication
mechanisms.

Web Services are designed to work using Simple Object Access Protocol (SOAP). SOAP is a standard lightweight protocol for
exchanging information in a decentralized, distributed environment. SOAP uses XML to encode remote procedure calls and
typically uses HTTP as a communications protocol.

Web Service applications use a Web Service Definition Language (WSDL) document to publish information on interfaces that
are available and how to call them. On the server side, your application can publish a WSDL document that describes your Web
Service. On the client side, a wizard or command-line utility can import a published WSDL document, providing you with the
interface definitions and connection information you need. If you already have a WSDL document that describes the Web service
you want to implement, you can generate the server-side code when you import the WSDL document.

See Also

Using Web Services (see page 2211)

1.7 Developing Web Services with Win32 RAD Studio Web Services Overview

39

1

1.8 Developing Windows Applications
Windows provides a traditional approach to developing user interfaces, client/server applications, controls, and application logic.
This section provides an overview of Windows application development using RAD Studio for Win32 and outlines the steps you
would use to build a simple Windows project.

Topics

Name Description

Windows Overview (see page 40) The Windows platform provides several ways to help you create and build
applications. The most common types of Windows applications are:

• GUI Applications

• Console Applications

• Service Applications

• Packages and DLLs

1.8.1 Windows Overview

The Windows platform provides several ways to help you create and build applications. The most common types of Windows
applications are:

• GUI Applications

• Console Applications

• Service Applications

• Packages and DLLs

GUI Applications

A graphical user interface (GUI) application is designed using graphical components such as windows, menus, dialog boxes, and
other features that make the application easy to use. When you compile a GUI application, an executable file with start-up code
is created from your source files. The executable usually provides the basic functionality of your program. Simple programs often
consist of only an executable file. You can extend the application by calling DLLs, packages, and other support files from the
executable.

The RAD Studio IDE offers two application UI models:

• Single Document Interface (SDI)

• Multiple Document Interface (MDI)

Single Document Interface

A SDI application normally contains a single document view.

Multiple Document Interface

In an MDI application, more than one document or child window can be opened within a single parent window. This is common in
applications such as spreadsheets or word processors.

Windows Overview RAD Studio 1.8 Developing Windows Applications

40

1

MDI applications require more planning and are more complex to design than SDI applications. MDI applications spawn child
windows that reside within the client window; the main form contains child forms. For instance, you need to set the FormStyle
property of the TForm object to specify whether a form is a child (fsMDIChild) or main form (fsMDIForm). It is a best practice to
define a base class for your child forms and derive each child form from this class. Otherwise, you will have to reset the form
properties of the child. MDI applications often include a Window pop-up on the main menu that has items such as Cascade and
Tile for viewing multiple windows in various styles. When a child window is minimized, its icon is located in the MDI parent form.

Console Applications

Console applications are 32-bit programs that run in a console window without a graphical interface. These applications typically
do not require much user input and perform a limited set of functions. Any application that contains {$APPTYPE CONSOLE} in
the code opens a console window of its own.

Service Applications

Service applications take requests from client applications, process those requests, and return the information to the client
applications. Service applications typically run in the background without much user input. A Web, FTP, or an email server is an
example of a service application.

Creating Packages and DLLs

Dynamic link libraries (DLLs) are modules of compiled code that work in conjunction with an executable to provide functionality to
an application. You can create DLLs in cross-platform programs.

Packages are special DLLs used by Delphi applications, the IDE, or both. The two types of packages are runtime and
designtime. Runtime packages provide functionality to a program while that program is running. Designtime packages extend the
functionality of the IDE.

For most applications, packages provide greater flexibility and are easier to create than DLLs. However,here are a few situations
where DLLs would work better than packages:

• Your code module will be called from non-Delphi applications.

• You are extending the functionality of a Web server.

• You are creating a code module to be used by third-party developers.

• Your project is an OLE container.

You cannot pass Delphi runtime type information (RTTI) across DLLs or from a DLL to an executable. If you pass an object from
one DLL to another DLL or to an executable, you will not be able to use the is or as operators with the passed object. This is
because the is and as operators need to compare RTTI. If you need to pass objects from a library, use packages instead of
DLLs, because packages can share RTTI. Similarly, you should use packages instead of DLLs in Web Services because they
rely on Delphi RTTI.

See Also

Building a Windows Application (see page 79)

Building a Windows “Hello World” Console Application (see page 79)

Building a VCL Forms “Hello World” Application

1.8 Developing Windows Applications RAD Studio Windows Overview

41

1

2 Procedures

This section provides how-to information for various areas of RAD Studio development.

Topics

Name Description

CodeGuard Procedures (see page 44) Use these procedures to debug your C++ applications with CodeGuard.

Database Procedures (see page 46) This topic describes how to use the database components in the Tool Palette ,
like dbGo components, dbExpress components, BDE components, and
DataSnap components.

Interoperable Applications Procedures (see page 70) Delphi provides wizards and classes to make it easy to implement applications
based on the Component Object Model (COM) from Microsoft. The simplest
COM objects are servers that expose properties and methods (and possibly
events) through a default interface that clients can call. The COM Object Wizard
builds a lightweight COM object whose default interface descends from
IUnknown or that implements an interface already registered on your system.
This wizard provides the most flexibility in the types of COM objects you can
create.

Reporting Procedures (see page 72) This topic provides how-to information on using reporting solutions.

VCL Procedures (see page 73) This section provides how-to information on developing VCL for Win32
applications.

WebSnap Procedures (see page 133) This section provides how-to information on developing WebSnap applications.
Please note that WebSnap is being deprecated in RAD Studio. Although
WebSnap is still documented in the online help, the WebSnap product is no
longer fully supported. As an alternative, you should begin using IntraWeb (VCL
for the Web). IntraWeb (see page 2156) is documented in this online help. For
more documentation on VCL for the Web, go to
http://www.atozed.com/intraweb/docs/.

Web Services Procedures (see page 138) This section provides how-to information on developing and using web services.

2 RAD Studio

43

2

http://www.atozed.com/intraweb/docs

2.1 CodeGuard Procedures
Use these procedures to debug your C++ applications with CodeGuard.

Topics

Name Description

Using CodeGuard (see page 44) This procedure describes how to use CodeGuard when debugging a C++
application.

2.1.1 Using CodeGuard

This procedure describes how to use CodeGuard when debugging a C++ application.

To run a C++ application with CodeGuard reporting

1. Enable the CodeGuard reporting tool.

2. Enable CodeGuard compiler options for your project.

3. Choose Run Run to run your application.

During the execution of your application, CodeGuard runtime errors appear in the Message view.

CodeGuard also generates an error log named <project_name>.cgl that lists any errors it finds. The error log is located in
the same directory as your executable.

Note: If you suspect that your program accesses a freed memory block but CodeGuard does not report an error, increase the
value of Maximum memory block size

or Delay queue length on the Resource Options page of the Configure CodeGuard dialog box.

To enable the CodeGuard reporting tool

1. Choose Tools CodeGuard Configuration to display the CodeGuard Configuration dialog box.

2. Verify that CodeGuard is enabled.

3. Click OK.

Note: If you change any CodeGuard settings in the CodeGuard Configuration

dialog box, CodeGuard generates a .cgi configuration file with the same name and directory as your project file.

To enable CodeGuard compiler options for your project

1. Choose Project Options C++ Compiler Debugging to display the CodeGuard compiler options.

2. Check Enable all CodeGuard options to enable full CodeGuard coverage.

3. Click OK.

4. Rebuild your project.

Note: If you compile and link your project in separate steps, remember to include the CodeGuard library (cg32.lib

) before including other libraries.

See Also

CodeGuard overview (see page 9)

Using CodeGuard RAD Studio 2.1 CodeGuard Procedures

44

2

CodeGuard Configuration dialog box

2.1 CodeGuard Procedures RAD Studio Using CodeGuard

45

2

2.2 Database Procedures
This topic describes how to use the database components in the Tool Palette , like dbGo components, dbExpress components,
BDE components, and DataSnap components.

Topics

Name Description

Accessing Schema Information (see page 47) The schema information or metadata includes information about what tables and
stored procedures are available on the server and the information about these
tables and stored procedures (like the fields of a table, the indexes that are
defined, and the parameters a stored procedure uses).

Configuring TSQL Connection (see page 48) The first step when working with a unidirectional dataset is to connect it to a
database server. At designtime, once a dataset has an active connection to a
database server, the Object Inspector can provide drop-down lists of values for
other properties. For example, when representing a stored procedure, you must
have an active connection before the Object Inspector can list what stored
procedures are available on the server. The connection to a database server is
represented by a separate TSQLConnection component. You work with
TSQLConnection like any other database connection component.

Connecting to the Application Server using DataSnap Components (see page
50)

A client application uses one or more connection components in the DataSnap
category of the Tool Palette to establish and maintain a connection to an
application server.

Debugging dbExpress Applications using TSQLMonitor (see page 50) While you are debugging your database application, you can monitor the SQL
messages that are sent to and from the database server through your connection
component, including those that are generated automatically for you (for example
by a provider component or by the dbExpress driver).

Executing the Commands using TSQLDataSet (see page 51) You can use a unidirectional dataset even if the query or stored procedure it
represents does not return any records. Such commands include statements that
use Data Definition Language (DDL) or Data Manipulation Language (DML)
statements other than SELECT statements. The language used in commands is
server-specific, but usually compliant with the SQL-92 standard for the SQL
language. The SQL command you execute must be acceptable to the server you
are using. Unidirectional datasets neither evaluate the SQL nor execute it, but
pass the command to the server for execution.

Fetching the Data using TSQLDataSet (see page 52)

Specifying the Data to Display using TSQLDataSet (see page 53)

Specifying the Provider using TLocalConnection or TConnectionBroker (see
page 54)

Client datasets are specialized datasets that hold all the data in memory. They
use a provider to supply them with data and apply updates when they cache
updates from a database server or another dataset, represent the data in an XML
document, and store the data in the client portion of a multi-tiered application.

Using BDE (see page 55)

Using DataSnap (see page 56) A multi-tiered client/server application is partitioned into logical units, called tiers,
which run in conjunction on separate machines. Multi-tiered applications share
data and communicate with one another over a local-area network or even over
the Internet. They provide many benefits, such as centralized business logic and
thin client applications.
Multi-tiered applications use the components on the DataSnap category in the
Tool Palette . DataSnap provides multi-tier database capability to Delphi
applications by allowing client applications to connect to providers in an
application server.

Using TBatchMove (see page 56) TBatchMove copies a table structure or its data. It can be used to move entire
tables from one database format to another.

RAD Studio 2.2 Database Procedures

46

2

Connecting to Databases with TDatabase (see page 57) TDatabase sets up a persistent connection to a database, especially a remote
database requiring a user login and password. TDatabase is especially important
because it permits control over database transaction processing with the BDE
when connected to a remote SQL database server. Use TDatabase when a
BDE-based database application requires:

• Persistent database connections

• Customized database server logins

• Transaction control

• Application-specific BDE aliases

Using TQuery (see page 59) TQuery is a query-type dataset that encapsulates an SQL statement and
enables applications to access the resulting records.

Using TSQLQuery (see page 60) TSQLQuery represents a query that is executed using dbExpress. TSQLQuery
can represent the results of a SELECT statement or perform actions on the
database server using statements such as INSERT, DELETE, UPDATE, ALTER
TABLE, and so on. You can add a TSQLQuery component to a form at design
time, or create one dynamically at runtime.

Using TSQLStoredProc (see page 61) TSQLStoredProc represents a stored procedure that is executed using
dbExpress. TSQLStoredProc can represent the result set if the stored procedure
returns a cursor. You can add a TSQLStoredProc component to a form at
design time, or create one dynamically at runtime.

