
RAD Studio for Microsoft
.NET

Copyright(C) 2008 CodeGear(TM). All Rights Reserved.

Table of Contents

Concepts 1

Developing Database Applications with ADO.NET 3

AdoDbx Client Overview 5

VCL for .NET Database Technologies 6

BDP Connection Pooling Overview 8

dbExpress Components overview 9

dbGo Components Overview 10

AdoDbx.NET Data Types 11

ADO.NET Overview 14

BDP Migration Overview 16

Blackfish SQL Overview 20

ADO.NET Component Designers 21

Deploying Database Applications for the .NET Framework 24

Data Providers for Microsoft .NET 27

Stored Procedure Overview 29

dbExpress Framework 30

dbExpress Framework Compatibility 31

Getting Started with InterBase Express 32

Developing Applications with Unmanaged Code 38

Using COM Interop in Managed Applications 38

Using DrInterop 43

Deploying COM Interop Applications 43

Using Platform Invoke with Delphi for .NET 44

Virtual Library Interfaces 52

Modeling Concepts 54

Code Visualization Overview 54

Developing Reports for .NET Applications 56

Using Rave Reports in RAD Studio 56

Developing Applications with VCL.NET Components 57

Changes Required Due to 64-bit .NET 2.0 Support 58

Language Issues in Porting VCL Applications to RAD Studio 59

Porting VCL Applications 69

VCL for .NET Overview 71

Porting Web Service Clients 74

RAD Studio for Microsoft .NET

iii

Developing Web Applications with ASP.NET 77

ASP.NET Overview 79

CodeGear DB Web Controls Overview 81

Using DB Web Controls in Master-Detail Applications 83

DB Web Controls Navigation API Overview 85

DB Web Control Wizard Overview 86

Using XML Files with DB Web Controls 92

Working with DataViews 94

Deploying ASP.NET Applications 95

Working with WebDataLink Interfaces 96

Developing Web Services with ASP.NET 97

ASP.NET Web Services Overview 97

Web Services Protocol Stack 100

ASP.NET Web Services Support 102

Procedures 105

Database Procedures 106

Adding a New Connection to the Data Explorer 107

Adding a BDP Reconcile Error dialog to your BDP Application 108

Browsing a Database in the Data Explorer 109

Connecting to the AdoDbx Client 110

Creating Database Projects from the Data Explorer 111

Creating Table Mappings 112

Executing SQL in the Data Explorer 113

Handling Errors in Table Mapping 114

Migrating Data Between Databases 115

Modifying Connections in the Data Explorer 116

Modifying Database Connections 117

Building a Database Application that Resolves to Multiple Tables 122

Passing Parameters in a Database Application 124

Using the Data Adapter Preview 126

Using the Command Text Editor 127

Using the Data Adapter Designer 128

Using the Connection Editor Designer 128

Using Standard DataSets 129

Using Typed DataSets 132

Connecting to a Database using the dbExpress Driver Framework 134

Building a Distributed Database Application 136

RAD Studio for Microsoft .NET

iv

Interoperable Applications Procedures 139

Adding a J2EE Reference 139

Adding a Reference to a COM Server 139

Modeling Procedures 141

Exporting a Code Visualization Diagram to an Image 141

Importing and Exporting a Model Using XML Metadata Interchange (XMI) 142

Using the Model View Window and Code Visualization Diagram 143

Using the Overview Window 144

VCL for .NET Procedures 145

Building VCL Forms Applications With Graphics 147

Building a VCL.NET Forms ADO.NET Database Application 148

Building a VCL Forms Application 149

Creating Actions in a VCL Forms Application 150

Building a VCL Forms Hello World Application 151

Using ActionManager to Create Actions in a VCL Forms Application 152

Building a VCL Forms dbExpress.NET Database Application 153

Building an Application with XML Components 155

Making Changes Required Due to 64-bit .NET 2.0 Support 157

Creating a New VCL.NET Component 159

Displaying a Bitmap Image in a VCL Forms Application 160

Drawing Rectangles and Ellipses in a VCL Forms Application 161

Drawing a Rounded Rectangle in a VCL Forms Application 162

Drawing Straight Lines In a VCL Forms Application 163

Placing a Bitmap Image in a Control in a VCL Forms Application 164

Importing .NET Controls to VCL.NET 165

ASP.NET Procedures 167

Building an ASP.NET Application 170

Building an ASP.NET Database Application 171

Developing an ASP.NET Application with Database Controls, Part 1 174

Building an ASP.NET Application with Database Controls, Part 2 176

Building an ASP.NET Application with Database Controls, Part 3 177

Building an ASP.NET "Hello World" Application 178

Building an ASP.NET SiteMap 179

Creating a Briefcase Application with DB Web Controls 182

Building an Application with DB Web Controls 183

Converting HTML Elements to Server Controls 184

Creating an XML File for DB Web Controls 185

RAD Studio for Microsoft .NET

v

Creating Metadata for a DataSet 187

Creating a Virtual Directory 188

Adding Aggregate Values with DBWebAggregateControl 188

Debugging and Updating ASP.NET Applications 189

Deploying an ASP.NET Application using Blackfish SQL to a system without RAD Studio 190

Generating HTTP Messages in ASP.NET 191

Binding Columns in the DBWebGrid 191

Setting Permissions for XML File Use 192

Troubleshooting ASP.NET Applications 193

Using the DB Web Control Wizard 195

Using the ASP.NET Deployment Manager 196

Using the HTML Tag Editor 199

Working with ASP.NET User Controls 200

Web Services Procedures 202

Accessing an ASP.NET "Hello World" Web Services Application 202

Adding Web References in ASP.NET Projects 204

Building an ASP.NET "Hello World" Web Services Application 206

Porting a Delphi for Win32 Web Service Client Application to Delphi for .NET 207

Index a

RAD Studio for Microsoft .NET

vi

1 Concepts

Topics

Name Description

Developing Database Applications with ADO.NET (see page 3) ADO.NET presents a coherent programming model for exposing data access
within the .NET Framework. In addition to supporting MS SQL, Oracle, and OLE
DB connection components within the .NET Framework, RAD Studio includes
data providers for .NET (AdoDbxClient Provider). AdoDbx supports access to MS
SQL, Oracle, DB2, and Interbase. AdoDbx component designers ease the
generation and configuration of AdoDbx components.
If you are developing new VCL Forms applications for the .NET Framework, or
you are migrating existing Win32 VCL Forms applications to the .NET
Framework, RAD Studio provides continued support for existing Delphi database
technologies, such as dbExpress and dbGo.... more (see page 3)

Developing Applications with Unmanaged Code (see page 38) RAD Studio provides the capability to work with the .NET features that support
unmanaged code.
If you have COM or ActiveX components that you want to use within the .NET
Framework, you can use the .NET COM Interop capabilities from within RAD
Studio while building your applications.

Modeling Concepts (see page 54) This section provides information on modeling and code visualization.

Developing Reports for .NET Applications (see page 56) RAD Studio ships with Rave Reports from Nevrona. Using the report
components, you can build full-featured reports for your applications. You can
create solutions that include reporting capabilities which can be used and
customized by your customers.

Developing Applications with VCL.NET Components (see page 57) VCL.NET is an extended set of the VCL components that provide a way to
quickly build advanced applications in Delphi. With VCL.NET you can provide
your Delphi VCL applications and components to Microsoft .NET Framework
users. With RAD Studio you gain the benefit of the .NET Framework along with
the ease-of-use and powerful component-driven application development of
Delphi.
RAD Studio provides distinct application types for your use: you can create
VCL.NET form applications that run on the .NET Framework that use VCL.NET
components and controls; you can create .NET applications that use the
underlying .NET Framework and .NET controls while... more (see page 57)

Developing Web Applications with ASP.NET (see page 77) ASP.NET is the programming model for building Web applications using the
.NET Framework. This section provides the conceptual background for building
ASP.NET applications using RAD Studio. In addition to supporting data access
components within the .NET Framework, RAD Studio includes DB Web Controls.
DB Web Controls work with .NET Framework providers and Borland Data
Providers for .NET (BDP.NET) to accelerate Web application development.

1 RAD Studio for Microsoft .NET

1

1

Developing Web Services with ASP.NET (see page 97) Web Services is a programmable entity that provides a particular element of
functionality, such as application logic. Web Services is accessible to any number
of potentially disparate systems through the use of Internet standards, such as
XML and HTTP. Applications built with ASP.NET Web Services can be either
stand-alone applications or subcomponents of a larger web application and can
provide application components to any number of distributed systems using
XML-based messaging. RAD Studio provides a number of methods that can help
you build, deploy, and use applications with ASP.NET Web Services. For more
general information about Web Services, refer to... more (see page 97)

RAD Studio for Microsoft .NET 1

2

1

1.1 Developing Database Applications with
ADO.NET

ADO.NET presents a coherent programming model for exposing data access within the .NET Framework. In addition to
supporting MS SQL, Oracle, and OLE DB connection components within the .NET Framework, RAD Studio includes data
providers for .NET (AdoDbxClient Provider). AdoDbx supports access to MS SQL, Oracle, DB2, and Interbase. AdoDbx
component designers ease the generation and configuration of AdoDbx components.

If you are developing new VCL Forms applications for the .NET Framework, or you are migrating existing Win32 VCL Forms
applications to the .NET Framework, RAD Studio provides continued support for existing Delphi database technologies, such as
dbExpress and dbGo.

This section includes conceptual information about how to use RAD Studio with the ADO.NET architecture, as well as the VCL
for .NET database technologies. and how to build a simple ADO.NET project.

Topics

Name Description

AdoDbx Client Overview (see page 5) The AdoDbx Client implements an ADO.NET 2.0 provider for all dbExpress
version 4 drivers that implement the newer extended metadata added to
dbExpress 4. All dbExpress drivers shipped with Delphi implement the newer
extended metadata.
AdoDbx Client is an implementation of the ADO.NET 2.0 Provider classes.
ADO.NET Provider is a set of classes that provide database services for .NET. It
provides access to relational databases, XML and application data. You can use
it to develop front end database applications as well as multi-tier business
applications.
See .NET Framework Developer's Guide ADO.NET in the Microsoft
documentation for more information.
Here are... more (see page 5)

VCL for .NET Database Technologies (see page 6) In most cases, the AdoDbxClient Provider provides the best database
connectivity solution for your .NET applications. However, if you are developing
new VCL Forms applications for the .NET Framework, or you are migrating
existing Win32 VCL Forms applications to the .NET Framework, RAD Studio
provides continued support for existing Delphi database technologies.
RAD Studio provides a migration path from Delphi database technologies running
strictly on Win32 clients to the .NET Framework. In addition to being able to build
new database applications using ADO.NET, you can migrate existing database
applications to take advantage of .NET capabilities. The Delphi database
technologies now... more (see page 6)

AdoDbx.NET Data Types (see page 11) AdoDbx Client data types map to .NET logical types. Dependant upon the
database, AdoDbx Client data types map to native data types. Where applicable,
AdoDbx Client provides:

• Consistent data type mapping
across databases.

• Logical data types mapped to
.NET native types.

ADO.NET Overview (see page 14) ADO.NET is the .NET programming environment for building database
applications based on native database formats or XML data. ADO.NET is
designed as a back-end data store for all Microsoft .NET programming models,
including Web Forms and Web Services. Use ADO.NET to manage data in the
.NET Framework.
Note: BDP.NET is based on ADO.NET 1.1. AdoDbx Client is based on .NET
2.0.
CodeGear provides tools to simplify rapid ADO.NET development using AdoDbx
Client and Borland Data Providers for .NET (BDP.NET). If you are familiar with
rapid application development (RAD) and object oriented programming (OOP)
using properties, methods, and events, you will... more (see page 14)

1.1 Developing Database Applications with RAD Studio for Microsoft .NET

3

1

http://msdn2.microsoft.com/en-us/library/e80y5yhx(vs.80)

BDP Migration Overview (see page 16) BDP (Borland Data Provider) is being deprecated, and you should not use BDP
for new development. Instead, you should use AdoDbx Client. This topic
describes differences and equivalencies between BDP and AdoDbx Client.
As a result of the deprecation of BDP:

• BDP will be removed from the
product in a future release.

• There will be no further BDP
development and minimal QA
effort. Only critical bugs will be
fixed.

• No additional documentation will
be provided, though
documentation is not yet
removed.

BDP was based on ADO.NET 1.1.
Many of the differentiating features
of BDP, such as provider
independence and extended...
more (see page 16)

Blackfish SQL Overview (see page 20) The design and implementation of Blackfish SQL emphasizes database
performance, scalability, ease of use, and a strong adherence to industry
standards. Blackfish SQL capabilities include the following:

• Industry standards compliance

• Entry level SQL-92

• Unicode storage of character data

• Unicode-based collation key support for sorting and
indexing

• dbExpress 4 drivers for win32 Delphi and C++

• ADO.NET 2.0 providers for .NET

• JDBC for Java

• JavaBean data access components for Java

• XA/JTA Distributed transactions for Java

• High performance and scalability
for demanding online transaction
processing (OLTP) and decision
support system (DSS)
applications

• Delphi, C#, and VB.NET stored
procedures and triggers for
Windows

• Java-stored... more (see page
20)

ADO.NET Component Designers (see page 21) Almost all distributed applications revolve around reading and updating
information in databases. Different applications you develop using ADO.NET
have different requirements for working with data. For instance, you might
develop a simple application that displays data on a form. Or, you might develop
an application that provides a way to share data information with another
company. In any case, you need to have an understanding of certain
fundamental concepts about the data approach in ADO.NET.
Using these designers, you can work efficiently to access, expose, and edit data
through database server-specific schema objects like tables, views, and indexes.
These designers... more (see page 21)

RAD Studio for Microsoft .NET 1.1 Developing Database Applications with

4

1

Deploying Database Applications for the .NET Framework (see page 24) When deploying database applications using RAD Studio, copy the necessary
runtime assemblies and driver DLLs for deployment to a specified location. The
following sections list the name of the assemblies and DLLs and the location of
where each should reside.
Note: We strongly encourage you to use ADO.NET and the AdoDbx Client
Provider for .NET database applications. The Borland Data Provider is being
deprecated.

Data Providers for Microsoft .NET (see page 27) In addition to supporting the providers included in the .NET Framework, RAD
Studio includes AdoDbxClient Providers for Microsoft .NET.AdoDbx Client is an
implementation of the .NET Provider and connects to a number of popular
databases.
This topic includes:

• Data Provider Architecture

• AdoDbx Client Advantages

• AdoDbx Client and ADO.NET Components

• Supported AdoDbx Client Providers

• AdoDbx Client Data Types

• AdoDbx Client Interfaces

Stored Procedure Overview (see page 29) All relational databases have certain features in common that allow applications
to store and manipulate data. A stored procedure is a self-contained program
written in a language specific to the database system. A stored procedure
typically handles frequently repeated database-related tasks, and is especially
useful for operations that act on large numbers of records or that use aggregate
or mathematical functions. Stored procedures are typically stored on the
database server.
Calling a stored procedure is similar to invoking a SQL command, and RAD
Studio provides support for using stored procedures in much the same ways as it
supports editing and... more (see page 29)

dbExpress Framework (see page 30) The dbExpress framework (DBX framework) is a set of abstract classes provided
in the unit DBXCommon. Applications can interface with the framework in several
ways: using the framework directly for both native and managed applications,
and using the dbExpress VCL components that are layered on top of the
framework for both native and managed applications.
Although many applications interface with dbExpress drivers via the dbExpress
VCL components, the DBX framework offers a convenient, lighter weight option
to communicate with a database driver. You can also create a database driver for
dbExpress by extending the frameworks's DBXCommon abstract base classes.
The... more (see page 30)

dbExpress Framework Compatibility (see page 31) Some dbExpress software developed prior to the dbExpress driver framework
(DBX driver framework) has been modified to work with the DBX driver
framework. As a result of these changes, some compatibility issues arise.

Getting Started with InterBase Express (see page 32) InterBase Express (IBX) is a set of data access components that provide a
means of accessing data from InterBase databases. The InterBase
Administration Components, which require InterBase 6, are described after the
InterBase data access components.

1.1.1 AdoDbx Client Overview

The AdoDbx Client implements an ADO.NET 2.0 provider for all dbExpress version 4 drivers that implement the newer extended
metadata added to dbExpress 4. All dbExpress drivers shipped with Delphi implement the newer extended metadata.

AdoDbx Client is an implementation of the ADO.NET 2.0 Provider classes. ADO.NET Provider is a set of classes that provide
database services for .NET. It provides access to relational databases, XML and application data. You can use it to develop front
end database applications as well as multi-tier business applications.

See .NET Framework Developer's Guide ADO.NET in the Microsoft documentation for more information.

Here are the key classes in the AdoDbx Client ADO.NET implementation.

• TAdoDbxCommand. Represents a SQL statement or stored procedure to execute against a data source.

1.1 Developing Database Applications with RAD Studio for Microsoft .NET AdoDbx Client Overview

5

1

http://msdn2.microsoft.com/en-us/library/e80y5yhx(vs.80)

• TAdoDbxCommandBuilder. Generates single-table commands as part of the operation of the TAdoDbxDataAdapter.

• TAdoDbxConnection. Represents a connection to a database.

• TAdoDbxDataAdapter. Acts as a bridge between a DataSet and the underlying database.

• TAdoDbxDataReader. Class to read rows forward-only from a data source.

• TAdoDbxParameter. Represents a parameter that is passed to or from a command.

• TAdoDbxParameterCollection. Collects TAdoDbxParameters into a .NET collection object that can be read and manipulated.

• TAdoDbxProviderFactory. Base class for a provider's implementation of data source classes.

• TAdoDbxTransaction. A group of commands for a connection that can be committed or rolled back.

See Also

ADO.NET Overview (see page 14)

.NET Framework Developer's Guide ADO.NET (MSDN)

Connecting to the AdoDbx Client (see page 110)

Deploying the AdoDbx Client

TAdoDbxCommand

TAdoDbxCommandBuilder

TAdoDbxConnection

TAdoDbxDataAdapter

TAdoDbxDataReader

TAdoDbxParameter

TAdoDbxParameterCollection

TAdoDbxProviderFactory

TAdoDbxTransaction

1.1.2 VCL for .NET Database Technologies

In most cases, the AdoDbxClient Provider provides the best database connectivity solution for your .NET applications. However,
if you are developing new VCL Forms applications for the .NET Framework, or you are migrating existing Win32 VCL Forms
applications to the .NET Framework, RAD Studio provides continued support for existing Delphi database technologies.

RAD Studio provides a migration path from Delphi database technologies running strictly on Win32 clients to the .NET
Framework. In addition to being able to build new database applications using ADO.NET, you can migrate existing database
applications to take advantage of .NET capabilities. The Delphi database technologies now supported by RAD Studio include:

• dbExpress.NET

• DataSnap .NET Client (DCOM)

• IBX.NET (InterBase for .NET)

• ADO.NET

• dbGo

VCL for .NET Database Technologies RAD Studio for Microsoft .NET 1.1 Developing Database Applications with

6

1

http://msdn2.microsoft.com/en-us/library/e80y5yhx(vs.80)

Building .NET Applications with dbExpress.NET

RAD Studio includes a .NET version of dbExpress. This set of components provide comparable functionality as the dbExpress
components for Win32, but updated to run on VCL Forms on the .NET Framework. dbExpress for .NET provides the same
lightweight client capability and unidirectional dataset that is available in previous versions of the product.

Building .NET Applications with the DataSnap .NET Client (DCOM)

RAD Studio provides the means to use the DataSnap (DCOM) client to connect to databases in three-tier applications.

Building .NET Applications with IBX.NET

RAD Studio provides you with access to InterBase databases, by way of InterBase Express controls, in addition to the standard
BDP.NET data adapter or the .NET Framework's ADO.NET providers. IBX.NET controls allow you to connect to InterBase
databases, access tables, etcetera.

Building .NET Applications with the AdoDbxClient Provider

AdoDbx is a data-access mechanism that can be shared by several applications. AdoDbx defines a powerful library of API calls
that can create, restructure, fetch data from, update, and otherwise manipulate local and remote database servers. Adoprovides
a uniform interface to access a wide variety of database servers, using drivers to connect to different databases.

You can connect your RAD Studio database applications to BDE-supported databases, such as Paradox and dBase.

Building .NET Applications with dbGo

RAD Studio includes a .NET version of dbGo. This set of components provides comparable functionality as the dbGo
components for Win32, but updated to run on VCL Forms on the .NET Framework. dbGo for .NET provides the same powerful
and logical object model that is available in previous versions of the product.

Topics

Name Description

BDP Connection Pooling Overview (see page 8) You can use the connection pooling options to save connection time by using a
connection from an existing pool. When you are using BDP, all connections go
through the BDP Pool Manager, even if pooling is not enabled for your
connection. For each connection, you can specify: Pooling (enabled or disabled),
Minimum Pool Size, Maximum Pool Size, whether connection requests should
Grow On Demand, and the number of seconds before a Connection Timeout (or
number of seconds for Connection Lifetime).

As shown in the diagram above, the BDP Pool Manager creates a separate pool
for each unique connection string.... more (see page 8)

1.1 Developing Database Applications with RAD Studio for Microsoft .NET VCL for .NET Database Technologies

7

1

dbExpress Components overview (see page 9) dbExpress is a set of lightweight database drivers that provide fast access to
SQL database servers. For each supported database, dbExpress provides a
driver that adapts the server-specific software to a set of uniform dbExpress
interfaces. When you deploy a database application that uses dbExpress, you
might need to include a DLL (the server-specific driver) with the application files
you build. For example, DbxClient is a 100% Delphi driver and needs no DLL.
dbExpress lets you access databases using unidirectional datasets.
Unidirectional datasets are designed for quick lightweight access to database
information, with minimal overhead. Like other datasets, they can... more (see
page 9)

dbGo Components Overview (see page 10) dbGo provides the developers with a powerful and logical object model for
programmatically accessing, editing, and updating data from a wide variety of
data sources through Microsoft ADO system interfaces. The most common
usage of dbGo is to query a table or tables in a relational database, retrieve and
display the results in an application, and perhaps allow users to make and save
changes to the data.
The ADO layer of an ADO-based application consists of the latest version of
Microsoft ADO, an OLE DB provider or ODBC driver for the data store access,
client software for the specific database... more (see page 10)

1.1.2.1 BDP Connection Pooling Overview

You can use the connection pooling options to save connection time by using a connection from an existing pool. When you are
using BDP, all connections go through the BDP Pool Manager, even if pooling is not enabled for your connection. For each
connection, you can specify: Pooling (enabled or disabled), Minimum Pool Size, Maximum Pool Size, whether connection
requests should Grow On Demand, and the number of seconds before a Connection Timeout (or number of seconds for
Connection Lifetime).

As shown in the diagram above, the BDP Pool Manager creates a separate pool for each unique connection string. The following
connection options are available:.

Options Function

MinPoolSize Specifieds the minimum number of connections that will be maintained in the connection pool.

MaxPoolSize Determines the maximum number of connections in the connection pool. The default maximum size is
100. If GrowOnDemand is False and MaxPoolSize is reached, subsequent connection requests will
throw an exception.

GrowOnDemand Specifies whether the new connection request should grow on demand after a pool reaches the
MaxPool Size.

Connections that grow on demand will not be returned to the connection pool. Instead, they will be
released on BdpConnection.Close().

VCL for .NET Database Technologies RAD Studio for Microsoft .NET 1.1 Developing Database Applications with

8

1

ConnectionLifetime
(Timeout)

Determines the life time of a pooled connection. When a connection returns to the pool, its lifetime is
checked to see if it has expired. If it has, then the connection is released instead of returned to the pool.
The ConnectionLifetime value is in seconds, and the default is 0.

1.1.2.2 dbExpress Components overview

dbExpress is a set of lightweight database drivers that provide fast access to SQL database servers. For each supported
database, dbExpress provides a driver that adapts the server-specific software to a set of uniform dbExpress interfaces. When
you deploy a database application that uses dbExpress, you might need to include a DLL (the server-specific driver) with the
application files you build. For example, DbxClient is a 100% Delphi driver and needs no DLL.

dbExpress lets you access databases using unidirectional datasets. Unidirectional datasets are designed for quick lightweight
access to database information, with minimal overhead. Like other datasets, they can send an SQL command to the database
server, and if the command returns a set of records, obtain a reader for accessing those records. However, unidirectional
datasets can only retrieve a unidirectional reader. They do not buffer data in memory, which makes them faster and less
resource-intensive than other types of dataset. However, because there are no buffered records, unidirectional datasets are also
less flexible than other datasets.

dbExpress connections, tables, views, and stored procedures that show up in a data tree view support drag and drop with native
and managed VCL forms.

Connection Strings

In dbExpress 4, all connection properties, including ConnectionString, are passed to the driver at connect time.

The ConnectionString property in dbExpress allows you to pass all database options and connection information (database,
username, password) by means of a single connection string. This feature also allows you to introduce new properties to your
drivers in the middle of a release by changing an interface.

You can load the ConnectionProperties in the dbxconnections.ini for the current connectionName by right clicking the connection
and selecting the appropriate menu item. This creates a Parameters item (Parameters['ConnectionString']) that contains all of
the connection properties in the inifile. This way you can add new properties to the dbxconnections.ini file, and you don't have
type the whole string in yourself.

There is also a 'Clear Connection String' menu item off the SqlConnection right click menu, which appears whenever the
ConnectionString property is set.

dbExpress Components

The dbExpress section of the Tool Palette contains the following components that use dbExpress to access database
information:

Component Function

TSQLConnection Encapsulates a dbExpress connection to a database server

TSQLDataSet Represents any data available through dbExpress , or sends commands to a database accessed through
dbExpress

TSQLQuery A query-type dataset that encapsulates a SQL statement and enables applications to access the resulting
records, if any

TSQLTable A table-type dataset that represents all of the rows and columns of a single database table

TSQLStoredProc A stored procedure-type dataset that executes a stored procedure defined on a database server

TSQLMonitor Intercepts messages that pass between a SQL connection component and a database server and saves
them in a string list

1.1 Developing Database Applications with RAD Studio for Microsoft .NET VCL for .NET Database Technologies

9

1

TSimpleDataSet A client dataset that uses an internal TSQLDataSet and TDataSetProvider for fetching data and applying
updates

See Also

VCL for .NET Overview (see page 71)

Porting VCL Applications (see page 69)

Deploying Database Applications for the .NET Framework

Building a VCL Forms dbExpress.NET Database Application (see page 153)

Configuring TSQL Connection

Using Data Explorer to get Connection Information

1.1.2.3 dbGo Components Overview

dbGo provides the developers with a powerful and logical object model for programmatically accessing, editing, and updating
data from a wide variety of data sources through Microsoft ADO system interfaces. The most common usage of dbGo is to query
a table or tables in a relational database, retrieve and display the results in an application, and perhaps allow users to make and
save changes to the data.

The ADO layer of an ADO-based application consists of the latest version of Microsoft ADO, an OLE DB provider or ODBC
driver for the data store access, client software for the specific database system used (in the case of SQL databases), a
database back-end system accessible to the application (for SQL database systems), and a database. All of these must be
accessible to the ADO-based application for it to be fully functional. Microsoft Data Access Components (MDAC) 2.1 or later
contains these needed elements. RAD Studio supports MDAC 2.8.

The dbGo section of the Tool Palette contains the following components that use dbGo to access database information:

Component Function

TADOConnection Encapsulates a dbGo connection to a database server

TADODataSet Represents any data available through dbGo , or sends commands to a database accessed through dbGo

TADOQuery A query-type dataset that encapsulates an SQL statement and enables applications to access the resulting
records, if any, from an ADO data store

TADOTable A table-type dataset that represents all of the rows and columns of a single database table

TADOStoredProc A stored procedure-type dataset that executes a stored procedure defined on a database server

TADOCommand Represents the ADO Command object, which is used for issuing commands against a data store accessed
through an ADO provider

TADODataSet Represents a dataset retrieved from an ADO data store

TRDSConnection Exposes the functionality of the RDS DataSpace object

See Also

VCL for .NET Overview (see page 71)

Porting VCL Applications (see page 69)

Deploying Database Applications for the .NET Framework

Building a VCL Forms ADO.NET Database Application (see page 148)

AdoDbx.NET Data Types RAD Studio for Microsoft .NET 1.1 Developing Database Applications with

10

1

1.1.3 AdoDbx.NET Data Types

AdoDbx Client data types map to .NET logical types. Dependant upon the database, AdoDbx Client data types map to native
data types. Where applicable, AdoDbx Client provides:

• Consistent data type mapping across databases.

• Logical data types mapped to .NET native types.

AdoDbx and .NET Framework

The DataSet class within ADO.NET uses .NET Framework data types. AdoDbx Client data types logically map .NET data types
for supported databases. During designtime, you can use AdoDbx Client logical types, which will map to the appropriate native
type.

Data Types

The .NET Framework includes a wide range of logical data types. AdoDbx Client inherits logical data types, providing built-in
mappings to supported databases. AdoDbx Client supports logical data type mappings for DB2, InterBase, MS SQL, MSDE, and
Oracle.

DB2

AdoDbx Client supports the following DB2 type mappings.

DB2 Type Bdp Type BdpSubType System.Type

CHAR String stFixed String

VARCHAR String NA String

SMALLINT Int16 NA Int16

BIGINT Int64 NA Int64

INTEGER Int32 NA Int32

DOUBLE Double NA Double

FLOAT Float NA Single

REAL Float NA Single

DATE Date NA DateTime

TIME Time NA DateTime

TIMESTAMP Datetime NA DateTime

NUMERIC Decimal NA Decimal

DECIMAL Decimal NA Decimal

BLOB Blob stBinary Byte[]

CLOB Blob stMemo Char[]

InterBase

AdoDbx Client supports the following InterBase type mappings.

InterBase Type Bdp Type BdpSubType System.Type

CHAR String stFixed String

VARCHAR String NA String

1.1 Developing Database Applications with RAD Studio for Microsoft .NET AdoDbx.NET Data Types

11

1

SMALLINT Int16 NA Int16

INTEGER Int32 NA Int32

FLOAT Float NA Single

DOUBLE Double NA Double

BLOB Sub_Type 0 Blob stBinary Byte[]

BLOB Sub_Type 1 Blob stMemo Char[]

TIMESTAMP Datetime NA DateTime

MS SQL and MSDE

AdoDbx Client supports the following MS SQL and MSDE type mappings.

MSSQL Type Bdp Type BdpSubType System.Type

BIGINT Int64 NA Int64

INT Int32 NA Int32

SMALLINT Int16 NA Int16

TINYINT Int16 NA Int16

BIT Boolean NA Boolean

DECIMAL Decimal NA Decimal

NUMERIC Decimal NA Decimal

MONEY Decimal NA Decimal

SMALLMONEY Decimal NA Decimal

FLOAT Double NA Double

REAL Float NA Single

DATETIME DateTime NA DateTime

SMALLDATETIME DateTime NA DateTime

CHAR String stFixed String

VARCHAR String NA String

TEXT Blob stMemo Char[]

BINARY VarBytes NA Byte[]

VARBINARY VarBytes NA Byte[]

IMAGE Blob stBinary Byte[]

TIMESTAMP VarBytes NA Byte[]

UNIQUEIDENTIFIER Guid NA Guid

Oracle

AdoDbx Client supports the following Oracle type mappings.