Using TSQLTable (see page 62) TSQLTable represents a database table that is accessed using dbExpress.
TSQLTable generates a query to fetch all of the rows and columns in a table you
specify. You can add a TSQLTable component to a form at designtime, or create
one dynamically at runtime.

Managing Database Sessions Using TSession (see page 62) A session provides global connection over a group of database components. A
default TSession component is automatically created for each database
application. You must use TSession component only if you are creating a
multithreaded database application. Each database thread requires its own
session components.

Using TSimpleDataSet (see page 63) TSimpleDataSet is a special type of client dataset designed for simple two-tiered
applications. Like a unidirectional dataset, it can use an SQL connection
component to connect to a database server and specify an SQL statement to
execute on that server. Like other client datasets, it buffers data in memory to
allow full navigation and editing support.

Using TSimpleObjectBroker (see page 64) If you have multiple COM-based servers that your client application can choose
from, you can use an Object Broker to locate an available server system.

Using TStoredProc (see page 64) TStoredProc is a stored procedure-type dataset that executes a stored procedure
that is defined on a database server.

Using TTable (see page 65) TTable is a table-type dataset that represents all of the rows and columns of a
single database table.

Using TUpdateSQL to Update a Dataset (see page 67) When the BDE-enabled dataset represents a stored procedure or a query that is
not “live”, it is not possible to apply updates directly from the dataset. Such
datasets may also cause a problem when you use a client dataset to cache
updates.

Using dbExpress (see page 68)

Using Data Explorer to Obtain Connection Information (see page 69) Before you have a connection, you can use Data Explorer to assemble
connection strings.

2.2.1 Accessing Schema Information

The schema information or metadata includes information about what tables and stored procedures are available on the server
and the information about these tables and stored procedures (like the fields of a table, the indexes that are defined, and the
parameters a stored procedure uses).

To access schema information

1. To populate a unidirectional dataset with metadata from the database server, call SetSchemaInfo method to indicate what
data you want to see.

2. Set the type of schema information parameter of SetSchemaInfo method.

2.2 Database Procedures RAD Studio Accessing Schema Information

47

2

3. Set the name of table or stored procedure parameter of SetSchemaInfo method.

4. To fetch data after using the dataset for metadata, do one of the following:

• Set the CommandText property to specify the query, table, or stored procedure from which you want to fetch data.

• Set the type of schema information to stNoSchema and call SetSchemaInfo method.

Note: If you choose the second option, the dataset fetches the data specified by the CommandText property.

See Also

dbExpress Components (see page 15)

Configuring TSQLConnection (see page 48)

Specifying Display Data (see page 53)

Fetching the Data (see page 52)

Executing the Commands (see page 51)

Debugging dbExpress Applications (see page 50)

Using TSQLTable (see page 62)

Using TSQLStoredProc (see page 61)

Using TSQLQuery (see page 60)

Using TSimpleDataSet (see page 63)

Using Unidirectional Datasets (see page 1730)

2.2.2 Configuring TSQL Connection

The first step when working with a unidirectional dataset is to connect it to a database server. At designtime, once a dataset has
an active connection to a database server, the Object Inspector can provide drop-down lists of values for other properties. For
example, when representing a stored procedure, you must have an active connection before the Object Inspector can list what
stored procedures are available on the server. The connection to a database server is represented by a separate
TSQLConnection component. You work with TSQLConnection like any other database connection component.

To configure a TSQL Connection

1. Choose File New Other . The New Items dialog appears.

2. In the New Items dialog, select Delphi Projects and double-click VCL Forms Application . The Windows Designer
displays.

3. From the dbExpress category of the Tool Palette , drag a TSQLConnection component to the form.

4. Identify the driver.

5. Specify connection parameters.

6. Identify a database connection.

7. Display and use the dbExpress Connection Editor .

To identify the driver

1. Select the TSQLConnection component.

Configuring TSQL Connection RAD Studio 2.2 Database Procedures

48

2

2. In the Object Inspector , set the DriverName property, to an installed dbExpress driver.

3. Identify the files associated with the driver name. Select any of the following:

• The dbExpress driver

• The dynamic link library

Note: The relationship between the dbExpress driver or dynamic link library and the database name is stored in a file called
dbxdrivers.ini

, which is updated when you install a dbExpress driver. The SQL connection component looks the dbExpress driver and the
dynamic-link library up in dbxdrivers.ini when given the value of DriverName. When you set the DriverName property,
TSQLConnection automatically sets the LibraryName and VendorLib properties to the names of the associated dlls. Once
LibraryName and VendorLib have been set, your application does not need to rely on dbxdrivers.ini .

To specify a connection parameter

1. Double-click on the Params property in the Object Inspector to edit the parameters using Value List Editor at designtime.

2. Use the Params.Values property to assign values to individual parameters at run time.

To identify a database connection

1. Set the ConnectionName property to a valid connection name. This automatically sets the DriverName and Params
properties.

2. Edit the Params property to change the saved set of parameter values.

3. Set the LoadParamsOnConnect property to True to develop your application using one database and deploy it using another.
This causes TSQLConnection to automatically set DriverName and Params to the values associated with ConnectionName
in dbxconnections.ini when the connection is opened.

4. Call the LoadParamsFromIniFile method. This method sets DriverName and Params to the values associated with
ConnectionName in dbxconnections.ini (or in another file that you specify). You might choose to use this method if you
want to then override certain parameter values before opening the connection.

To display the Connection Editor

1. Double-click the TSQLConnection component. The dbExpress Connection Editor appears, with a drop-down drivers list, a
list of connection names for the currently selected driver, and a connection parameters table for the currently selected
connection name.

2. From the Driver Name drop-down list, select a driver to indicate the connection to use.

3. From the Connection Name list, select a connection name .

4. Choose the configuration that you want.

5. Click the Test Connection button to check for a valid configuration.

To define and modify connections using the Connection Editor

1. To edit the currently selected named connections in dbxconnections.ini , edit the parameter values in the parameter
table.

2. Click OK. The new parameter values are saved to dbxconnections.ini .

3. Click the Add Connection button to define a new connection. The New Connection dialog appears.

4. In the New Connection dialog box, set the Driver Name and the Connection Name .

5. Click OK.

6. Click the Delete Connection button to delete the currently selected named connection from dbxconnections.ini .

7. Click the Rename Connection button to change the name of the currently selected named connection.

See Also

dbExpress Components (see page 15)

2.2 Database Procedures RAD Studio Configuring TSQL Connection

49

2

Specifying Display Data (see page 53)

Fetching the Data (see page 52)

Executing the Commands (see page 51)

Accessing Schema Information (see page 47)

Debugging dbExpress Applications (see page 50)

Using TSQLTable (see page 62)

Using TSQLStoredProc (see page 61)

Using TSQLQuery (see page 60)

Using TSimpleDataSet (see page 63)

Using Unidirectional Datasets (see page 1730)

2.2.3 Connecting to the Application Server using DataSnap
Components

A client application uses one or more connection components in the DataSnap category of the Tool Palette to establish and
maintain a connection to an application server.

To connect to the application server using DataSnap components

1. Identify the protocol for communicating with the application server.

2. Locate the server machine.

3. Identify the application server on the server machine.

4. If you are not using SOAP, identify the server using the ServerName or ServerGUID property.

5. Manage server connections.

See Also

Connecting to the Application Server (see page 1423)

Using TLocalConnection or TConnectionBroker (see page 54)

Using TSimpleObjectBroker (see page 64)

2.2.4 Debugging dbExpress Applications using TSQLMonitor

While you are debugging your database application, you can monitor the SQL messages that are sent to and from the database
server through your connection component, including those that are generated automatically for you (for example by a provider
component or by the dbExpress driver).

To debug dbExpress applications

1. Choose File New Other . The New Items dialog appears.

2. In the New Items dialog, select Delphi Projects and double-click VCL Forms Application . The Windows Designer
displays.

Debugging dbExpress Applications using RAD Studio 2.2 Database Procedures

50

2

3. To monitor SQL commands, from the dbExpress category of the Tool Palette , drag a TSQLMonitor component to the form.

4. Set the SQLConnection property of the TSQLMonitor to the TSQLConnection component.

5. Set the Active property of the TSQLMonitor to True.

To use a callback to monitor SQL commands

1. Use the SetTraceEvent method of the TSQLConnection component.

2. Set the TDBXTraceEvent event parameter.

The dbExpress driver triggers the event every time the SQL connection component passes a command to the server or the
server returns an error message.

Warning: Do not call SetTraceEvent if the TSQLConnection

object has an associated TSQLMonitor component. TSQLMonitor uses the callback mechanism to work, and
TSQLConnection can only support one callback at a time.

See Also

dbExpress Components (see page 15)

Configuring TSQLConnection (see page 48)

Specifying Display Data (see page 53)

Fetching the Data (see page 52)

Executing the Commands (see page 51)

Accessing Schema Information (see page 47)

Using Unidirectional Datasets (see page 1730)

2.2.5 Executing the Commands using TSQLDataSet

You can use a unidirectional dataset even if the query or stored procedure it represents does not return any records. Such
commands include statements that use Data Definition Language (DDL) or Data Manipulation Language (DML) statements other
than SELECT statements. The language used in commands is server-specific, but usually compliant with the SQL-92 standard
for the SQL language. The SQL command you execute must be acceptable to the server you are using. Unidirectional datasets
neither evaluate the SQL nor execute it, but pass the command to the server for execution.

To execute commands

1. Choose File New Other . The New Items dialog appears.

2. In the New Items dialog, select Delphi Projects and double-click VCL Forms Application . The Windows Designer
displays.

3. From the dbExpress category of the Tool Palette , drag a TSQLDataSet component to the form.

4. Specify the command to execute.

5. Execute the command.

6. Create and modify server metadata.

To specify the command to execute

1. Set the CommandType and CommandText properties in the Object Inspector to specify the command for a TSQLDataSet .

2. Set the SQL property in the Object Inspector to specify the SQL statement to pass to the server for a TSQLQuery .

2.2 Database Procedures RAD Studio Executing the Commands using

51

2

3. Set the StoredProcName property in the Object Inspector to specify the name of the stored procedure to execute for a
TSQLStoredProc .

To execute the command

1. If the dataset is an instance of a TSQLDataSet or a TSQLQuery , call the ExecSQL method.

2. If the dataset is an instance of a TSQLStoredProc , call the ExecProc method.

Tip: If you are executing the query or stored procedure multiple times, it is a good idea to set the Prepared property to True.

To create and modify server metadata

1. To create tables in a database, use the CREATE TABLE statement.

2. To create new indexes for those tables, use the CREATE INDEX statement.

3. To add various metadata objects, use CREATE DOMAIN, CREATE VIEW, CREATE SCHEMA, and CREATE PROCEDURE
statements.

4. To delete any of the above metadata objects, use DROP TABLE, DROP VIEW, DROP DOMAIN, DROP SCHEMA, and
DROP PROCEDURE.

5. To change the structure of a table, use the ALTER TABLE statement.

See Also

dbExpress Components (see page 15)

Configuring TSQLConnection (see page 48)

Specifying Display Data (see page 53)

Fetching the Data (see page 52)

Accessing Schema Information (see page 47)

Debugging dbExpress Applications (see page 50)

Using TSQLTable (see page 62)

Using TSQLStoredProc (see page 61)

Using TSQLQuery (see page 60)

Using Unidirectional Datasets (see page 1730)

2.2.6 Fetching the Data using TSQLDataSet

To fetch the data

1. Choose File New Other . The New Items dialog appears.

2. In the New Items dialog, select Delphi Projects and double-click VCL Forms Application . The Windows Designer
displays.

3. From the dbExpress category of the Tool Palette , drag a TSQLDataSet component to the form.

4. To fetch the data for a unidirectional dataset, do one of the following:

• In the Object Inspector , set the Active property to True.

• Call the Open method at runtime.

Tip: Use GetMetadata property to selectively fetch metadata on a database object. Set GetMetadata to False if you are
fetching a dataset for read-only purposes.

Fetching the Data using TSQLDataSet RAD Studio 2.2 Database Procedures

52

2

5. Set its Prepared property to True to prepare the dataset explicitly.

6. Call the NextRecordSet method to fetch multiple sets of records.

Note: NextRecordSet returns a newly created TCustomSQLDataSet component that provides access to the next set of
records. That is, the first time you call NextRecordSet, it returns a dataset for the second set of records. Calling
NextRecordSet returns a third dataset, and so on, until there are no more sets of records. When there are no additional
datasets, NextRecordSet does not return anything.

See Also

dbExpress Components (see page 15)

Specifying Display Data (see page 53)

Fetching the Data

Executing the Commands (see page 51)

Accessing Schema Information (see page 47)

Debugging dbExpress Applications (see page 50)

Using TSQLTable (see page 62)

Using TSQLStoredProc (see page 61)

Using TSQLQuery (see page 60)

Using Unidirectional Datasets (see page 1730)

2.2.7 Specifying the Data to Display using TSQLDataSet

To specify the data to display

1. Choose File New Other . The New Items dialog appears.

2. In the New Items dialog, select Delphi Projects and double-click VCL Forms Application . The Windows Designer
displays.

3. From the dbExpress category of the Tool Palette , drag a TSQLDataSet component to the form.

4. For TSQLDataSet , specify the type of unidirectional dataset by CommandType property in the Object Inspector .

5. Specify whether information comes from results of query, a database table, or a stored procedure.

To display results from a query

1. Set the CommandType property to ctQuery for a TSQLDataSet .

2. For TSQLQuery , drag a TSQLQuery component from the Tool Palette to the form.

3. Set the SQL property to the query you want to assign.

4. Select TSQLDataSet .

5. Click the CommandText property. The CommandText Editor opens.

6. In the CommandText Editor , set the SQL property to the text of the query statement.

Note: When you specify the query, it can include parameters, or variables, the values of which can be varied at design time
or runtime. Parameters can replace data values that appear in the SQL statement. SQL defines queries such as UPDATE
queries that perform actions on the server but do not return records.

2.2 Database Procedures RAD Studio Specifying the Data to Display using

53

2

To display records in a table

1. In the Object Inspector , set the CommandType property to ctTable. TSQLDataSet generates a query based on the values of
two properties: CommandText that specifies the name of the database table that the TSQLDataSet object should represent
and SortFieldNames that lists the names of any fields to use to sort the data, in the order of significance

2. Drag a TSQLTable component to the form.

3. In the Object Inspector , set the TableName property to the table you want.

4. Set the IndexName property to the name of an index defined on the server or set the IndexFieldNames property to a
semicolon-delimited list of field names to specify the order of fields in the dataset.

To display the results of a stored procedure

1. In the Object Inspector , set the CommandType property to ctStoredProc.

2. Specify the name of the stored procedure as the value of the CommandText property.

3. Set the StoredProcName property to the name of the stored procedure for TSQLStoredProc .

Note: After you have identified a stored procedure, your application may need to enter values for any input parameters of the
stored procedure or retrieve the values of output parameters after you execute the stored procedure.

See Also

dbExpress Components (see page 15)

Configuring TSQLConnection (see page 48)

Fetching the Data (see page 52)

Executing the Commands (see page 51)

Accessing Schema Information (see page 47)

Debugging dbExpress Applications (see page 50)

Using TSQLTable (see page 62)

Using TSQLStoredProc (see page 61)

Using TSQLQuery (see page 60)

Using TSimpleDataSet (see page 63)

Using Unidirectional Datasets (see page 1730)

2.2.8 Specifying the Provider using TLocalConnection or
TConnectionBroker

Client datasets are specialized datasets that hold all the data in memory. They use a provider to supply them with data and apply
updates when they cache updates from a database server or another dataset, represent the data in an XML document, and store
the data in the client portion of a multi-tiered application.

To specify the provider

1. Choose File New Other . The New Items dialog appears.

2. In the New Items dialog, select Delphi Projects and double-click VCL Forms Application . The Windows Designer
displays.

Specifying the Provider using RAD Studio 2.2 Database Procedures

54

2

3. From the DataSnap category of the Tool Palette , drag a TConnectionBroker component to the form if the provider is on a
remote application server.

4. In the Object Inspector , set the ConnectionBroker property of your client dataset to the TConnectionBroker component to
the form.

5. From the DataSnap category of the Tool Palette , drag a TLocalConnection component to the form if the provider is in the
same application as the client dataset.

6. Set the RemoteServer property of your client dataset to the TLocalConnection component to the form.

See Also

Using DataSnap (see page 56)

Connecting To Application Server (see page 50)

Using TSimpleObjectBroker (see page 64)

2.2.9 Using BDE

To use BDE

1. Choose File New Other . The New Items dialog box opens.

2. In the New Items dialog, select Delphi Projects and double-click VCL Forms Application . The Windows Designer
displays.

3. From the BDE category of the Tool Palette , drag a TTable component to the form. This will encapsulate the full structure of
data in an underlying database table.

4. From the BDE category of the Tool Palette , drag a TQuery component to the form. This will encapsulate an SQL statement
and enables applications to access the resulting records.

5. From the BDE category of the Tool Palette , drag a TStoredProc component to the form. This will execute a stored procedure
that is defined on a database server.

6. From the BDE category of the Tool Palette , drag a TBatchMove component to the form. This will copy a table structure or its
data.

7. From the BDE category of the Tool Palette , drag a TUpdateSQL component to the form. This will provide a way to update
the underlying datasets.

See Also

BDE Overview (see page 15)

Using TDatabase (see page 57)

Using TSession (see page 62)

Using TTable (see page 65)

Using TQuery (see page 59)

Using TStoredProc (see page 64)

Using TBatchMove (see page 56)

Using TUpdateSQL (see page 67)

2.2 Database Procedures RAD Studio Using DataSnap

55

2

2.2.10 Using DataSnap

A multi-tiered client/server application is partitioned into logical units, called tiers, which run in conjunction on separate machines.
Multi-tiered applications share data and communicate with one another over a local-area network or even over the Internet. They
provide many benefits, such as centralized business logic and thin client applications.

Multi-tiered applications use the components on the DataSnap category in the Tool Palette . DataSnap provides multi-tier
database capability to Delphi applications by allowing client applications to connect to providers in an application server.

To build multi-tiered database applications using DataSnap

1. Choose File New Other . The New Items dialog appears.

2. In the New Items dialog, select Delphi Projects and double-click VCL Forms Application . The Windows Designer
displays.

3. From the DataSnap category of the Tool Palette , drag a TDCOMConnection component to the form. This will establish a
DCOM connection to a remote server in a multi-tiered database application.

4. From the DataSnap category of the Tool Palette , drag a TSocketConnection component to the form. This will establish a
TCP/IP connection to a remote server in a multi-tiered database application.

5. From the DataSnap category of the Tool Palette , drag a TSimpleObjectBroker component to the form. This will locate a
server for a connection component from a list of available application servers.

6. From the DataSnap category of the Tool Palette , drag a TWebConnection component to the form. This will establish an
HTTP connection to a remote server in a multi-tiered database application.

7. From the DataSnap category of the Tool Palette , drag a TConnectionBroker component to the form. This will centralize all
connections to the application server so that applications do not need major rewriting when changing the connection protocol.

8. From the DataSnap category of the Tool Palette , drag a TSharedConnection component to the form. This will connect to a
child remote data module when the application server is built using multiple remote data modules.

9. From the DataSnap category of the Tool Palette , drag a TLocalConnection component to the form. This will provide access
to IAppServer methods that would otherwise be unavailable, and make it easier to scale up to a multi-tiered application at a
later time. It acts like a connection component for providers that reside in the same application.

See Also

Connecting To Application Server (see page 50)

Deploying Multi-tiered Database Applications (DataSnap) (see page 1860)

Using TLocalConnection or TConnectionBroker (see page 54)

Using TSimpleObjectBroker (see page 64)

2.2.11 Using TBatchMove

TBatchMove copies a table structure or its data. It can be used to move entire tables from one database format to another.

To use TBatchMove

1. Choose File New Other . The New Items dialog appears.

2. In the New Items dialog, select Delphi Projects and double-click VCL Forms Application . The Windows Designer
displays.

Using TBatchMove RAD Studio 2.2 Database Procedures

56

2

3. Create a batch move component.

4. Specify a batch move mode.

5. Map data types.

6. Execute a batch move.

7. Handle batch move errors.

See Also

Using TBatchMove (see page 1589)

Using TTable (see page 65)

Using TQuery (see page 59)

Using TStoredProc (see page 64)

Using Update Objects to Update a Dataset (see page 1598)

Using TSession (see page 62)

2.2.12 Connecting to Databases with TDatabase

TDatabase sets up a persistent connection to a database, especially a remote database requiring a user login and password.
TDatabase is especially important because it permits control over database transaction processing with the BDE when
connected to a remote SQL database server. Use TDatabase when a BDE-based database application requires:

• Persistent database connections

• Customized database server logins

• Transaction control

• Application-specific BDE aliases

To connect to databases with TDatabase

1. Choose File New Other . The New Items dialog appears.

2. In the New Items dialog, select Delphi Projects and double-click VCL Forms Application . The Windows Designer
displays.

3. Associate a database component with a session.

4. Identify the database.

5. Open a connection using TDatabase.

To associate a database component with a session

1. From the BDE category of the Tool Palette , drag a TDatabase component to the form.

2. Drag a TSession component to the form.

3. In the Object Inspector , set the SessionName property of the TSession component. SessionName is set to “Default," which
means it is associated with the default session component that is referenced by the global Session variable.

4. Add a TSession component for each session if you use multiple sessions.

5. Set the SessionName property of the TDatabase component to the SessionName property of the TSession component to
associate your dataset with a session component.

6. Read the Session property to access the session component with which the database is associated at runtime. If

2.2 Database Procedures RAD Studio Connecting to Databases with TDatabase

57

2

SessionName is blank or “Default," the Session property references the same TSession instance referenced by the global
Session variable.

Session enables applications to access the properties, methods, and events of a database component’s parent session
component without knowing the session’s actual name. If you are using an implicit database component, the session for that
database component is the one specified by the dataset’s SessionName property.

To identify the database

1. In the drop-down lists for dataset components, specify the alias name or the name of an existing BDE alias for a database
component.

Note: This clears any value already assigned to DriverName. Alternatively, you can specify a driver name instead of an alias
when you create a local BDE alias for a database component using the DatabaseName property. Specifying the driver name
clears any value already assigned to AliasName. To provide your own name for a database connection, set the
DatabaseName. To specify a BDE alias at designtime, assign a BDE driver.

2. Create a local BDE alias.

3. Double-click a database component. The Database editor opens.

4. In the Name edit box in the properties editor, enter the same name as specified by the DatabaseName property.

5. In the Alias name combo box, enter an existing BDE alias name or choose from existing aliases in the drop-down list.

6. To create or edit connection parameters at designtime, do one of the following:

• Use the Database Explorer or BDE Administration utility.

• Double-click the Params property in the Object Inspector to invoke the Value List editor.

• Double-click a database component in a data module or form to invoke the Database editor.

Note: All of these methods edit the Params property for the database component. When you first invoke the Database
Properties

editor, the parameters for the BDE alias are not visible. To see the current settings, click Defaults . The current parameters
are displayed in the Parameter overrides memo box. You can edit existing entries or add new ones. To clear existing
parameters, click Clear . Changes you make take effect only when you click OK.

To open a connection using TDatabase

1. In the Params property of a TDatabase component, configure the ODBC driver for your application.

2. To connect to a database using TDatabase , set the Connected property to True or call the Open method.

Note: Calling TDatabase. Rollback does not call TDataSet. Cancel for any data sets associated with the database.