Oracle Type Bdp Type BdpSubType System.Type

CHAR String stFixed String

NCHAR String stFixed String

VARCHAR String NA String

AdoDbx.NET Data Types RAD Studio for Microsoft .NET 1.1 Developing Database Applications with

12

1

NVARCHAR String NA String

VARCHAR2 String NA String

NVARCHAR2 String NA String

NUMBER Decimal NA Decimal

DATE Date NA DateTime

BLOB Blob stHBinary Byte[]

CLOB Blob stHMemo Char[]

LONG Blob stMemo Char[]

LONG RAW Blob stBinary Byte[]

BFILE Blob stBFile Char[]

ROWID String NA String

Sybase

AdoDbx Client supports the following Sybase type mappings.

Sybase Type Bdp Type BdpSubType System.Type

CHAR String stFixed String

VARCHAR String NA String

INT Int32 NA Int32

SMALLINT Int16 NA Int16

TINYINT Int16 NA Int16

DOUBLE PRECISION Float NA Single

FLOAT Float NA Single

REAL Float NA Single

NUMERIC Decimal NA Decimal

DECIMAL Decimal NA Decimal

SMALLMONEY Decimal NA Decimal

MONEY Decimal NA Decimal

SMALLDATETIME DateTime NA DateTime

DATETIME DateTime NA DateTime

IMAGE Blob stBinary Byte[]

TEXT Blob stMemo Char[]

BIT Boolean NA Boolean

TIMESTAMP VarBytes NA Byte[]

BINARY Bytes NA Byte[]

VARBINARY VarBytes NA Byte[]

SYSNAME String NA String

See Also

ADO.NET Overview (see page 14)

1.1 Developing Database Applications with RAD Studio for Microsoft .NET ADO.NET Overview

13

1

1.1.4 ADO.NET Overview

ADO.NET is the .NET programming environment for building database applications based on native database formats or XML
data. ADO.NET is designed as a back-end data store for all Microsoft .NET programming models, including Web Forms and
Web Services. Use ADO.NET to manage data in the .NET Framework.

Note: BDP.NET is based on ADO.NET 1.1. AdoDbx Client is based on .NET 2.0.

CodeGear provides tools to simplify rapid ADO.NET development using AdoDbx Client and Borland Data Providers for .NET
(BDP.NET). If you are familiar with rapid application development (RAD) and object oriented programming (OOP) using
properties, methods, and events, you will find the ADO.NET model for building applications familiar. If you are a traditional
database programmer, ADO.NET provides familiar concepts, such as tables, rows, and columns with relational navigation. XML
developers will appreciate navigating the same data with nodes, parents, siblings, and children.

This topic discusses the major components of the ADO.NET architecture, how ADO.NET integrates with other programming
models in the .NET Framework, and key RAD Studio functionality to support ADO.NET.

This topic introduces:

• ADO.NET Architecture

• ADO.NET User Interfaces

• BDP.NET Namespace

ADO.NET Architecture

The two major components of the ADO.NET architecture are the Data Provider and the DataSet. The data source represents the
physical database or XML file, the Data Provider makes connections and passes commands, and the DataSet represents one or
more data sources in memory. For more information about the general ADO.NET model, see the Microsoft .NET Framework
SDK documentation.

Data Source

The data source is the physical database, either local or remote, or an XML file. In traditional database programming, the
developer typically works with the data source directly, often requiring complex, proprietary interfaces. With ADO.NET, the
database developer works with a set of components to access the data source, to expose data, and to pass commands.

Data Providers

Data Provider components connect to the physical databases or XML files, hiding implementation details. Providers can connect
to one or more data sources, pass commands, and expose data to the DataSet.

The .NET Framework includes providers for MS SQL, OLE DB, and Oracle. In addition to supporting the .NET providers, this
product includes AdoDbx Client and BDP.NET. These connect to a number of industry standard databases, providing a
consistent programming environment. For more information, see the Borland Data Providers for Microsoft .NET topic.

ADO.NET Overview RAD Studio for Microsoft .NET 1.1 Developing Database Applications with

14

1

DataSet

The DataSet object represents in-memory tables and relations from one or more data sources. The DataSet provides a
temporary work area or virtual scratch pad for manipulating data. ADO.NET applications manipulate tables in memory, not within
the physical database. The DataSet provides additional flexibility over direct connections to physical databases. Much like a
typical dataset object supported by many database systems, the DataSet can contain multiple DataTables, which are
representations of tables or views from any number of data sources. The DataSet works in an asynchronous, non-connected
mode, passing update commands through the Provider to the data source at a later time.

RAD Studio provides two kinds of DataSets for your use: standard DataSets and typed DataSets. A standard DataSet is the
default DataSet that you get when you define a DataSet object implicitly. This type of DataSet is constructed based on the layout
of the columns in your data source, as they are returned at runtime based on your Select statement.

Typed DataSets provide more control over the layout of the data you retrieve from a data source. A typed DataSet derives from a
DataSet class. The typed DataSet lets you access tables and columns by name rather than collection methods. The typed
DataSet feature provides better readability, improved code completion capabilities, and data type enforcement unavailable with
standard DataSets. The compiler checks for type mismatches of typed DataSet elements at compile time rather than runtime.
When you create a typed dataset, you see that some new objects are created for you and are accessible through the Project
Manager . You will notice two files named after your dataset. One file is an XML .xsd file and the other is a code file in the
language you are using. All of the data about your dataset, including the table and column data from the database connection, is
stored in the .xsd file. The program code file is created based on the XML in the .xsd file. If you want to change the structure of
the typed dataset, you can change items in the .xsd file. When you recompile, the program code file is regenerated based on
the modified XML.

For more information about DataSets, see the Microsoft .NET Framework SDK documentation.

ADO.NET User Interfaces

ADO.NET provides data access for the various programming models in .NET.

Web Forms

Web Forms in ASP.NET provide a convenient interface for accessing databases over the web. ASP.NET uses ADO.NET to
handle data access functions.

.NET, AdoDbx Client and BDP.NET connection components ease integration between Web Forms and ADO.NET. DB Web
Controls support both ADO.NET, AdoDbx Client and BDP.NET components, accelerating web application development.

Windows Forms

Windows Forms are no longer supported.

AdoDbx Client Namespace

AdoDbx Client classes are found under the Borland.Data.AdoDbxClientProvider namespace.

BDP.NET Namespace

BDP.NET classes are found under the Borland.Data namespaces.

BDP.NET Namespace

Namespace Description

Borland.Data.Common Contains objects common to all Borland Data Providers, including Error and Exceptions classes, data
type enumerations, provider options, and Interfaces for building your own Command, Connection, and
Cursor classes.

1.1 Developing Database Applications with RAD Studio for Microsoft .NET ADO.NET Overview

15

1

Borland.Data.Provider Contains key BDP.NET classes like BdpCommand, BdpConnection, BdpDataAdapter, and others that
provide the means to interact with external data sources, such as Oracle, DB2, Interbase, and MS
SQL Server databases.

Borland.Data.Schema Contains Interfaces for building your own database schema manipulation classes, as well as a number
of types and enumerators that define metadata.

See Also

Deploying Applications

Building an ASP.NET Database Application (see page 171)

Building an ASP.NET Application with Database Controls 1 (see page 174)

Building an ASP.NET Application with Database Controls 2 (see page 176)

Building an ASP.NET Application with Database Controls 3 (see page 177)

Building an ASP.NET Database Application (see page 171)

Data Providers for Microsoft .NET (see page 27)

AdoDbx.NET Data Types (see page 11)

ADO.NET Component Designers (see page 21)

Creating and Using Typed DataSets (see page 132)

Creating Table Mappings (see page 112)

.NET Framework Developer's Guide ADO.NET (MSDN)

1.1.5 BDP Migration Overview

BDP (Borland Data Provider) is being deprecated, and you should not use BDP for new development. Instead, you should use
AdoDbx Client. This topic describes differences and equivalencies between BDP and AdoDbx Client.

As a result of the deprecation of BDP:

• BDP will be removed from the product in a future release.

• There will be no further BDP development and minimal QA effort. Only critical bugs will be fixed.

• No additional documentation will be provided, though documentation is not yet removed.

BDP was based on ADO.NET 1.1. Many of the differentiating features of BDP, such as provider
independence and extended metadata, were added to ADO.NET 2 using different approaches,
incompatible with BDP. In addition, ADO.NET 2 uses abstract base classes and deprecated the
ADO.NET 1.1 interfaces. This made extending BDP to ADO.NET 2.0 impractical.

AdoDbx Client is based on ADO.NET 2.0 and is intended to provide most of BDP's capabilities.

BDP consists of three namespaces:

BDP Namespaces

BDP Namespace Description

Borland.Data.Common Contains objects common to all BDP.NET, including Error and Exceptions classes, data type
enumerations, provider options, and Interfaces for building your own Command, Connection, and
Cursor classes.

BDP Migration Overview RAD Studio for Microsoft .NET 1.1 Developing Database Applications with

16

1

http://msdn2.microsoft.com/en-us/library/e80y5yhx(vs.80)

Borland.Data.Provider Contains the main BDP.NET classes such as BdpCommand, BdpConnection, BdpDataAdapter,
BdpDataReader, and others that provide the means to interact with external data sources, such as
Oracle, DB2, Interbase, and MS SQL Server databases.

Borland.Data.Schema Contains Interfaces for building your own database schema manipulation classes, as well as a number
of types and enumerators that define metadata.

This document describes migration for each of these namespaces.

Borland.Data.Provider Migration

Two classes in this namespace provide data remoting and have not been deprecated, so they do not require migration:

• DataHub

• DataSync

Corresponding classes in BDP and AdoDbx Client

Most BDP classes in this namespace are implementations of ADO.NET classes. These classes are also implemented in AdoDbx
Client. Most source code using these classes should convert to AdoDbx Client with little effort.

The following table shows the correspondence between classes in ADO.NET, BDP and AdoDbx Client:

Correspondence between classes in ADO.NET, BDP and AdoDbx Client

ADO.NET BDP.NET AdoDbx Client

DbCommand BdpCommand TAdoDbxCommand

DbCommandBuilder BdpCommandBuilder TAdoDbxCommandBuilder

DbConnection BdpConnection TAdoDbxConnection

DbDataAdapter BdpDataAdapter TAdoDbxDataAdapter

DbDataReader BdpDataReader TAdoDbxDataReader

DbTransaction BdpTransaction TAdoDbxTransaction

Conversion of BDP classes in this group is fairly straightforward. Check the documentation to see if the method you've used is
supported in the corresponding AdoDbx Client class. If it is, you probably don't need to do anything. If the method is not
supported, then you need to modify your code to use methods that are supported in either AdoDbx Client or ADO.NET itself.

For example, the class BdpDataReader accesses database records. Most of its data access methods have corresponding
TAdoDbxDataReader methods, as described in the ISQLCursor section. BdpDataReader.GetSchemaTable can be used to
retrieve cursor metadata as a DataTable. See the ISQLExtendedMetaData and ISQLMetaData section for a description of
metadata access for AdoDbx Client.

BDP Classes Without Corresponding AdoDbx Client Classes

The BdpCopyTable class does not have a corresponding class in AdoDbx Client, so this capability is not available in AdoDbx
Client.

Borland.Data.Common Migration

This namespace has seven classes and three interfaces.

BdpConnectionString

The TAdoDbxConnection class has a ConnectionString property. This class also supports connection pooling.

1.1 Developing Database Applications with RAD Studio for Microsoft .NET BDP Migration Overview

17

1

BdpError and BdpErrorCollection

All errors are handled as exceptions in AdoDbx Client in TAdoDbxException, so these classes are not needed.

BdpException, BdpParameter and BdpParameterCollection

These classes are implementations of ADO.NET classes. These classes are also implemented in AdoDbx Client. Most source
code using these classes should convert to AdoDbx Client with little effort.

Conversion of BDP classes in this group is fairly straightforward. Check the documentation to see if the method you've used is
supported in the corresponding AdoDbx Client class. If it is, you probably don't need to do anything. If the method is not
supported, then you need to modify your code to use methods that are supported in either AdoDbx Client or ADO.NET itself.

The following table shows the correspondence between classes in ADO.NET, BDP and AdoDbx Client:

correspondence between classes in ADO.NET, BDP and AdoDbx Client

ADO.NET BDP.NET AdoDbx Client

DbException BdpException TAdoDbxException

DbParameter BdpParameter TAdoDbxParameter

DbParameterCollection BdpParameterCollection TAdoDbxParameterCollection

DbResolver

DbResolver is an implementation of the ISQLResolver interface in the Borland.Data.Schema namespace, described later in this
topic.

ISQLCommand, IAQLConnection and ISQLCursor

These interfaces are mainly used by driver writers and there is no AdoDbx Client equivalent. You should rewrite the driver using
the dbExpress framework.

Borland.Data.Schema Migration

This namespace contains five interfaces.

ISQLDataSource

The GetProviders method returns a list of data providers. A similar capability is provided by
TAdoDbxProviderFactory.CreateDataSourceEnumerator, which creates an enumerator for all providers. There is no analog for
the methods GetConnections or GetDbObjectTypes in AdoDbx Client.

ISQLExtendedMetaData and ISQLMetaData

Use the GetSchema method in TAdoDbxConnection to get a metadata collection. The Name parameter of GetSchema specifies
the kind of metadata to get. The standard names supported by DbConnection.GetSchema are supported in AdoDbx Client.

In addition, you can specify one of the name constants in TDBXMetaDataCollectionName to get a particular metadata collection.
You would then use the corresponding class in the DBXMetaDataNames namespace to get the column information you want for
that metadata collection.

For instance, to get procedure source code in a database, use the constant ProcedureSources to get a DataTable with
procedure source information. Use the DBXMetaDataNames classes TDBXProcedureSourcesColumns and
TDBXProcedureSourcesIndex with the returned DataTable to access the procedure source information by name or ordinal.

BDP Migration Overview RAD Studio for Microsoft .NET 1.1 Developing Database Applications with

18

1

ISQLResolver

This class resolves SQL commands.

The closest analog is the TAdoDbxDataAdapter class for ISQLResolver methods. This table shows the properties that
correspond to methods.

ISQLResolver-TAdoDbxDataAdapter correspondence

ISQLResolver TAdoDbxDataAdapter

GetDeleteSQL method DeleteCommand property

GetInsertSQL method InsertCommand property

GetSelectSQL SelectCommand property

GetUpdateSQL UpdateCommand property

For ISQLResolver properties, the closest analog are properties that TAdoDbxCommandBuilder inherits from the ADO.NET class
DbCommandBuilder and a TAdoDbxDataReader property.

ISQLResolver-AdoDbx Client correspondence

ISQLResolver AdoDbx Client

QuotePrefix property TAdoDbxCommandBuilder.QuotePrefix property

QuoteSuffix property TAdoDbxCommandBuilder.QuoteSuffix property

Row property TAdoDbxDataReader.Item property

ISQLSchemaCreate

This interface allows you to create a database schema in your own provider. The AdoDbx Client does not provide this capability.

See Also

ADO.NET Overview (see page 14)

.NET Framework Developer's Guide ADO.NET (MSDN)

TAdoDbxCommand

TAdoDbxCommandBuilder

TAdoDbxConnection

TAdoDbxDataAdapter

TAdoDbxDataReader

TAdoDbxException

TAdoDbxParameter

TAdoDbxParameterCollection

TAdoDbxProviderFactory

TAdoDbxTransaction

TDBXMetaDataCollectionName

1.1 Developing Database Applications with RAD Studio for Microsoft .NET Blackfish SQL Overview

19

1

http://msdn2.microsoft.com/en-us/library/e80y5yhx(vs.80)

1.1.6 Blackfish SQL Overview

The design and implementation of Blackfish SQL emphasizes database performance, scalability, ease of use, and a strong
adherence to industry standards. Blackfish SQL capabilities include the following:

• Industry standards compliance

• Entry level SQL-92

• Unicode storage of character data

• Unicode-based collation key support for sorting and indexing

• dbExpress 4 drivers for win32 Delphi and C++

• ADO.NET 2.0 providers for .NET

• JDBC for Java

• JavaBean data access components for Java

• XA/JTA Distributed transactions for Java

• High performance and scalability for demanding online transaction processing (OLTP) and decision support system (DSS)
applications

• Delphi, C#, and VB.NET stored procedures and triggers for Windows

• Java-stored procedures and triggers

• Zero-administration, single assembly or single-jar deployment

• Database incremental backup and failover

Blackfish SQL DataStore

Blackfish SQL is the name of the product, its tools, and of the file format. Within this product, there is a datastore package that
includes a DataStore class, as well as several additional classes that have DataStore as part of their names.

Blackfish SQL Compatibility

Blackfish SQL for Windows and Blackfish SQL for Java are highly compatible with one another. The database file format is
binary-compatible between Blackfish SQL for Windows and Blackfish SQL for Java. In addition, database clients and servers are
interchangeable. Windows clients can connect to Java servers and Java clients can connect to Windows servers.

Because the Blackfish SQL for Windows implementation is more recent, some Blackfish SQL for Java features are not yet
supported. The following features are not supported:

• ISQL SQL Command Line Interpreter

• High Availability features, including incremental backup and failover

• Graphical tooling for administrative capabilities

• Access to file and object streams

• Tracking and resolving of row-level insert, update and delete operations

• Access to the Blackfish SQL File System directory

Blackfish SQL Connectivity

This section provides an overview of the connection drivers provided for Blackfish SQL for Windows and Blackfish SQL for Java,
respectively. For instructions on using the drivers to connect to a Blackfish SQL database, see the Blackfish SQL Developer's
Guide, Establishing Connections section

Blackfish SQL Overview RAD Studio for Microsoft .NET 1.1 Developing Database Applications with

20

1

Blackfish SQL for Windows Connectivity

Blackfish SQL for Windows provides the following connection drivers:

• DBXClient: This is a win32 dbExpress 4 database driver that enables win32 Delphi and C++ applications to connect to a
remote Blackfish SQL for Windows or Blackfish SQL for Java server.

• Local ADO.NET 2.0 Provider: This is a 100% managed code driver that enables .NET applications to connect to a local
Blackfish SQL for Windows server. The local ADO.NET driver executes in the same process as the BlackFishSQL database
kernel, for greater performance.

• Remote ADO.NET 2.0 Provider: This is a 100% managed code driver that enables .NET applications to acquire a remote
connection to either a Blackfish SQL for Windows or Blackfish SQL for Java server.

Blackfish SQL for Java Connectivity

Blackfish SQL for Java provides the following JDBC connection drivers:

• Local JDBC driver: This is a 100% managed code driver that enables Java applications to connect to a local Blackfish SQL
for Java server. The local JDBC driver executes in the same process as the BlackFishSQL database kernel, for greater
performance.

• Remote JDBC driver: This is a 100% managed code driver that enables Java applications to acquire a remote connection to
either a Blackfish SQL for Windows or Blackfish SQL for Java server.

See Also

Blackfish SQL Developer's Guide: Preface

ConnectionProperties

DataStoreErrorCode

1.1.7 ADO.NET Component Designers

Almost all distributed applications revolve around reading and updating information in databases. Different applications you
develop using ADO.NET have different requirements for working with data. For instance, you might develop a simple application
that displays data on a form. Or, you might develop an application that provides a way to share data information with another
company. In any case, you need to have an understanding of certain fundamental concepts about the data approach in
ADO.NET.

Using these designers, you can work efficiently to access, expose, and edit data through database server-specific schema
objects like tables, views, and indexes. These designers allow you to use these schema objects to connect to a variety of
popular databases, and perform database operations in a consistent and reliable way.

This topic includes:

• Component Designer Relationships

• Connection Editor

• Command Text Editor

• Stored Procedure Dialog Box

• Generate DataSets

• Configure Data Adapter

• Data Explorer

1.1 Developing Database Applications with RAD Studio for Microsoft .NET ADO.NET Component Designers

21

1

Component Designer Relationships

OLD IMAGE

NEW IMAGE

The major elements of the database component designers include:

• The Connection Editor to define a live connection to a data source

• The Command Text Editor to construct command text for command components

• The Configure Data Adapter to set up commands for a data adapter

• The Stored Procedure Dialog box to view and specify values for Input or InputOutput parameters for use with command
components

• The Generate Dataset to build custom datasets

• The Data Explorer to browse database server-specific schema objects and use drag-and-drop techniques to automatically
populate data from a data source to your Delphi for .NET project

Connections Editor

The Connections Editor manages connection strings and database-specific connection options. Using the Connections Editor
you can add, remove, delete, rename, and test database connections. Changes to the connection information are saved into the
ADoDbxConnections.xml file, where they are accessed whenever you need to create a new connection object. Once you
have chosen a particular connection, the Connections Editor generates the connection string and any connection options, then
assigns them to the ConnectionString and ConnectionOptions properties, respectively.

Display the Connections Editor dialog box by dragging the TAdoDbxConnection component from the Tool Palette onto the
form, and then clicking the component designer verb at the bottom of the Object Inspector .

Command Text Editor

The Command Text Editor can be used to construct the command text for command components that have a CommandText
property. A multi-line editing control in the editor lets you manually edit the command or build the command text by selecting
tables and columns. Display the Command Text Editor dialog box by dragging a TAdoDbxCommand component from the Tool
Palette onto the form, and clicking the designer verb at the bottom of the Object Inspector .

The Command Text Editor is a simplified version of a SQL builder capable of generating SQL for a single table. The database
objects are filtered by the SchemaName property set in ISQLSchemaCreate and only tables that are part of that schema are
used. If there is no SchemaName listed, all of the available objects for the current login user are listed. The QuoteObjects setting
for the ConnectionOptions property determines whether the objects are quoted with the database-specific quote character or not.
This is important, for instance, when retrieving tables from databases that allow table names to include spaces.

To populate the Tables and Columns list boxes with items and build SQL statements, you must have defined a live
TAdoDbxConnection. Otherwise, data cannot be retrieved. The Command Text Editor allows you to choose table and column
names from a list of available tables and columns. Using this information, the editor generates a SQL statement. To generate the

ADO.NET Component Designers RAD Studio for Microsoft .NET 1.1 Developing Database Applications with

22

1

SQL, the editor uses an instance of the TAdoDbxCommandBuilder. When you request optimized SQL, the editor uses index
information to generate the WHERE clause for SELECT, UPDATE, and DELETE statements; otherwise, non-BLOB columns and
searchable columns form the WHERE clause.

When the SQL is generated, the TAdoDbxCommand. CommandText property is set to the generated SQL statement.

Stored Procedure Dialog Box

The Stored Procedure dialog box is used to view and enter Input and InputOutput parameters for a stored procedure and to
execute the stored procedure. Display the Stored Procedure dialog box by dragging a TAdoDbxCommand component from the
Tool Palette onto the form, setting the CommandType property for the TAdoDbxCommand component to StoredProcedure ,
and clicking the Command Text Editor designer verb at the bottom of the Object Inspector .

The Stored Procedure dialog box lets you select a stored procedure from a list of available stored procedures, which is
determined by the TAdoDbxConnection specified in the Connection property for the TAdoDbxCommand component. When you
select a stored procedure, the dialog box displays the parameters associated with the stored procedure, and the parameter
metadata for the selected parameter. You can specify values for Input or InputOutput parameters and execute the stored
procedure. If the stored procedure returns results, such as Output parameters, InputOutput parameters, return values, cursor(s)
returned, they are all populated into a DataGrid in the bottom of the dialog box when the stored procedure is executed. After the
CommandText and Parameters, properties are all set for the TAdoDbxCommand, the stored procedure can be executed at
runtime by making a single call to ExecuteReader or ExecuteNonQuery.

Generate DataSets

The Generate Dataset designer is used to build a DataSet. Using this tool results in strong typing, cleaner code, and the ability
to use code completion. A DataSet is first derived from the base DataSet class and then uses information in an XML Schema file
(an .xsd file) to generate a new class. Information from the schema (tables, columns, and so on) is generated and compiled into
this new dataset class as a set of first-class objects and properties. Display this dialog box by dragging a TAdoDbxDataAdapter
component from the Tool Palette onto the form, and clicking the component designer verb at the bottom of the Object
Inspector . If this component is not displayed, choose Component Installed .NET Components to add it to the Tool Palette .

Configure Data Adapter

The Configure Data Adapter designer is used to generate SELECT, INSERT, UPDATE, and DELETE SQL statements. After
successful SQL generation, the Configure Data Adapter designer creates new TAdoDbxCommand objects and adds them to
the TAdoDbxDataAdapterSelectCommand, DeleteCommand, InsertCommand, and UpdateCommand properties.

After successful SQL SELECT generation, you can preview data and generate a new DataSet. You can also use an existing
DataSet to populate a new DataTable. If you create a new DataSet, it will be added automatically to the designer host. You can
also generate Typed DataSets.

Data Adapters are an integral part of the ADO.NET managed providers. Essentially, Adapters are used to exchange data
between a data source and a dataset. This means reading data from a database into a DataSet, and then writing changed data
from the DataSet back to the database. A Data Adapter can move data between any source and a DataSet. Display the
Configure Data Adapter dialog box by dragging a TAdoDbxDataAdapter component from the Tool Palette onto the form, and
clicking the component designer verb at the bottom of the Object Inspector .

Data Explorer

The Data Explorer is a hierarchical database browser and editing tool. The Data Explorer is integrated into the IDE and can
also be run as a standalone executable. To access the Data Explorer within the IDE, choose View Data Explorer . Use the
context menus in the Data Explorer to perform the following tasks:

• Manage database connections—add a new connection, modify, delete, or rename your existing connections

• Browse database structure and data—expand and open provider nodes to browse database server-specific schema objects
including tables, views, stored procedure definitions, and indexes

• Add and modify tables—specify the data structure for a new table, or add or remove columns, and alter column information for

1.1 Developing Database Applications with RAD Studio for Microsoft .NET ADO.NET Component Designers

23

1

an existing table

• View and test stored procedure parameters—specify values for Input or InputOutput parameters and execute the selected
stored procedure

• Migrate data—migrate table schema and data of one or more tables from one provider to another

• Drag-and-drop schema objects onto forms to simplify application development—drag tables or stored procedures onto your
application form for the .NET Framework to add connection components and automatically generate connection strings

The Data Explorer provides connectivity to several industry-standard databases, and can be extended
to connect to other popular databases. The Data Explorer uses the ISQLDataSource interface to
get a list of available providers, database connections, and schema objects that are supported by
different providers. The list of available providers is persisted in the TAdoDbxDataSources.xml
file, and the available connections are persisted in the TAdoDbxConnections.xml file. Once you
have chosen a provider the ISQLMetadata interface is used to retrieve metadata and display a
read-only tree view of database objects. The current implementation provides a list of tables, views,
and stored procedures for all AdoDbx Client-supported databases.

The Data Explorer lets you create new tables, alter or drop existing tables, migrate data from multiple
tables from one provider to another, and copy and paste individual tables across ADO-supported
databases. For all these operations, the Data Explorer calls into the ISQLSchemaCreate
implementation of the provider.

Additionally, the Data Explorer can be used to drag data from a data source to any RAD Studio project
for the .NET framework. Dragging a table onto a form adds TAdoDbxConnection and
TAdoDbxDataAdapter components to your application and automatically configures the
TAdoDbxDataAdapter for the given table. Dragging a stored procedure onto a form adds
TAdoDbxConnection and TAdoDbxCommand components to your application, and sets the
CommandType property of the TAdoDbxCommand object to StoredProcedure.

See Also

ADO.NET Overview (see page 14)

AdoDbx.NET Data Types (see page 11)

Using the Command Text Designer (see page 127)

Using the Connection Editor Designer (see page 128)

Using the Data Adapter Designer (see page 128)

Using the Data Adapter Preview (see page 126)

Using the Generate Dataset Designer (see page 132)

Migrating Data Between Databases (see page 115)

Creating Table Mappings (see page 112)

1.1.8 Deploying Database Applications for the .NET
Framework

When deploying database applications using RAD Studio, copy the necessary runtime assemblies and driver DLLs for
deployment to a specified location. The following sections list the name of the assemblies and DLLs and the location of where
each should reside.

Note: We strongly encourage you to use ADO.NET and the AdoDbx Client Provider for .NET database applications. The
Borland Data Provider is being deprecated.

Deploying Database Applications for the RAD Studio for Microsoft .NET 1.1 Developing Database Applications with

24

1

ADO.NET 2.0 Application Deployment

Deploying by Updating machine.config

The microsoft .net machine.config file must have an entry added for the provider. Locate machine.config below your
Windows\Microsoft.net directory tree and add the following entry in the <DbProviderFactories> section:

<c>
<add name="AdoDbx Data Provider" invariant="Borland.Data.AdoDbxClient"
description=".Net Framework Data Provider for dbExpress Drivers"
type="Borland.Data.TAdoDbxProviderFactory, Borland.Data.AdoDbxClient,
Version=11.0.5000.0,Culture=neutral,PublicKeyToken=91d62ebb5b0d1b1b"/>
</c>

Deploying Without Updating machine.config

An application can also deploy without updating the machine config by directly using the TAdoDbxProviderFactory class in the
Borland.Data.AdoDbxClientProvider unit. Although this makes deployment easier, the TAdoDbxProviderFactory can only create
ADO.NET 2.0 objects for the AdoDbxClient provider.

If your application links with assemblies, the Borland.Data.AdoDbxClient.dll , and
Borland.Data.DbxCommonDriver.dll assembly must be either copied to the same directory as your executable or
registered in the GAC.

If dbxconnections.ini and dbxdrivers.ini are used, they will have to also be deployed as well. If native dynalink drivers
are being used, those drivers and their corresponding client libraries will need to be deployed.

See Borland.Data.AdoDbxClientProvider.pas source file for information.

BDP.NET Application Deployment

Copy specific database runtime assemblies to the following location:

Managed Assemblies Data Provider Location

Borland.Data.Common.dll All GAC

Borland.Data.Provider.dll All GAC

Borland.Data.DB2.dll DB2 GAC

Borland.Data.Interbase.dll Interbase GAC

Borland.Data.Mssql.dll MS SQL/MSDE GAC

Borland.Data.Oracle.dll Oracle GAC

Borland.Data.Msacc.dll MS Access GAC

Borland.Data.Sybase.dll Sybase GAC

Note: If you are deploying a distributed database application that uses the BDP.NET Remoting components, such as DataHub,
DataSync, RemoteConnection, and RemoteServer, you must install Borland.Data.DataSync.dll

to the GAC. Copy unmanaged database driver DLLs to the following location:

DLLs Data Provider Location

bdpint20.dll Interbase search path

bdpdb220.dll DB2 search path

1.1 Developing Database Applications with RAD Studio for Microsoft .NET Deploying Database Applications for the

25

1

bdpmss20.dll MS SQL/MSDE search path

bdpora20.dll Oracle search path

bdpmsa20.dll MS Access search path

bdpsyb20.dll Sybase search path

dbExpress for .NET Application Deployment

Copy specific database runtime assemblies to the following location:

Managed Assemblies Data Provider Location

Borland.VclDbExpress.dll All GAC

Borland.VclDbCtrls.dll All GAC

Borland.VclDbxCds.dll Required by database applications that use
client datasets

GAC

Borland.Common.Driver.dll All GAC

You can deploy associated dbExpress.NET drivers and DataSnap DLLs with your executable. Copy unmanaged database driver
DLLs to the following location:

DLLs Data Provider Location

dbxINT30.dll InterBase 2007, 7.5.1, 7.1*, 7.0*, 6.5* search path

dbxASA30.dll Adaptive Sybase Anywhere 9, 8* search path

dbxDB230.dll DB2 UDB 8.x, 7.x* search path

dbxINF30.dll Informix 9.x search path

dbxMSS30.dll MSSQL 2005, 2000 search path

dbxMYSA30.dll MySQL 4.0.24 search path

dbxMYS30.dll MySQL 5.0.27, 4.1.22* search path

dbxora30.dll Oracle 10g, 9.2.0*, 9.1.0* search path

dbxASE30.dll Sybase 12.5 search path

Midas.dll Required by database applications that use client datasets search path

Note: * Driver not fully certified with this version of the database.

dbGo for .NET Application Deployment

There is no need to deploy runtime assemblies or database drivers for dbGo components used in VCL.NET applications.
Microsoft Data Access Components (MDAC) version 2.1 or later is required to run applications with dbGo components outside of
the IDE. This applies to Win32 VCL applications, as well as VCL.NET applications. RAD Studio supports MDAC 2.8.

BDE for .NET Application Deployment

When deploying BDE-based applications, you must include the BDE with your application. While this increases the size of the
application and the complexity of deployment, the BDE can be shared with other BDE-based applications and provides a broader
range of support for database manipulation. Although you can use the API of the BDE directly in your application, the
components on the BDE section of the Tool Palette wrap most of this functionality for you.

See Also

Borland Overview of Deploying Applications

Microsoft Overview of Deploying Applications

Data Providers for Microsoft .NET RAD Studio for Microsoft .NET 1.1 Developing Database Applications with

26

1

1.1.9 Data Providers for Microsoft .NET

In addition to supporting the providers included in the .NET Framework, RAD Studio includes AdoDbxClient Providers for
Microsoft .NET.AdoDbx Client is an implementation of the .NET Provider and connects to a number of popular databases.

This topic includes:

• Data Provider Architecture

• AdoDbx Client Advantages

• AdoDbx Client and ADO.NET Components

• Supported AdoDbx Client Providers

• AdoDbx Client Data Types

• AdoDbx Client Interfaces

Data Provider Architecture

RAD Studio supports the .NET Framework providers and the AdoDbx Client providers.

AdoDbx.NET provides a high performance architecture for accessing data sources without a COM Interop layer.

The architecture exposes a set of interfaces for third-party integration. You can implement these interfaces for your own
database to provide designtime, tools, and runtime data access integration into the CodeGear IDE. AdoDbx.NET -managed
components communicate with these interfaces to accomplish all basic data access functionality. These interfaces were
implemented to wrap database-specific native client libraries by way of Platform Invoke (P/Invoke) services. Depending on the
availability of managed database clients, you can implement a fully-managed provider underneath AdoDbx.NET.

The database-specific implementation is wrapped into an assembly and the full name of the assembly is passed to the
AdoDbxConnection component as part of the connection string. Depending on the Assembly entry in the ConnectionString
property, AdoDbx.NET dynamically loads the database-specific provider and consumes the implementation for ISQLConnection,
ISQLCommand, and ISQLCursor. This allows you to switch applications from one database to another just by changing the
ConnectionString property to point to a different provider.

AdoDbx.NET Advantages

AdoDbx.NET provides a number of advantages:

• Unified programming model applicable to multiple database platforms

1.1 Developing Database Applications with RAD Studio for Microsoft .NET Data Providers for Microsoft .NET

27

1

• High performance data-access architecture

• Open architecture, which supports additional databases easily

• Portable code to write once and connect to any supported databases

• Consistent data type mapping across databases where applicable

• Logical data types mapped to .NET native types

• No need for a COM Interop layer, unlike OLE DB

• Lets you view live data as you design your application

• Extends ADO.NET to provide interfaces for metadata services, schema creation, and data migration

• Rich set of component designers and tools to speed database application development

RAD Studio extends .NET support to additional database platforms, providing a consistent connection
architecture and data type mapping.

AdoDbx.NET and ADO.NET Components

The DataSet is an in-memory representation of one or more DataTables. Each DataTable in a DataSet consists of DataColumns
and DataRows. The DataSet is generated as a result of an SQL query that you supply to the provider. You can navigate the
DataSet like you would any standard relational table. AdoDbx.NET providers encapsulate implementation details for each
database type, yet allow you to customize your SQL statements and manage the result sets with complete flexibility.

AdoDbx.NET includes several designtime components that you can place onto a Windows Form or Web Form. A set of
designers are also provided to help you build your data connections, DataSets, relations, and other elements.

The primary components that are most useful, particularly if you decide to implement your own database-specific provider, are:

• AdoDbxConnection—establishes a database connection

• AdoDbxCommand—includes a set of methods and properties for SQL and stored procedure execution

• AdoDbxDataReader—retrieves data

• AdoDbxParameter—supports runtime parameter binding

• AdoDbxTransaction—supports transaction control

• AdoDbxDataAdapter—provides and resolves data

• ISQLMetaData—retrieves metadata

• ISQLSchemaCreate—includes methods for creating, dropping, and altering database objects

For more information, click on the link for each component, or search for the components in the API
reference documentation in this Help.

Supported AdoDbx.NET Providers

AdoDbx.NET includes providers for a number of industry-standard databases. These are shown in the following table, along with
their corresponding namespaces.

Database Namespace

InterBase Borland.Data.Interbase

Oracle Borland.Data.Oracle

IBM DB2 Borland.Data.Db2

Microsoft SQL Server Borland.Data.Mssql

Microsoft Access Borland.Data.Msacc

Sybase Borland.Data.Sybase

The AdoDbx.NET components, metadata access, and designers are defined under the following namespaces:

Data Providers for Microsoft .NET RAD Studio for Microsoft .NET 1.1 Developing Database Applications with

28

1

• Borland.Data.AdoDbxClientProvider

• Borland.Data.Common

• Borland.Data.Schema

• Borland.Data.Design

AdoDbx.NET Data Types

AdoDbx.NET maps SQL data types to .NET Framework data types, eliminating the need for you to learn a database-specific
type system. Every attempt has been made to implement consistent type mappings across database types, allowing you to write
one set of source that you can run against multiple databases. You can achieve a similar effect with the .NET Framework data
providers by communicating with their interfaces directly and by using untyped ancestors. However, once you use strongly typed
accessors, your application becomes less portable. AdoDbx.NET does not support any database-specific typed accessors. For
more information, see the AdoDbx.NET Data Types topic.

AdoDbx.NET Interfaces

You can extend AdoDbx.NET to support other DBMSs by implementing a subset of the .NET Provider interface. AdoDbx.NET
generalizes much of the functionality required to implement data providers. While the .NET Framework gives you the capabilities
to create individual data providers for each data source, CodeGear has simplified the task by offering a generalized set of
capabilities. Instead of building separate providers, along with corresponding DataAdapters, DataReaders, Connection objects,
and other required objects, you can implement a set of AdoDbx.NET interfaces to build your own data source plug-ins to the
AdoDbx Client Provider.

Building plug-ins is a much easier task than building a completely new data provider. You build an assembly that contains the
namespace for your provider, as well as classes that encapsulate provider-specific functionality. Much of the functionality you
need to connect to, execute commands against, and retrieve data from your data source has already been defined in the
AdoDbx Client Provider interfaces.

See Also

ADO.NET Overview (see page 14)

AdoDbx.NET Component Designers (see page 21)

AdoDbx.NET Data Types (see page 11)

1.1.10 Stored Procedure Overview

All relational databases have certain features in common that allow applications to store and manipulate data. A stored
procedure is a self-contained program written in a language specific to the database system. A stored procedure typically
handles frequently repeated database-related tasks, and is especially useful for operations that act on large numbers of records
or that use aggregate or mathematical functions. Stored procedures are typically stored on the database server.

Calling a stored procedure is similar to invoking a SQL command, and RAD Studio provides support for using stored procedures
in much the same ways as it supports editing and using SQL command text.

Stored procedures can enhance your database applications in the following ways: improve the performance, security, and
reliability of your applications.

• Performance—stored procedures can improve the performance of a database application by taking advantage of the server’s
usually greater processing power and speed, and reducing network traffic by moving processing to the server. Also, the
compiled SQL used in a stored procedure executes faster typically than standard SQL command text.

• Security—by creating a layer between clients and the database, stored procedures can enhance security for your data. You
don't need to grant database permissions to individual users. Instead, you can grant users permission to execute a stored
procedure independently of underlying table permissions.

1.1 Developing Database Applications with RAD Studio for Microsoft .NET Stored Procedure Overview

29

1

• Reliability—stored procedures help to centralize code, which makes it easier to isolate and troubleshoot problems. Also,
stored procedures allow you to move business logic which is inherent to the database into the database, thus making it
available from all clients regardless of the language they are written in.

When you use the AdoDbx ClienttCommand Text Editor and the Data Explorer , both provide the
ability to view your stored procedure parameters, specify input parameters, and execute your stored
procedures as you design your application.

See Also

ADO.NET Component Designers (see page 21)

Providers for Microsoft .NET (see page 27)

1.1.11 dbExpress Framework

The dbExpress framework (DBX framework) is a set of abstract classes provided in the unit DBXCommon. Applications can
interface with the framework in several ways: using the framework directly for both native and managed applications, and using
the dbExpress VCL components that are layered on top of the framework for both native and managed applications.

Although many applications interface with dbExpress drivers via the dbExpress VCL components, the DBX framework offers a
convenient, lighter weight option to communicate with a database driver. You can also create a database driver for dbExpress by
extending the frameworks's DBXCommon abstract base classes. The DBX framework provides most commonly needed
database driver functionality for a "set" oriented database application, yet provides a simple interface.

Here are some of the key features of the DBX framework:

• The driver framework is written entirely in Delphi and allows drivers to be written in Delphi.

• It uses strongly typed data access instead of pointers. For instance, it uses String types rather than pointers to strings.

• The driver framework is single sourced. This means that a single copy of the source can be compiled with either the native
DCC32 or managed DCCIL compilers.

• The framework has only Abstract base classes that are used for drivers, connections, commands, readers, and so on.

• The framework uses exception based error handling rather than returning error codes.

Capabilities

There are two categories of drivers that extend the classes in DBXCommon: DBXDynaLink and DBXDirect. These drivers differ
from each other in the way they are loaded and the capabilities they provide to an application. These are described in greater
detail later.

You can also extend the DBX framework to write delegation drivers, which provide an extra layer between the application and
the actual driver. Delegate drivers are useful for connection pooling, driver profiling, tracing, and auditing. Another possible
application of driver delegation is to create a thread safe driver delegate. Such a delegate could provide thread synchronized
access to all public methods.

Absolute thread safety is left to applications using dbExpress. However, some thread safety issues are best handled by the
dbExpress framework. dbExpress thread safe operations include loading and unloading drivers, and connection creation As
mentioned earlier, a delegate driver can be created to make the entire public interface of dbExpress thread safe if needed.

A dbExpress 4 driver can statically or dynamically link drivers built as Delphi packages. The easiest way to link a driver package
is to just include it in the "uses" clause. The driver loader also loads packages specified in a config or ini file using the
LoadPackage method. This allows dynamic loading of drivers that are never specified in a uses clause of any of the application's
units. Note that the LoadPackage approach can only be employed for applications built to use packages.

dbExpress 4 driver writers should examine the initialization sections of the DBXDynalink and DBXTrace units in the source code
provided with dbExpress. These sections register themselves with a singleton unit called the ClassRegistry. The ClassRegistry is

dbExpress Framework RAD Studio for Microsoft .NET 1.1 Developing Database Applications with

30

1

used by the dbExpress 4 driver loader to instantiate driver loader classes by name (a String). The ClassRegistry is a simple,
lightweight mechanism for registering and instantiating a class by name.

DBXDynalink Drivers

DBXDynalink is used for existing dbExpress 3 drivers as well as new drivers. It is compiled as a native Delphi package or as a
managed .NET assembly. DBXDynalink loads native dbExpress drivers that implement a more primitive "native" interface called
DBXExports. The DBXExports interface is a small collection of "flat" export methods. DBXExports's source is included with
dbExpress. DBXExports provides a more strongly typed API than the dbExpress 3's COM based interface. This allows methods
to be added in future product generations without breaking compatibility with older implementations of the DBXExports interface.

DBXAdapter is a dbExpress 4 compliant driver that adapts the DBXExports interface to the older dbExpress 3 COM interface.
Newer native drivers can be written by implementing DBXExports directly.

Because the DBXExports interface is designed to be implemented using any native language (Delphi or C++), it uses more
primitive, non-exception based error handling. DBXDynalink maps error codes to a DBXCommon exception.

The DBXDynalink unit contains a dbExpress 4 driver. This driver delegates to non-Delphi drivers that implement the
DBXDynalinkExport flat export interface. DBXTrace is a delegate driver used for tracing. The dbExpress VCL uses
DBXCommon, DBXDynalink and DbxTrace as "default" drivers. However, this can be changed for statically linked applications
without modifying dbExpress VCL source code (SQLExpr.pas). SQLExpr.pas uses the unit DBXDefaultDrivers. The
DBXDefaultDrivers unit only contains a uses clause. The DBXDefaultDrivers uses clause contains DBXCommon, DBXDynalink,
and DBXTrace. DBXCommon must always be used. However, a statically linked application could remove DBXTrace and
replace DBXDynalink with a different driver.

DBXDirect Drivers

A DBXDirect driver is any driver that is implemented by extending the DBXCommon abstract base classes. These classes are
written in Delphi for native implementations. For managed implementations, they can be written using any CLR compatible
language such as Delphi, C#, or Visual Basic.NET.

Strictly speaking, all DBX framework drivers are a form of DBXDirect driver. However DBXDynalink and DBXRemote provide a
more "indirect" linkage to driver implementations.

See Also

dbExpress Framework Compatibility (see page 31)

Deploying dbExpress Database Applications

1.1.12 dbExpress Framework Compatibility

Some dbExpress software developed prior to the dbExpress driver framework (DBX driver framework) has been modified to
work with the DBX driver framework. As a result of these changes, some compatibility issues arise.

General

dbExpress 2.5 drivers cannot be used with the DBX framework.

The dbExpress framework does not provide 100% compatibility with dbExpress 3.

dbExpress 3 drivers can be used with the DBX framework. The DBX framework driver loader automatically detects dbExpress 3
drivers and uses the DBXAdapter driver (dbxadapter30.dll) to make a dbExpress 3 driver look like a dbExpress 4 driver.

Here is a list of known compatibility issues:

• Static driver linkage. You cannot statically link dbExpress drivers into an executable.

• SqlExpr.TSQLConnection provided protected access to the Connection member that was of type TISQLConnection only in

1.1 Developing Database Applications with RAD Studio for Microsoft .NET dbExpress Framework Compatibility

31

1

the native version of SqlExpr.pas. This was omitted from the managed version due to the complexity of how PInvoke was
used in the managed version of the dbExpress VCL. SqlExpr.TSQLConnection now provides protected access to a
TDBXConnection instead. This protected connection is accessible to both native and managed applications.

• The event for trace monitoring is slightly different because it is based on the DBX driver framework.

• The DBXadapter driver can adapt dbExpress 3 drivers to dbExpress 4, but not dbExpress 2.5 drivers.

VCL issues

Most applications using dbExpress VCL components should work without modification. However, there are some localized
changes to VCL components due to VCL now interfacing to the more object oriented DBX driver framework instead of the C-like
COM-based dbExpress 3 driver interface.

In addition, the API has changed slightly for two of the VCL components: TSQLConnection and TSQLDataSet. Some data
structures have also changed. A summary of the API changes follows.

Note: Because of API changes, you must recompile SqlExpr.pas, which is provided with the product. The DBXpress unit has
been deprecated.

• TSQLConnection. The Commit method has been deprecated in favor of the new CommitFreeAndNil method. The Rollback
method has been deprecated in favor of the new RollbackFreeAndNil and RollbackIncompleteFreeAndNil methods. The
SetTraceCallbackEvent method has been replaced by SetTraceEvent. The StartTransaction method has been deprecated in
favor of the new BeginTransaction method. The MetaData property contains an instance of the new class
TDBXDatabaseMetaData instead of TISQLMetaData. The SQLConnection property has been replaced by DBXConnection,
which contains an instance of the new class TDBXConnection. The TraceCallbackEventproperty now contains a
TDBXTraceEvent.

• TSQLDataSet. A new property DbxCommandType has been added, which contains one of the constant strings in the
TDBXCommandTypes class.

• Data structures. TTransactionItem has been deprecated, replaced by the new TDBXTransaction class. TSQLDriverOption,
TSQLConnectionOption, TSQLCommandOption, TSQLCursorOption, TSQLMetaDataOption, and TSQLObjectType are
obsolete. TSTMTParamType has been replaced by the TDBXParameterDirections class. TSQLTraceFlag has been replaced
by TDBXTraceFlags. SQLTRACEDesc is replaced by TDBXTraceInfo.

See Also

dbExpress Framework

Deploying the dbExpress Framework

1.1.13 Getting Started with InterBase Express

InterBase Express (IBX) is a set of data access components that provide a means of accessing data from InterBase databases.
The InterBase Administration Components, which require InterBase 6, are described after the InterBase data access
components.

IBX components

The following components are located on the InterBase tab of the component palette.

Icon Component Name Description

 TIBTable A dataset component that encapsulates a database table.

 TIBQuery Executes an InterBase SQL statement.

 TIBStoredProc Encapsulates a stored procedure on a database server.

 TIBDatabase Encapsulates an InterBase database connection.

Getting Started with InterBase Express RAD Studio for Microsoft .NET 1.1 Developing Database Applications with

32

1

 TIBTransaction Provides discrete transaction control over a one or more
database connections in a database application.

 TIBUpdateSQL Provides an object for updating read-only datasets when
cached updates are enabled.

 TIBDataSet Executes InterBase SQL statements.

 TIBSQL Provides an object for executing an InterBase SQL
statement with minimal overhead.

 TIBDatabaseInfo Returns information about the attached database.

 TIBSQLMonitor Monitors dynamic SQL passed to the InterBase server.

 TIBExtract Fetches metadata from an InterBase server.

 TIBCustomDataSet The base class for all datasets that represent data fetched
using InterBase Express.

Though they are similar to BDE components in name, the IBX components are somewhat different. For each component with a
BDE counterpart, the sections below give a discussion of these differences.

There is no simple migration from BDE to IBX applications. Generally, you must replace BDE components with the comparable
IBX components, and then recompile your applications. However, the speed you gain, along with the access you get to the
powerful InterBase features make migration well worth your time.

IBDatabase

Use a TIBDatabase component to establish connections to databases, which can involve one or more concurrent transactions.
Unlike BDE, IBX has a separate transaction component, which allows you to separate transactions and database connections.

To set up a database connection:

1. Drop an IBDatabase component onto a form or data module.

2. Fill out the DatabaseName property. For a local connection, this is the drive, path, and filename of the database file. Set the
Connected property to true.

3. Enter a valid username and password and click OK to establish the database connection.

Warning: Tip: You can store the username and password in the IBDatabase component's Params
property by setting the LoginPrompt property to false after logging in. For example, after logging in
as the system administrator and setting the LoginPrompt property to false, you may see the
following when editing the Params property:

user_name=sysdba
password=masterkey

IBTransaction

Unlike the Borland Database Engine, IBX controls transactions with a separate component, TIBTransaction. This powerful
feature allows you to separate transactions and database connections, so you can take advantage of the InterBase two-phase
commit functionality (transactions that span multiple connections) and multiple concurrent transactions using the same
connection.

Use an IBTransaction component to handle transaction contexts, which might involve one or more database connections. In
most cases, a simple one database/one transaction model will do.

To set up a transaction:

1. Set up an IBDatabase connection as described above.

1.1 Developing Database Applications with RAD Studio for Microsoft .NET Getting Started with InterBase Express

33

1

2. Drop an IBTransaction component onto the form or data module

3. Set the DefaultDatabase property to the name of your IBDatabase component.

4. Set the Active property to true to start the transaction.

IBX dataset components

There are a variety of dataset components from which to choose with IBX, each having their own
characteristics and task suitability:

IBTable

Use an TIBTable component to set up a live dataset on a table or view without having to enter any SQL
statements.

IBTable components are easy to configure:

1. Add an IBTable component to your form or data module.

2. Specify the associated database and transaction components.

3. Specify the name of the relation from the TableName drop-down list.

4. Set the Active property to true.

IBQuery

Use an TIBQuery component to execute any InterBase DSQL statement, restrict your result set to only
particular columns and rows, use aggregate functions, and join multiple tables.

IBQuery components provide a read-only dataset, and adapt well to the InterBase client/server
environment. To set up an IBQuery component:

1. Set up an IBDatabase connection as described above.

2. Set up an IBTransaction connection as described above.

3. Add an IBQuery component to your form or data module.

4. Specify the associated database and transaction components.

5. Enter a valid SQL statement for the IBQuery's SQL property in the String list editor.

6. Set the Active property to true

IBDataSet

Use an TIBDataSet component to execute any InterBase DSQL statement, restrict your result set to
only particular columns and rows, use aggregate functions, and join multiple tables. IBDataSet
components are similar to IBQuery components, except that they support live datasets without the
need of an IBUpdateSQL component.

The following is an example that provides a live dataset for the COUNTRY table in employee.gdb :

1. Set up an IBDatabase connection as described above.

2. Specify the associated database and transaction components.

3. Add an IBDataSet component to your form or data module.

4. Enter SQL statements for the following properties: SelectSQL, RefreshSQL, ModifySQL, DeleteSQL, InsertSQL. See the
following table for example SQL statements.

5. Set the Active property to true.

Sample SQL statements

Property SQL Statement

SelectSQL SELECT Country, Currency FROM Country

RefreshSQL SELECT Country, Currency FROM Country WHERE Country = :Country

Getting Started with InterBase Express RAD Studio for Microsoft .NET 1.1 Developing Database Applications with

34

1

ModifySQL UPDATE Country SET Country = :Country, Currency = :Currency WHERE Country =
:Old_Country

DeleteSQL DELETE FROM Country WHERE Country = :Old_Country

InsertSQL INSERT INTO Country (Country, Currency) VALUES (:Country, :Currency)

Note: Note: Parameters and fields passed to functions are case-sensitive in dialect 3. For example,

FieldByName(EmpNo)

would return nothing in dialect 3 if the field was 'EMPNO'.

IBStoredProc

Use TIBStoredProc for InterBase executable procedures: procedures that return, at most, one row of information. For stored
procedures that return more than one row of data, or "Select" procedures, use either IBQuery or IBDataSet components.

IBSQL

Use an TIBSQL component for data operations that need to be fast and lightweight. Operations such as data definition and
pumping data from one database to another are suitable for IBSQL components.

In the following example, an IBSQL component is used to return the next value from a generator:

1. Set up an IBDatabase connection as described above.

2. Put an IBSQL component on the form or data module and set its Database property to the name of the database.

3. Add an SQL statement to the SQL property string list editor, for example:

SELECT GEN_ID(MyGenerator, 1) FROM RDB$DATABASE

IBUpdateSQL

Use an TIBUpdateSQL component to update read-only datasets. You can update IBQuery output with an IBUpdateSQL
component:

1. Set up an IBQuery component as described above.

2. Add an IBUpdateSQL component to your form or data module.

3. Enter SQL statements for the following properties: DeleteSQL, InsertSQL, ModifySQL, and RefreshSQL.

4. Set the IBQuery component's UpdateObject property to the name of the IBUpdateSQL component.

5. Set the IBQuery component's Active property to true.

IBSQLMonitor

Use an TIBSQLMonitor component to develop diagnostic tools to monitor the communications between
your application and the InterBase server. When the TraceFlags properties of an IBDatabase
component are turned on, active IBSQLMonitor components can keep track of the connection's
activity and send the output to a file or control.

A good example would be to create a separate application that has an IBSQLMonitor component and a
Memo control. Run this secondary application, and on the primary application, activate the
TraceFlags of the IBDatabase component. Interact with the primary application, and watch the
second's memo control fill with data.

IBDatabaseInfo

Use an TIBDatabaseInfo component to retrieve information about a particular database, such as the
sweep interval, ODS version, and the user names of those currently attached to this database.

For example, to set up an IBDatabaseInfo component that displays the users currently connected to
the database:

1.1 Developing Database Applications with RAD Studio for Microsoft .NET Getting Started with InterBase Express

35

1

1. Set up an IBDatabase connection as described above.

2. Put an IBDatabaseInfo component on the form or data module and set its Database property to the name of the database.

3. Put a Memo component on the form.

4. Put a Timer component on the form and set its interval.

5. Double click on the Timer's OnTimer event field and enter code similar to the following:

Memo1.Text := IBDatabaseInfo.UserNames.Text; // Delphi example
Memo1->Text = IBDatabaseInfo->UserNames->Text; // C++ example

IBEvents

Use an IBEvents component to register interest in, and asynchronously handle, events posted by an InterBase server.

To set up an IBEvents component:

1. Set up an IBDatabase connection as described above.

2. Put an IBEvents component on the form or data module and set its Database property to the name of the database.

3. Enter events in the Events property string list editor, for example: IBEvents.Events.Add('EVENT_NAME'); (for Delphi)
or IBEvents->Events->Add("EVENT_NAME"); (for C++).

4. 4. Set the Registered property to true.

InterBase Administration Components

If you have InterBase 6 installed, you can use the InterBase 6 Administration components, which allow
you to use access the powerful InterBase Services API calls.

The components are located on the InterBase Admin tab of the IDE and include:

 TIBConfigService

 TIBBackupService

 TIBRestoreService

 TIBValidationService

 TIBStatisticalService

 TIBLogService

 TIBSecurityService

 TIBLicensingService

 TIBServerProperties

 TIBInstall

 TIBUnInstall

Note: You must install InterBase 6 to use these features.

IBConfigService

Use an TIBConfigService object to configure database parameters, including page buffers, async mode, reserve space, and
sweep interval.

IBBackupService

Use an TIBBackupService object to back up your database. With IBBackupService, you can set such parameters as the blocking
factor, backup file name, and database backup options.

IBRestoreService

Getting Started with InterBase Express RAD Studio for Microsoft .NET 1.1 Developing Database Applications with

36

1

Use an TIBRestoreService object to restore your database. With IBRestoreService, you can set such options as page buffers,
page size, and database restore options.

IBValidationService

Use an TIBValidationService object to validate your database and reconcile your database transactions. With the
IBValidationService, you can set the default transaction action, return limbo transaction information, and set other database
validation options.

IBStatisticalService

Use an TIBStatisticalService object to view database statistics, such as data pages, database log, header pages, index pages,
and system relations.

IBLogService

Use an TIBLogService object to create a log file.

IBSecurityService

Use an TIBSecurityService object to manage user access to the InterBase server. With the IBSecurityService, you can create,
delete, and modify user accounts, display all users, and set up work groups using SQL roles.

IBLicensingService

Use an TIBLicensingService component to add or remove InterBase software activation certificates.

IBServerProperties

Use an TIBServerProperties component to return database server information, including configuration parameters, and version
and license information.

IBInstall

Use an TIBInstall component to set up an InterBase installation component, including the installation source and destination
directories, and the components to be installed.

IBUnInstall

Use an TIBUnInstall component to set up an uninstall component.

1.1 Developing Database Applications with RAD Studio for Microsoft .NET Getting Started with InterBase Express

37

1

1.2 Developing Applications with Unmanaged
Code

RAD Studio provides the capability to work with the .NET features that support unmanaged code.

If you have COM or ActiveX components that you want to use within the .NET Framework, you can use the .NET COM Interop
capabilities from within RAD Studio while building your applications.

Topics

Name Description

Using COM Interop in Managed Applications (see page 38) COM Interop is a .NET service that allows seamless interoperation between
managed and unmanaged code. The COM Interop service is a two-way bridge: It
allows you to leverage existing COM servers and ActiveX Controls in new .NET
applications, as well as to expose .NET components in legacy, unmanaged
applications.
The RAD Studio IDE features tools that will help you integrate your legacy COM
servers and ActiveX Controls into managed applications. Within the IDE, you can
add references to unmanaged DLLs to your project, and then browse the types
contained in them, just as you can with managed assemblies. You can... more
(see page 38)

Using DrInterop (see page 43) The drinterop command line tool examines an assembly and produces a set
of diagnostic messages that help you prepare the assembly for use with
COM/Interop.
The drinterop tool is located in the bin directory of the product installation. It
is invoked by typing

Deploying COM Interop Applications (see page 43) Two things are important to keep in mind when working with unmanaged
components. First, remember that an interop assembly is not a replacement for
the COM server; it is a stand-in, or proxy for it. The interop assemblies produced
by tlbimp and RAD Studio are not transformations of the component's
unmanaged code into managed code. Every file required by the component in an
unmanaged deployment environment, must also be deployed in a managed
environment in addition to the interop assemblies. Second, the .NET
Framework's interop services do not circumvent the requirement of registering
the COM server on the end-user's machine.... more (see page 43)

Using Platform Invoke with Delphi for .NET (see page 44) This topic describes the basic techniques of using unmanaged APIs. Some of the
common mistakes and pitfalls are pointed out, and a quick reference for
translating Delphi data types is provided. This topic does not attempt to explain
the basics of platform invoke or marshaling data. Please refer to the links at the
end of this topic for more information on platform invoke and marshaling.
Understanding attributes and how they are used is also highly recommended
before reading this document.
The Win32 API is used for several examples. For further details on the API
functions mentioned, please see the Windows... more (see page 44)

Virtual Library Interfaces (see page 52) This topic describes how to use a feature of Delphi called Virtual Library
Interfaces. Virtual Library Interfaces allows you to discover, load, and call
unmanaged code at runtime, without the use of the DllImport attribute.

1.2.1 Using COM Interop in Managed Applications

COM Interop is a .NET service that allows seamless interoperation between managed and unmanaged code. The COM Interop
service is a two-way bridge: It allows you to leverage existing COM servers and ActiveX Controls in new .NET applications, as
well as to expose .NET components in legacy, unmanaged applications.

The RAD Studio IDE features tools that will help you integrate your legacy COM servers and ActiveX Controls into managed
applications. Within the IDE, you can add references to unmanaged DLLs to your project, and then browse the types contained
in them, just as you can with managed assemblies. You can add ActiveX Controls to the Tool Palette , and then drop them on

Using COM Interop in Managed RAD Studio for Microsoft .NET 1.2 Developing Applications with

38

1

your forms as you would with any .NET component.

The following topics are covered in this overview:

• Introduction to the terminology of COM Interop. If you are already familiar with these concepts, you can skip directly to the
section on RAD Studio IDE features and tools for COM/Interop.

• Introduction to some of the .NET Framework SDK tools for working with COM/Interop.