See Also

BDE Overview (see page 15)

Using TSession (see page 62)

Using TTable (see page 65)

Using TQuery (see page 59)

Using TStoredProc (see page 64)

Using TBatchMove (see page 56)

Using TUpdateSQL (see page 67)

Using TQuery RAD Studio 2.2 Database Procedures

58

2

2.2.13 Using TQuery

TQuery is a query-type dataset that encapsulates an SQL statement and enables applications to access the resulting records.

To use TQuery

1. Choose File New Other . The New Items dialog appears.

2. In the New Items dialog, select Delphi Projects and double-click VCL Forms Application . The Windows Designer
displays.

3. Associate the dataset with database and session connections.

4. Create heterogeneous queries.

5. Obtain an editable result set.

6. Update read-only result sets.

To associate a dataset with database and session connections

1. From the BDE category of the Tool Palette , drag a TDatabase component to the form.

2. Drag a TSession component to the form.

3. Set the DatabaseName property of the TDatabase component to associate a BDE-enabled dataset with a database. For the
TDatabase component, database name is the value of the DatabaseName property of the database component.

4. Specify a BDE alias as the value of DatabaseName if you want to use an implicit database component and the database has
a BDE alias.

Note: A BDE alias represents a database plus configuration information for that database. The configuration information
associated with an alias differs by database type (Oracle, Sybase, InterBase, Paradox, dBASE, and so on).

5. In the Object Inspector , set the DatabaseName to specify the directory where the database tables are located if you want to
use an implicit database component for a Paradox or dBASE database.

6. Use the default session to control all database connections in your application.

7. Set the SessionName property of the TSession component to associate your dataset with an explicitly created session
component .

Note: Whether you use the default session or explicitly specify a session using the SessionName property, you can access
the session associated with a dataset by reading the DBSession property. If you use a session component, the SessionName
property of a dataset must match the SessionName property for the database component with which the dataset is
associated.

To create mixed queries

1. Define separate BDE aliases for each database accessed in the query using the BDE Administration tool or the SQL explorer.

2. Leave the DatabaseName property of the TQuery component blank. The names of the databases used will be specified in the
SQL statement.

3. Set the SQL property to the SQL statement you want to execute.

4. Precede each table name in the statement with the BDE alias for the database of the table, enclosed in colons. This whole
reference is then enclosed in quotation marks.

5. Set the Params property to any parameters for the query.

6. Write a Prepare method to prepare the query for execution prior to executing it for the first time.

7. Write an Open or ExecSQL method depending on the type of query you are executing.

2.2 Database Procedures RAD Studio Using TQuery

59

2

8. Use a TDatabase component as an alternative to using a BDE alias to specify the database in a mixed query.

9. Configure the TDatabase to the database, set the TDatabase. DatabaseName to an unique value, and use that value in the
SQL statement instead of a BDE alias name.

To obtain an editable result set

1. Set RequestLive property of the TQuery component to True.

2. If the query contains linked fields, treat the result set as a read-only result set, and update it.

If an application requests a live result set, but the SELECT statement syntax does not allow it, the BDE returns either a read-only
result set for queries made against Paradox or dBASE, or an error code for SQL queries made against a remote server.

To update read-only result sets

1. If all updates are applied to a single database table, indicate the underlying table to update in an OnGetTableName event
handler.

2. Set the query’s UpdateObject property to the TUpdateSQL object you are using to have more control over applying updates.

3. Set the DeleteSQL, InsertSQL, and ModifySQL properties of the update object to the SQL statements that perform the
appropriate updates for your query’s data.

If you are using the BDE to cache updates, you must use an update object.

See Also

BDE Overview (see page 15)

Using TDatabase (see page 57)

Using TSession (see page 62)

Using TTable (see page 65)

Using TStoredProc (see page 64)

Using TBatchMove (see page 56)

Using TUpdateSQL (see page 67)

2.2.14 Using TSQLQuery

TSQLQuery represents a query that is executed using dbExpress. TSQLQuery can represent the results of a SELECT
statement or perform actions on the database server using statements such as INSERT, DELETE, UPDATE, ALTER TABLE,
and so on. You can add a TSQLQuery component to a form at design time, or create one dynamically at runtime.

To use TSQLQuery

1. From the dbExpress category of the Tool Palette , drag a TSQLQuery component to the form.

2. In the Object Inspector , set its Name property to a unique value appropriate to your application.

3. Set the SQLConnection property.

4. Click the ellipsis button next to the SQL property of the TSQLQuery component. The String List editor opens.

5. In the String List editor, type the query statement you want to execute.

6. If the query data is to be used with visual data controls, add a data source component to the form.

7. Set the DataSet property of the data source component to the query-type dataset.

8. To activate the query component, set the Active property to True or call the Open method at runtime.

Using TSQLQuery RAD Studio 2.2 Database Procedures

60

2

See Also

dbExpress Components (see page 15)

Configuring TSQLConnection (see page 48)

Specifying Display Data (see page 53)

Fetching the Data (see page 52)

Executing the Commands (see page 51)

Accessing Schema Information (see page 47)

Using TSQLTable (see page 62)

Using TSQLStoredProc (see page 61)

Using TSimpleDataSet (see page 63)

Using Unidirectional Datasets (see page 1730)

2.2.15 Using TSQLStoredProc

TSQLStoredProc represents a stored procedure that is executed using dbExpress. TSQLStoredProc can represent the result
set if the stored procedure returns a cursor. You can add a TSQLStoredProc component to a form at design time, or create one
dynamically at runtime.

To use TSQLStoredProc

1. From the dbExpress category of the Tool Palette , drag a TSQLStoredProc component to the form.

2. In the Object Inspector , set its Name property to a unique value appropriate to your application.

3. Set the SQLConnection property.

4. Set the StoredProcName property to specify the stored procedure to execute.

5. If the stored procedure returns a cursor to be used with visual data controls, add a data source component to the form.

6. Set the DataSet property of the data source component to the stored procedure-type dataset.

7. Provide input parameter values for the stored procedure, if necessary.

8. To execute the stored procedure that returns a cursor, use the Active property or call the Open method.

9. Process any results.

See Also

dbExpress Components (see page 15)

Configuring TSQLConnection (see page 48)

Specifying Display Data (see page 53)

Fetching the Data (see page 52)

Executing the Commands (see page 51)

Accessing Schema Information (see page 47)

Using TSQLTable (see page 62)

Using TSQLQuery (see page 60)

2.2 Database Procedures RAD Studio Using TSQLStoredProc

61

2

Using TSimpleDataSet (see page 63)

Using Unidirectional Datasets (see page 1730)

2.2.16 Using TSQLTable

TSQLTable represents a database table that is accessed using dbExpress. TSQLTable generates a query to fetch all of the
rows and columns in a table you specify. You can add a TSQLTable component to a form at designtime, or create one
dynamically at runtime.

To use TSQLTable

1. Choose File New Other . The New Items dialog displays.

2. In the New Items dialog, select Delphi Projects and double-click VCL Forms Application . The Windows Designer
displays.

3. From the dbExpress category of the Tool Palette , drag a TSQLTable component to the form.

4. In the Object Inspector , set its Name property to a unique value appropriate to your application.

5. Set the SQLConnection property

6. Set the TableName property to the name of the table in the database.

7. Add a data source component to the form.

8. Set the DataSet property of the data source component to the the name of the dataset.

See Also

dbExpress Components (see page 15)

Configuring TSQLConnection (see page 48)

Specifying Display Data (see page 53)

Fetching the Data (see page 52)

Executing the Commands (see page 51)

Accessing Schema Information (see page 47)

Using TSQLStoredProc (see page 61)

Using TSQLQuery (see page 60)

Using TSimpleDataSet (see page 63)

Using Unidirectional Datasets (see page 1730)

2.2.17 Managing Database Sessions Using TSession

A session provides global connection over a group of database components. A default TSession component is automatically
created for each database application. You must use TSession component only if you are creating a multithreaded database
application. Each database thread requires its own session components.

Managing Database Sessions Using RAD Studio 2.2 Database Procedures

62

2

To manage database sessions

1. Choose File New Other . The New Items dialog appears.

2. In the New Items dialog, select Delphi Projects and double-click VCL Forms Application . The Windows Designer
displays.

3. Activate a session.

4. Specify default database connection behavior.

5. Manage database connections.

6. Work with password-protected Paradox and dBASE tables.

7. Work with BDE aliases.

8. Retrieve information about a session.

9. Create, Name, and Manage additional sessions.

See Also

Managing Database Sessions (see page 1570)

Using TTable (see page 65)

Using TQuery (see page 59)

Using TStoredProc (see page 64)

Using TDatabase (see page 57)

Using TBatchMove (see page 56)

Using TUpdateSQL (see page 67)

2.2.18 Using TSimpleDataSet

TSimpleDataSet is a special type of client dataset designed for simple two-tiered applications. Like a unidirectional dataset, it
can use an SQL connection component to connect to a database server and specify an SQL statement to execute on that
server. Like other client datasets, it buffers data in memory to allow full navigation and editing support.

To use TSQLStoredProc

1. From the dbExpress category of the Tool Palette , drag a TSimpleDataSet component to the form.

2. Set its Name property to a unique value appropriate to your application.

3. From the dbExpress section of the Tool Palette , drag a TSQLConnection component on the form.

4. Select TSimpleDataSet component. Set the Connection property to TSQLConnection component.

5. To fetch data from the server, do any of the following:

• Set CommandType to ctQuery and set CommandText to an SQL statement you want to execute on the server.

• Set CommandType to ctStoredProc and set CommandText to the name of the stored procedure you want to execute.

• Set CommandType to ctTable and set CommandText to the name of the database tables whose records you want to use.

6. If the stored procedure returns a cursor to be used with visual data controls, add a data source component to the form.

7. Set the DataSet property of the data source component to the TSimpleDataSet object.

8. To activate the dataset, use the Active property or call the Open method.

2.2 Database Procedures RAD Studio Using TSimpleDataSet

63

2

9. If you executed a stored procedure, use the Params property to retrieve any output parameters.

See Also

dbExpress Components (see page 15)

Configuring TSQLConnection (see page 48)

Specifying Display Data (see page 53)

Fetching the Data (see page 52)

Executing the Commands (see page 51)

Accessing Schema Information (see page 47)

Using TSQLTable (see page 62)

Using TSQLStoredProc (see page 61)

Using TSQLQuery (see page 60)

Using Unidirectional Datasets (see page 1730)

2.2.19 Using TSimpleObjectBroker

If you have multiple COM-based servers that your client application can choose from, you can use an Object Broker to locate an
available server system.

To use TSimpleObjectBroker

1. Choose File New Other . The New Items dialog appears.

2. In the New Items dialog, select Delphi Projects and double-click VCL Forms Application . The Windows Designer
displays.

3. From the DataSnap category of the Tool Palette , choose the connection component depending on the kind of connection you
want.

4. From the Tool Palette , drag a TSimpleObjectBroker to the form.

5. In the Object Inspector , set the ObjectBroker property of the connection component that you chose in Step 3 to use this
broker.

Warning: Do not use the ObjectBroker property with SOAP connections.

See Also

Using DataSnap (see page 56)

Connecting To Application Server (see page 50)

Using TLocalConnection or TConnectionBroker (see page 54)

2.2.20 Using TStoredProc

TStoredProc is a stored procedure-type dataset that executes a stored procedure that is defined on a database server.

Using TStoredProc RAD Studio 2.2 Database Procedures

64

2

To use TStoredProc

1. Choose File New Other . The New Items dialog appears.

2. In the New Items dialog, select Delphi Projects and double-click VCL Forms Application . The Windows Designer
displays.

3. Associate a dataset with database and session connections.

4. Bind the parameters.

To associate a dataset with database and session connections

1. From the BDE category of the Tool Palette , drag a TDatabase component to the form.

2. To associate a BDE-enabled dataset with a database, set the DatabaseName property. For TDatabase component, database
name is the value of the DatabaseName property of the database component.