• Using COM Interop Assemblies in the IDE.

COM Interop Overview

Seamless interoperability is achieved through stand-in objects called Runtime Callable Wrappers (RCW). The RCW is a layer of
communication between your managed application, and the actual unmanaged COM server.

COM Interop Terminology

The .NET Framework has a rich collection of terms and three-letter acronyms. This section will help you understand the
terminology you will encounter when reading other COM Interop literature.

Metadata

In the context of .NET and COM, metadata is a term used to mean type information. In COM, type information can be stored in a
variety of ways. For instance, a C++ header file is a language-specific container for type information. A type library is also a
container for type information, but being a binary format, type libraries are language neutral. Unlike the COM development model
where type libraries are not required, language neutral metadata is mandatory for all .NET assemblies. Every assembly is
self-describing; its metadata contains complete type information, including private types and private class members.

Custom Attributes

Developers often tag program entities (such as classes and their methods) with descriptive attributes such as static, private,
protected, and public. In the .NET Framework, you can tag any entity, including classes, properties, methods, and even
assemblies themselves, with an attribute of your own design and meaning. Custom attributes are expressed in source code, and
are processed by the compiler. At the end of the build process, custom attributes are emitted into the output assembly just like all
metadata.

Reflection

A unique characteristic of the .NET Framework is that type information is not lost during the compilation process. Instead, all
metadata, including custom attributes, is emitted by the compiler into the final output assembly. Metadata is available at runtime,
through .NET Reflection services. The .NET Framework SDK provides a reflection tool called ildasm that allows the developer
to open any .NET assembly, and inspect the types declared therein. Such reflection tools often allow programmers to directly
view the IL code generated by the compiler. The RAD Studio IDE contains its own integrated reflection tool, in the form of the
meta data explorer tool that appears when you open a .NET assembly.

Global Assembly Cache

In COM, components can be deployed anywhere on the user's machine. Usually, a component's installation script records its
location in the system registry. Command-line tools such as regsvr32 and tregsvr can also add and remove COM components
from the registry. Registration of components is required in COM programming, even if the components are not intended to be
shared by multiple applications.

1.2 Developing Applications with RAD Studio for Microsoft .NET Using COM Interop in Managed

39

1

The .NET programming model drastically simplifies deployment of applications and components. On the .NET platform,
non-shared components are deployed directly into the application's local installation directory; no registration is required.
Alternatively, a non-shared component can be deployed in a directory specified in the application's configuration file. Again,
registration is not required for this deployment scenario.

Shared components are installed into a special location called the Global Assembly Cache (GAC). The GAC is an evolution of
the system registry (though it is a completely separate mechanism and is not associated with the registry at all). The GAC exists
in the file system in a folder called \Windows\Assembly. The .NET Framework supports simultaneous, or "side-by-side"
deployment of different versions of the same component. When you view the Global Assembly Cache folder using Windows
Explorer, you are actually looking at the GAC through a special shell extension. The shell extension presents all of the
assemblies that have been installed into the GAC, with their version, culture, and public key information.

There are three ways to install a .NET component into the GAC. The first way is to use the Framework SDK command-line tool
called gacutil , which is discussed below. Another way is to install a component into the GAC is to navigate to the
\Windows\Assembly folder using Windows Explorer, and then simply drag and drop the assembly into the directory listing pane.
Finally, you can also use the .NET Configuration management tool, which is accessible through the Windows Control Panel.

Strong Names

The concept of a strong name is similar to that of the 128-bit Globally Unique Identifier (GUID) in COM programming. A GUID is
a name that is guaranteed to be globally unique. Every .NET assembly has a basic name, which consists of a text string, a
version number, and optional culture information. For shared assemblies installed into the GAC, the basic name alone is not
enough to guarantee the assembly is uniquely identified. To generate a globally unique name, an encryption key with public and
private components is used to generate a digital signature. The signature is then applied to the assembly using the .NET
Framework SDK Assembly Linker (al.exe), or by using assembly attributes in source code.

Runtime Callable Wrappers and COM Callable Wrappers

Accessing a component, be it a .NET component or a COM server, is largely transparent. That is, when you are using a COM
server in a .NET application, the COM server looks like any other .NET component. Similarly a .NET component, when exposed
to an unmanaged application through COM Interop, looks like a COM server. This transparency is accomplished by
behind-the-scenes proxies, or wrapper objects.

When you use a COM object in a managed application, the Common Language Runtime (CLR) creates an RCW, which is the
interface between managed and unmanaged code. The complexities of data marshaling and reference counting are handled by
the RCW. In fact the RCW does not even expose the IUnknown and IDispatch interfaces.

When you use a .NET component in an unmanaged application, the system creates a stand-in called a COM Callable Wrapper
(CCW).

Primary Interop Assembly

In the COM programming model, once a GUID is assigned to a type, the GUID always refers to that specific type no matter
where the type appears. For example, a common interface might be defined in many different type libraries, but each separate
type library would have to define the interface with the same GUID, so the duplication is not a problem. However, if you generate
COM Interop assemblies for these separate type libraries, a new and distinct assembly would be created for each type library.
Each of these separate assemblies would contain distinct types (as far as the CLR is concerned). The strong identity and
self-describing nature of .NET assemblies is actually working against you in this case. Here, it is leading to a GAC that is
cluttered with interop assemblies that all contain RCWs for the same type library. Worse yet, to the CLR each assembly contains
distinct and incompatible types, because each one has a different strong name.

To avoid this proliferation of assemblies and potential type incompatibilities, the framework gives you the ability to designate one
assembly as the primary interop assembly for a type library. A primary interop assembly is always signed with a strong name, by
the original publisher of the type library.

Using COM Interop in Managed RAD Studio for Microsoft .NET 1.2 Developing Applications with

40

1

COM Interop Tools in the .NET Framework SDK

Some of the functionality provided by the .NET Framework SDK tools is exposed in the development environment. This section
is not intended to be a complete reference for these tools; it is merely a starting point for more exploration of the .NET
Framework SDK, and hopefully will give you a bit more understanding of how to work with COM Interop technology in the IDE.

Importing and Exporting Type Libraries

Tlbimp is a command-line tool that you can use to generate a .NET assembly from a type library. Tlbimp will operate on a type
library directly, or on an unmanaged DLL that contains a type library as an embedded resource. Note the assembly produced by
tlbimp contains code for only the RCW, not for the original COM object itself. Therefore you must still deploy and register the
COM object on the end-user's machine. The assembly also contains the types described in the type library, expressed as
metadata. Tlbimp uses a command line switch to produce a primary interop assembly.

The .NET Framework SDK contains another command-line tool called tlbexp that is used to create a type library from a .NET
assembly. Such an exported type library would then be used to expose the .NET component as a COM server, for use within an
unmanaged application.

Importing ActiveX Control Libraries

Aximp is a command-line tool that generates an ActiveX Control wrapper assembly. This assembly is required so that the
ActiveX Control can be used on a Windows Form. A special utility is required, because a Windows Form can only host controls
that are derived from the System.Windows.Forms.Control class, and the tlbimp utility does not create a wrapper derived from
that class.

The aximp tool will generate both interop assemblies (as with tlbimp , this includes dependent assemblies), and the ActiveX
wrapper assembly. Like tlbimp , aximp has command-line switches to sign the assemblies produced with a strong name.
Unlike tlbimp , aximp cannot generate a primary interop assembly.

Generating Strong Names

If you are deploying a .NET component into the GAC, you will need to sign your assembly with a strong name key. This is done
by using a .NET Framework SDK command-line tool called sn . The assembly is signed with the strong name in one of three
ways:

• By specifying the strong name key file in the assembly linker (al) command line

• By tagging the assembly with the AssemblyKeyFile attribute

• By using a technique called "delay signing"

When using delay signing, the assembly is signed with the public portion of the key file at build time.
Before shipping the assembly, the sn tool is used again to sign the assembly with the private key.

Deploying a .NET Component to the Global Assembly Cache

The .NET Framework SDK utility called gacutil is a command-line program that is used to install, remove, and view
components in the GAC. The gacutil command is usable from installation scripts as well as from batch files. The gacutil
command supports installation and removal of shared assemblies, with and without the use of reference counting. It is
recommended that the non-reference counted command switches be used only during development. Installation scripts that use
gacutil to install shared components should always use the reference counted command line switches.

Using COM Interop Assemblies in the IDE

All of the functionality encompassed by the .NET Framework SDK command-line tools is in fact exposed by the .NET Framework
Class Library itself. The RAD Studio IDE also takes advantage of the .NET Framework classes to expose interoperability
features. The IDE goes beyond the capabilities of the command-line tools, however, making interoperation with unmanaged
components even easier.

1.2 Developing Applications with RAD Studio for Microsoft .NET Using COM Interop in Managed

41

1

Type Libraries and Interop Assemblies

The IDE initiates the creation of interop assemblies through the Project Manager . When you add a reference to a DLL to your
project, you can select from registered type libraries and unmanaged DLLs, or you can browse to an unregistered component.

The IDE creates one interop assembly for each imported type library or DLL. The assemblies are named
Interop.LibraryName.dll, where LibraryName is the name of the type library. The name of the library is specified in the library
statement in IDL source code, so the file name of the generated assembly might be different from that of the original DLL or type
library. Each interop assembly (and all of its dependent assemblies) are added to your project as referenced assemblies. The
types contained in the interop assembly are added to a namespace with the same name as the type library; Again, this is derived
from the library statement in IDL source code.

If the assembly you reference has a primary interop assembly, the IDE will recognize this and avoid generating a new interop
assembly. In this case, the IDE will add a reference to the primary interop assembly in the GAC, and it will not copy the assembly
to your local project directory.

Importing ActiveX Controls

To use an ActiveX Control in your managed application, you must first add the control to the tool palette. This will create both an
interop assembly, and an ActiveX assembly with a wrapper class derived from System.Windows.Forms.AxHost. The ActiveX
wrapper assembly will be named AxInterop.LibraryName.dll, where LibraryName is the name of the type library. Dragging the
control from the palette onto a Windows Form will automatically add references to both assemblies to your project.

Once on your form, the ActiveX Control can be treated as any other .NET component. You can select the control, and set its
properties and event handlers in the Object Inspector . The ActiveX Control wrapper will expose the properties of the
Windows.Forms.Control class, while properties exposed by the ActiveX Control will be grouped under the Misc category.

Interop Assemblies and the Project Manager

Interop assemblies (including ActiveX Control wrapper assemblies) generated by the IDE are kept in a separate folder called
COMImports, underneath your project. Each generated assembly will have its 'Copy Local' property set, meaning that when the
project is built, the assembly will be copied to the folder where the final build target of the project is kept. The exceptions to this
rule are primary interop assemblies, which are deployed in the GAC. When you add a reference to a primary interop assembly,
the IDE will not copy the assembly to the COMImports folder. The assembly will still be shown in the Project Manager , however,
if you right click on it to display its properties, you will notice that the 'Copy Local' setting is turned off.

The list of referenced assemblies (including those that are not interop assemblies) is an attribute of your project. If the
COMImports folder (or one of the interop assemblies contained therein) does not exist when you open a project, the IDE will
attempt to recreate it. If the IDE cannot create an interop assembly, it will still be shown as a referenced assembly in the Project
Manager ; the IDE will highlight such an assembly so that you know it currently does not exist (or is not registered) on the
machine.

See Also

Adding a Reference to a COM Server (see page 139)

Adding an ActiveX Control to the Tool Palette

Using Platform Invoke with Delphi (see page 44)

Virtual Library Interfaces (see page 52)

Using DrInterop RAD Studio for Microsoft .NET 1.2 Developing Applications with

42

1

1.2.2 Using DrInterop

The drinterop command line tool examines an assembly and produces a set of diagnostic messages that help you prepare
the assembly for use with COM/Interop.

The drinterop tool is located in the bin directory of the product installation. It is invoked by typing

drinterop assembly

Message Cause

Assembly ComVisible attribute is true when it
should be false .

The [assembly:ComVisible(bool)] attribute is set to true , or
is not present.

Assemblies should be hidden from COM to reduce registry clutter.

Set the ComVisible attribute to false , and selectively expose
classes and interfaces.

Assembly, class, or interface is exposed to COM but
does not contain the Guid attribute.

The assembly, class, or interface has the ComVisible attribute set
to true but does not contain a Guid attribute.

A type library should be generated and registered for
assembly.

This message is generated when a type library is not found in the
same directory as the assembly.

Assembly does not contain the TypeLibVersion
attribute.

The assembly does not contain the [assembly:
TypeLibVersion(x,y)] attribute.

By default type library version numbers are generated using only the
first two numbers of the assembly version. Using the TypeLibVersion
attribute can help avoid problems where two assemblies would
produce the same type library because the first two digits of their
version number are the same.

Reduce registry size by adding attribute
[ClassInterface(ClassInterfaceType.None)]
to class.

The class does not contain the ClassInterface attribute.

By default, each class will cause the creation of a corresponding
interface with the class name prefixed with an underscore character.
This interface has no methods associated with it.

You can reduce registry size and clutter by putting the
[ClassInterface(ClassInterfaceType.None)] attribute on
the class.

Note: The drinterop

tool will not print any messages if it does not find any of the above conditions.

1.2.3 Deploying COM Interop Applications

Two things are important to keep in mind when working with unmanaged components. First, remember that an interop assembly
is not a replacement for the COM server; it is a stand-in, or proxy for it. The interop assemblies produced by tlbimp and RAD
Studio are not transformations of the component's unmanaged code into managed code. Every file required by the component in
an unmanaged deployment environment, must also be deployed in a managed environment in addition to the interop
assemblies. Second, the .NET Framework's interop services do not circumvent the requirement of registering the COM server on

1.2 Developing Applications with RAD Studio for Microsoft .NET Deploying COM Interop Applications

43

1

the end-user's machine. Note the registration requirement also applies during the development of your managed application.

As with any other .NET assembly, an interop assembly can be deployed alongside the managed executable in the installation
folder, or it can be deployed in the GAC. If you deploy the interop assembly into the GAC, you must give it a strong name during
development. Primary interop assemblies are always deployed into the GAC; however, just because an assembly is deployed to
the GAC, does not automatically make it a primary interop assembly. An interop assembly is designated as a primary interop
assembly by using the /primary command-line option of the tlbimp utility. The IDE currently has no built-in support for creating
primary interop assemblies. Unmanaged COM servers can be deployed anywhere on the end-user's machine, however, as
noted previously, you must still register unmanaged components when your application is installed.

See Also

CodeGear Overview of Deploying Applications

Microsoft Overview of Deploying Applications

1.2.4 Using Platform Invoke with Delphi for .NET

This topic describes the basic techniques of using unmanaged APIs. Some of the common mistakes and pitfalls are pointed out,
and a quick reference for translating Delphi data types is provided. This topic does not attempt to explain the basics of platform
invoke or marshaling data. Please refer to the links at the end of this topic for more information on platform invoke and
marshaling. Understanding attributes and how they are used is also highly recommended before reading this document.

The Win32 API is used for several examples. For further details on the API functions mentioned, please see the Windows
Platform SDK documentation.

The following topics are discussed in this section:

• Calling unmanaged functions

• Structures

• Callback functions

• Passing Object References

• Using COM Interfaces

Calling Unmanaged Functions

When calling unmanaged functions, a managed declaration of the function must be created that represents the unmanaged
types. In many cases functions take pointers to data that can be of variable types. One example of such a function is the Win32
API function SystemParametersInfo that is declared as follows:

BOOL SystemParametersInfo(
 UINT uiAction, // system parameter to retrieve or set
 UINT uiParam, // depends on action to be taken
 PVOID pvParam, // depends on action to be taken
 UINT fWinIni // user profile update option
);

Depending on the value of uiAction , pvParam can be one of dozens of different structures or simple data types. Since there is
no way to represent this with one single managed declaration, multiple overloaded versions of the function must be declared
(see Borland.Vcl.Windows.pas), where each overload covers one specific case. The parameter pvParam can also be
given the generic declaration IntPtr. This places the burden of marshaling on the caller, rather than the built in marshaler. Note
that the data types used in a managed declaration of an unmanaged function must be types that the default marshaler supports.
Otherwise, the caller must declare the parameter as IntPtr and be responsible for marshaling the data.

Using Platform Invoke with Delphi for .NET RAD Studio for Microsoft .NET 1.2 Developing Applications with

44

1

Data Types

Most data types do not need to be changed, except for pointer and string types. The following table shows commonly used data
types, and how to translate them for managed code:

Unmanaged Data Type Managed Data Type

Input Parameter Output Parameter

Pointer to string (PChar) String StringBuilder

Untyped parameter/buffer TBytes TBytes

Pointer to structure (PRect) const TRect var TRect

Pointer to simple type (PByte) const Byte var Byte

Pointer to array (PInteger) array of Integer array of Integer

Pointer to pointer type (^PInteger) IntPtr IntPtr

IntPtr can also represent all pointer and string types, in which case you need to manually marshal data using the Marshal class.
When working with functions that receive a text buffer, the StringBuilder class provides the easiest solution. The following
example shows how to use a StringBuilder to receive a text buffer:

function GetText(Window: HWND; BufSize: Integer = 1024): string;
var
 Buffer: StringBuilder;
begin
 Buffer := StringBuilder.Create(BufSize);
 GetWindowText(Window, Buffer, Buffer.Capacity);
 Result := Buffer.ToString;
end;

The StringBuilder class is automatically marshaled into an unmanaged buffer and back. In some cases it may not be practical, or
possible, to use a StringBuilder. The following examples show how to marshal data to send and retrieve strings using
SendMessage :

procedure SetText(Window: HWND; Text: string);
var
 Buffer: IntPtr;
begin
 Buffer := Marshal.StringToHGlobalAuto(Text);
 try
 Result := SendMessage(Window, WM_SETTEXT, 0, Buffer);
 finally
 Marshal.FreeHGlobal(Buffer);
 end;
end;

An unmanaged buffer is allocated, and the string copied into it by calling StringToHGlobalAuto . The buffer must be freed
once it’s no longer needed. To marshal a pointer to a structure, use the Marshal. StructureToPtr method to copy the contents of
the structure into the unmanaged memory buffer.

The following example shows how to receive a text buffer and marshal the data into a string:

function GetText(Window: HWND; BufSize: Integer = 1024): string;
var
 Buffer: IntPtr;
begin
 Buffer := Marshal.AllocHGlobal(BufSize * Marshal.SystemDefaultCharSize);
 try
 SendMessage(Window, WM_GETTEXT, BufSize, Buffer);
 Result := Marshal.PtrToStringAuto(Buffer);
 finally
 Marshal.FreeHGlobal(Buffer);

1.2 Developing Applications with RAD Studio for Microsoft .NET Using Platform Invoke with Delphi for .NET

45

1

 end;
end;

It is important to ensure the buffer is large enough, and by using the SystemDefaultCharSize method, the buffer is guaranteed to
hold BufSize characters on any system.

Advanced Techniques

When working with unmanaged API’s, it is common to pass parameters as either a pointer to something, or NULL. Since the
managed API translations don’t use pointer types, it might be necessary to create an additional overloaded version of the
function with the parameter that can be NULL declared as IntPtr.

Special Cases

There are cases where a StringBuilder and even the Marshal class will be unable to correctly handle the data that needs to be
passed to an unmanaged function. An example of such a case is when the string you need to pass, or receive, contains multiple
strings separated by NULL characters. Since the default marshaler will consider the first NULL to be the end of the string, the
data will be truncated (this also applies to the StringToHGlobalXXX and PtrToStringXXX methods). In this situation
TBytes can be used (using the PlatformStringOf and PlatformBytesOf functions in Borland.Delphi.System to convert the
byte array to/from a string). Note that these utility functions do not add or remove terminating NULL characters.

When working with COM interfaces, the UnmanagedType enumeration (used by the MarshalAsAttribute class) has a special
value, LPStruct . This is only valid in combination with a System.Guid class, causing the marshaler to convert the parameter
into a Win32 GUID structure. The function CoCreateInstance that is declared in Delphi 7 as:

function CoCreateInstance([MarshalAs(UnmanagedType.LPStruct)] clsid: TCLSID;
 [MarshalAs(UnmanagedType.IUnknown)] unkOuter: TObject;
 dwClsContext: Longint;
 [MarshalAs(UnmanagedType.LPStruct)] iid: TIID;
 [MarshalAs(UnmanagedType.Interface)] out pv
): HResult;

This is currently the only documented use for UnmanagedType.LPStruct .

Structures

The biggest difference between calling unmanaged functions and passing structures to unmanaged functions is that the default
marshaler has some major restrictions when working with structures. The most important are that dynamic arrays, arrays of
structures and the StringBuilder class cannot be used in structures. For these cases IntPtr is required (although in some cases
string paired with various marshaling attributes can be used for strings).

Data Types

The following table shows commonly used data types, and how to “translate” them for managed code:

Unmanaged Data Type Managed Data Type

Input Parameter Output Parameter

Pointer to string (PChar) String IntPtr

Character array (array[a..b] of Char) String String

Array of value type (array[a..b] of Byte) array[a..b] of
Byte

array[a..b] of
Byte

Dynamic array (array[0..0] of type) IntPtr IntPtr

Array of struct (array[1..2] of TRect) IntPtr or flatten IntPtr or flatten

Pointer to structure (PRect) IntPtr IntPtr

Pointer to simple type (PByte) IntPtr IntPtr

Pointer to array (PInteger) IntPtr IntPtr

Using Platform Invoke with Delphi for .NET RAD Studio for Microsoft .NET 1.2 Developing Applications with

46

1

Pointer to pointer type (^PInteger) IntPtr IntPtr

When working with arrays and strings in structures, the MarshalAs attribute is used to describe additional information to the
default marshaler about the data type. A record declared in Delphi 7, for example:

type
 TMyRecord = record
 IntBuffer: array[0..31] of Integer;
 CharBuffer: array[0..127] of Char;
 lpszInput: LPTSTR;
 lpszOutput: LPTSTR;
 end;

Would be declared as follows in RAD Studio:

type
 [StructLayout(LayoutKind.Sequential, CharSet = CharSet.Auto)]
 TMyRecord = record
 [MarshalAs(UnmanagedType.ByValArray, SizeConst = 32)]
 IntBuffer: array[0..31] of Integer;
 [MarshalAs(UnmanagedType.ByValTStr, SizeConst = 128)]
 CharBuffer: string;
 [MarshalAs(UnmanagedType.LPTStr)]
 lpszInput: string;
 lpszOutput: IntPtr;
 end;

The above declarations assume that the strings contain platform dependant TChar ’s (as commonly used by the Win32 API). It is
important to note that in order to receive text in lpszOutput , the Marshal. AllocHGlobal method needs to be called before
passing the structure to an API function.

A structure can contain structures, but not pointers to structures. For such cases an IntPtr must be declared, and the Marshal.
StructureToPtr method used to move data from the managed structure into unmanaged memory. Note that StructureToPtr does
not allocate the memory needed (this must be done separately). Be sure to use Marshal. SizeOf to determine the amount of
memory required, as Delphi’s SizeOf is not aware of the MarshalAs attribute (in the example above, CharBuffer would be 4
bytes using Delphi’s SizeOf when it in fact should occupies 128 bytes on a single byte system). The following examples show
how to send messages that pass pointers to a structure:

procedure SetRect(Handle: HWND; const Rect: TRect);
var
 Buffer: IntPtr;
begin
 Buffer := Marshal.AllocHGlobal(Marshal.SizeOf(TypeOf(TRect)));
 try
 Marshal.StructureToPtr(TObject(Rect), Buffer, False);
 SendMessage(Handle, EM_SETRECT, 0, Buffer);
 finally
 Marshal.DestroyStructure(Buffer, TypeOf(TRect));
 end;
end;

procedure GetRect(Handle: HWND; var Rect: TRect);
var
 Buffer: IntPtr;
begin
 Buffer := Marshal.AllocHGlobal(Marshal.SizeOf(TypeOf(TRect)));
 try
 SendMessage(Handle, EM_GETRECT, 0, Buffer);
 Rect := TRect(Marshal.PtrToStructure(Buffer, TypeOf(TRect)));
 finally
 Marshal.DestroyStructure(Buffer, TypeOf(TRect));
 end;
end;

1.2 Developing Applications with RAD Studio for Microsoft .NET Using Platform Invoke with Delphi for .NET

47

1

It is important to call DestroyStructure rather than FreeHGlobal if the structure contains fields where the marshaling layer needs
to free additional buffers (see the documentation for DestroyStructure for more details).

Advanced topics

Working with unmanaged API’s it is not uncommon to need to convert a byte array into a structure (or retrieve one or more fields
from a structure held in a byte array), or vice versa. Although the Marshal class contains a method to retrieve the offset of a
given field, it is extremely slow and should be avoided in most situations. Informal performance tests show that for a structure
with eight or nine numeric fields, it is much faster to allocate a block of unmanaged memory, copy the byte array to the
unmanaged memory and call PtrToStructure than finding the position of just one field using Marshal. OffsetOf and converting the
data using the BitConverter class. Borland.Vcl.WinUtils contains helper functions to perform conversions between byte
arrays and structures (see StructureToBytes and BytesToStructure).

Special cases

There are cases where custom processing is required, such as sending a message with a pointer to an array of integers. For
situations like this, the Marshal class provides methods to copy data directly to the unmanaged buffer, at specified offsets (so
you can construct an array of a custom data type after allocating a buffer). The following example shows how to send a message
where the LParam is a pointer to an array of Integer:

function SendArrayMessage(Handle: HWND; Msg: UINT; WParam: WPARAM;
 LParam: TIntegerDynArray): LRESULT;
var
 Buffer: IntPtr;
begin
 Buffer := Marshal.AllocHGlobal(Length(LParam) * SizeOf(Integer));
 try
 Marshal.Copy(LParam, 0, Buffer, Length(LParam));
 Result := SendMessage(Handle, Msg, WParam, Buffer);
 finally
 Marshal.FreeHGlobal(Buffer);
 end;
end;

Callback Functions

When passing a function pointer for a managed function to an unmanaged API, a reference must be maintained to the delegate
or it will be garbage collected. If you pass a pointer to your managed function directly, a temporary delegate will be created, and
as soon as it goes out of scope (at the end of MyFunction in the example below), it is subject to garbage collection. Consider
the following Delphi 7 code:

function MyFunction: Integer;
begin
 ...
 RegisterCallback(@MyCallback);
 ...
end;

In order for this to work in a managed environment, the code needs to be changed to the following:

const
 MyCallbackDelegate: TFNMyCallback = @MyCallback;

function MyFunction: Integer;
begin
 ...
 RegisterCallback(MyCallbackDelegate);
 ...
end;

This will ensure that the callback can be called as long as MyCallbackDelegate is in scope.

Using Platform Invoke with Delphi for .NET RAD Studio for Microsoft .NET 1.2 Developing Applications with

48

1

Data types

The same rules apply for callbacks as any other unmanaged API function.

Special cases

Any parameters used in an asynchronous process must be declared as IntPtr. The marshaler will free any memory it has
allocated for unmanaged types when it returns from the function call. When using an IntPtr, it is your responsibility to free any
memory that has been allocated.

Passing Object References

When working with for example the Windows API, object references are sometimes passed to the API where they are stored and
later passed back to the application for processing usually associated with a given event. This can still be accomplished in .NET,
but special care needs to be taken to ensure a reference is kept to all objects (otherwise they can and will be garbage collected).

Data types

Unmanaged Data Types Managed Data Type

Supply Data Receive Data

Pointer (Object reference, user data) GCHandle GCHandle

The GCHandle provides the primary means of passing an object references to unmanaged code, and ensuring garbage
collection does not happen. A GCHandle needs to be allocated, and later freed when no longer needed. There are several types
of GCHandle, GCHandleType.Normal being the most useful when an unmanaged client holds the only reference. In order pass a
GCHandle to an API function once it is allocated, type cast it to IntPtr (and optionally onwards to LongInt , depending on the
unmanaged declaration). The IntPtr can later be cast back to a GCHandle. Note that IsAllocated must be called before accessing
the Target property, as shown below:

procedure MyProcedure;
var
 Ptr: IntPtr;
 Handle: GCHandle;
begin
 ...
 if Ptr <> nil then
 begin
 Handle := GCHandle(Ptr);
 if Handle.IsAllocated then
 DoSomething(Handle.Target);
 end;
 ...
end;

Advanced techniques

The use of a GCHandle, although relatively easy, is fairly expensive in terms of performance. It also has the possibility of
resource leaks if handles aren’t freed correctly. If object references are maintained in the managed code, it is possible to pass a
unique index, for example the hash code returned by the GetHashCode method, to the unmanaged API instead of an object
reference. A hash table can be maintained on the managed side to facilitate retrieving an object instance from a hash value if
needed. An example of using this technique can be found in the TTreeNodes class (in Borland.Vcl.ComCtrls).

Using COM Interfaces

When using COM interfaces, a similar approach is taken as when using unmanaged API’s. The interface needs to be declared,

1.2 Developing Applications with RAD Studio for Microsoft .NET Using Platform Invoke with Delphi for .NET

49

1

using custom attributes to describe the type interface and the GUID. Next the methods are declared; using the same approach
as for unmanaged API’s. The following example uses the IAutoComplete interface, defined as follows in Delphi 7:

IAutoComplete = interface(IUnknown)
 ['{00bb2762-6a77-11d0-a535-00c04fd7d062}']
 function Init(hwndEdit: HWND; punkACL: IUnknown;
 pwszRegKeyPath: LPCWSTR; pwszQuickComplete: LPCWSTR): HRESULT; stdcall;
 function Enable(fEnable: BOOL): HRESULT; stdcall;
end;

In RAD Studio it is declared as follows:

[ComImport, GuidAttribute('00BB2762-6A77-11D0-A535-00C04FD7D062'),
InterfaceTypeAttribute(ComInterfaceType.InterfaceIsIUnknown)]
IAutoComplete = interface
 function Init(hwndEdit: HWND; punkACL: IEnumString;
 pwszRegKeyPath: IntPtr; pwszQuickComplete: IntPtr): HRESULT;
 function Enable(fEnable: BOOL): HRESULT;
end;

Note the custom attributes used to describe the GUID and type of interface. It is also essential to use the ComImportAttribute
class. There are some important notes when importing COM interfaces. You do not need to implement the
IUnknown /IDispatch methods, and inheritance is not supported.

Data types

The same rules as unmanaged functions apply for most data types, with the following additions:

Unmanaged Data Type Managed Data Type

Supply Data Receive Data

GUID System.Guid System.Guid

IUnknown TObject TObject

IDispatch TObject TObject

Interface TObject TObject

Variant TObject TObject

SafeArray (of type) array of <type> array of <type>

BSTR String String

Using the MarshalAsAttribute custom attribute is required for some of the above uses of TObject, specifying the exact
unmanaged type (such as UnmanagedType.IUnknown, UnmanagedType.IDispatch or UnmanagedType.Interface). This is also
true for certain array types. An example of explicitly specifying the unmanaged type is the Next method of the IEnumString
interface. The Win32 API declares Next as follows:

HRESULT Next(
 ULONG celt,
 LPOLESTR * rgelt,
 ULONG * pceltFetched
);

In RAD Studio the declaration would be:

function Next(celt: Longint;
 [out, MarshalAs(UnmanagedType.LPArray, ArraySubType = UnmanagedType.LPWStr, SizeParamIndex =
0)]
 rgelt: array of string;
 out pceltFetched: Longint
): Integer;

Using Platform Invoke with Delphi for .NET RAD Studio for Microsoft .NET 1.2 Developing Applications with

50

1

Advanced techniques

When working with safearrays, the marshal layer automatically converts (for example) an array of bytes into the corresponding
safearray type. The marshal layer is very sensitive to type mismatches when converting safearrays. If the type of the safearray
does not exactly match the type of the managed array, an exception is thrown. Some of the Win32 safearray API’s do not set the
type of the safearray correctly when the array is created, which will lead to a type mismatch in the marshal layer when used from
.NET. The solutions are to either ensure that the safearray is created correctly, or to bypass the marshal layer’s automatic
conversion. The latter choice may be risky (but could be the only alternative if you don’t have the ability to change the COM
server that is providing the data). Consider the following declaration:

function AS_GetRecords(const ProviderName: WideString; Count: Integer;
 out RecsOut: Integer; Options: Integer; const CommandText: WideString;
 var Params: OleVariant; var OwnerData: OleVariant): OleVariant;

If the return value is known to always be a safearray (that doesn’t describe its type correctly) wrapped in a variant, we can
change the declaration to the following:

type
 TSafeByteArrayData = packed record
 VType: Word;
 Reserved1: Word;
 Reserved2: Word;
 Reserved3: Word;
 VArray: IntPtr; { This is a pointer to the actual SafeArray }
 end;

function AS_GetRecords(const ProviderName: WideString; Count: Integer;
 out RecsOut: Integer; Options: Integer; const CommandText: WideString;
 var Params: OleVariant; var OwnerData: OleVariant): TSafeByteArrayData;

Knowing that an OleVariant is a record, the TSafeByteArrayData record can be extracted from Delphi 7’s TVarData (equivalent
to the case where the data type is varArray). The record will provide access to the raw pointer to the safearray, from which data
can be extracted. By using a structure instead of an OleVariant, the marshal layer will not try to interpret the type of data in the
array. You will however be burdened with extracting the data from the actual safearray.

Special cases

Although it is preferred to use Activator.CreateInstance when creating an instance, it is not fully compatible with
CoCreateInstanceEx . When working with remote servers, CreateInstance will always try to invoke the server locally, before
attempting to invoke the server on the remote machine. Currently the only known work-around is to use CoCreateInstanceEx.

Since inheritance isn’t supported, a descendant interface needs to declare the ancestor’s methods. Below is the IAutoComplete2
interface, which extends IAutoComplete.

[ComImport, GuidAttribute('EAC04BC0-3791-11d2-BB95-0060977B464C'),
InterfaceTypeAttribute(ComInterfaceType.InterfaceIsIUnknown)]
IAutoComplete2 = interface(IAutoComplete)
 // IAutoComplete methods
 function Init(hwndEdit: HWND; punkACL: IEnumString;
 pwszRegKeyPath: IntPtr; pwszQuickComplete: IntPtr): HRESULT;
 function Enable(fEnable: BOOL): HRESULT;
 //
 function SetOptions(dwFlag: DWORD): HRESULT;
 function GetOptions(var dwFlag: DWORD): HRESULT;
end;

See Also

Marshaling Data with Platform Invoke

Using COM Interop in Managed Applications (see page 38)

Virtual Library Interfaces (see page 52)

1.2 Developing Applications with RAD Studio for Microsoft .NET Virtual Library Interfaces

51

1

http://msdn2.microsoft.com/en-us/library/fzhhdwae(vs.71).aspxurl=/library/en-us/cpguide/html/cpconmarshalingdatawithplatforminvoke.asp

1.2.5 Virtual Library Interfaces

This topic describes how to use a feature of Delphi called Virtual Library Interfaces. Virtual Library Interfaces allows you to
discover, load, and call unmanaged code at runtime, without the use of the DllImport attribute.

Standard PInvoke

To call an unmanaged function from managed code, you must use a .NET service called Platform Invoke, or PInvoke. The
Platform Invoke service requires you to declare in source code, a prototype for each unmanaged function you wish to call. You
can do this either within an existing .NET class, or you can create an entirely new class to organize the prototypes. You must
also tag each unnamaged prototype declaration with the DllImport attribute.

The DllImport attribute requires you to specify the name of the DLL in which the unmanaged function resides. Since the
unmanaged prototype is tagged with the DllImport attribute at compile-time, dynamic discovery of DLLs and their exported
unmanaged functions is difficult. Furthermore, if the unmanaged function is not actually exported from the DLL named in the
DllImport attribute, a runtime failure will result. To avoid a runtime failure, you would have to use LoadLibrary to load the
exact DLL you require, and then call GetProcAddress to verify the existance of the unmanaged function. Even so, you would
not be able to directly call the function using the pointer returned from GetProcAddress . Instead you would have to pass the
pointer along to a function in another unmanaged DLL. That function would then use the pointer to make the call.

Using Virtual Library Interfaces

Virtual Library Interfaces still must use the Platform Invoke service to call unmanaged code. However, instead of using the
DllImport attribute, Virtual Library Interfaces creates an interface on the unmanaged DLL at runtime, using methods of the
.NET System.Reflection.Emit namespace.

Using Virtual Library Interfaces requires that you do three things:

• Add Borland.Vcl.Win32 to the uses clause.

• Declare an interface containing the exported, unmanaged functions you wish to call.

• Call the Supports function to ensure that the unmanaged DLL exists and that the functions in the interface declaration are
actually exported.

If the Supports function returns True, then the DLL supports all of the functions named in the interface
declaration, so you know it is safe to call them. Within the interface declaration, you do not need to
use the DllImport attribute on the prototypes.

For example, if you have a DLL called MyFunctions.dll , that contains the following exported
functions:

function AFunction : Boolean;
function AnotherFunction : Boolean;

To call these functions from managed code, add the Borland.Vcl.Win32 unit to the uses clause and declare an interface in
Delphi:

uses Borland.Vcl.Win32, ...;
...
type
IMyFunctions = interface
['Your GUID'] // Not strictly required, but good practice
function AFunction : Boolean;
function AnotherFunction : Boolean;
end ;

The signature of the Supports function is:

function Supports(ModuleName: string ; Source: System. Type ; var Instance) : Boolean;

Virtual Library Interfaces RAD Studio for Microsoft .NET 1.2 Developing Applications with

52

1

To call the unmanaged functions, first call Supports to load the DLL, and create the interface on the DLL:

var
MyFunctions : IMyFunctions;
begin
 if Supports("MyFunctions.dll", IMyFunctions, MyFunctions) then
 if MyFunctions.AFunction then
 begin
 ...
 end;
 end;
end;

Virtual Library Interfaces have the same limitations in terms of compatible native parameter types and their mapping to .NET
types. In addition, all unmanaged functions are expected to use the stdcall calling convention.

See Also

Using COM Interop in Managed Applications (see page 38)

Using Platform Invoke with Delphi (see page 44)

1.2 Developing Applications with RAD Studio for Microsoft .NET Virtual Library Interfaces

53

1

1.3 Modeling Concepts
This section provides information on modeling and code visualization.

Topics

Name Description

Code Visualization Overview (see page 54) The Code Visualization feature is available in both the Enterprise and Architect
versions of RAD Studio. All other modeling tools and information related to
modeling relates only to the Architect version of RAD Studio.

1.3.1 Code Visualization Overview

The Code Visualization feature is available in both the Enterprise and Architect versions of RAD Studio. All other modeling tools
and information related to modeling relates only to the Architect version of RAD Studio.

Code Visualization and UML Static Structure Diagrams

RAD Studio's code visualization diagram presents a graphical view of your source code, which is reflected directly from the code
itself. When you make changes in source code, the graphical depiction on the diagram is updated automatically. The code
visualization diagram corresponds to a UML static structure diagram. A structural view of your project focuses on UML packages,
data types such as classes and interfaces, and their attributes, properties, and operations. A static structure diagram also shows
the relationships that exist between these entities.

This section will explain the relationship between source code and the code visualization diagram.

Note: code visualization, and the integrated UML modeling tools are two separate and distinct features of RAD Studio. Code
visualization refers to the ability to scan an arbitrary set of source code, and map the declarations within that code onto UML
notation. The resulting diagram is "live", in the sense that it always reflects the current state of the source code, but you cannot
make changes directly to the code visualization diagram itself. RAD Studio's model driven UML tools go a step further, giving you
the ability to design your application on the diagramming surface. While both product features are based on CodeGear Together
technologies, they each use different underlying mechanisms to produce and manipulate the diagram. The integrated model
design surface is additionally based on the designtime capabilities of CodeGear's Enterprise Core Objects (ECO) framework.
This document covers only the code visualization. For more information about building applications with the ECO framework and
using the wizards and modeling tools with ECO-enabled applications, see the separate ECO online help.

Understanding the Relationship between Source Code and Code Visualization

RAD Studio's code visualization tools use the UML notation and conventions to graphically depict the elements declared in
source code. The Code Visualization diagram shows you the logical relationships, or static structure in UML terms, of the
classes, interfaces and other types defined in your project. The IDE creates the Code Visualization diagram by mapping
certain source code constructs (such as class declarations, and implementation of interfaces) onto their UML counterparts, which
are then displayed on the diagram.

Top-Level Organization: Projects, UML Packages, and .NET Namespaces

To begin, code visualization consists of two parts of the IDE working together: The Model View window , and the Code
Visualization diagram . The Model View window shows you the logical structure of your projects in a tree, as opposed to the
file-centric view of the Project Manager window . Each project in a project group is a top-level node in the Model View tree .

Nested within each project tree-node, you will find UML packages. Each UML package corresponds to a .NET namespace

Code Visualization Overview RAD Studio for Microsoft .NET 1.3 Modeling Concepts

54

1

declaration in your source code (.NET namespaces can span multiple source files). You can expand the UML package to reveal
the types declared within.

Inheritance and Interface Implementation

The UML term for the relationship formed when one class inherits from a superclass is generalization. When the IDE sees an
inheritance relationship in your source code, it creates a generalization link within the child class node in the Model View tree.
On the Code Visualization diagram , the generalization link will be shown the using standard UML notation of a solid line with a
hollow arrowhead pointing at the superclass.

The UML term for interface implementation is realization. Similar to the case of inheritance, the IDE creates a realization link
when it sees a class declaration that implements an interface. The realization link appears within the implementor class in the
Model View tree, and on the diagram as a dotted line with a hollow arrowhead pointing at the interface. There will be one such
realization link for every interface implemented by the class.

Associations

In the UML, an association is a navigational link produced when one class holds a reference to another class (for example, as an
attribute or property). Code visualization creates association links when one class contains an attribute or property that is a
non-primitive data type. On the diagram the association link exists between the class containing the non-primitive member, and
the data type of that member.

Class Members: Attributes, Operations, Properties, and Nested Types

Code visualization can also map class and interface member declarations to their UML equivalents. Within the elements on the
Code Visualization diagram , members are grouped into four distinct categories:

• Fields: Contains field declarations. The type, and optional default value assignment are shown on the diagram.

• Methods: Contains method declarations. Visibility, scope, and return value are shown.

• Properties: Contains Delphi property declarations. The type of the property is shown.

• Classes: Contains nested class type declarations.

Standard UML syntax is used to display the UML declaration of attributes, operations, and properties.
Each of the four categories can be independently expanded or collapsed to show or hide the
members within.

See Also

UML Features in Delphi for .NET (Architect SKU only)

Integrated Modeling Tools Overview (Architect SKU only)

Importing and Exporting a Model Using XMI (Architect SKU only) (see page 142)

Using the Model View Window and Code Visualization Diagram (see page 143)

Using the Overview Window (see page 144)

1.3 Modeling Concepts RAD Studio for Microsoft .NET Code Visualization Overview

55

1

1.4 Developing Reports for .NET Applications
RAD Studio ships with Rave Reports from Nevrona. Using the report components, you can build full-featured reports for your
applications. You can create solutions that include reporting capabilities which can be used and customized by your customers.

Topics

Name Description

Using Rave Reports in RAD Studio (see page 56) The RAD Studio environment supports the integration of report objects in your
applications. This integration allows you to create a report using the Rave
Reports Designer or to add Rave Reports ActiveX components directly onto your
Web Forms in the RAD Studio Designer . Your application users can create and
display their own reports, or display existing reports. The RAD Studio integration
with Rave Reports allows you to:

• Include new report objects in projects.

• Add Rave Reports ActiveX objects onto Web Forms.

1.4.1 Using Rave Reports in RAD Studio

The RAD Studio environment supports the integration of report objects in your applications. This integration allows you to create
a report using the Rave Reports Designer or to add Rave Reports ActiveX components directly onto your Web Forms in the RAD
Studio Designer . Your application users can create and display their own reports, or display existing reports. The RAD Studio
integration with Rave Reports allows you to:

• Include new report objects in projects.

• Add Rave Reports ActiveX objects onto Web Forms.

Creating New Reports in RAD Studio

You can include Rave reports in RAD Studio just as you would other third-party components. The report is stored as a separate
Rave Report object. You can reference the report in other applications that need to call or generate that report. When you create
a new application, you can include the report object by adding a reference to it in the Project Manager . Rave Reports also
provide the capability to connect your report object to a datasource, which allows your application to build the report dynamically,
based on current database information.

Using Rave Reports ActiveX Components

You can add any Rave Reports ActiveX objects to your applications. The RAD StudioTool Palette provides a list of any available
ActiveX objects. Just drag the objects you want onto a Windows Form or a Web Form during design. Fill in the appropriate
properties and modify any code in the Code Editor . You may need to reset your .NET components and select the ActiveX
components from the Installed .NET Components dialog.

See Also

Design Report Method

Using Rave Reports in RAD Studio RAD Studio for Microsoft .NET 1.4 Developing Reports for .NET

56

1

1.5 Developing Applications with VCL.NET
Components

VCL.NET is an extended set of the VCL components that provide a way to quickly build advanced applications in Delphi. With
VCL.NET you can provide your Delphi VCL applications and components to Microsoft .NET Framework users. With RAD Studio
you gain the benefit of the .NET Framework along with the ease-of-use and powerful component-driven application development
of Delphi.

RAD Studio provides distinct application types for your use: you can create VCL.NET form applications that run on the .NET
Framework that use VCL.NET components and controls; you can create .NET applications that use the underlying .NET
Framework and .NET controls while offering RAD Studio code-behind; you can create powerful ASP.NET applications that use
the underlying .NET Framework, ASP.NET controls, and also offer RAD Studio code-behind. The following topics provide more
information on how to take advantage of the new VCL.NET provisions in RAD Studio.

Topics

Name Description

Changes Required Due to 64-bit .NET 2.0 Support (see page 58) Changes were made to support 64-bit .NET 2.0. These changes might require
minor code changes so that existing applications work correctly. See Making
Changes Required Due to 64-bit .NET 2.0 Support (see page 157) for detailed
information on specific changes required.

Language Issues in Porting VCL Applications to RAD Studio (see page 59) The VCL in RAD Studio was created with backward compatibility as the primary
goal. However, there are some ways in which the managed environment of .NET
imposes differences in the way VCL applications must work. This document
describes most of these differences, and indicates some of the steps you should
take to port a VCL application to the .NET environment.
This document does not attempt to describe the new extensions to the Delphi
language. It is limited to the way existing Delphi code maps to the new RAD
Studio language and VCL framework. This document does contain links into
specific... more (see page 59)

Porting VCL Applications (see page 69) When porting VCL applications from Delphi 7 to RAD Studio, there are issues
you need to consider. Along with basic language elements that need to be
replaced or modified, there are strategies that you should follow to make sure
that you port your applications fully and reliably.
This topic includes

• General Language Issues

• Renaming Packages

• New Language Features

• Porting Web Service Client Applications

VCL for .NET Overview (see page 71) VCL for .NET is the programming framework for building RAD Studio applications
using VCL components. RAD Studio and VCL for .NET are intended to help
users leverage the power of Delphi when writing new applications, as well as for
migrating existing Win32 applications to the .NET Framework.
These technologies allow a Delphi developer to migrate to .NET, taking their
Delphi skills and much of their current Delphi source code with them. RAD Studio
supports Microsoft .NET Framework development with the Delphi language and
VCL for .NET controls. RAD Studio ASP.NET also supports WebForms, and
SOAP and XML Web Services application... more (see page 71)

Porting Web Service Clients (see page 74) RAD Studio web services use the .NET Framework as the services layer. As a
consequence, any existing Delphi 7 or earlier web service client applications
need to be modified to use the .NET Framework.
This topic includes:

• Changes and Additions to Your Applications

• Implementation Notes

1.5 Developing Applications with VCL.NET RAD Studio for Microsoft .NET Changes Required Due to 64-bit .NET 2.0

57

1

1.5.1 Changes Required Due to 64-bit .NET 2.0 Support

Changes were made to support 64-bit .NET 2.0. These changes might require minor code changes so that existing applications
work correctly. See Making Changes Required Due to 64-bit .NET 2.0 Support (see page 157) for detailed information on
specific changes required.

Changes to support 64-bit

This document describes changes that might be required to existing VCL.NET applications to function correctly with the changes
made to support 64-bit .NET 2.0.

To provide single source, single executable support for both 32 and 64-bit platforms, handle types have been changed from
LongWord to IntPtr . IntPtr is an integer type the size of a pointer on the underlying platform, which is implemented as a
structure in .NET. It doesn't support the assignment, comparison and arithmetic operations commonly performed on handles in
the VCL. To supply backwards compatibility, a record helper has been created to support commonly used operations through
operator overloading.

Most code does not need modification to continue running on both x86 and x64 platforms, but there are some cases that require
minor changes.

Warning: These changes are required due to changes made to support 64-bit systems. They must be made for applications
intended for both 32-bit and 64-bit systems.

Changed Code Patterns

Code patterns may need to change in the following areas:

• Case statements

• Casting enumerations

• Using handles with sets

• Indexing into arrays

• Assuming a specific handle size

• Casting enumerations

Windows API declarations

A number of declarations have been changed to properly support single executables for both x86 and x64 platforms. In most of
these cases, the type of a function’s parameter or a structure’s field has been changed, and the compiler provides information to
easily fix affected code. Changes where the fix is less obvious include type changes to callback functions and modifications to
variant records. In these cases, a list of the affected callbacks and records has been provided in Making Changes Required Due
to 64-bit .NET 2.0 Support (see page 157).

Modified Callbacks

A few callbacks have changed parameters, so each of their occurrences needs to be modified.

Modified Variant Records

Variant records are implemented in Delphi.NET as records with explicit field layouts (as opposed to sequential layouts, which is
the .NET Framework default). This allows multiple fields to be “overlayed” at the same field offset, which results in incorrect
declarations when running on 64-bit platforms when the structure contains any variable size field (such as IntPtr). Variant
records with such fields have been modified to contain only one of the “variant” cases. The remaining fields have been changed
to properties to provide backwards compatibility. In most cases, source code is not affected by these changes. However, passing
a field as a var parameter that is now declared as a property does require a code change.

Changes Required Due to 64-bit .NET 2.0 RAD Studio for Microsoft .NET 1.5 Developing Applications with VCL.NET

58

1

See Also

Making Changes Required Due to 64-bit .NET 2.0 Support (see page 157)

1.5.2 Language Issues in Porting VCL Applications to RAD
Studio

The VCL in RAD Studio was created with backward compatibility as the primary goal. However, there are some ways in which
the managed environment of .NET imposes differences in the way VCL applications must work. This document describes most
of these differences, and indicates some of the steps you should take to port a VCL application to the .NET environment.

This document does not attempt to describe the new extensions to the Delphi language. It is limited to the way existing Delphi
code maps to the new RAD Studio language and VCL framework. This document does contain links into specific topics within
the Delphi Language Guide, where new language features are explained in detail.

This topic covers the following material:

• Migrating Pointer types

• Migrating Char and string types

• Creating and destroying objects

• Calling the Win32 API

• Migrating Variants

• Working with resources

• Change to OnCompare

Migrating Pointer Types

Pointer types are not CLS compliant, and are not considered "safe" in the context of the .NET Common Language Runtime
environment. The port of the VCL has, therefore, eliminated pointers, replacing them with appropriate alternatives such as
dynamic arrays, indexes into an array or string, class references, and so on. When porting a VCL application, one of the first
steps is to locate where you use pointer types and replace them as appropriate.

Untyped Pointers

Untyped pointers are considered unsafe code. If your code includes untyped pointers, the .NET utility PEVerify will fail to verify
it. Code that cannot be verified for type safety cannot be executed in a secured environment, such as a web server, SQL
database server, web browser client, or a machine with restricted security policies.

In the VCL, untyped pointers have been replaced with more strongly-typed values. In most cases, where you used to find an
untyped pointer, you will now find TObject. For example, the elements of TList are now of type TObject, rather than of type
Pointer . Your code can cast any type to an object, and cast a TObject to any other type (even value types such as Integer ,
Double , and so on). Casting TObject to another type will generate a runtime error if the object is not, in fact, an instance of the
type to which you are casting it. That is, this cast has the same semantics as using the as operator.

In some cases, the Pointer type has been replaced with a more precise type. For example, on TObject, the ClassInfo function
returns a value of type Type rather than an untyped pointer.

Untyped pointers that were used for parameters whose type varied depending on context have typically been replaced by
overloading the routine and using var parameters with the possible types. In the case of untyped pointers that are used with API
calls to unmanaged code (such as the Windows API or calls to a data access layer such as the BDE) the untyped pointer is
replaced with System.IntPtr. Thus, for example, the TBookmark type, defined in the Db unit, now maps to IntPtr.

1.5 Developing Applications with VCL.NET RAD Studio for Microsoft .NET Language Issues in Porting VCL

59

1

Code that used the address operator (@) to convert a value to an untyped pointer must now change. When the untyped pointer
has changed to TObject, usually all you need to do is eliminate the @ operator. On value types, you may need to replace the @
operator with a typecast to TObject, so that the value is "boxed". Thus, the following code

var
 P: Pointer;
 I: Integer;
begin
 I := 5;
 P := @I;

could be converted to

var
 P: TObject;
 I: Integer;
begin
 I := 5;
 P := TObject(I);

When the untyped pointer has changed to IntPtr, you need to use the Marshal class to allocate a chunk of unmanaged memory
and copy a value to it, rather than just using the @ operator. Thus the following code:

var
 P: Pointer;
 R: TRect;
begin
 R := Rect(0, 0, 100, 100);
 P := @R;
 CallSomeAPI(P);

would be converted to

var
 P: IntPtr;
 R: TRect;
begin
 R := Rect(0, 0, 100, 100);
 P := Marshal.AllocHGlobal(Marshal.SizeOf(TypeOf(TRect)));
 try
 Marshal.StructureToPtr(TObject(R), P, False);
 CallSomeAPI(P);
 finally
 Marshal.FreeHGlobal(P);
 end;

Note: All unmanaged memory that you allocate using the Marshal class must be explicitly freed. The .NET garbage collector
does not clean up unmanaged memory.

Procedure Pointers

A special case for untyped pointers is when they represent procedure pointers. In managed code, procedure pointers are
replaced by .NET delegates, which are more strongly typed. Declarations of procedural types are delegate declarations in RAD
Studio. You can obtain a delegate for a method or global routine using the @ operator. The code looks the same as obtaining a
procedure pointer on the Win32 platform, so in many cases there is nothing you need to change when porting code. However, it
is important to keep in mind that when you use the @ operator, you get a newly-created delegate, not a pointer.

If you are passing a procedure pointer to an unmanaged API using the @ operator, for example,

Handle := SetTimer(0, 0, 1, @TimerProc);

the only reference to the delegate is the one passed to the API call because the delegate is created on the fly. This means that
the garbage collector will eventually dispose of the delegate after the return of the unmanaged API. If, as in this case, the
unmanaged code may call the procedure after the return of the API call, you will encounter a runtime exception because the
delegate no longer exists. You can work around this situation by assigning the delegate to a global variable, and passing the

Language Issues in Porting VCL RAD Studio for Microsoft .NET 1.5 Developing Applications with VCL.NET

60

1

global variable to the unmanaged API.

When you call the Windows API GetProcAddress to obtain a procedure pointer, it is returned as an IntPtr. This value is not a
delegate. You can’t cast it to a delegate and call it. Instead, typically such code is translated to use Platform Invoke to call an
unmanaged API. GetProcAddress is useful to determine whether the API is available so that you do not get a runtime
exception when you use Platform Invoke. Thus, code such as the following:

type
 TAnimateWindowProc = function(hWnd: HWND; dwTime: DWORD; dwFlags: DWORD): BOOL; stdcall;
var
 AnimateWindowProc: TAnimateWindowProc = nil;
 UserHandle: HMODULE;
begin
 UserHandle := GetModuleHandle('USER32');
 if UserHandle <> 0 then
 @AnimateWindowProc := GetProcAddress(UserHandle, 'AnimateWindow');
 ...
 if AnimateWindowProc <> nil then
 AnimateWindowProc(Handle, 100, AW_BLEND or AW_SLIDE);

Would be translated to the .NET platform as follows

[DllImport('user32.dll', CharSet = CharSet.Ansi, SetLastError = True, EntryPoint =
'AnimateWindow')]
function AnimateWindow(hWnd: HWND; dwTime: DWORD; dwFlags: DWORD): BOOL; external;
var
 UserHandle: HMODULE;
 CanAnimate: Boolean;
begin
 UserHandle := GetModuleHandle('USER32');
 if UserHandle <> 0 then
 CanAnimate := GetProcAddress(UserHandle, 'AnimateWindow') <> nil
 else
 CanAnimate := False;
 ...
 if CanAnimate then
 AnimateWindow(Handle, 100, AW_BLEND or AW_SLIDE);

Note: The .NET example above is still late bound to the AnimateWindow API. An exception will not be generated when this
code is loaded, if the DLL or function aren't available. The function call is resolved only when the code is executed for the first
time.

String Pointers

Code that uses the PChar type usually serves one of three purposes:

• The type refers to a null-terminated string (especially when it is used with a Windows API call or an older RTL function).

• The type is used to navigate through a string when processing its value.

• The type is used to reference a block of bytes, relying on the fact that in Delphi for Win32, the Char type is a byte (the Char
type is two bytes on the .NET platform).

In the first case, you can usually replace the PChar type with the type string . In the case of Windows
API calls, the managed versions of the APIs now use a string or StringBuilder rather than a PChar ,
with the marshaling layer handling the conversions implicitly. Note that many of the RTL functions
that supported the PChar type have been eliminated from the RTL, and you must replace them with
corresponding versions that use the string type. The following table lists functions from the
SysUtils units that have been eliminated because they relied on the PChar type, and the
corresponding functions that use the string type:

PChar version String version

AnsiExtractQuotedStr AnsiDequotedStr or DequotedStr

AnsiLastChar, AnsiStrLastChar (use index operator and string length)

1.5 Developing Applications with VCL.NET RAD Studio for Microsoft .NET Language Issues in Porting VCL

61

1

AnsiStrComp, StrComp CompareStr, AnsiCompareStr, WideCompareStr

AnsiStrIComp, StrIComp CompareText, AnsiCompareText, WideCompareText

AnsiStrLComp, StrLComp System.String.Compare (StartsStr)

AnsiStrLIComp, StrLIComp System.String.Compare (StartsText)

AnsiStrLower, StrLower AnsiLowerCase, WideLowerCase,

AnsiStrUpper, StrUpper UpCase, AnsiUpperCase, WideUpperCase

AnsiStrPos, StrPos, AnsiStrScan, StrScan Pos

AnsiStrRScan, StrRScan LastDelimiter

StrLen Length

StrEnd, StrECopy (no equivalent)

StrMove, StrCopy, StrLCopy, StrPCopy, StrPLCopy Copy

StrCat, StrLCat • operator, Concat

StrFmt Format, FmtStr

StrLFmt FormatBuf

FloatToText FloatToStrF

FloatToTextFmt FormatFloat

TextToFloat FloatToStr

When a PChar type is used to navigate through a string, you must rewrite the code, replacing the PChar with an Integer that
represents an index into the string. When rewriting such code, you must is recognize when you have reached the end of the
string. When using the PChar type, there is a null character at the end of the string, and the code typically recognizes the end of
the string by finding this null character. With a string-and-index approach, there is no such null character and you must use the
string length to identify the end of the string. Be careful to check that the index is not past the end of the string before reading a
character or you will get a runtime error.

Note: String data is immutable, so you can’t write a single character into an existing string using a PChar

. You can accomplish this using string indexing (e.g. s[5]), however. When a PChar is used to reference a block of bytes, it is
typically replaced by either an IntPtr or a dynamic array of bytes (TBytes). If replaced by an IntPtr, the issues in translating are
the same as when replacing an untyped pointer. When replaced by TBytes , you my need to replace some PChar values with
an index into the byte array if it is used to navigate the block of bytes. This is like replacing PChar with Integer to navigate
through a string, except that indexes into TBytes are 0-based while indexes into strings are 1-based.

Writing Strings to Streams

In Delphi for Win32, it is common to find code similar to the following:

S1 := 'This is a test string';
Stream.WriteBuffer(S1[1], Length(S1));

On the Win32 platform, this code results in the entire string being written to the stream. On the .NET platform however, this same
code produces a quite different result. On the .NET platform, the compiler generates a call to the Char overloaded version of
WriteBuffer, with the result being only a single character (S1[1]) being written to the stream.

Other Pointer Types

Other typed pointers have been eliminated from the VCL. Typically, they are replaced by the type to which the original pointed. If
the pointer type was the parameter to a procedure call, it is typically converted to a var parameter so that the resulting code still
passes a reference rather than a copy of the argument. Sometimes, it is useful to change a value type into a class type so that

Language Issues in Porting VCL RAD Studio for Microsoft .NET 1.5 Developing Applications with VCL.NET

62

1

rather than passing a typed pointer, your code passes an object reference.

Migrating Char and String Types

In RAD Studio, the string type maps to the .NET String type, and you can freely access the members of String using a Delphi
string type, as demonstrated in the following example:

var
 S: string;
begin

 S := 'This is a string';

 // Note the typecast is not necessary.
 // S := System.String(S).PadRight(25);

 // Direct access to string class members
 S := S.PadRight(25);
 S := ('This is a new string').PadRight(25);

ANSI Strings and Wide Strings

The biggest difference for strings in RAD Studio is that the string type is now a Unicode wide string rather than an AnsiString .
This simplifies code for some locales, because you no longer need to worry about multibyte character sets. However, you must
examine your code for any assumptions about the size of a Char , because it is now two bytes rather than one. You can still use
strings with one-byte characters, but you must now declare them as AnsiString rather than string . The compiler converts
between wide and narrow strings if you use an explicit typecast or if you implicitly cast them by assigning to a variable or
parameter of the other type.

If your code calls any of the AnsiXXX routines for manipulating strings, you may want to change these to the corresponding wide
string version of the routine. The AnsiXXX routines have (deprecated) overloads that map to the wide versions, and the
overloaded routines accept wide strings for their parameters; this avoids implicit conversion back and forth between wide and
single-byte strings.