3. Drag a TSession component to the form.

4. To control all database connections in your application, use the default session.

5. In the Object Inspector , set the SessionName property of the TSession component to associate your dataset with an
explicitly created session component.

Note: If you use a session component, the SessionName property of a dataset must match the SessionName property for the
database component with which the dataset is associated.

To bind parameters

1. From the BDE category of the Tool Palette , drag a TStoredProc component to the form.

2. Set the ParamBindMode property to default pbByName to specify how parameters should be bound to the parameters on the
server.

3. View the stored procedure source code of a server in the SQL Explorer if you want to set ParamBindMode to pbByNumber .

4. Determine the correct order and type of parameters.

5. Specify the correct parameter types in the correct order.

Note: Some servers also support binding parameters by ordinal value, the order in which the parameters appear in the stored
procedure. In this case the order in which you specify parameters in the parameter collection editor is significant. The first
parameter you specify is matched to the first input parameter on the server, the second parameter is matched to the second
input parameter on the server, and so on. If your server supports parameter binding by ordinal value, you can set
ParamBindMode to pbByNumber

.

See Also

BDE Overview (see page 15)

Using TTable (see page 65)

Using TQuery (see page 59)

Using TBatchMove (see page 56)

Using TUpdateSQL (see page 67)

2.2.21 Using TTable

TTable is a table-type dataset that represents all of the rows and columns of a single database table.

2.2 Database Procedures RAD Studio Using TTable

65

2

To use TTable

1. Choose File New Other . The New Items dialog appears.

2. In the New Items dialog, select Delphi Projects and double-click VCL Forms Application . The Windows Designer
displays.

3. Associate the dataset with the database and session connections.

4. Specify the table type for local tables and control read/write access to local tables.

5. Specify a dBASE index file.

6. Rename local tables.

7. Import data from another table.

To associate a dataset with database and session connections

1. From the BDE category of the Tool Palette , drag a TDatabase component to the form.

2. Drag a TSession component to the form.

3. To associate a BDE-enabled dataset with a database, in the Object Inspector , set the DatabaseName property of the
TDatabase component . For a TDatabase component, the database name is the value of the DatabaseName property of the
database component.

4. Use the default session to control all database connections in your application.

5. Set the SessionName property of the TSession component to associate your dataset with an explicitly created session
component.

If you use a session component, the SessionName property of a dataset must match the SessionName property for the
database component with which the dataset is associated.

To specify the TableType and control read/write access

1. From the BDE category of the Tool Palette , drag a TTable component to the form.

2. In the Object Inspector , set the TableType property if an application accesses Paradox, dBASE, FoxPro, or comma-delimited
ASCII text tables. BDE uses the TableType property to determine the table’s type.

3. Set TableType to ttDefault if your local Paradox, dBASE, and ASCII text tables use the file extensions like, .DB, .DBF, and
.TXT.

4. For other extensions, set TableType to ttParadox for Paradox, ttDBase for dBASE, ttFoxPro for FoxPro, and ttASCII for
Comma-delimited ASCII text respectively.

5. Set the table component’s Exclusive property to True before opening the table to gain sole read/write access.

Note: If the table is already in use when you attempt to open it, exclusive access is not granted. You can attempt to set
Exclusive on SQL tables, but some servers do not support exclusive table-level locking. Others may grant an exclusive lock,
but permit other applications to read data from the table.

To specify a dBASE index file

1. Set the IndexFiles property to the name of the non-production index file or list the files with a .NDX extension.

2. Specify one index in the IndexName property to have it actively sorting the dataset.

3. At designtime, click the ellipsis button in the IndexFiles property. The Index Files editor opens.

4. To add a non-production index file or file with .NDX extension, click the Add button in the Index Files dialog and select the file
from the Open dialog.

Note: For each non-production index file or .NDX file, repeat Steps 3 and 4.

Using TTable RAD Studio 2.2 Database Procedures

66

2

5. After adding all desired indexes, click the OK button in the Index Files editor.

Note: To do steps 3-5 at runtime, access the IndexFiles property using properties and methods of string lists.

To rename local tables

1. To rename a Paradox or dBASE table at design time, right-click the table component. A drop-down context menu opens.

2. From the context menu, select Rename Table .

3. To rename a Paradox or dBASE table at runtime, call the table’s RenameTable method.

To import data from another table

1. Use the BatchMove method of a table component to import data, copy, update, append records from another table into this
table, or delete records from a table.

2. Set the name of the table from which to import data, and a mode specification that determines which import operation to
perform.

See Also

BDE Overview (see page 15)

Using TDatabase (see page 57)

Using TSession (see page 62)

Using TQuery (see page 59)

Using TStoredProc (see page 64)

Using TBatchMove (see page 56)

Using TUpdateSQL (see page 67)

2.2.22 Using TUpdateSQL to Update a Dataset

When the BDE-enabled dataset represents a stored procedure or a query that is not “live”, it is not possible to apply updates
directly from the dataset. Such datasets may also cause a problem when you use a client dataset to cache updates.

To update a dataset using an update object

1. From the Tool Palette , add a TUpdateSQL component to the same form as the BDE-enabled dataset.

2. In the Object Inspector , set the UpdateObject property of the BDE-enabled dataset component’s to the TUpdateSQL
component in the form.

3. Set the ModifySQL, InsertSQL, and DeleteSQL properties of the update object to specify the SQL statements needed to
perform updates.

4. Close the dataset.

5. Set the dataset component’s CachedUpdates property to True or link the dataset to the client dataset using a dataset
provider.

6. Reopen the dataset.

7. Create SQL statements for update components.

8. Use multiple update objects.

9. Execute the SQL statements.

2.2 Database Procedures RAD Studio Using TUpdateSQL to Update a Dataset

67

2

See Also

Using Update Objects to Update a Dataset (see page 1598)

Using TTable (see page 65)

Using TQuery (see page 59)

Using TStoredProc (see page 64)

Using TBatchMove (see page 56)

Using TSession (see page 62)

2.2.23 Using dbExpress

To build a database applications using dbExpress

1. Connect to the database server and configure a TSQL connection.

2. Specify the data to display.

3. Fetch the data.

4. Execute the commands.

5. Access the schema information.

6. Debug dbExpress application using TSQLMonitor .

7. Use TSQLTable to represent a table on a database server that is accessed via TSQLConnection .

8. Use TSQLQuery to execute an SQL command on a database server that is accessed via TSQLConnection .

9. Use TSQLStoredProc to execute a stored procedure on a database server that is accessed via TSQLConnection .

See Also

dbExpress Components (see page 15)

Configuring TSQLConnection (see page 48)

Specifying Display Data (see page 53)

Fetching the Data (see page 52)

Executing the Commands (see page 51)

Accessing Schema Information (see page 47)

Debugging dbExpress Applications (see page 50)

Using TSQLTable (see page 62)

Using TSQLStoredProc (see page 61)

Using TSQLQuery (see page 60)

Using TSimpleDataSet (see page 63)

Using dbExpress Datasets (see page 1730)

Using Data Explorer to Obtain Connection RAD Studio 2.2 Database Procedures

68

2

	RAD Studio
	Table of Contents
	Concepts
	Debugging C++ Applications with CodeGuard Error Reporting
	CodeGuard Errors
	Access Errors
	Exception Errors
	Function Failure Errors
	Resource Errors

	CodeGuard Overview
	CodeGuard Warnings
	Memory Block Comparison Warnings
	Pathname Merging and Splitting Warnings
	String Comparison Warnings

	Developing Database Applications for the Win32 Platform
	dbGo Overview
	BDE Overview
	dbExpress Components
	Getting Started with InterBase Express
	dbExpress 4 New Feature Overview

	Developing Interoperable Applications
	Developing COM Applications

	Developing Reports for Your Win32 Applications
	Using Rave Reports in RAD Studio

	Developing Applications with VCL Components
	VCL Overview

	Developing Web Applications with WebSnap
	Win32 Web Applications Overview

	Developing Web Services with Win32 Applications
	Web Services Overview

	Developing Windows Applications
	Windows Overview

	Procedures
	CodeGuard Procedures
	Using CodeGuard

	Database Procedures
	Accessing Schema Information
	Configuring TSQL Connection
	Connecting to the Application Server using DataSnap Components
	Debugging dbExpress Applications using TSQLMonitor
	Executing the Commands using TSQLDataSet
	Fetching the Data using TSQLDataSet
	Specifying the Data to Display using TSQLDataSet
	Specifying the Provider using TLocalConnection or TConnectionBroker
	Using BDE
	Using DataSnap
	Using TBatchMove
	Connecting to Databases with TDatabase
	Using TQuery
	Using TSQLQuery
	Using TSQLStoredProc
	Using TSQLTable
	Managing Database Sessions Using TSession
	Using TSimpleDataSet
	Using TSimpleObjectBroker
	Using TStoredProc
	Using TTable
	Using TUpdateSQL to Update a Dataset
	Using dbExpress
	Using Data Explorer to Obtain Connection Information

	Interoperable Applications Procedures
	Using COM Wizards

	Reporting Procedures
	Adding Rave Reports to RAD Studio

	VCL Procedures
	Building a Windows "Hello World" Console Application
	Developing a Windows Application
	Building Application Menus
	Building a VCL Forms Application with Decision Support Components
	Building VCL Forms Applications With Graphics
	Building a VCL Forms MDI Application Using a Wizard
	Building a VCL Forms MDI Application Without Using a Wizard
	Building a VCL Forms SDI Application
	Creating a New VCL Component
	Building a VCL Forms ADO Database Application
	Building a VCL Forms Application
	Creating Actions in a VCL Forms Application
	Building a VCL Forms "Hello World" Application
	Using ActionManager to Create Actions in a VCL Forms Application
	Building a VCL Forms dbExpress Database Application
	Building an Application with XML Components
	Copying Data From One Stream To Another
	Copying a Complete String List
	Creating Strings
	Creating a VCL Form Instance Using a Local Variable
	Deleting Strings
	Displaying an Auto-Created VCL Form
	Displaying a Bitmap Image in a VCL Forms Application
	Displaying a Full View Bitmap Image in a VCL Forms Application
	Drawing a Polygon in a VCL Forms Application
	Drawing Rectangles and Ellipses in a VCL Forms Application
	Drawing a Rounded Rectangle in a VCL Forms Application
	Drawing Straight Lines In a VCL Forms Application
	Dynamically Creating a VCL Modal Form
	Dynamically Creating a VCL Modeless Form
	Iterating Through Strings in a List
	Building a Multithreaded Application
	Writing Cleanup Code
	Avoiding Simultaneous Thread Access to the Same Memory
	Defining the Thread Object
	Handling Exceptions
	Initializing a Thread
	Using the Main VCL Thread
	Waiting for Threads
	Writing the Thread Function
	Placing A Bitmap Image in a Control in a VCL Forms Application
	Reading a String and Writing It To a File
	Renaming Files
	Adding and Sorting Strings
	Creating a VCL Forms ActiveX Button
	Creating a VCL Forms ActiveX Active Form
	Building a VCL Forms Web Browser Application

	WebSnap Procedures
	Building a WebSnap Application
	Building a WebSnap "Hello World" Application
	Debugging a WebSnap Application using the Web Application Debugger

	Web Services Procedures
	Building a "Hello World" Web Services Application
	Accessing an ASP.NET "HelloWorld" Web Services Application
	Building an ASP.NET "Hello World" Web Services Application