Note: Information can be lost when converting from wide to single-byte characters, therefore, you should avoid downcasting as
much as possible.

String Operations

Following the CLR value-type semantics, typically operations on strings return a copy of the string rather than alter the existing
string. This may make some code less efficient, because there is more copying going on. For example, consider the following:

var
 S: string;
begin
 S := 'This is a string';
 S[3] := 'a';
 S[4] := 't';

When compiled using on the Win32 platform, the character substitutions only require a single byte of memory to change each
time. In RAD Studio, each substitution results in a copy of the entire string. Because of this, it is a good idea to use a
StringBuilder instance when you are manipulating string values. StringBuilder allocates a chunk of unmanaged memory and
manipulates the string the way you expect. When you are finished, you can convert the result to a string by calling the ToString
method.

Note: The conversion to string

from a StringBuilder is a low-cost operation. The string data is not copied again.

1.5 Developing Applications with VCL.NET RAD Studio for Microsoft .NET Language Issues in Porting VCL

63

1

Uninitialized Strings

In RAD Studio, an uninitialized string has the value of nil . The compiler will automatically compensate if you compare an
uninitialized string with an empty string. That is, if you have a line such as

if S <> '' then ...

The compiler handles the comparison and treats the uninitialized string as an empty string. However, unlike code compiled on
the Win32 platform, other string operations do not automatically treat an uninitialized string like an empty string. This can lead to
Null Object exceptions at runtime.

Typecasts

Unlike Delphi for Win32, in RAD Studio, there is no distinction between an explicit typecast and the as operator. In both cases,
the cast only succeeds if the variable being cast is really an instance of the type to which you cast it. This means that code which
used to work (by casting between incompatible data types) may now generate a runtime exception.

Message Crackers

Perhaps the most common situation where the change to typecasts causes a problem is in the use of the message cracker
types. In the VCL on Win32, the Messages unit defined a number of record types to represent the parameters of a Windows
message. These records were all the same size, with the fields laid out to extract the information from the Windows message.
Thus, you could have the message parameters in one form (say, TMessage), and typecast it to another (say TWMMouse), and
extract the information you wanted. This worked because the two types were the same size, and an explicit typecast did not
raise an exception when you reinterpreted the type with the cast. Such a reinterpret cast is not allowed in .NET, and the same
code would lead to an invalid cast exception in RAD Studio.

To work around this situation, the message cracker types in RAD Studio are not records at all, but classes. Instead of casting a
TMessage value to another type such as TWMMouse, you must instantiate the other type, passing the original TMessage as a
parameter. That is, instead of

procedure MyFunction(Msg: TMessage);
var
 MouseMsg: TWMMouse;
begin
 if Msg.Msg = WM_MOUSE then
 with Msg as TWMMouse do
 ...
end;

you would do something like the following:

procedure MyFunction(Msg: TMessage);
var
 MouseMsg: TWMMouse;
begin
 if Msg.Msg = WM_MOUSE then
 with TWMMouse.Create(Msg) do
 ...
end;

To convert in the other direction (from a specialized message type to TMessage), you can use the new UnwrapMessage
function that is declared in the Messages unit.

Accessing Protected Members from Classes in Other Units

Another technique that involves what is now an invalid typecast is when you need to access the protected members of a class
that is declared in another unit. In Delphi for Win32, you can declare a descendant of the class whose members you want to see:

type
 TPeekAtWinControl = class(TWinControl);

Language Issues in Porting VCL RAD Studio for Microsoft .NET 1.5 Developing Applications with VCL.NET

64

1

Then, by casting an arbitrary TWinControl descendant to TPeekAtWinControl , you could access the protected methods of
TWinControl, because TPeekAtWinControl was defined in the same unit.

In general, this technique does not work in RAD Studio, because the arbitrary TWinControl descendant is not, in fact, an
instance of TPeekAtWinControl . The cast leads to an invalid cast exception at runtime.

Because this is a widely used technique in Win32, the compiler will recognize this pattern and allow it. However, the compiler
can't know what assembly a unit will be linked into when it compiles the source code. If the units are linked into assemblies, this
technique will fail at runtime with a type exception.

When you need to cross assembly boundaries, one workaround is to introduce an interface that provides access to the protected
members in question. Some of the classes in the VCL (TControl, TWinControl, TCustomForm) now use this technique, and you
can find the addition of interfaces to access protected members (IControl, IWinControl, IMDIForm).

Creating and Destroying Objects

Specific language issues with programming in Delphi on the memory-managed .NET platform are explained in the topic Memory
Management Issues on the .NET Platform.

Because of differences in the way objects are instantiated and freed, it is not possible to have a BeforeDestruction or
AfterConstruction method on a RAD Studio class. Any classes that override these methods must be rewritten.

The fact that these methods and the OldCreateOrder property do not exist in the VCL on the .NET platform impacts forms and
data modules that relied on OldCreateOrder being False. The OnCreate and OnDestroy events now act as if the
OldcreateOrder property is set to True, and will only be called from the constructor or destructor.

Note: Because OnDestroy is called from a destructor, it is not guaranteed to be called – if the application does not call Free ,
the object’s destructor is not called, even though it is garbage collected.

Working with the Unmanaged Win32 API

Most of the VCL is designed for working with the Windows API. This is handled in a way analogous to the way
Systems.Windows.Forms works: The VCL is a managed API that calls into the Windows API, marshaling between the
managed structures on the VCL side and the unmanaged types that the Windows API uses. Some units, particularly in the RTL,
have been ported so that they sit on top of CLR rather than the Windows API. Such units are more flexible, because they can
work with any .NET environment, even those that do not support the Windows operating system (for example, the Compact
Framework, Mono, and so on). Units that require the Windows operating system are tagged with the platform directive. In units
that are not tagged with the platform directive, any methods or classes that require Windows are tagged with the platform
directive.

Isolating Windows Dependencies

In order to maintain relative platform independence in RTL units, some methods functions that rely on Windows have been
moved into the WinUtils unit. In addition, some classes have been changed to rely more on CLR than Windows.

TObject, Exception, TPersistent, and TComponent, all map directly to classes implemented in the .NET Framework. In this way
they integrate more smoothly with other .NET applications. Because the corresponding CLR classes (System.Object,
System.Exception, System.Marshal, and System.Component) do not include all the methods that the VCL requires, the missing
methods are supplied by Delphi class helper declarations. In most cases, this mechanism is transparent. However, there are a
few cases where it requires you to make minor tweaks to your code. For example, with TComponent, FComponentState is now a
property of TComponentHelper rather than a true field of TComponent. This means that you can’t use the Include and Exclude
methods on FComponentState, because when passed a property, they operate on a copy of the property value, which does not
alter FComponentState. Thus code such as

Exclude(FComponentState, csUpdating);

Must be rewritten as

FComponentState := FComponentState – [csUpdating];

1.5 Developing Applications with VCL.NET RAD Studio for Microsoft .NET Language Issues in Porting VCL

65

1

TThread has also been changed to map to the CLR thread object. This means that the Thread handle is no longer an ordinal
type, but is rather a reference to the underlying CLR thread object. It also means that TThread no longer supports a ThreadID,
which is not supported by the CLR thread object. If your thread class requires a ThreadID, you should change it to derive from
TWin32Thread instead.

Calling the Windows API

Many Windows APIs have changed to use a more managed interface. Often, the types of parameters have changed, typically to
eliminate pointers. One common change is the PChar types have been replaced by string or StringBuilder.

When your application calls a Windows API, it is making a call into an unmanaged DLL. Because of this, all parameter values
must be marshaled into unmanaged memory, where Windows can work with it, and results are then unmarshalled back into
managed memory. In most cases, this marshaling is handled automatically, based on the attributes that have been added to API
declarations or type declarations. There are some cases, however, when your code must explicitly handle the marshaling –
especially when dealing with a pointer on a structure. To do this marshaling, use the System. Marshal class. Another class that
can be very useful when marshaling data to or from unmanaged memory is the BitConverter class. For example, the Marshal
class does not include a method to read or write a double value, but it can read or write Int64 values, which are the same size,
and the BitConverter class can convert these to or from doubles:

// copy double into unmanaged memory:
Mem := Marshal.AllocHGlobal(SizeOf(Int64));
Marshal.WriteInt64(Mem, BitConverter.DoubleToInt64Bits(DoubleVariable));
...
// copy double from unmanaged memory
DoubleVariable := BitConverter.Int64BitsToDouble(Marshal.ReadInt64(Mem));

When using the marshal class, remember that you must always free any unmanaged memory you allocate – the garbage
collector does not collect unmanaged memory.

Working with Windows Messages

One of the changes in the way RAD Studio applications work with Windows is the way message handlers work. The basics of
declaring and using messages handlers is the same, but the message-cracker types have changed from records to classes, and
you can no longer simply typecast from one message-cracker type to another. Most of this has already been covered in the
section on typecasts, but there are a few additional issues that bear mentioning:

• When porting code that sends a message, it is no longer sufficient to declare the message cracker on the stack, fill out its
fields, and pass it to a call to SendMessage . You must now add a call to create the message cracker, because it is now a
class.

• Inside a message handler, you can still call an inherited message handler using the inherited keyword. However, if you do
this, you must now be sure that the message cracker type is the same as that in the inherited message handler. For example,
if the inherited message handler has a parameter of type TWMMouse, and your message handler only needs TMessage,
declaring your message handler to use TMessage and calling inherited will lead to an invalid cast exception at runtime. Thus,
if you call the inherited message handler, you must now ensure that your message parameter matches that of the inherited
handler.

• If a message has parameters that are pointers to records (or pointers to anything, for that matter), then the corresponding
message cracker will have properties that represent those records. It is important to realize, however, that these are
properties and not fields. Thus, you can read the fields of the record directly from the property, but if your handler needs to
change any field values, you can no longer make assignments directly to the fields of the record. Instead, you must copy the
record to a local variable, make your changes, and then assign the result back to the property.

Using Windows messages is somewhat more expensive in RAD Studio, because in addition to the
overhead of working with the message queue, there is now the overhead of marshaling values to
and from unmanaged memory. This is particularly expensive when a parameter represents a pointer
(an object reference or a pointer to a structure). Such parameters are ultimately converted to a
WPARAM or LPARAM using an IntPtr, which acts as a handle to a block of unmanaged memory that
contains a copy of the structure. Object references are converted using a GCHandle. In most cases,
the predefined message cracker types handle the marshaling of these parameters, to and from the
IntPtr, but if you defining your own messages, you may need to perform your own marshaling. The

Language Issues in Porting VCL RAD Studio for Microsoft .NET 1.5 Developing Applications with VCL.NET

66

1

message cracker classes defined in the Controls unit illustrate how to handle these marshaling
issues.

The VCL defines and uses a number of private message types. These are, for the most part, defined in
the Controls unit, and have identifiers of the form CM_XXX or CN_XXX. Because of the extra
overhead in marshaling messages, several of the CM_XXX message types have been changed or
eliminated, replaced by other mechanisms that are less expensive in the .NET environment. The
following table lists the message types that have changed, and how the same task is accomplished
in RAD Studio:

Message type Change

CM_FOCUSCHANGED Replaced by a protected method (FocusChanged) on TWinControl. Replace message handlers
by an override to the FocusChanged method. Instead of sending messages, call
FocusChanged using the IWinControl interface.

CM_MOUSEENTER Meaning of LPARAM has changed. It used to pass an object reference to the child control
where the mouse entered – now it passes the index of that child in the FWinControls or
FControls list.

CM_MOUSELEAVE Meaning of LPARAM has changed. It used to pass an object reference to the child control
where the mouse exited – now it passes the index of that child in the FWinControls or
FControls list.

CM_BUTTONPRESSED Replaced by a protected method (ButtonPressed) on TSpeedButton. This was only used by
TSpeedButton. The CMButtonPressed message handler was replaced by ButtonPressed,
which is called directly.

CM_WINDOWHOOK Retired. TApplication.HookMainWindow and TApplication.UnhookMainWindow are both public
methods that can be called directly.

CM_CONTROLLISTCHANGE Replaced by a protected method (ControlListChange) on TWinControl. Replace message
handlers by an override to the ControlListChange method.

CM_GETDATALINK Replaced by a protected method (GetDataLink) on various data-aware controls. Call this using
the new IDataControl interface. When creating your own data-aware control (that does not
descend from an existing class in DBCtrls), you must implement IDataControl if the control is to
work in a DBCGrid.

CM_CONTROLCHANGE Replaced by a protected method (GetDataLink) on various data-aware controls. Call this using
the new IDataControl interface. When creating your own data-aware control (that does not
descend from an existing class in DBCtrls), you must implement IDataControl if the control is to
work in a DBCGrid.

CM_CHANGED Meaning of LPARAM has changed. It used to pass an object reference, now it passes a hash
code for the object that changed.

CM_DOCKCLIENT Replaced by a protected method (DockClient) on TWinControl. Replace message handlers by
an override to the DockClient method.

CM_UNDOCKCLIENT Replaced by a protected method (UndockClient) on TWinControl. Replace message handlers
by an override to the UndockClient method.

CM_FLOAT Replaced by a protected method (FloatControl) on TControl. Replace message handlers by an
override to the FloatControl method.

CM_ACTIONUPDATE Retired. TApplication.DispatchAction was promoted to public, and is called directly rather than
using a message.

CM_ACTIONEXECUTE Retired. TApplication.DispatchAction was promoted to public and is called directly rather than
using a message.

1.5 Developing Applications with VCL.NET RAD Studio for Microsoft .NET Language Issues in Porting VCL

67

1

Changes to the Threading Model

Sometimes, Windows API calls require the use of the Single Threaded Apartment (STA) model to function properly on some
operating systems. For example, on some versions of Windows 98, the Open and Save dialogs do not work unless your RAD
Studio application uses the Single Threaded Apartment model. Any portion of the VCL that uses COM requires this model.

The threading model is established when the process first starts up. If you are creating an executable, this is easy: just add the
[STAThreadAttribute] attribute to the line immediately preceding the begin statement in the dpr file. When creating a DLL,
you can’t force the threading model. However, you can call the CheckThreadingModel procedure in the SysUtils unit to raise
an exception when the application calls a method that requires a particular threading model.

This restriction is fairly common in .NET. By default, Microsoft Visual Studio adds the STAThreadAttribute attribute to
applications it creates.

Migrating Variants

The Variant type is very different in RAD Studio. Whereas the Win32 compiler maps Variant onto the record type that COM uses
for Variants, in RAD Studio, a Variant is more general. Any object (which in RAD Studio is any type) can act be manipulated as a
Variant. Thus, in RAD Studio, you could assign a control to a Variant.

The Delphi Variant type is a Delphi language notion that is not CLS compliant. If you are writing code in RAD Studio that uses
Variants, to the outside world will see, these will map to only as System. Object. Thus, to code written in other languages, the
flexibility in type conversions that Delphi Variants support provide is not available.

Changes to TVarRec

If your code uses Variants, chances are it should still work. However, because Variants are no longer based on the TVarRec
type, any code that works with the internals of a Win32 Variant by getting into the underlying TVarRec record must be rewritten
for .NET.

Note: Nearly all of the functions provided by the Variants unit are implemented in RAD Studio. If you need to get the VarType
of a Variant, you can accomplish this and still maintain platform portable code.

Changes to OLE Variants

The COM Interop layer automatically marshals Objects (and hence Variants). Thus, you can use RAD Studio Variants with COM.
However, when using RAD Studio Variants with COM, you should restrict the types you assign to the Variant to COM-compatible
types.

In Delphi for Win32, the compiler enforces COM restrictions on the kinds of data that can be assigned to an OleVariant. In RAD
Studio, OleVariant is simply a synonym for Variant. It does nothing to ensure that the Variant value is a COM-compatible type.

Changes to Custom Variants

Custom Variants are completely different in RAD Studio. Because Variants are just objects, you do not need to do anything at all
to create a custom Variant – any class you define is already a Variant type. However, to work well as a custom Variant, it helps
to implement some CLR interfaces: IComparable, IConvertible, and ICloneable. The Delphi compiler can use these to implement
Variant operations. Even with these interfaces, however, other, arbitrary Variant types, can’t be converted into your Variant
(class) unless you implement a FromObject method:

class function FromObject(AObject: System.Object): TObject; static;

FromObject takes an arbitrary source object (the Variant to convert to your class type) and returns the corresponding instance of
your class as a TObject.

Working With Resources

RAD Studio can link Windows resources (res files) into your assemblies. This means that when first porting an application, you
do not need to change the way you declare and use resources, and it will still work. In some cases, this is what you want to do

Language Issues in Porting VCL RAD Studio for Microsoft .NET 1.5 Developing Applications with VCL.NET

68

1

anyway. For example, if you use custom cursors, it is simpler to use the Windows API LoadCursor function to add the cursor to
TScreen.Cursors than to bring in the overhead of using Cursor and then obtaining a handle to the underlying cursor. However,
for resources that are not Windows-specific (such as bitmaps, icons, and strings) you will probably want to update to a .NET
resources file.

Resource Strings

When you use the resourcestring keyword, RAD Studio automatically creates the string resources as .NET resources rather
than Windows resources. This happens automatically and there is nothing special you need to do. The one thing to watch out for
is that you no longer can use the PResStringRec type.

Bitmaps

You can convert bitmaps into .NET resources using the ResourceWriter class. The resulting resources file can be linked into
your RAD Studio application, or deployed as a satellite assembly. To use these converted bitmaps, LoadFromResourceName
has new overloads for working with .NET resources (and the old version of LoadFromResourceName as well as the
LoadFromResourceID method have been deprecated.) Thus, for example, if your bitmaps are in a resources file with a name
such as MyResources.en-US.resources, you can load your bitmap as follows

MyBitmap.LoadFromResourceName('MyFirstBitmap', 'MyResources',
System.Assembly.GetCallingAssembly);

Note that this example assumes the resources are compiled into the assembly that is making the method call that contains this
line. If the resources are compiled into a different assembly, you can use System.Assembly.GetAssembly (using a type that is
defined in the relevant assembly) or System.Assembly.GetExecutingAssembly (to obtain the currently executing assembly).

Change to TTreeView.OnCompare

The signature for the OnCompare event in the TTreeView class has changed in the VCL for .NET. Existing code will cause a
runtime exception when the event handler is called.

In Delphi 7, the signature was:

TTVCompareEvent = procedure(Sender: TObject; Node1, Node2: TTreeNode; Data: Integer; var
Compare: Integer) of object;

In Delphi for .NET, the new signature is:

TTCompareEvent = procedure(Sender: TObject; Node1, Node2: TTreeNode; Data: TTag; var Compare:
Integer) of object;

See Also

Porting Web Services to Delphi for .NET (see page 74)

Using Platform Invoke with Delphi for .NET (see page 44)

1.5.3 Porting VCL Applications

When porting VCL applications from Delphi 7 to RAD Studio, there are issues you need to consider. Along with basic language
elements that need to be replaced or modified, there are strategies that you should follow to make sure that you port your
applications fully and reliably.

This topic includes

• General Language Issues

• Renaming Packages

• New Language Features

1.5 Developing Applications with VCL.NET RAD Studio for Microsoft .NET Porting VCL Applications

69

1

• Porting Web Service Client Applications

General Language Issues

Porting Delphi 7 applications to RAD Studio exposes several language issues in the .NET Framework. For instance, the .NET
Framework considers pointers to be unsafe and so does not consider applications that use pointers to fall into the category of
managed code. To be compliant with the .NET Framework, you need to modify your applications to avoid or circumvent the use
of pointers, the pChar type, and other language-specific elements.

In addition, there are critical issues with the Win32 API, using crackers, migrating char types, and other topics.

Renaming Packages

When porting a Delphi 7 package to RAD Studio, you will need to change the old package names in the "Requires" list to the
corresponding new package names. The following table shows the old and new names.

Old Package Name New Package Name

rtl Borland.Delphi and Borland.VclRtl

vcl Borland.Vcl

vclx Borland.VclX

dbrtl Borland.VclDbRtl

bdertl Borland.VclBdeRtl

vcldb Borland.VclDbCtrls

dbexpress Borland.VclDbExpress

dbxcds Borland.VclDbxCds

dsnap Borland.VclDSnap

dsnapcon Borland.VclDSnapCon

vclactnband Borland.VclActnBand

Borland.VclActnBand Packages are now installed by using Component Installed .NET Components .NET VCL
Components .

New Language Features

Several new features have been added to the Delphi language to support programming concepts and features of the .NET
platform and the CLS:

• Partitioning code into namespaces

• New visibility specifiers for class members

• Class static methods, properties, and fields

• Class constructors

• Nested type declarations within classes

• Sealed classes

• Final virtual methods

• Operator overloads in classes

• .NET attributes

• Class helper syntax

Programming in the garbage-collected environment of .NET brings a number of new issues related to
allocating and disposing of objects. These issues are discussed in Memory Management Issues on
the .NET Platform.

Porting VCL Applications RAD Studio for Microsoft .NET 1.5 Developing Applications with VCL.NET

70

1

Porting Web Service Client Applications

The .NET Framework employs a major architectural shift in how it handles web services and web service clients. Your existing
web service client applications need to be modified to operate on the .NET Framework. RAD Studio does not support the RIO
components, and uses a more transparent .NET approach to managing web service client applications. You will need to
eliminate RIO components and modify the way you access WSDL documents.

See Also

VCL.NET Overview (see page 71)

Language Issues in Porting VCL Applications to Delphi for .NET (see page 59)

Using Platform Invoke with Delphi for .NET (see page 44)

Porting Web Service Clients to Delphi for .NET (see page 74)

Porting a Delphi for Win32 Web Service Client Application to Delphi for .NET (see page 207)

1.5.4 VCL for .NET Overview

VCL for .NET is the programming framework for building RAD Studio applications using VCL components. RAD Studio and VCL
for .NET are intended to help users leverage the power of Delphi when writing new applications, as well as for migrating existing
Win32 applications to the .NET Framework.

These technologies allow a Delphi developer to migrate to .NET, taking their Delphi skills and much of their current Delphi
source code with them. RAD Studio supports Microsoft .NET Framework development with the Delphi language and VCL for
.NET controls. RAD Studio ASP.NET also supports WebForms, and SOAP and XML Web Services application development.

VCL for .NET is a large subset of the most common classes in VCL for Win32. The .NET Framework was designed to
accommodate any .NET-compliant language. In many cases Delphi source code that operates on Win32 VCL classes and
functions recompiles with minimal changes on .NET. In some cases, the code recompiles with no changes at all. VCL for .NET is
a large subset of VCL, therefore it supports many of the existing VCL classes. However, source code that calls directly to the
Win32 API requires source code changes. Also, dependent third-party Win32 VCL controls need to be available in .NET versions
for compatibility.

This section introduces:

• VCL for .NET Architecture

• VCL for .NET and the .NET Framework

• VCL for .NET Components

• Borland.VCL Namespace

• Porting Delphi Applications to RAD Studio

• Importing .NET Components for Use in VCL for .NET Applications

1.5 Developing Applications with VCL.NET RAD Studio for Microsoft .NET VCL for .NET Overview

71

1

VCL for .NET Architecture

VCL is a set of visual components for building Windows applications in the Delphi language. VCL for .NET is the same library of
components updated for use in the .NET Framework. VCL for .NET and the .NET Framework coexist within RAD Studio. Both
VCL for .NET and .NET provide components and functionality that allow you to build .NET applications:

• VCL for .NET provides the means to create VCL Forms applications, which are Delphi forms that are .NET-enabled, and use
VCL for .NET components.

• VCL for .NET provides VCL non-visual components which have been .NET-enabled to access databases. You can also
access databases through the ADO.NET and BDP.NET providers.

• .NET provides the means to build .NET Web Forms and Console applications, using .NET components, with Delphi
code-behind.

You can build VCL Forms applications using VCL for .NET components. You can also build ASP.NET
Web Forms applications using either VCL for .NET components or .NET components.

VCL for .NET and the .NET Framework

The .NET Framework provides a library of components, classes, and low-level functionality that manages much of the common
functionality, from the display of buttons to remoting functionality, without regard to the underlying implementation language. VCL
for .NET and the .NET Framework are functionally equivalent. Like the .NET Framework, VCL for .NET provides libraries of
components, controls, classes, and low-level functionality that help you build Web Forms and console applications that run on
the current Windows .NET Framework platform.

VCL for .NET is not a replacement for the .NET Framework.

You will still need the .NET runtime to use VCL for .NET, but you can build complete applications using VCL for .NET
components that will run on .NET platform.

You can build RAD Studio applications without using VCL for .NET, by creating Web Forms and Console applications using RAD
Studio code.

You can use RAD Studio to create powerful .NET applications using .NET components, or VCL for .NET components that have
been migrated from the Delphi VCL. If you have existing Delphi VCL applications that you want to run on Windows XP, you can
easily port those applications by using RAD Studio.

VCL for .NET Components

VCL for .NET consists of a set of visual and non-visual components. VCL for .NET builds on the concept of constructing
applications visually, eliminating much manual coding.

VCL for .NET Overview RAD Studio for Microsoft .NET 1.5 Developing Applications with VCL.NET

72

1

Visual Components

RAD Studio provides a set of visual components, or controls, that you can use to build your applications. In addition to the
common controls, such as buttons, text boxes, radio buttons, and check boxes, you can also find grid controls, scroll bars,
spinners, calendar objects, a full-featured menu designer, and more. These controls are represented differently in RAD Studio
than they are in frameworks, such as the .NET Framework.

In an IDE for other languages, such as C# or Java, you will see code-centric representations of forms and other visual
components. These representations include physical definitions, such as size, height, and other properties, as well as
constructors and destructors for the components. In the Code Editor of RAD Studio you will not see a code representation of
your VCL for .NET components.

RAD Studio is a resource-centric system, which means that the primary code-behind representations are of event handlers that
you fill in with your program logic. Visual components are declared and defined in text files with the extensions .dfm (Delphi
Forms) or .nfm (RAD Studio forms). The nfm files are created by RAD Studio as you design your VCL Forms on the Forms
Designer, and are listed in the resource list in the Project Manager for the given project.

Non-Visual Components

You can use non-visual components to implement functionality that is not necessarily exposed visually. For example, you can
access data by using non-visual components like the BDP.NET components, which provide database connectivity and DataSet
access. Even though these components do not have visual runtime behavior, they are represented by components in the Tool
Palette at designtime. VCL for .NET provides a variety of non-visual components for data access, server functions, and more.

Borland.VCL Namespace

VCL for .NET classes are found under the Borland.Vcl namespace. Database-related classes are in the Borland.Vcl.DB
namespace. Runtime library classes are in the Borland.Vcl.Rtl namespace.

Unit files have been bundled in corresponding Borland.Vcl namespaces. In some cases, units have been moved. However,
namespaces are identified in a way that will assist you in finding the functionality you want.

Source files for all of the RAD Studio objects are available in the c:\Program Files\CodeGear\RAD Studio\5.0\Source
subdirectory.

Porting Delphi Applications to RAD Studio

If you have existing applications written with an earlier version of Delphi, you might want to port them to .NET. In most cases, this
will be easier than rewriting the applications. Because RAD Studio takes advantage of significant structural elements in the .NET
Framework, you will need to perform some manual porting tasks to make your applications run. For example, the .NET
Framework does not support pointers in safe code. So, any instance of a pChar or pointer variable will need to be changed to a
.NET type. Many Delphi objects have been updated to accommodate these type restrictions, but your code may include
references to pointers or unsupported types. For more information, refer to the Language Guide in this Help system.

Importing .NET Components for Use in VCL for .NET Applications

RAD Studio provides the .NET Import Wizard to help you import .NET controls into VCL for .NET units and packages. For
example, you can wrap all .NET components, like those from the System.Windows.Forms assembly, in ActiveX wrappers that
can be deployed on VCL for .NET applications. Once you have imported the .NET components of your choice, you can add a
completed package file containing the units for each component to the Tool Palette . You can also view and modify the individual
unit files, which can be useful reference material when you are writing your own custom components.

See Also

Language Guide

Porting VCL Applications (see page 69)

Data Providers for .NET (see page 27)

1.5 Developing Applications with VCL.NET RAD Studio for Microsoft .NET VCL for .NET Overview

73

1

Importing .NET Controls to VCL for .NET (see page 165)

Deploying Applications

Building a VCL for .NET Form Application (see page 149)

1.5.5 Porting Web Service Clients

RAD Studio web services use the .NET Framework as the services layer. As a consequence, any existing Delphi 7 or earlier web
service client applications need to be modified to use the .NET Framework.

This topic includes:

• Changes and Additions to Your Applications

• Implementation Notes

Changes and Additions to Your Applications

Make the following changes and additions to your applications:

• Remove RIO components from your applications. They will no longer work in the .NET Framework. Before deleting any
components, save property information for the components, such as URLs.

• Remove Delphi 7 SOAP units from the uses clause and remove the uses reference to the Delphi 7 WSDL
Importer-generated Interface proxy unit.

• Add a web reference by choosing the Add Web Reference command from the context menu of the Project Manager.

Implementation Notes

The following notes address discrete issues that you may encounter when porting web service client applications.

Web Service Server Interoperability

Delphi 7 and the .NET SOAP implementations differ slightly. You need to set certain options on the server
(TSOAPDomConv.Options property) to succeed in getting multiple clients to work. Set the following options to ensure that both
client applications can process the SOAP packages and can transfer the correct encoding:

[soTryAllSchema, soRootRefNodesToBody, soUTF8InHeader, soUTF8EncodeXML]

Handling Exceptions

The following table shows the corresponding exceptions between Delphi 7 and the .NET Framework.

Delphi 7 Exception .NET Framework Exception

ERemotableException System.Web.Services.Protocols. SoapException

ESOAPHTTPException System.Net.WebException

Faultcodes

In Delphi 7, the ERemotableException.FaultCode property returns a qualified name, such as SOAP-ENV:Client.Login. You
must then extract the code using the ExtractLocalName function. The .NET Framework SoapException class provides the
SoapException.Code.Name property directly.

Porting Web Service Clients RAD Studio for Microsoft .NET 1.5 Developing Applications with VCL.NET

74

1

Monitoring SOAP Packets

In Delphi 7, the THTTPRIO component provides OnBeforeExecute and OnAfterExecute events, which allow you to monitor
requests and responses. You can implement similar functionality using the .NET Framework SoapExtension class. The following
is part of an example that implements this functionality. You can find the full example on Borland's CodeCentral. The link is
included in the link list at the end of this topic.

uses
 System.Xml, System.Web.Services, System.Web.Services.Protocols, System.IO;

type
 TSoapMessageEvent = procedure (Sender: TObject; const Xml: string) of object ;

 TSoapMonitor = class (TObject)
 private
 FOnRequest: TSoapMessageEvent;
 FOnResponse: TSoapMessageEvent;
 protected
 procedure DoRequest(const Xml: string);
 procedure DoResponse(const Xml: string);
 public
 class function FormatXmlData(const Xml: string): string ; static ;
 property OnRequest: TSoapMessageEvent add FOnRequest remove FOnRequest;
 property OnResponse: TSoapMessageEvent add FOnResponse remove FOnResponse;
 end ;
 .
 .
 .
{ TSoapMonitor }

procedure TSoapMonitor.DoRequest(const Xml: string);
begin
 if Assigned(FOnRequest) then
 FOnRequest(Self, Xml);
end ;

procedure TSoapMonitor.DoResponse(const Xml: string);
begin
 if Assigned(FOnResponse) then
 FOnResponse(Self, Xml);
end ;

class function TSoapMonitor.FormatXmlData(const Xml: string): string ;
var
 Doc: XmlDocument;
 Sw: StringWriter;
 Xw: XmlTextWriter;
begin
 Doc := XmlDocument.Create;
 Doc.LoadXml(Xml);
 Sw := StringWriter.Create;
 Xw := XmlTextWriter.Create(sw);
 Xw.Formatting := Formatting.Indented;
 Xw.Indentation := 2;
 Xw.IndentChar := ' ';
 doc.Save(xw);
 Result := sw.ToString;
 Xw.Close;
 Sw.Close;
end ;

1.5 Developing Applications with VCL.NET RAD Studio for Microsoft .NET Porting Web Service Clients

75

1

Working with SOAP Headers

In Delphi 7, you are required to send the header before every method call. The header object is freed after the call. In the .NET
Framework, the header class persists after calling a method, until new is assigned, or until the header class is cleared by
assigning nil .

SOAP Attachments

The .NET Framework does not support MIME attachments. Delphi 7 SOAP does not support DIME attachments.

See Also

ASP.NET Web Services Overview (see page 97)

Porting a Delphi for Win32 Web Service Client Application to Delphi for .NET (see page 207)

CodeCentral Monitoring SOAP Packets Example

Porting Web Service Clients RAD Studio for Microsoft .NET 1.5 Developing Applications with VCL.NET

76

1

http://codecentral.borland.com/codecentral/ccweb.exe/listing?id=20830

1.6 Developing Web Applications with ASP.NET
ASP.NET is the programming model for building Web applications using the .NET Framework. This section provides the
conceptual background for building ASP.NET applications using RAD Studio. In addition to supporting data access components
within the .NET Framework, RAD Studio includes DB Web Controls. DB Web Controls work with .NET Framework providers and
Borland Data Providers for .NET (BDP.NET) to accelerate Web application development.

Topics

Name Description

ASP.NET Overview (see page 79) ASP.NET is the .NET programming environment for building applications in
HTML that run on the Web. This topic provides introductory information about the
major components of the ASP.NET architecture and explains how ASP.NET
integrates with other programming models in the .NET framework. This topic
introduces:

• ASP.NET Architecture

• Web Forms

• Data Access

• Web Services

• Designtime Features

• Supported Web Servers

• Sample Applications

CodeGear DB Web Controls Overview (see page 81) Note: DB Web Controls (Borland.Data.Web namespace) are being deprecated
in 2007. You should use standard Web controls instead.
CodeGear DB Web Controls simplify database development tasks in
combination with BDP.NET and .NET Framework data access components. DB
Web Controls are data-aware controls that provide advanced functionality,
including data-aware grid, navigator, calendar, combobox, and other popular
components.
This section introduces:

• DB Web Controls Architecture

• Data-aware Components Advantages

• Supported Data Access Components

• DB Web Controls Namespace

• ASP.NET Application Deployment with DB Web Controls

Using DB Web Controls in Master-Detail Applications (see page 83) Note: DB Web Controls (Borland.Data.Web namespace) are being deprecated
in 2007. You should use standard Web controls instead.
DB Web Controls allow you to build full-fledged master-detail applications, using
the DBWebDataSource, DBWebGrid, and DBWebNavigator controls. To support
master-detail applications, these controls must provide a way to specify
cascading behavior.
This topic includes information about:

• Specifying Cascading Deletes

• Specifying Cascading Updates

1.6 Developing Web Applications with RAD Studio for Microsoft .NET

77

1

DB Web Controls Navigation API Overview (see page 85) Note: DB Web Controls (Borland.Data.Web namespace) are being deprecated
in 2007. You should use standard Web controls instead.
Although you can use the standard DBWebNavigator control for most
applications, you may need to exercise more control over the navigation in your
application. The DB Web Controls now provide an API that allows you to
fine-tune your navigation. For example, using the API, you can create a button
that performs navigation directly, rather than using the standard
DBWebNavigator control. Although you can hide buttons on the
DBWebNavigator, you might want to place controls in different locations on the
form. With DBWebNavigator,... more (see page 85)

DB Web Control Wizard Overview (see page 86) Note: DB Web Controls (Borland.Data.Web namespace) are being deprecated
in 2007. You should use standard Web controls instead.
The CodeGear DB Web Controls are data-aware web components. These DB
Web Controls allow you to encapsulate data-aware functionality into standard
web controls. One benefit of this approach is that the data binding function is
fulfilled by the control itself, eliminating the need to add a call to the DataBind
method.
The basic concepts involved in creating DB Web Controls are:

• The ASP.NET Control Execution Lifecycle

• Data Binding Concepts

• Overriding ASP.NET Methods

• Implementing DB Web Interfaces

• Essential Code Modifications

Using XML Files with DB Web Controls (see page 92) Note: DB Web Controls (Borland.Data.Web namespace) are being deprecated
in 2007. You should use standard Web controls instead.
The DBWebDataSource component provides a way for you to create and use
XML and XSD files as the data source for an ASP.NET application. Typically, you
only use these types of files with the DBWeb controls as a way of prototyping
your application. By using XML files as the data source, you can eliminate
potentially costly database resources during the design and development phase
of your project.
This topic covers the following issues.

• XML files as data sources.

• Suggested workflow strategy.

• Authentication... more (see page 92)

Working with DataViews (see page 94) Note: DB Web Controls (Borland.Data.Web namespace) are being deprecated
in 2007. You should use standard Web controls instead.
With DataViews you can set filters on a DataTable using the RowFilter property
or place data in a specific order. You can find the DataView component under the
Data Components area of the Tool Palette . This topic discusses:

• Runtime Properties

• Master-Detail Relationships

• ClearSessionChanges Method

• DataView Limitations

Deploying ASP.NET Applications (see page 95) This topic provides information about:

• Web Server Requirements

• Pre-Deploy Recommendations

• The RAD Studio ASP.NET Deployment Manager

For additional deployment information, see the deploy.htm
file located, by default, at C:\Program
Files\CodeGear\RAD Studio\5.0 .

RAD Studio for Microsoft .NET 1.6 Developing Web Applications with

78

1

Working with WebDataLink Interfaces (see page 96) Note: DB Web Controls (Borland.Data.Web namespace) are being deprecated
in 2007. You should use standard Web controls instead.
The characteristic that makes DB Web Controls different from traditional web
controls is that the DB Web Controls automatically handle all data binding for
you. Although you must still configure the links between data sources and
controls at design time, all runtime binding is handled, without the need for you to
add a data binding command in your code. When extending a DBWeb control
using the DBWeb Control Wizard , you will implement several interfaces that
provide the data binding capabilities. These... more (see page 96)

1.6.1 ASP.NET Overview

ASP.NET is the .NET programming environment for building applications in HTML that run on the Web. This topic provides
introductory information about the major components of the ASP.NET architecture and explains how ASP.NET integrates with
other programming models in the .NET framework. This topic introduces:

• ASP.NET Architecture

• Web Forms

• Data Access

• Web Services

• Designtime Features

• Supported Web Servers

• Sample Applications

ASP.NET Architecture

The major components of the ASP.NET architecture are Web Forms, ASP.NET server controls, code-behind logic files, and
compiled DLL files. Web Form pages contain HTML elements, text, and server controls. Code-behind files contain application
logic for the Forms page. Compiled DLL files render dynamic HTML on the web server.

CodeGear provides tools to simplify ASP.NET development. If you are familiar with rapid application development (RAD) and
object oriented programming (OOP) using properties, methods, and events, you will find the ASP.NET model for building Web
applications familiar.

Web Forms, Server Controls, and HTML Elements

Web Forms define the user interface for your Web application. Typically, a Web Form consists of a markup file (.aspx) that
provides the visual presentation and a code-behind file (.pas or .cs) that provides the program logic. The code-behind file is
compiled to a .dll and deployed to the server with the .aspx file. At runtime, the .aspx is compiled and linked against the
code-behind .dll . This enables you to change the .aspx file without recompiling the code-behind file.

The Web Form .aspx file consists of ASP.NET server controls and static HTML elements. Server controls are declared in your
code and can be accessed programmatically through properties, methods, and event handlers. They run on the web server and

1.6 Developing Web Applications with RAD Studio for Microsoft .NET ASP.NET Overview

79

1

render HTML to send back to the client.

HTML elements are static, client-side controls; they are not, by default, programmatically accessible. However, they are well
suited for static text and images on a Web Form.

Data Access

Web Forms can access data through ADO.NET. You can connect an ASP.NET application to an ADO.NET data source by using
the data components included in the .NET Framework, the AdoDbx Client, Blackfish SQL, or the Borland Data Provider
(BDP.NET) components.

Web Services

Web Services provide application components to many distributed systems using XML-based messaging. A web service can be
as simple as an XML message updating values in a remote application or can be an integral part of a sophisticated ASP.NET or
ADO.NET application. Web Services and ASP.NET share a common .NET infrastructure that allows for seamless integration.

Supported Web Servers

RAD Studio supports two servers for developing ASP.NET applications: Internet Information Services 6.0 (IIS) and Cassini. You
can use both IIS and Cassini on the same computer, provided you configure them to use different ports.

• IIS is a comprehensive, scalable web server and is included with Windows Server 2003. You can deploy applications to a
computer running IIS.

• Cassini is a web server this is used during the development process, but is not intended for application deployment. It is
easier to use than IIS because there is no configuration. Cassini was developed by Microsoft and made available for free
download with source. RAD Studio ships with a slightly customized version of Cassini that is integrated into our ASP.NET
support.

When you create an ASP.NET application, RAD Studio prompts you to specify the web server and location for the application.
You can set the default server and location for new applications, as well as the Cassini location and port, on the
Tools Options ASP.NET options page.

Designtime Features

RAD Studio provides several designtime features to help you accelerate the development of Web Forms, HTML, and CSS files.

Editing HTML and CSS Files

Many of the Code Editor features are also available when editing HTML and CSS files. Code Completion (CTRL+SPACE) and
syntax highlighting are available for HTML and CSS files. Error Insight is available for HTML files and highlights invalid HTML
with a wavy red underline. If you position the mouse over the highlighted HTML, a hint window is displayed indicating the
probable cause of the error.

When displaying an HTML page, the internal HTML formatter automatically indents the HTML to improve readability.
Alternatively, you can use HTML Tidy, the standard formatting tool from www.w3c.org. You can use HTML Tidy as needed to
format the file and check for errors by choosing the Edit HTML Tidy menu commands. Alternatively, you can set it as the
default formatter, instead of the internal formatter. You can also define tags that HTML Tidy would otherwise detect as invalid,
such as those prefixed with asp: . To access the HTML Tidy options, choose Tools Options HTML Tidy Options .

The Structure View displays a hierarchical tree view of the HTML tags in the active HTML page and is useful for navigating
large files. Double-clicking a node in the tree view positions the HTML file to the corresponding tag.

Designer Flow Layout and Grid Layout

When designing a Web Form, you can use either grid layout or flow layout for the Designer. In grid layout, controls are arranged
by absolute position and you can reposition them by dragging them on the form. An optional, visible grid is also available to help
you align controls. If you drag a control from the Tool Palette onto the Web Form, or if you click the control on the Tool Palette
and then click Web Form, the control is added using absolute positioning.

In flow layout, controls are arranged top to bottom on the Web Form, and you can reposition them by using the arrow keys. If you

ASP.NET Overview RAD Studio for Microsoft .NET 1.6 Developing Web Applications with

80

1

double-click a control on the Tool Palette , it will be added to the Web Form in flow layout.

The layout for an individual control can be changed by using the Absolute Layout button on the HTML Design toolbar at the
top of the Designer.

To permanently change the layout for new files created with RAD Studio, you can edit the page.aspx template file located at,
by default, CodeGear\RAD Studio\5.0\ObjRepos\DelphiDotNet .

Sample Applications

RAD Studio includes several ASP.NET sample applications in the Demos directory. Many of the sample applications include a
readme file that explains the application and lists any prerequisites. Before you attempt to open a sample application in the IDE:

• Check for a readme file in the application's directory and follow any set up instructions.

• Create a virtual directory for the sample application to avoid resource cannot be found errors in the browser at runtime
(see the procedure listed at the end of this topic).

See Also

ADO.NET Overview (see page 14)

Web Services Overview (see page 97)

Building an ASP.NET Application (see page 170)

DB Web Controls for ASP.NET (see page 81)

Deploying ASP.NET Applications (see page 95)

Creating a Virtual Directory for Demo Applications (see page 188)

System.Web Namespace

.NET Framework Developer's Guide ASP.NET Web Applications (MSDN)

1.6.2 CodeGear DB Web Controls Overview

Note: DB Web Controls (Borland.Data.Web namespace) are being deprecated in 2007. You should use standard Web controls
instead.

CodeGear DB Web Controls simplify database development tasks in combination with BDP.NET and .NET Framework data
access components. DB Web Controls are data-aware controls that provide advanced functionality, including data-aware grid,
navigator, calendar, combobox, and other popular components.

This section introduces:

• DB Web Controls Architecture

• Data-aware Components Advantages

• Supported Data Access Components

• DB Web Controls Namespace

• ASP.NET Application Deployment with DB Web Controls

DB Web Controls Architecture

DB Web Controls are a set of visual and non-visual components that speed up the creation of ASP.NET applications by
providing drag-and-drop capabilities along with a powerful data source discovery mechanism. For the most part, DB Web
Controls are common GUI web controls for ASP.NET applications. The connector control, the DBWebDataSource control, acts
as a data-aware connector between the visual controls and the underlying data source. In other words, the DBWebDataSource

1.6 Developing Web Applications with RAD Studio for Microsoft .NET CodeGear DB Web Controls Overview

81

1

http://msdn2.microsoft.com/en-us/library/system.web(vs.80)
http://msdn2.microsoft.com/en-us/library/ms644563(vs.80)

control acts as a conduit for the data that is stored in a data source and the controls that display that data on your ASP.NET
form. The DBWebDataSource control can reference both .NET Framework ADO.NET and BDP.NET components. For example,
the in-memory DataSet that is generated by an ADO.NET adapter (such as the SQLDataAdapter) or by one of the BDP.NET
adapters (such as the BDPDataAdapter). Additionally, you can use the DBWebDataSource to link to other types of data source
providers, such as text files, arrays, or collections.

Data-Aware Components Advantages

Typically, when you create an ASP.NET application that features controls that expose data from an underlying data source, such
as a database, you need to manually configure the binding between the data source and the controls. This means figuring out
the syntax and parameters for each control that must be bound to the data source.

The major advantage of using DB Web Controls is that once you have connected one DBWebDataSource control to your data
source, all of the DB Web Controls on your ASP.NET page that reference the DBWebDataSource automatically bind to the
underlying data source. You do not need to add any code to accomplish the data binding.

DB Web Controls provide the following advantages over standard web controls:

• Eliminates a need to call the WebControl.DataBind method. Normally, each ASP.NET control on the web form requires that
you add this call in the Page_Load routine or the control will not display data at runtime.

• Provides a designtime view of the data.

• Posts changes back to the DataSet automatically. Typically, ASP.NET controls require code to post back changes.

• Maintains current row position.

• Manages change and row state automatically. This means that clients from different machines can operate independently,
without regard to the server-side state.

In addition to these general advantages, DB Web Controls provide the following specific advantages:

• The DBWebDataSource maintains an ordered list of changes so that the user can undo changes in the order in which they
were made.

• The DBWebNavigator control provides navigation capabilities for grids, multiple text controls, and can be extended to
standard web controls.

• The DBWebDataGrid provides built-in capabilities for paging with numbers and icons, for adding Edit and Delete columns,
and other advanced capabilities. In other words, you no longer need to code these features into your grid control.

Supported Data Access Components

DB Web Controls are compatible with .NET Framework ADO.NET and CodeGear BDP.NET data access components. Any data
source that can be accessed by one of these providers can serve as the underlying data source for the DB Web Controls. In
addition, many of the DB Web Controls, like many .NET web controls in general, can access other objects as data sources, such
as arrays, collections, and files.

DB Web Controls Namespace

The namespace for DB Web Controls is Borland.Data.Web . By using reflection, you can learn much about the structure of the
namespace and the controls. You can add the namespace to your project, then open it in the Code Editor . This opens the
Reflection Editor and gives you a hierarchical view of all of the controls and their members.

Control Description

DBWebDataSource Acts as a bridge between the data source and the DBWeb controls.

DBWebAggregateControl Text box control that displays aggregate values from a specified column.

DBWebCalendar A calendar control.

DBWebCheckBox A check box control.

DBWebDropDownList A combo box control.

DBWebGrid A data grid.

CodeGear DB Web Controls Overview RAD Studio for Microsoft .NET 1.6 Developing Web Applications with

82

1

DBWebImage An image control.

DBWebLabel A label.

DBWebLabeledTextBox A text box with an attached label.

DBWebListBox A list box control.

DBWebMemo A memo field control.

DBWebNavigationExtender A non-visual component that allows you to define standard web control buttons as
navigation controls.

DBWebNavigator A navigation bar.

DBWebRadioButtonList A radio button group.

DBWebSound A sound control, which uses the default media player on your system.

DBWebTextBox A text box.

DBWebVideo A video control, which uses the default media player on your system.

ASP.NET Application Deployment with DB Web Controls

After creating an ASP.NET project with DB Web Controls, deploy your ASP.NET application as usual. No special considerations
are required.

See Also

Data Providers for .NET (see page 27)

Building an Application with DB Web Controls (see page 183)

Building an ASP.NET Application (see page 170)

Using XML Files with DB Web Controls (see page 92)

Working with DataViews (see page 94)

WebDataLink Interfaces (see page 96)

Deploying ASP.NET Applications (see page 95)

1.6.3 Using DB Web Controls in Master-Detail Applications

Note: DB Web Controls (Borland.Data.Web namespace) are being deprecated in 2007. You should use standard Web controls
instead.

DB Web Controls allow you to build full-fledged master-detail applications, using the DBWebDataSource, DBWebGrid, and
DBWebNavigator controls. To support master-detail applications, these controls must provide a way to specify cascading
behavior.

This topic includes information about:

• Specifying Cascading Deletes

• Specifying Cascading Updates

Cascading Deletes

In a master-detail application, the application typically uses an OnApplyChanges event to send the DataSet changes to the
server. It is necessary for the master data adapter's update method (in BDP.NET, the AutoUpdate event) to be called prior to the
detail data adapter's update method. Otherwise, insertion of detail rows fails if the master row has not yet been inserted. If the

1.6 Developing Web Applications with RAD Studio for Microsoft .NET Using DB Web Controls in Master-Detail

83

1

master row is deleted prior to the detail row, the server might return an error.

The property CascadingDeletes has been added to the DBWebDataSource control. The CascadingDeletes property specifies
how the server deletes rows in master-detail applications. The CascadingDeletes property provides the following three options:

• NoMasterDelete (Default)

• ServerCascadeDelete

• ServerNoForeignKey

Note: When DB Web Controls are connected to a DataTable that is a detail table in a relation, the control's rows are
automatically limited to the rows controlled by the current parent row in the master table.

NoMasterDelete

This option does not allow deletion of a master row containing detail rows. This option should be used when the server enforces
a foreign constraint between master and detail, but it does handle cascading deletes. You must:

1. Delete detail rows.

2. Apply the changes with an apply event (for example, the BdpDataAdapter. AutoUpdate event).

3. Delete the master row.

4. Call the apply event (for example, the BdpDataAdapter. AutoUpdate event).

This option is the default value for the CascadingDeletes property.

ServerCascadeDelete

This option allows deletion of the master row. This option should be specified whenever the server is set up to automatically
handle cascading deletes. When a master row is deleted, the detail rows will automatically disappear from view. Any time prior to
applying the change, you can undo the parent row deletion and all the detail rows come back into view. If the server is not set up
to handle cascading deletes, an error may occur when attempting to send changes to the server.

ServerNoForeignKey

This option automatically deletes all detail rows whenever a master row is deleted. This option should be specified whenever
there are no foreign key constraints between the master-detail tables on the server. Like the ServerCascadeDelete option,
when a master row is deleted, the detail rows will automatically disappear from view. Any time prior to applying the change, it is
possible to undo the master row deletion to redisplay the detail rows. If you specify this option and foreign key constraints exist
between master and detail tables, an error will be thrown by the server when attempting to delete the master table.

Cascading Updates

In a master-detail application, the application typically uses an OnApplyChanges event to send the DataSet changes to the
server. It is necessary for the update method of the master data adapter (in BDP.NET, the AutoUpdate event) to be called prior
to the update method of the detail data adapter. Otherwise, insertion of detail rows fails if the master row has not yet been
inserted. If the master row is deleted prior to the detail row, the server might return an error.

The property CascadingUpdates has been added to the DBWebDataSource control. This property specifies how the server
updates foreign-key values in master-detail applications. The CascadingUpdates property provides the following three options:

• NoMasterUpdate (default)

• ServerCascadeUpdate

• ServerNoForeignKey

Note: When DB Web Controls are connected to a DataTable that is a detail table in a relation, the rows of the control are
automatically limited to the rows controlled by the current parent row in the master table.

Using DB Web Controls in Master-Detail RAD Studio for Microsoft .NET 1.6 Developing Web Applications with

84

1

NoMasterUpdate

This option does not allow changes to the foreign key value of a master row if it has any associated detail rows. This option is the
default value for the CascadingUpdates property.

ServerCascadeUpdate

This option allows you to change the foreign key value of the master row. You should use this option whenever the server
automatically handles cascading updates. When the foreign key value of a master row is changed, the key value is changed
automatically in the detail rows. Anytime prior to applying the change, you can undo the change to the master row and all the
detail key changes will be undone also. If the server is not set up to handle cascading updates, an error might occur when
attempting to update the changes to the server.

ServerNoForeignKey

This option also allows changing the foreign key value of the parent row, but should be used whenever there is no foreign key
between the master and detail tables on the server.

See Also

Working with DataViews (see page 94)

Building Applications with DBWeb Controls (see page 183)

1.6.4 DB Web Controls Navigation API Overview

Note: DB Web Controls (Borland.Data.Web namespace) are being deprecated in 2007. You should use standard Web controls
instead.

Although you can use the standard DBWebNavigator control for most applications, you may need to exercise more control over
the navigation in your application. The DB Web Controls now provide an API that allows you to fine-tune your navigation. For
example, using the API, you can create a button that performs navigation directly, rather than using the standard
DBWebNavigator control. Although you can hide buttons on the DBWebNavigator, you might want to place controls in different
locations on the form. With DBWebNavigator, for instance, if you hide all buttons but Previous and Next, they still appear side by
side. To place the buttons on opposite sides of the form, use the navigation API methods or the DBWebNavigationExtender
control. Both allow you to turn standard web control buttons into navigation controls.

To provide this capability, the DBWebDataSource implements new IDBDataSource methods, each of which perform a specific
navigation task. You include these methods in the Form_Load event. You are not required to include click events.

The following methods are provided:

• RegisterNextControl

• RegisterPreviousControl

• RegisterFirstControl

• RegisterLastControl

• RegisterInsertControl

• RegisterDeleteControl

• RegisterUpdateControl

• RegisterCancelControl

• RegisterUndoControl

1.6 Developing Web Applications with RAD Studio for Microsoft .NET DB Web Controls Navigation API Overview

85

1

• RegisterUndoAllControl

• RegisterApplyControl

• RegisterRefreshControl

• RegisterGoToControl

See Also

CodeGear DBWeb Controls (see page 81)

Building an Application with DBWeb Controls (see page 183)

1.6.5 DB Web Control Wizard Overview

Note: DB Web Controls (Borland.Data.Web namespace) are being deprecated in 2007. You should use standard Web controls
instead.

The CodeGear DB Web Controls are data-aware web components. These DB Web Controls allow you to encapsulate
data-aware functionality into standard web controls. One benefit of this approach is that the data binding function is fulfilled by
the control itself, eliminating the need to add a call to the DataBind method.

The basic concepts involved in creating DB Web Controls are:

• The ASP.NET Control Execution Lifecycle

• Data Binding Concepts

• Overriding ASP.NET Methods

• Implementing DB Web Interfaces

• Essential Code Modifications

The ASP.NET Control Execution Lifecycle (CEL)

Anytime an ASP.NET web forms page is displayed, ASP.NET performs what Microsoft calls the CEL. This consists of a number
of steps, which are represented by methods:

1. Initialize

2. Load view state

3. Process postback data

4. Load

5. Send postback change notifications

6. Handle postback events

7. Prerender

8. Save state

9. Render

10. Dispose

11. Unload

You can add logic to any or all of these events by adding code to given methods, such as the Page_Load method or the OnInit
method. Most often, however, you will need to override the Render method.

Data Binding

In ASP.NET you can bind to a variety of data sources including databases, text files, XML files, arrays, and collections. In RAD

DB Web Control Wizard Overview RAD Studio for Microsoft .NET 1.6 Developing Web Applications with

86

1

Studio, controls provide a simple property-based interface to data sources. In the Object Inspector , you can bind a selected
control to a data source that is identified to your project by way of the BDP.NET controls, SQL client controls, or other data or file
controls. Each type of data control has different sets of binding requirements. For instance, any collection control, such as the
listbox control, data grid, or listview control, must bind to a data source that implements the ICollection interface. Other controls,
like buttons and text boxes, do not have this requirement.

When you are programming with web controls, you must add the code to perform the data binding. For example, if you created
an instance of a data grid, the command that you would add would look like:

dataGrid1.DataBind();

When using DB Web Controls, you no longer need to add this code. DB Web Controls handle the data binding operation for you.
The DBWebDataSource component serves as a bridge between your data source component and the specific DB Web control
you want to use. The DBWebDataSource creates and manages the data binding between the data source and the control.
Although you can physically add the code to instantiate a DB Web control and to perform the data binding, it is unnecessary to
do so. You can drop your components onto a web form and select the linkages from property drop down list boxes in the Object
Inspector .

Note: When creating a new DB Web control or extending an existing control, you may need to add code to perform binding of
some properties.

Overriding ASP.NET Methods

The main method you will need to override is the Render method (or the RenderContents method). The Render method is
responsible for displaying your controls visibly on the web page. When you define Rendere the Render method and pass it an
instance of the HtmlTextWriter class, you are indicating that whatever you code in the method is to be written to the ASP.NET
page in HTML. The Write method of the HtmlTextWriter class writes a sequential string of HTML characters onto a Web Forms
page.

The following example shows how the control is declared in the file that is built by the DB Web Control Wizard . This is only a
small segment of the code that is provided for you.

/// TWebControl1 inherits from the WebControl class of System.Web.UI.WebControls.

TWebControl1 = class(System.Web.UI.WebControls.WebControl)

When creating your own controls or extending existing controls, you must override the Render method to display your control.
The Render method is responsible for sending output to an instance of an HtmlTextWriter class. HtmlTextWriter sends a
sequence of HTML characters to the web forms page. The HTML characters are the representation in HTML of your control. For
example, a web grid control is represented on a web forms page as an HTML table. Each control has its own HTML
representation, but when you extend a control, you need to modify how the HTML is emitted to accurately represent your new
control.

/// The following lines declare the Render method.
/// Output represents an instance of the HtmlTextWriter class.
/// HtmlTextWriter is the class that writes HTML characters to
/// the ASP.NET Web Forms page.

 strict protected
 procedure Render(Output: HtmlTextWriter); override ;

implementation

{$REGION 'Control.Render override'}

/// The following procedure is the overridden Render method
/// You can include additional logic in the procedure to affect
/// the behavior of the control. This method, as written, does
/// nothing but write out a sequence of HTML characters that
/// define TWebControl1.

1.6 Developing Web Applications with RAD Studio for Microsoft .NET DB Web Control Wizard Overview

87

1

procedure TWebControl1.Render(Output: HtmlTextWriter);
begin
 Output. Write (Text);
end ;

You would need to implement the preceding code even if you were trying to extend the capabilities of a standard web control. To
extend one of the DB Web Controls you need to make more adjustments to this code.

Implementing DB Web Interfaces

When you run the DB Web Control Wizard , the wizard creates a code file for you, containing the basic code you need to extend
a DB Web control. This file is similar to the file you would create if you were trying to extend a standard web control. The major
difference is that the DB Web Control Wizard adds implementations of specific DB Web interfaces, which provide automatic
access to a data source, tables, columns and their respective properties. Because the DB Web Controls handle so much of the
postback and data binding automatically, you need to implement several specific interfaces to add this functionality to your
control.

Essential Code Modifications

When you create a new DB Web Control Library , the DB Web Control Wizard creates a file template for you. This file contains
the major elements you need to include in your project to create or extend a control. You will need to add or modify the following
elements:

• Change the ToolboxBitmap attribute to specify your own icon for the Tool Palette, if necessary.

• Change the control declaration to specify the control you intend to inherit.

• Declare the correct Render method.

• Implement the IDBWebDataLink interface.

• Implement the IDBWebColumnLink and IDBWebLookupColumnLink interfaces, if necessary.

• Modify or extend the Render method.

• Modify hidden field registration, if necessary.

• Set data binding on specific properties, if necessary.

Change the ToolboxBitmap Attribute

If you have a bitmap icon available for use in the Tool Palette, specify its path in the ToolboxBitmap attribute in the DB Web
Control Library file. The code might look something like this:

[ToolboxBitmap(typeof(WebControl1)]
['WebControl1.bmp')]

Make sure that you include the bitmap file in your project.

Change the Control Declaration

You can specify the ancestor more specifically. For example, if your control is an extended version of a DBWebGrid control, the
code would look like this:

 MyDataGrid = class(Borland.Data.Web.DBWebGrid, IPostBackDataHandler, IDBWebDataLink)

Declare the Correct Render Method

Your control can inherit from either the Control namespace or the WebControls namespace. WebControls actually derives
from the Control namespace.

The major difference for you is that WebControls defines all of the standard web controls, so if you plan on extending the

DB Web Control Wizard Overview RAD Studio for Microsoft .NET 1.6 Developing Web Applications with

88

1

capabilities of a web control like a textbox or a data grid, your control needs to inherit from WebControls .

By inheriting from WebControls , you are able to use all of the appearance properties of your base control. Typically, if you want
to create a control that has a UI, inherit from System.Web.UI.WebControls . In the DB Web Control Library file, you will
override the RenderContents method.

If your control inherits from Control , you need to supply the UI definition when you override the Render method. Typically, if
you want to create a control that has no UI, you inherit from System.Web.UI.Control . In the DB Web Control Library
file, you will override the Render method.

Implement the IDBWebDataLink Interface

This interface provides the access to a data source. You need to implement this interface for any DB Web control you intend to
extend. The implementation is handled for you in the DB Web Control Library file.