	Reference
	C++ Reference
	Command Line Utilities
	BCC32, the C++ Command-Line Compiler
	BRC32, the Resource Shell
	BRCC32.EXE, the Resource Compiler
	COFF2OMF.EXE, the Import Library Conversion Tool
	CPP32.EXE, the C Compiler Preprocessor
	DCC32.EXE, the Delphi Command Line Compiler
	DCCIL.EXE, the Delphi for .NET Command Line Compiler
	GREP.EXE, the text search utility
	ILINK32.EXE, the Incremental Linker
	IMPDEF.EXE, the Module Definition Manager
	IMPLIB.EXE, the Import Library Tool
	Using Include Files
	MAKE
	MAKE Directives
	MAKE Macros
	MAKE Rules (Explicit and Implicit) and Commands
	Message Options
	Module Definition Files
	Using Precompiled Header Files
	RLINK32.DLL, the Resource Linker (C++)
	TDUMP.EXE, the File Dumping Utility
	TLIB.EXE, the Library Manager
	Using TOUCH.EXE
	TRIGRAPH

	List Of All C++ Compiler Errors And Warnings
	E2066: Invalid MOM inheritance
	E2525: You must define _PCH_STATIC_CONST before including xstring to use this feature
	E2526: Property 'name' uses another property as getter/setter; Not allowed
	E2008: Published property access functions must use __fastcall calling convention
	E2122: Function call terminated by unhandled exception 'value' at address 'addr'
	E2506: Explicit specialization of 'specifier' is ambiguous: must specify template arguments
	E2483: Array dimension 'specifier' could not be determined
	E2509: Value out of range
	E2510: Operand size mismatch
	E2050: __declspec(delphireturn) class 'class' must have exactly one data member
	E2530: Unrecognized option, or no help available
	E2527: Option 'name' cannot be set via 'name'
	E2528: Option 'name' must be set before compilation begins
	E2074: Value after -g or -j should be between 0 and 255 inclusive
	E2492: Properties may only be assigned using a simple statement, e.g. \"prop = value;\"
	E2505: Explicit instantiation requires an elaborated type specifier (i.e.,"class foo<int>")
	E2100: Invalid template declarator list
	E2102: Cannot use template 'template' without specifying specialization parameters
	E2107: Invalid use of template 'template'
	E2105: 'template' qualifier must specify a member template name
	E2066: Information not available
	E2471: pragma checkoption failed: options are not as expected
	E2504: 'dynamic' can only be used with non-template member functions
	E2191: '__far16' may only be used with '__pascal' or '__cdecl'
	E2199: Template friend function 'function' must be previously declared
	E2502: Error resolving #import: problem
	E2501: Unable to open import file 'filename'
	E2494: Unrecognized __declspec modifier
	E2493: Invalid GUID string
	E2499: Invalid __declspec(uuid(GuidString)) format
	E2496: Invalid call to uuidof(struct type|variable)
	E2511: Unterminated macro argument
	E2489: Maximum option context replay depth exceeded; check for recursion
	E2488: Maximum token reply depth exceeded; check for recursion
	E2491: Maximum VIRDEF count exceeded; check for recursion
	E2230: In-line data member initialization requires an integral constant expression
	E2241: VCL style classes need virtual destructors
	E2524: Anonymous structs/unions not allowed to have anonymous members in C++
	E2246: x is not abstract public single inheritance class hierarchy with no data
	E2249: = expected
	E2267: First base must be VCL class
	E2472: Cannot declare a member function via instantiation
	E2515: Cannot explicitly specialize a member of a generic template class
	E2474: 'function' cannot be declared as static or inline
	E2498: Need previously defined struct GUID
	E2295: Too many candidate template specializations from 'specifier'
	E2475: 'function' cannot be a template function
	E2299: Cannot generate template specialization from 'specifier'
	E2300: Could not generate a specialization matching type for 'specifier'
	E2497: No GUID associated with type:'type'
	E2522: Non-const function 'function' called for const object
	E2523: Non-volatile function 'name' called for volatile object
	E2513: Cannot emit RTTI for 'parameter' in 'function'
	E2512: Cannot emit RTTI for return type of 'function'
	E2507: 'class' is not a direct base class of 'class'
	E2529: Path 'path' exceeds maximum size of 'n'
	E2495: Redefinition of uuid is not identical
	E2500: __declspec(selectany) is only for initialized and externally visible variables
	E2482: String constant expected
	E2481: Unexpected string constant
	E2386: Cannot involve parameter 'parameter' in a complex partial specialization expression
	E2387: Partial specializations may not specialize dependent non-type parameters ('parameter')
	E2388: Argument list of specialization cannot be identical to the parameter list of primary template
	E2389: Mismatch in kind of substitution argument and template parameter 'parameter'
	E2480: Cannot involve template parameters in complex partial specialization arguments
	E2392: Template instance 'template' is already instantiated
	E2393: Cannot take the address of non-type, non-reference template parameter 'parameter'
	E2399: Cannot reference template argument 'arg' in template class 'class' this way
	E2397: Template argument cannot have static or local linkage
	E2485: Cannot use address of array element as non-type template argument
	E2402: Illegal base class type: formal type 'type' resolves to 'type'
	E2403: Dependent call specifier yields non-function 'name'
	E2404: Dependent type qualifier 'qualifier' has no member type named 'name'
	E2405: Dependent template reference 'identifier' yields non-template symbol
	E2406: Dependent type qualifier 'qualifier' is not a class or struct type
	E2407: Dependent type qualifier 'qualifier' has no member symbol named 'name'
	E2408: Default values may be specified only in primary class template declarations
	E2409: Cannot find a valid specialization for 'specifier'
	E2410: Missing template parameters for friend template 'template'
	E2486: Cannot use address of class member as non-type template argument
	E2411: Declaration of member function default parameters after a specialization has already been expanded
	E2412: Attempting to bind a member reference to a dependent type
	E2414: Destructors cannot be declared as template functions
	E2473: Invalid explicit specialization of 'specifier'
	E2490: Specialization within template classes not yet implemented
	E2416: Invalid template function declaration
	E2417: Cannot specify template parameters in explicit specialization of 'specifier'
	E2418: Maximum instantiation depth exceeded; check for recursion
	E2420: Explicit instantiation can only be used at global scope
	E2422: Argument kind mismatch in redeclaration of template parameter 'parameter'
	E2423: Explicit specialization or instantiation of non-existing template 'template'
	E2479: Cannot have both a template class and function named 'name'
	E2484: The name of template class 'class' cannot be overloaded
	E2426: Explicit specialization of 'specifier' requires 'template<>' declaration
	E2487: Cannot specify default function arguments for explicit specializations
	E2427: 'main' cannot be a template function
	E2429: Not a valid partial specialization of 'specifier'
	E2430: Number of template parameters does not match in redeclaration of 'specifier'
	E2477: Too few template parameters were declared for template 'template'
	E2478: Too many template parameters were declared for template 'template'
	E2431: Non-type template parameters cannot be of floating point, class, or void type
	E2434: Template declaration missing template parameters ('template<...>')
	E2435: Too many template parameter sets were specified
	E2436: Default type for template template argument 'arg' does not name a primary template class
	E2437: 'typename' should be followed by a qualified, dependent type name
	E2438: Template template arguments must name a class
	E2439: 'typename' is only allowed in template declarations
	E2440: Cannot generate specialization from 'specifier' because that type is not yet defined
	E2441: Instantiating 'specifier'
	E2503: Missing or incorrect version of TypeLibImport.dll
	E2470: Need to include header <typeinfo> to use typeid
	E2514: Cannot (yet) use member overload resolution during template instantiation
	E2508: 'using' cannot refer to a template specialization
	E2462: 'virtual' can only be used with non-template member functions
	W8086: Incorrect use of #pragma alias "aliasName"="substituteName"
	W8099: Static main is not treated as an entry point
	W8093: Incorrect use of #pragma codeseg [seg_name] ["seg_class"] [group]
	W8094: Incorrect use of #pragma comment(<type> [,"string"])
	W8085: Function 'function' redefined as non-inline
	W8105: %s member '%s' in class without constructors
	W8095: Incorrect use of #pragma message("string")
	W8098: Multi-character character constant
	W8096: Incorrect use of #pragma code_seg(["seg_name"[,"seg_class"]])
	W8083: Pragma pack pop with no matching pack push
	W8097: Not all options can be restored at this time
	W8084: Suggest parentheses to clarify precedence
	W8092: 'type' argument 'specifier' passed to 'function' is not an iterator: 'type' iterator required
	W8087: 'operator::operator==' must be publicly visible to be contained by a 'type'
	W8090: 'type::operator<' must be publicly visible to be used with 'type'
	W8089: 'type::operator<' must be publicly visible to be contained by a 'type'
	W8091: 'type' argument 'specifier' passed to 'function' is a 'iterator category' iterator: 'iterator category' iterator required
	W8076: Template instance 'specifier' is already instantiated
	W8077: Explicitly specializing an explicitly specialized class member makes no sense
	Informational messages
	E2196: Cannot take address of member function 'function'
	F1002: Unable to create output file 'filename'
	F1003: Error directive: 'message'
	F1004: Internal compiler error
	F1006: Bad call of intrinsic function
	F1007: Irreducible expression tree
	F1009: Unable to open input file 'filename'
	F1011: Register allocation failure
	F1012: Compiler stack overflow
	F1013: Error writing output file
	F1000: Compiler table limit exceeded
	F1005: Include files nested too deep
	F1008: Out of memory
	F1010: Unable to open 'filename'
	E2000: 286/287 instructions not enabled
	Abnormal program termination
	E2009: Attempt to grant or reduce access to 'identifier'
	E2011: Illegal to take address of bit field
	E2010: Cannot add or subtract relocatable symbols
	E2013: 'function1' cannot be distinguished from 'function2'
	E2014: Member is ambiguous: 'member1' and 'member2'
	E2015: Ambiguity between 'function1' and 'function2'
	E2017: Ambiguous member name 'name'
	E2019: 'identifier' cannot be declared in an anonymous union
	E2020: Global anonymous union not static
	E2022: Array size too large
	E2024: Cannot modify a const object
	E2025: Assignment to 'this' not allowed, use X::operator new instead
	E2026: Assembler statement too long
	E2001: Constructors and destructors not allowed in __automated section
	E2002: Only __fastcall functions allowed in __automated section
	E2003: Data member definition not allowed in __automated section
	E2004: Only read or write clause allowed in property declaration in __automated section
	E2005: Redeclaration of property not allowed in __automated section
	E2027: Must take address of a memory location
	E2028: operator -> must return a pointer or a class
	E2029: 'identifier' must be a previously defined class or struct
	E2030: Misplaced break
	E2031: Cannot cast from 'type1' to 'type2'
	E2033: Misplaced continue
	E2034: Cannot convert 'type1' to 'type2'
	E2036: Conversion operator cannot have a return type specification
	E2037: The constructor 'constructor' is not allowed
	E2039: Misplaced decimal point
	E2041: Incorrect use of default
	E2042: Declare operator delete (void*) or (void*, size_t)
	E2044: operator delete must return void
	E2045: Destructor name must match the class name
	E2048: Unknown preprocessor directive: 'identifier'
	E2046: Bad file name format in include directive OR Bad file name format in line directive
	E2051: Invalid use of dot
	E2053: Misplaced elif directive
	E2054: Misplaced else
	E2055: Misplaced else directive
	E2056: Misplaced endif directive
	E2059: Unknown language, must be C or C++
	E2060: Illegal use of floating point
	E2061: Friends must be functions or classes
	E2062: Invalid indirection
	E2063: Illegal initialization
	E2064: Cannot initialize 'type1' with 'type2'
	E2068: 'identifier' is not a non-static data member and can't be initialized here
	E2069: Illegal use of member pointer
	E2071: operator new must have an initial parameter of type size_t
	E2072: Operator new[] must return an object of type void
	E2075: Incorrect 'type' option: option
	E2076: Overloadable operator expected
	E2080: 'function' must be declared with one parameter
	E2077: 'operator' must be declared with one or no parameters
	E2079: 'function' must be declared with no parameters
	E2078: 'operator' must be declared with one or two parameters
	E2081: 'function' must be declared with two parameters
	E2082: 'identifier' must be a member function or have a parameter of class type
	E2083: Last parameter of 'operator' must have type 'int'
	E2084: Parameter names are used only with a function body
	E2085: Invalid pointer addition
	E2086: Illegal pointer subtraction
	E2087: Illegal use of pointer
	E2088: Bad syntax for pure function definition
	E2089: Identifier 'identifier' cannot have a type qualifier
	E2090: Qualifier 'identifier' is not a class or namespace name
	E2092: Storage class 'storage class' is not allowed here
	E2096: Illegal structure operation
	E2104: Invalid use of template keyword
	E2108: Improper use of typedef 'identifier'
	E2109: Not an allowed type
	E2110: Incompatible type conversion
	E2113: Virtual function 'function1' conflicts with base class 'base'
	E2114: Multiple base classes require explicit class names
	E2115: Bit field too large
	E2116: Bit fields must contain at least one bit
	W8005: Bit fields must be signed or unsigned int
	E2119: User break
	E2111: Type 'typename' may not be defined here
	E2121: Function call missing)
	E2123: Class 'class' may not contain pure functions
	E2126: Case bypasses initialization of a local variable
	E2127: Case statement missing :
	E2128: Case outside of switch
	E2129: Character constant too long (or empty)
	E2133: Unable to execute command 'command'
	E2134: Compound statement missing closing brace
	E2137: Destructor for 'class' required in conditional expression
	E2135: Constructor/Destructor cannot be declared 'const' or 'volatile'
	E2138: Conflicting type modifiers
	E2136: Constructor cannot have a return type specification
	E2038: Cannot declare or define 'identifier' here: wrong namespace
	E2154: Cannot define 'identifier' using a namespace alias
	E2421: Cannot use local type 'identifier' as template argument
	E2035: Conversions of class to itself or base class not allowed
	E2139: Declaration missing ;
	E2140: Declaration is not allowed here
	E2141: Declaration syntax error
	E2142: Base class 'class' contains dynamically dispatchable functions
	E2143: Matching base class function 'function' has different dispatch number
	E2144: Matching base class function 'function' is not dynamic
	E2145: Functions 'function1' and 'function2' both use the same dispatch number
	E2146: Need an identifier to declare
	E2147: 'identifier' cannot start a parameter declaration
	E2150: Type mismatch in default argument value
	E2152: Default expression may not use local variables
	E2153: Define directive needs an identifier
	E2155: Too many default cases
	E2156: Default outside of switch
	E2158: Operand of 'delete' must be non-const pointer
	E2159: Trying to derive a far class from the huge base 'base'
	E2160: Trying to derive a far class from the near base 'base'
	E2161: Trying to derive a huge class from the far base 'base'
	E2162: Trying to derive a huge class from the near base 'base'
	E2163: Trying to derive a near class from the far base 'base'
	E2164: Trying to derive a near class from the huge base 'base'
	E2165: Destructor cannot have a return type specification
	E2166: Destructor for 'class' is not accessible
	E2167: 'function' was previously declared with the language 'language'
	E2168: Division by zero
	E2169: 'identifier' specifies multiple or duplicate access
	E2170: Base class 'class' is included more than once
	E2171: Body has already been defined for function 'function'
	E2172: Duplicate case
	E2175: Too many storage classes in declaration
	E2176: Too many types in declaration
	E2179: virtual specified more than once
	E2007: Dispid only allowed in __automated sections
	Divide error
	E2182: Illegal parameter to __emit__
	E2183: File must contain at least one external declaration
	E2184: Enum syntax error
	E2185: The value for 'identifier' is not within the range of an int
	E2186: Unexpected end of file in comment started on line 'number'
	E2187: Unexpected end of file in conditional started on line 'number'
	E2188: Expression syntax
	E2190: Unexpected closing brace
	E2189: extern variable cannot be initialized
	E2344: Earlier declaration of 'identifier'
	E2192: Too few parameters in call
	E2193: Too few parameters in call to 'function'
	E2194: Could not find file 'filename'
	E2197: File name too long
	E2195: Cannot evaluate function call
	E2198: Not a valid expression format type
	E2200: Functions may not be part of a struct or union
	Floating point error: Divide by 0 OR Floating point error: Domain OR Floating point error: Overflow
	Floating point error: Stack fault
	Floating point error: Partial loss of precision OR Floating point error: Underflow
	E2201: Too much global data defined in file
	E2203: Goto bypasses initialization of a local variable
	E2204: Group overflowed maximum size: 'name'
	E2206: Illegal character 'character' (0x'value')
	E2207: Implicit conversion of 'type1' to 'type2' not allowed
	E2208: Cannot access an inactive scope
	E2209: Unable to open include file 'filename'
	E2210: Reference member 'member' is not initialized
	E2212: Function defined inline after use as extern
	E2211: Inline assembly not allowed in inline and template functions
	F1001: Internal code generator error
	E2413: Invalid template declaration
	E2070: Invalid use of namespace 'identifier'
	E2214: Cannot have a 'non-inline function/static data' in a local class
	E2215: Linkage specification not allowed
	E2216: Unable to create turboc.$ln
	E2218: Templates can only be declared at namespace or class scope
	E2217: Local data exceeds segment size limit
	E2219: Wrong number of arguments in call of macro 'macro'
	E2220: Invalid macro argument separator
	E2221: Macro argument syntax error
	E2222: Macro expansion too long
	E2223: Too many decimal points
	E2224: Too many exponents
	E2225: Too many initializers
	E2226: Extra parameter in call
	E2227: Extra parameter in call to function
	E2228: Too many error or warning messages
	E2233: Cannot initialize a class member here
	E2232: Constant/Reference member 'member' in class without constructors
	E2229: Member 'member' has the same name as its class
	E2234: Memory reference expected
	E2231: Member 'member' cannot be used without an object
	E2235: Member function must be called or its address taken
	O2237: DPMI programs must use the large memory model
	E2238: Multiple declaration for 'identifier'
	E2239: 'identifier' must be a member function
	E2240: Conversion of near pointer not allowed
	E2243: Array allocated using 'new' may not have an initializer
	E2244: 'new' and 'delete' not supported
	E2245: Cannot allocate a reference
	E2309: Inline assembly not allowed
	E2250: No base class to initialize
	E2254: : expected after private/protected/private
	E2255: Use :: to take the address of a member function
	E2256: No : following the ?
	E2257: , expected
	E2258: Declaration was expected
	E2259: Default value missing
	E2260: Default value missing following parameter 'parameter'
	E2263: Exception handling not enabled
	E2264: Expression expected
	E2266: No file names given
	E2265: No file name ending
	E2271: Goto statement missing label
	E2272: Identifier expected
	E2275: Opening brace expected
	E2276: (expected
	E2274: < expected
	E2277: Lvalue required
	E2278: Multiple base classes not supported for Delphi classes
	E2280: Member identifier expected
	E2279: Cannot find default constructor to initialize member 'identifier'
	E2310: Only member functions may be 'const' or 'volatile'
	E2311: Non-virtual function 'function' declared pure
	E2283: Use . or -> to call 'function'
	E2284: Use . or -> to call 'member', or & to take its address
	E2285: Could not find a match for 'argument(s)'
	E2286: Overloaded function resolution not supported
	E2287: Parameter 'number' missing name
	E2288: Pointer to structure required on left side of -> or ->*
	E2290: 'code' missing]
	E2291: brace expected
	E2292: Function should return a value
	E2293:) expected
	E2294: Structure required on left side of . or .*
	E2312: 'constructor' is not an unambiguous base class of 'class'
	E2313: Constant expression required
	E2296: Templates not supported
	E2314: Call of nonfunction
	E2321: Declaration does not specify a tag or an identifier
	E2297: 'this' can only be used within a member function
	E2316: 'identifier' is not a member of 'struct'
	E2317: 'identifier' is not a parameter
	E2319: 'identifier' is not a public base class of 'classtype'
	E2320: Expression of scalar type expected
	E2302: No type information
	E2303: Type name expected
	E2304: 'Constant/Reference' variable 'variable' must be initialized
	E2305: Cannot find 'class::class' ('class'&) to copy a vector OR Cannot find 'class'::operator=('class'&) to copy a vector
	E2306: Virtual base classes not supported for Delphi classes
	E2308: do statement must have while
	E2322: Incorrect number format
	E2324: Numeric constant too large
	E2282: Namespace name expected
	E2334: Namespace member 'identifier' declared outside its namespace
	E2325: Illegal octal digit
	E2329: Invalid combination of opcode and operands
	E2327: Operators may not have default argument values
	E2330: Operator must be declared as function
	E2333: Class member 'member' declared outside its class
	E2335: Overloaded 'function name' ambiguous in this context
	E2339: Cannot overload 'main'
	E2336: Pointer to overloaded function 'function' doesn't match 'type'
	E2337: Only one of a set of overloaded functions can be "C"
	E2338: Overlays only supported in medium, large, and huge memory models
	E2340: Type mismatch in parameter 'number'
	E2341: Type mismatch in parameter 'number' in call to 'function'
	E2342: Type mismatch in parameter 'parameter'
	E2343: Type mismatch in parameter 'parameter' in call to 'function'
	E2345: Access can only be changed to public or protected
	E2349: Nonportable pointer conversion
	E2350: Cannot define a pointer or reference to a reference
	E2352: Cannot create instance of abstract class 'class'
	E2354: Two operands must evaluate to the same type
	E2355: Recursive template function: 'x' instantiated 'y'
	E2356: Type mismatch in redeclaration of 'identifier'
	E2357: Reference initialized with 'type1', needs lvalue of type 'type2'
	E2358: Reference member 'member' needs a temporary for initialization
	E2360: Invalid register combination (e.g. [BP+BX])
	E2361: 'specifier' has already been included
	E2362: Repeat count needs an lvalue
	E2363: Attempting to return a reference to local variable 'identifier'
	E2364: Attempting to return a reference to a local object
	E2365: Member pointer required on right side of .* or ->*
	E2366: Can't inherit non-RTTI class from RTTI base OR E2367 Can't inherit RTTI class from non-RTTI base
	E2368: RTTI not available for expression evaluation
	E2371: sizeof may not be applied to a bit field
	E2372: sizeof may not be applied to a function
	E2373: Bit field cannot be static
	E2374: Function 'function' cannot be static
	Stack overflow
	(E2376: statement missing
	E2377: statement missing)
	E2378: do-while or for statement missing ;
	E2379: Statement missing ;
	E2380: Unterminated string or character constant
	E2381: Structure size too large
	E2382: Side effects are not allowed
	E2383: Switch selection expression must be of integral type
	E2433: Specialization after first use of template
	E2384: Cannot call near class member function with a pointer of type 'type'
	E2390: Type mismatch in parameter 'number' in template class name 'template'
	E2391: Type mismatch in parameter 'parameter' in template class name 'template'
	E2394: Too few arguments passed to template 'template'
	E2395: Too many arguments passed to template 'template'
	E2396: Template argument must be a constant expression
	E2401: Invalid template argument list
	E2400: Nontype template argument must be of scalar type
	E2415: Template functions may only have 'type-arguments'
	E2425: 'member' is not a valid template type member
	E2428: Templates must be classes or functions
	E2432: 'template' qualifier must name a template class or function instance'
	E2442: Two consecutive dots
	E2443: Base class 'class' is initialized more than once
	E2444: Member 'member' is initialized more than once
	E2445: Variable 'identifier' is initialized more than once
	E2446: Function definition cannot be a typedef'ed declaration
	E2132: Templates and overloaded operators cannot have C linkage
	E2447: 'identifier' must be a previously defined enumeration tag
	E2448: Undefined label 'identifier'
	E2449: Size of 'identifier' is unknown or zero
	E2450: Undefined structure 'structure'
	E2451: Undefined symbol 'identifier'
	E2453: Size of the type 'identifier' is unknown or zero
	E2452: Size of the type is unknown or zero
	E2454: union cannot be a base type
	E2455: union cannot have a base type
	E2456: Union member 'member' is of type class with 'constructor' (or destructor, or operator =)
	E2461: '%s' requires run-time initialization/finalization
	E2464: 'virtual' can only be used with member functions
	E2465: unions cannot have virtual member functions
	E2466: void & is not a valid type
	E2467: 'Void function' cannot return a value
	E2468: Value of type void is not allowed
	E2469: Cannot use tiny or huge memory model with Windows
	E2006: CodeGuarded programs must use the large memory model and be targeted for Windows
	E2269: The function 'function' is not available
	E2124: Invalid function call
	E2213: Invalid 'expression' in scope override
	E2236: Missing 'identifier' in scope override
	Pure virtual function called
	E2095: String literal not allowed in this context
	Unexpected termination during compilation [Module Seg#:offset] OR Unexpected termination during linking [Module Seg#:offset]
	E2012: Cannot take address of 'main'
	E2016: Ambiguous override of virtual base member 'base_function': 'derived_function'
	E2018: Cannot throw 'type' -- ambiguous base class 'base'
	E2021: Array must have at least one element
	E2023: Array of references is not allowed
	E2032: Illegal use of closure pointer
	E2040: Declaration terminated incorrectly
	E2047: Bad 'directive' directive syntax
	E2049: Class type 'type' cannot be marked as __declspec(delphireturn)
	E2052: Dynamic function 'function' conflicts with base class 'class'
	E2057: Exception specification not allowed here
	E2058: Exception handling variable may not be used here
	E2065: Using namespace symbol 'symbol' conflicts with intrinsic of the same name
	E2067: 'main' must have a return type of int
	E2073: Nothing allowed after pragma option pop
	E2091: Functions cannot return arrays or functions
	E2093: Operator 'operator' not implemented in type 'type' for arguments of the same type
	E2094: Operator 'operator' not implemented in type 'type' for arguments of type 'type'
	E2097: Explicit instantiation only allowed at file or namespace scope
	E2098: Explicit specialization declarator "template<>" now required
	E2099: Explicit specialization only allowed at file or namespace scope
	E2101: 'export' keyword must precede a template declaration
	E2103: Explicit instantiation must be used with a template class or function
	E2106: Explicit specialization must be used with a template class or function
	E2112: Unknown unit directive: 'directive'
	E2118: Bit fields must have integral type
	E2120: Cannot call 'main' from within the program
	E2125: Compiler could not generate copy constructor for class 'class' OR Compiler could not generate default constructor for class 'class' OR Compiler could not generate operator = for class 'class'
	E2130: Circular property definition
	E2131: Objects of type 'type' cannot be initialized with { }
	E2148: Default argument value redeclared for parameter 'parameter'
	E2149: Default argument value redeclared
	E2151: Type mismatch in default value for parameter 'parameter'
	E2157: Deleting an object requires exactly one conversion to pointer operator
	E2173: Duplicate handler for 'type1', already had 'type2'
	E2174: The name handler must be last
	E2177: Redeclaration of #pragma package with different arguments
	E2178: VIRDEF name conflict for 'function'
	E2180: Dispid number already used by identifier
	E2181: Cannot override a 'dynamic/virtual' with a 'dynamic/virtual' function
	E2202: Goto into an exception handler is not allowed
	E2205: Illegal type type in __automated section
	E2242: Specifier requires Delphi style class type
	E2247: 'member' is not accessible
	E2248: Cannot find default constructor to initialize array element of type 'class'
	E2251: Cannot find default constructor to initialize base class 'class'
	E2252: 'catch' expected
	E2253: Calling convention must be attributed to the function type, not the closure
	E2261: Use of dispid with a property requires a getter or setter
	E2262: '__except' or '__finally' expected following '__try'
	E2270: > expected
	E2273: 'main' cannot be declared as static or inline
	E2281: Identifier1 requires definition of Identifier2 as a pointer type
	E2289: __published or __automated sections only supported for Delphi classes
	E2298: Cannot generate 'function' from template function 'template'
	E2301: Cannot use templates in closure arguments -- use a typedef
	E2307: Type 'type' is not a defined class with virtual functions
	E2315: 'Member' is not a member of 'class', because the type is not yet defined
	E2318: 'type' is not a polymorphic class type
	E2323: Illegal number suffix
	E2326: Use __declspec(spec1[, spec2]) to combine multiple __declspecs
	E2328: Classes with properties cannot be copied by value
	E2331: Number of allowable option contexts exceeded
	E2332: Variable 'variable' has been optimized and is not available
	E2476: Cannot overload 'function'
	E2346: 'x' access specifier of property 'property' must be a member function
	E2347: Parameter mismatch in access specifier 'specifier' of property 'property'
	E2348: Storage specifier not allowed for array properties
	E2351: Static data members not allowed in __published or __automated sections
	E2353: Class 'classname' is abstract because of 'member = 0'
	E2359: Reference member 'member' initialized with a non-reference parameter
	E2369: Cannot use the result of a property assignment as an rvalue'
	E2370: Simple type name expected
	E2398: Template function argument 'argument' not used in argument types
	E2419: Error while instantiating template 'template'
	E2424: Template class nesting too deep: 'class'
	E2457: Delphi style classes must be caught by reference
	E2458: Delphi classes have to be derived from Delphi classes
	E2459: Delphi style classes must be constructed using operator new
	E2460: Delphi style classes require exception handling to be enabled
	E2463: 'base' is an indirect virtual base class of 'class'
	Null pointer assignment
	E2268: Call to undefined function 'function'
	E2375: Assembler stack overflow
	Initializing enumeration with type
	<name> is not a valid identifier
	Example for "Temporary used ..." error messages
	Application is running
	Printf/Scanf floating-point formats not linked
	W8000: Ambiguous operators need parentheses
	W8060: Possibly incorrect assignment
	W8002: Restarting compile using assembly
	W8003: Unknown assembler instruction
	W8052: Base initialization without a class name is now obsolete
	E2117: Bit fields must be signed or unsigned int
	W8064: Call to function with no prototype
	W8065: Call to function 'function' with no prototype
	W8009: Constant is long
	W8008: Condition is always true OR W8008 Condition is always false
	W8012: Comparing signed and unsigned values
	W8010: Continuation character \ found in // comment
	W8080: 'identifier' is declared but never used
	W8014: Declaration ignored
	W8068: Constant out of range in comparison
	W8016: Array size for 'delete' ignored
	W8082: Division by zero
	W8018: Assigning 'type' to 'enumeration'
	W8006: Initializing 'identifier' with 'identifier'
	W8001: Superfluous & with function
	W8020: 'identifier' is declared as both external and static
	W8007: Hexadecimal value contains more than three digits
	W8024: Base class 'class1' is also a base class of 'class2'
	W8022: 'function1' hides virtual function 'function2'
	W8023: Array variable 'identifier' is near
	W8061: Initialization is only partially bracketed
	W8038: constant member 'identifier' is not initialized
	W8071: Conversion may lose significant digits
	W8043: Macro definition ignored
	W8017: Redefinition of 'x' is not identical
	W8079: Mixing pointers to different 'char' types
	W8067: Both return and return with a value used
	W8048: Use qualified name to access member type 'identifier'
	W8039: Constructor initializer list ignored
	W8040: Function body ignored
	W8042: Initializer for object 'x' ignored
	W8044: #undef directive ignored
	W8037: Non-const function 'function' called for const object
	W8051: Non-volatile function 'function' called for volatile object
	W8019: Code has no effect
	W8057: Parameter 'parameter' is never used
	W8070: Function should return a value
	W8047: Declaration of static function function ignored
	W8041: Negating unsigned value
	W8054: Style of function definition is now obsolete
	W8025: Ill-formed pragma
	W8063: Overloaded prefix operator 'operator' used as a postfix operator
	W8015: Declare 'type' prior to use in prototype
	W8069: Nonportable pointer conversion
	W8066: Unreachable code
	W8029: Temporary used for parameter '???'
	W8031: Temporary used for parameter 'parameter' OR W8029 Temporary used for parameter 'number' OR W8030 Temporary used for parameter 'parameter' in call to 'function' OR W8032 Temporary used for parameter 'number' in call to 'function'
	W8032: Temporary used for parameter 2 in call to '???'
	W8028: Temporary used to initialize 'identifier'
	W8074: Structure passed by value
	W8011: Nonportable pointer comparison
	W8075: Suspicious pointer conversion
	W8059: Structure packing size has changed
	W8045: No declaration for function 'function'
	W8073: Undefined structure 'structure'
	W8013: Possible use of 'identifier' before definition
	W8004: 'identifier' is assigned a value that is never used
	W8081: Void functions may not return a value
	W8078: Throw expression violates exception specification
	W8021: Handler for 'type1' hidden by previous handler for 'type2'
	W8056: Integer arithmetic overflow
	W8035: User-defined message
	W8049: Use '> >' for nested templates Instead of '>>'
	W8026: Functions with exception specifications are not expanded inline
	W8058: Cannot create pre-compiled header: 'reason'
	W8046: Pragma option pop with no matching option push
	W8050: No type OBJ file present. Disabling external types option.
	W8027: Functions containing 'statement' are not expanded inline
	W8036: Non-ANSI keyword used: 'keyword'
	W8053: 'ident' is obsolete
	W8103: Path 'path' and filename 'filename' exceed maximum size of 'n'
	W8062: Previous options and warnings not restored
	W8055: Possible overflow in shift operation
	W8072: Suspicious pointer arithmetic
	W8033: Conversion to 'type' will fail for members of virtual base 'class'
	W8034: Maximum precision used for member pointer type 'type'

	C++ Examples
	Remove and MessageDlg example

	C++ Language Guide
	C++ Specifics
	Keywords, Alphabetical Listing
	Keywords, By Category
	Language Structure
	Lexical Elements
	The Preprocessor

	C Runtime Library Reference
	alloc.h
	assert.h
	conio.h
	ctype.h
	delayimp.h
	direct.h
	dirent.h
	dir.h
	dos.h
	errno.h
	except.h
	fastmath.h
	fcntl.h
	float.h
	io.h
	limits.h
	locale.h
	malloc.h
	math.h
	mem.h
	new.h
	process.h
	setjmp.h
	share.h
	signal.h
	stdarg.h
	stddef.h
	stdio.h
	stdlib.h
	string.h
	sys\stat.h
	sys\timeb.h
	sys\types.h
	time.h
	typeinfo.h
	utime.h
	values.h

	Win32 Developer's Guide
	Component Writer's Guide
	Creating a graphic component
	Creating events
	Creating methods
	Creating properties
	Customizing a grid
	Extending the IDE
	Handling messages
	Introduction to component creation
	Making a control data aware
	Making components available at design time
	Making a dialog box a component
	Modifying an existing component
	Object-oriented programming for component writers
	Using graphics in components

	Developing COM-based Applications
	COM basics
	Creating an Active Server Page
	Using ActiveX controls
	Creating COM clients
	Creating simple COM servers
	Working with type libraries

	Developing Database Applications
	Working with ADO components
	Connecting to databases
	Creating multi-tiered applications
	Creating reports with Rave Reports
	Designing database applications
	Understanding datasets
	Using the Borland Database Engine
	Using client datasets
	Using data controls
	Using decision support components
	Using provider components
	Using dbExpress Components
	Using XML in database applications
	Working with field components

	Programming with Delphi
	Building applications, components, and libraries
	Creating international applications
	Delphi programming fundamentals
	Deploying applications
	Developing the application user interface
	Exception handling
	Types of controls
	Understanding the component library
	Using the object model
	Using the VCL/RTL
	Working with components
	Working with controls
	Working with graphics and multimedia
	Working with packages and components
	Writing multi-threaded applications

	Writing Internet Applications
	Creating Internet server applications
	Using IntraWeb
	Using Web Broker
	Using Web Services
	Using WebSnap
	Working with sockets
	Working with XML documents

	Index