Modify or Extend the Render Method

In the Render or RenderContents method, depending on which namespace you inherit from, you can override the properties of
the base class. In the DB Web Control Library file the following code is automatically included for you:

procedure TWebControl1.Render(Output: HtmlTextWriter);
 begin
 Output.Write(Text);
 end;

This method passes the definition of your control to an instance of HtmlTextWriter, called Output in this case. The Text property
will contain the HTML text that is to be rendered. If you wanted to code directly within the method, You could add code, as
follows:

procedure TWebControl1.Render(Output: HtmlTextWriter);
 begin
 Output.WriteFullBeginTag("html");
 Output.WriteLine();

 Output.WriteFullBeginTag("body");
 Output.WriteLine();

 Output.WriteEndTag("body");
 Output.WriteLine();

 Output.WriteEndTag("html");
 Output.WriteLine();
 end;

This results in an ASP.NET web page with the following HTML code:

<html>
 <body>
 </body>
</html>

The use of the Text property, however, makes the code easier to work with. Once you have defined your control and its
properties, along with various HTML tags, you can pass the entire structure to the Text property. From that point forward, you
need only refer to the Text property to act upon the control. You define the properties of your control and pass them to the
HtmlTextWriter by creating a Text property that contains the control definition. It is instructive to look at the source code for some
of the existing DB Web Controls. For example, the following code shows the definition of the Text property for the
DBWebNavigator control.

protected string Text {
 get
 {

// Create a new instance of StringWriter.

1.6 Developing Web Applications with RAD Studio for Microsoft .NET DB Web Control Wizard Overview

89

1

 StringWriter sw = new StringWriter();

// Create a new instance of HtmlTextWriter.
 HtmlTextWriter tw = new HtmlTextWriter(sw);

// Call the DataBind procedure.
 DataBind();

// Call the AddButtons procedure.
 AddButtons();

// Call the SetButtonsWidth procedure.
 SetButtonsWidth();

// Add a style to a panel.
 ClassUtils.AddStyleToWebControl(FPanel, this.Style);

// Render the HTML start tag for a panel control.
 FPanel.RenderBeginTag(tw);

// Call the HtmlTextWriter.Write method and pass the table
// and tablerow tags to the web forms page.
 tw.Write("<table><tr>");

// If the ButtonType is set to ButtonIcons, iteratively create and render buttons
// to the web forms page.

 if(ButtonType == NavigatorButtonType.ButtonIcons)
 {
 for(int i = 0; i < IconNavButtons.Count; i++)
 {

// Write the first table cell tag.
 tw.Write("<td>");

// Instantiate an image button.
 ImageButton b = (IconNavButtons[i] as ImageButton);

// Render the button on the web page.
 b.RenderControl(tw);

// Write the closing table cell tag.
 tw.Write("</td>");
 }
 }
 else

 // If the ButtonType is something other than ButtonIcons, iteratively create and
 // Render default navigation buttons to the web forms page.

 {
 for(int i = 0; i < NavButtons.Count; i++)
 {

// Write the first table cell tag.
 tw.Write("<td>");

// Instantiate a button.
 Button b = (NavButtons[i] as Button);

// Render the button on the web page.
 b.RenderControl(tw);

// Write the closing table cell tag.

DB Web Control Wizard Overview RAD Studio for Microsoft .NET 1.6 Developing Web Applications with

90

1

 tw.Write("</td>");
 }
 }

// Write the closing row and table tags.
 tw. Write ("</tr></table>");

// Render the Panel end tag.
 FPanel.RenderEndTag(tw);
 return sw.ToString();
 }
}

Modify Hidden Field Registration

The DB Web Control Library file includes a call to register a hidden field, which identifies the key for a read-write control. If
you are creating a read-only control, you can remove or comment out this call. The call is as shown in the following sample:

Page.RegisterHiddenField(DBWebDataSource.IdentPrefix +
DBWebConst.Splitter + IDataLink.TableName, self.ID);

Set Data Binding on Specific Properties

If you need other properties data bound, other than the Text property, you can add that data binding code in the same location
where you find that the Text property is being bound. Typically, there is a call to DataBind in the PreRender method. The
DataBind procedure itself is similar to the following sample, taken from the DBWebLabeledTextBox control source code. You can
see in the following code that a number of properties are set after checking to see if the FColumnLink (from the
IDBWebDataColumnLink interface) is bound to some data source.

public override void DataBind()
{
 try
 {
 FTextBox.ReadOnly = FReadOnly;
 FTextBox.ID = this.ID;
 base.DataBind();
 ClassUtils.SetBehaviorProperties(FPanel, this);
 ClassUtils.SetOuterAppearanceProperties(FPanel, this);
 ClassUtils.SetSizeProperties(FPanel, this);
 if(!ClassUtils.IsEmpty(FLabel.Text))
 {
 ClassUtils.SetInnerAppearanceProperties(FLabel, this);
 SetProportionalSize();
 SetLabelFont();
 FTextBox.Text = null;
 }

 // If there is a data source.
 if (IColumnLink.DBDataSource != null)
 {

// And if there is bound data.
 if(FColumnLink.IsDataBound)
 {

// Then set behavior properties.
 ClassUtils.SetBehaviorProperties(FTextBox, this);

// Set appearance properties.
 ClassUtils.SetAppearanceProperties(FTextBox, this);

1.6 Developing Web Applications with RAD Studio for Microsoft .NET DB Web Control Wizard Overview

91

1

 // Set size properties.
 ClassUtils.SetSizeProperties(FTextBox, this);
 object o = IColumnLink.DBDataSource.GetColumnValue(Page,
IColumnLink.TableName, IColumnLink.ColumnName);

// If the page and the table and column names are not null,
// it means there is already bound data.
// Put the string representation of the page, table, and
// column names into the textbox.
 if(o != null)

 FTextBox.Text = Convert.ToString(o);

 else

// Otherwise, clear the textbox and bind it and
// its properties to the specified
column.
 FTextBox.Text = "";
 FTextBox.DataBind();
 }
}

See Also

CodeGear DB Web Controls Overview (see page 81)

Working with WebDataLink Interfaces (see page 96)

Using the DB Web Control Wizard (see page 195)

1.6.6 Using XML Files with DB Web Controls

Note: DB Web Controls (Borland.Data.Web namespace) are being deprecated in 2007. You should use standard Web controls
instead.

The DBWebDataSource component provides a way for you to create and use XML and XSD files as the data source for an
ASP.NET application. Typically, you only use these types of files with the DBWeb controls as a way of prototyping your
application. By using XML files as the data source, you can eliminate potentially costly database resources during the design and
development phase of your project.

This topic covers the following issues.

• XML files as data sources.

• Suggested workflow strategy.

• Authentication and caching issues.

XML Files as Data Sources

XML has become another standard data source for many applications, but for ASP.NET applications in particular. When working
with data that does not require strong security and therefore can be sent over HTTP as text, XML files provide a simple solution.
Because the files are text, they are easy to read. Because the XML tags describe the data, you can understand and process the
data structures with little difficulty.

Despite their obvious advantages over more complex data structures, XML files do have some drawbacks. For one thing, they
are not secure, therefore, it is not a good idea to pass sensitive data, such as credit card numbers or personal identification (PIN)
numbers, over the Internet by way of XML files. Another drawback is the lack of concurrency control over XML records, unlike
database records.

Using XML Files with DB Web Controls RAD Studio for Microsoft .NET 1.6 Developing Web Applications with

92

1

Nonetheless, the self-describing nature and the lightweight data format of XML files makes them a natural choice as data
sources for ASP.NET applications. The DBWebDataSource control, in particular, has been built to handle XML files as well as
other types of data sources. There are no special requirements for using XML files, no unique drivers or communication layers
beyond those that come with RAD Studio, so you will find it easy to work with XML files as data sources.

Suggested Workflow Strategy

You use the DBWebDataSource control to create the XML file for your application and to connect the XML file with a DataSet
object. The basic workflow strategy is this:

• Build an ASP.NET application, with a connection to your target database. Use DBWeb controls, including a
DBWebDataSource and specify a non-existent XML file. When you run the application, your DataSet receives the result set
from the target database and the DBWebDataSource then fills the XML file with tagged data representing the DataSet.

• From this point forward, you can eliminate the data adapter and data connection, keeping only a DataSet, the
DBWebDataSource, and the reference to the XML file. Your DBWeb controls will pull data from the XML file and DataSet
rather than from the database. For more information, follow the links to specific procedures on building and using XML files
with DBWeb controls.

Authentication and Caching Issues

The DB Web Controls support automatic reading of an XML file by the DBWebDataSource component at both designtime and
runtime. To support XML files, the DBWebDataSource component includes caching properties. If you use XML caching, the XML
file data is automatically read into the DataSet whenever a data source is loaded.

If you do not implement user authentication in your application, you will likely only use this feature for prototyping. Otherwise,
without user authentication, users may experience permissions errors when trying to access a single XML file concurrently.
When multiple clients are using the application, the XML file is constantly being overwritten by different users. One way to avoid
this is to write logic in your server application to check row updates and notify various clients when there is a conflict. This is
similar to what a database system does when it enforces table-level or row-level locking. When using a text file, like an XML file,
this level of control is more difficult to implement.

However, if you implement user authentication, you can create a real-world application by setting the UseUniqueFileName
property. This property specifies that the DBWebDataSource control will create uniquely named XML files for each client that
uses accesses the XML file specified in the XMLFileName property of the DBWebDataSource. This helps avoid data collisions
within a multi-user application. The drawback to this approach is that each XML file will contain different data and your server
application will need built-in logic to merge the unique data from each client XML file.

Read-write applications using XMLFileName require that all web clients have write access to the XML files to which they are
writing. If the web client does not have write access, the client will get a permissions error on any attempt to update the XML file.
You must grant write access to the clients who will use the application.

See Also

CodeGear DB Web Controls Overview (see page 81)

Creating a DB Web XML File (see page 185)

Building a Briefcase Application with DB Web Controls (see page 182)

1.6.7 Working with DataViews

Note: DB Web Controls (Borland.Data.Web namespace) are being deprecated in 2007. You should use standard Web controls
instead.

With DataViews you can set filters on a DataTable using the RowFilter property or place data in a specific order. You can find
the DataView component under the Data Components area of the Tool Palette . This topic discusses:

1.6 Developing Web Applications with RAD Studio for Microsoft .NET Working with DataViews

93

1

• Runtime Properties

• Master-Detail Relationships

• ClearSessionChanges Method

• DataView Limitations

Runtime Properties

At designtime, when a DBWeb control points to a DataView, the control is automatically updated whenever there is a change to
any DataView property that controls the rows to be displayed. To change the DataView properties at runtime, you must make
sure that the change is in place prior to the rendering of any of the DB Web Controls.

For example, if you use a listbox to set the filter, you would also:

• Set the listbox AutoPostback property to True.

• Add code in the Page_Load event to handle setting the RowFilter.

• Add code in the Page_Load event to call the ClearSessionChanges method after the RowFilter has been changed.

Assume you have two tables on a form. You bind an ASP.NET listbox to one table that contains lookup values. These values
serve as a filter for the second table, whose values display in a DBWebGrid. Set the AutoPostback property in the listbox to
True, handle the RowFilter setting in Page_Load , and call ClearSessionChanges after changing the RowFilter.

Tip: If you set the AutoRefresh property to False, which is the default, you might end up using cached data. Review the
WorldTravel demo in \Demos\DBWeb to see an example of how this is handled.

Master-Detail Relationships

You can make a DataView the master table in a master-detail relationship by adding a row filter. Set up a master-detail
relationship with two or more DataTables within a single DataSet, then connect the DataView to the master DataTable. When the
DBWebDataSource connects to the DataView, the DB Web Controls will let you select either the parent table, which is the
DataView, or the detail table.

ClearSessionChanges Method

The ClearSessionChanges method notifies the DBWebDataSource that the DataSet has changed and that existing row, column,
and changed data information is no longer valid. All pending changes are removed. If you try to call this method from a
DBWebNavigator button click event, the DBWebNavigator button will not work.

DataView Limitations

There are some limitations with the DataView:

• Inserted rows in a DataView behave differently than inserted rows in a DataTable.

• A DataView does not allow multiple inserts of null records. This means that you must add data to an inserted row before
adding a new inserted row.

• If an inserted row is deleted, that row is removed from the DataView and you cannot use Undo to recall it.

• If an inserted row contains a single non-null value, and that value is set to null, the row can be deleted in some cases and
cannot be recalled.

• DBWeb controls do not provide full support for the DataViewSort property. If a sort field is encountered, the values for the
fields contained in the Sort property cannot be changed, and the insert key will be disabled on the DBWebNavigator.

See Also

Data Providers for .NET (see page 27)

Building an ASP.NET Application (see page 170)

Deploying ASP.NET Applications RAD Studio for Microsoft .NET 1.6 Developing Web Applications with

94

1

1.6.8 Deploying ASP.NET Applications

This topic provides information about:

• Web Server Requirements

• Pre-Deploy Recommendations

• The RAD Studio ASP.NET Deployment Manager

For additional deployment information, see the deploy.htm file located, by default, at C:\Program Files\CodeGear\RAD
Studio\5.0 .

Web Server Requirements

Before deploying your application to a web server, consider the following web server requirements:

• Internet Information Services (IIS) 6.0 must be installed and operational on the web server.

• The .NET Framework must be installed on the web server.

• ASP.NET must be enabled on the web server.

• The ASPNET account on the web server must be configured with the correct permissions.

For information on installing IIS, see the documentation that accompanies your Windows operating system. For information on
performing the other tasks listed above, see the link to ASP.NET platform requirements at the end of this topic.

Pre-Deploy Recommendations

Before you deploy your application, you should disable debugging and rebuild the application to make it smaller and more
efficient:

• For a Delphi ASP.NET or C# application, update the application web.config file to disable debugging. For details, see the
link to using the Deployment Manager at the end of this topic.

• For a C# application, choose Project Options and change the Debug/Release option set to the Release option set and
recompile the application.

The RAD Studio ASP.NET Deployment Manager

While you can use the XCOPY command-line tool to copy your entire project directory to a web server, only a subset of those
files are actually required for deployment. For example, the .aspx , .config , and .dll files are required, but the
Delphi-specific files such as the .bdsproj , .dcuil , and .pas files are not required.

RAD Studio includes the ASP.NET Deployment Manager to assist you in deploying ASP.NET applications. You can use it to
deploy to a remote computer by using a share or an FTP connection, or to your local computer.

When you add a Deployment Manager to your project, an XML file (.bdsdeploy) is added to the project directory and a
Deploy tab is added to the IDE. You provide destination and connection information on the Deploy tab and optionally modify the
suggested list of files to copy, then the Deployment Manager copies the files to the deployment destination.

See Also

Deploying .NET Framework Applications (MSDN)

ASP.NET Platform Requirements (MSDN)

Deploying Applications Overview

Using the ASP.NET Deployment Manager (see page 196)

1.6 Developing Web Applications with RAD Studio for Microsoft .NET Working with WebDataLink Interfaces

95

1

http://msdn2.microsoft.com/en-us/library/6hbb4k3e(VS.80)
http://msdn2.microsoft.com/en-us/library/t6dbcb8d(vs.71)

1.6.9 Working with WebDataLink Interfaces

Note: DB Web Controls (Borland.Data.Web namespace) are being deprecated in 2007. You should use standard Web controls
instead.

The characteristic that makes DB Web Controls different from traditional web controls is that the DB Web Controls automatically
handle all data binding for you. Although you must still configure the links between data sources and controls at design time, all
runtime binding is handled, without the need for you to add a data binding command in your code. When extending a DBWeb
control using the DBWeb Control Wizard , you will implement several interfaces that provide the data binding capabilities. These
interfaces are discussed in this topic.

• IDBWebDataLink

• IDBWebColumnLink: IDBWebDataLink

• IDBWebLookupColumnLink: IDBWebColumnLink

IDBWebDataLink

All DB Web Controls implement this interface. The interface defines a data source and a data table, allowing you to connect to
and access data from a variety of data sources, including databases, text files, arrays, and collections. If your control only needs
to access data at the table level, you implement this interface.

IDBWebColumnLink:IDBWebDataLink

This interface is implemented by DBWeb column controls, such as DBWebImage,DBWebTextBox, and DBWebCalendar, among
others. The interface defines a column name to which a column control is linked. In combination with the IDBWebDataLink
interface, this interface provides access to standard table and column data.

IDBWebLookupColumnLink:IDBWebColumnLink

This interface is implemented by DBWeb lookup controls, such as DBWebListBox,DBWebRadioGroup, and
DBWebDropDownList. The interface defines a TableName within a DataSet, a ColumnName representing a table that contains
the data to be displayed in the lookup, and the column containing the values which, when a value is selected, are to be placed
into the ColumnName field linked to the control. By default, the ColumnName field is the same as DataTextField. Lookup
controls contain not only a text property, usually the item that is displayed in the control, such as a listbox, but also a value
property. The value property might be identical to the text property, or it might contain a completely different piece of data, such
as an identification number. For example, you might choose to display product names in a listbox or a drop down listbox, but set
the values for each displayed item to their respective product IDs. When a user selects a product name, the product ID is passed
to the application, rather than the name of the product itself. One benefit of this approach is to eliminate processing confusion
between products with similar names.

See Also

DBWeb Controls (see page 81)

Building an Application with DB Web Controls (see page 183)

Building an ASP.NET Application (see page 170)

Working with WebDataLink Interfaces RAD Studio for Microsoft .NET 1.6 Developing Web Applications with

96

1

1.7 Developing Web Services with ASP.NET
Web Services is a programmable entity that provides a particular element of functionality, such as application logic. Web
Services is accessible to any number of potentially disparate systems through the use of Internet standards, such as XML and
HTTP. Applications built with ASP.NET Web Services can be either stand-alone applications or subcomponents of a larger web
application and can provide application components to any number of distributed systems using XML-based messaging. RAD
Studio provides a number of methods that can help you build, deploy, and use applications with ASP.NET Web Services. For
more general information about Web Services, refer to the Microsoft .NET SDK Documentation.

Topics

Name Description

ASP.NET Web Services Overview (see page 97) Web Services is an Internet-based integration methodology that enables
applications, independent of any platform or language, to connect and exchange
information. Web Services is tightly integrated with the ASP.NET model used for
the .NET Framework. Unlike traditional native Windows applications, ASP.NET
Web Services applications contain objects and methods that are exposed over
the Web using simple messaging protocol stacks. Any client can invoke a Web
Services application over HTTP using a WebMethod. Like any method that can
be accessed by way of a simple Windows Form application, a WebMethod
provides some defined functionality. Unlike other types of methods, however,
the... more (see page 97)

Web Services Protocol Stack (see page 100) Understanding the Web Services infrastructure requires that you have some
exposure to Extensible Markup Language (XML), Simple Object Access Protocol
(SOAP), Web Services Description Language (WSDL), and Universal
Description, Discovery, and Integration (UDDI). Because the infrastructure
already exists, as a developer of XML web services, you can leverage the
existing technology by using standard Web protocols such as XML and HTTP.
CodeGear provides an easy way to create, deploy, and use web services without
concern for back-end processing so you can focus more on designing your
services.
This topic provides the conceptual background to understand how the protocol
stack contributes... more (see page 100)

ASP.NET Web Services Support (see page 102) ASP.NET Web Services support VCL.NET Forms and ASP.NET Web Forms.
These forms can be used to create client applications that access Web Services
applications. Use the Add Web Reference feature to add the desired ASP.NET
Web Services application to the client application. Using the UDDI Browser you
can locate Web Services applications you might want to use.
RAD Studio provides simple tools to develop and deploy your ASP.NET Web
Services applications. Additionally, RAD Studio helps you import WSDL
documents that describe particular Web Services applications and expose their
functionality to the client application. You can use the sample WebMethod
provided... more (see page 102)

1.7.1 ASP.NET Web Services Overview

Web Services is an Internet-based integration methodology that enables applications, independent of any platform or language,
to connect and exchange information. Web Services is tightly integrated with the ASP.NET model used for the .NET Framework.
Unlike traditional native Windows applications, ASP.NET Web Services applications contain objects and methods that are
exposed over the Web using simple messaging protocol stacks. Any client can invoke a Web Services application over HTTP
using a WebMethod. Like any method that can be accessed by way of a simple Windows Form application, a WebMethod
provides some defined functionality. Unlike other types of methods, however, the WebMethod is accessed by way of a web
browser. For more general information about Web Services, refer to the Microsoft .NET Framework SDK Documentation.

CodeGear provides tools to develop and access ASP.NET Web Services using a variety of techniques. As modular objects, web
services can be reused without additional coding.

1.7 Developing Web Services with RAD Studio for Microsoft .NET ASP.NET Web Services Overview

97

1

The following topics provide a brief introduction to the architecture of ASP.NET Web Services, the basic fundamentals of Web
Services communication, and to the files created when you develop ASP.NET Web Services.

This topic introduces:

• ASP.NET Web Services Architecture

• Web Services Prerequisites

• Web Services Scenarios

• ASP.NET Web Services Files

ASP.NET Web Services Architecture

The major components of the ASP.NET Web Services architecture include a client application, an ASP.NET Web Services
application, several files such as code files in the development language, .asmx files, and compiled .dll files. You need a web
server to house both ASP.NET Web Services application and the client. Optionally, you might include a database server for
storage and access of ASP.NET Web Services data.

Web Service Prerequisites

Before you begin developing a Web Services application, become familiar with the following concepts:

• XML (Extensible Markup Language). XML is a user-defined, human-readable structural description of data. Any data,
dataset, or document that you intend to send to, or receive from, a web service is formatted in XML.

• SOAP (Simple Object Access Protocol). SOAP is the standard messaging protocol that is used for communication between
web services and their clients. SOAP uses XML to format its messages, and contains the parameters or return values needed
by servers and clients.

• WSDL (Web Services Description Language). WSDL is the language that describes a web service. A web service can be
defined in any number of implementation languages. As a single-purpose utility, each web service must publish a description
of its interface, which allows clients to interact with it. The WSDL document, at a minimum, describes the required parameters
a client must provide and the result a client can expect to receive. The result description typically consists of the return data
type.

• UDDI (Universal Description, Discovery, and Integration). UDDI is an industry initiative that provides a standard repository
where businesses can publish web services for use by other companies. The UDDI repository contains links to, and
descriptions of, a variety of web services. You can use the UDDI browser in the IDE to locate web services, download WSDL
documents, and access additional information about web services and the companies that provide them.

Web Service Scenarios

Current web services provide simple information sources that you can easily incorporate into applications, such as stock quotes,
weather forecasts, and sports scores. As the demand for access to business logic over the web increases, companies are
finding ways of providing their customers with a class of applications to analyze and aggregate information. For example, a
financial institution might provide a web service to consolidate and continuously update customer financial information, such as
stock portfolio, 401(k), bank account, and loan information for display in a spreadsheet, web site, or a personal digital assistant
(PDA). This saves customer from having to manually collect and combine the information on their own. Although much of this
information is available through the web today, a web service will simplify accessing and consolidating information and will
ensure greater reliability.

ASP.NET Web Services Overview RAD Studio for Microsoft .NET 1.7 Developing Web Services with

98

1

You can use web services for solutions in the following areas:

• Enterprise Application Integration (EAI). A web service could allow multiple business partners to exchange inventory,
order, or financial data, for example, without specifically knowing the precise data layout in which data is stored for each
partner. For instance, many customer relationship management (CRM) or other front-end applications store customer data in
a format that is not entirely compatible with the way a back-end enterprise resource planning (ERP) system stores its financial
or inventory information. However, a sales organization may wish to use its CRM solution to process real-time orders with
up-to-date inventory information from the ERP system. A web service could be a solution to managing the transformation of
CRM requests to ERP storage and from ERP responses to CRM confirmations.

• Business-to-business (B2B) integration. Similar to the EAI solution, a B2B solution could take advantage of a Web
Services capability to provide cached data for large orders. B2B transactions, unlike business-to-consumer (B2C)
transactions, often consist of high-volume transactions that would be prohibitive to execute at the level of a B2C transaction.
For instance, a consumer might order one box of pencils from an online stationery store, but a business might order a
thousand boxes monthly, with multiple shipping addresses. The scale and complexity of a B2B transaction requires the
intervention of a web service to help simplify and process the transaction quickly and with consistency.

• Business-to-consumer integration. B2C web services typically manage web-based transactions. For example, a web
service that allows you to look up postal codes eliminates the need for businesses to create a new program every time the
service is included on a web site. Some commerce sites might use web services to help manage currency conversion when
taking international sales orders.

• Mobile (Smart client applications). Because the small footprint of a mobile client requires that memory usage be reserved
for only the most important system functions, and because mobile clients are, by definition, linked to the Internet by way of
their wireless communication protocols, Web services play a vital role in providing lightweight but powerful applications to
mobile devices. Web services allow mobile device users to perform a variety of tasks which require little more than data input
at the device and data display of the results. All processing can occur on a remote web service, thus decreasing bandwidth
requirements on the mobile device itself.

• Distributed and Peer-to-Peer. For certain types of distributed and peer-to-peer applications, web services play an important
role. If you use distributed computing over an uncontrolled network (such as the Internet) rather than over a LAN or corporate
network, you might use web services. Web services do not require state maintenance, thus offering potentially improved
performance, particularly where a request-response behavior is not absolutely required. For applications that require strict
request-response behavior and high security, you should consider using an older, more controlled model, such as COM or
.NET remoting.

ASP.NET Web Services Files

Certain files are automatically generated when you create applications with ASP.NET Web Services. These files enable the
ASP.NET Web Services to render their services through a web server. The following table lists the files and their descriptions.

File Description

.asmx When you create an ASP.NET Web Services application, a text file is automatically generated with the .asmx
extension. The required Web Services directive is placed at the top of this file to correlate between the URL
address of the web service and its implementation. Within the .asmx file, you add Web Services logic to the
methods visible by the client application. The .asmx file acts as the base URL for clients calling the XML web
service. This file is compiled into an assembly, along with other files, for deployment.

code-behind When you create an ASP.NET Web Service application, a code-behind file is generated with a language-specific
extension. You add your Web Services logic to the public method to process Web Services requests and
responses.

compiled
DLL files

Web Services DLL files provide dynamic services on the web server.

.wsdl This file is generated when you click the Add Web Reference feature to add the web service to your client
application. It describes the Web Services interface available to the client.

.map This file enables the discovery of a web service that is exposed on a given server. It also contains links to other
resources that describe the web service.

See Also

Web Services Protocol Stack (see page 100)

1.7 Developing Web Services with RAD Studio for Microsoft .NET ASP.NET Web Services Overview

99

1

ASP.NET Web Services Support (see page 102)

Building an ASP.NET "Hello World" Web Services Application (see page 206)

Accessing an ASP.NET "Hello World" Web Services Application (see page 202)

Microsoft Overview of Web Services

1.7.2 Web Services Protocol Stack

Understanding the Web Services infrastructure requires that you have some exposure to Extensible Markup Language (XML),
Simple Object Access Protocol (SOAP), Web Services Description Language (WSDL), and Universal Description, Discovery,
and Integration (UDDI). Because the infrastructure already exists, as a developer of XML web services, you can leverage the
existing technology by using standard Web protocols such as XML and HTTP.

CodeGear provides an easy way to create, deploy, and use web services without concern for back-end processing so you can
focus more on designing your services.

This topic provides the conceptual background to understand how the protocol stack contributes to Web Services functionality:

• How web services access and expose their services via the Web

• How XML passes information through standard SOAP and HTTP

• How a client can identify a web service offering

• How web services are discovered and accessed

Layers of the Web Services Protocol Stack

Web services consist of sets of internet protocols and standards for exchanging data between applications. The Web Services
Protocol Stack describes the layering of the set of internet protocols or rules used to design, discover, and implement web
services.

The major components or layers of a Web Service Protocol Stack include:

• Transport Layer —transports messages between applications

• XML Messaging Layer —encodes messages in XML that can be understood by both client and server

• WSDL Layer —describes the service provided

• UDDI Layer —centralizes services with a common registry

Transport Layer

The Transport layer is the first component in the stack and is responsible for moving XML messages between applications. The
Transport protocol most commonly used is the standard HTTP protocol. Other commonly used Web protocols are SMTP and
FTP.

Web Services Protocol Stack RAD Studio for Microsoft .NET 1.7 Developing Web Services with

100

1

XML Messaging

The messaging layer in the protocol stack is based on an XML model. XML is widely used in Web Services applications and is
the foundation for all web services. XML is just one of the standards enabling web services to map between technology domains.
You will find many resources on the Web that describe XML messaging. For more information, refer to the World Wide Web
Consortium (W3C) site on Messaging listed in the link list below.

The XML Messaging specification is a broadly-defined umbrella under which a number of more specific protocols are defined.
SOAP is one of the more popular standards, and is one of the most significant standards in communicating web services over
the network. XML provides a means for communicating over the Web using an XML document that both requests and responds
to information between two disparate systems. SOAP allows the sender and the receiver of XML documents to support a
common data transfer protocol for effective networked communication. You will find many resources on the Web that describe
SOAP. For more information, refer to the W3C site for SOAP listed in the link list below.

WSDL Layer

This layer represents a way of specifying a public interface for a web service. It contains information on available functions, on
data types for XML messaging, binding information about the transport protocol, and the location of the specific web service.

Any client application that wants to know about a service, what data it expects to receive, whether or not it delivers any results,
and the supported transport, uses WSDL to find that information. When you create a Web Service, it must be described and
advertised to its potential customers before it can be used. WSDL provides a common format for describing and publishing that
web service information. Typically, WSDL is used with SOAP, and the WSDL specification includes a SOAP binding.

Use CodeGear's Add Web Reference feature to obtain a WSDL document for your web service. The WSDL document, or proxy
file, is copied to the client and is used to call the server. This proxy file is named References.* , where the file name extension
reflects the language type. For more information about WSDL, refer to the W3C WSDL site listed in the link list below.

UDDI Layer

This layer represents a way to publish and find web services over the Web. You can think of this layer as the White and Yellow
Pages of your phonebook. The White pages of web services provides general information about a specific company, for
instance, their business name, description, and address. The Yellow Pages includes the classification of data for the services
offered, for instance, industry type and products.

The protocol you use to publish your web services is known as UDDI. The UDDI Business Registry allows anyone to search
existing UDDI data and enables you to register your company and its services. With RAD Studio, your data automatically gets
published to the registry, or a distributed directory for business and web services.

See Also

ASP.NET Web Services Overview (see page 97)

ASP.NET Web Services Support (see page 102)

Building an ASP.NET "Hello World" Web Services Application (see page 206)

Accessing an ASP.NET "Hello World" Web Services Application (see page 202)

SOAP

XML Messaging

WSDL

1.7 Developing Web Services with RAD Studio for Microsoft .NET ASP.NET Web Services Support

101

1

http://www.w3.org/2002/ws
http://www.w3.org/TR/REC-xml.html
http://www.w3.org/2002/ws/desc

1.7.3 ASP.NET Web Services Support

ASP.NET Web Services support VCL.NET Forms and ASP.NET Web Forms. These forms can be used to create client
applications that access Web Services applications. Use the Add Web Reference feature to add the desired ASP.NET Web
Services application to the client application. Using the UDDI Browser you can locate Web Services applications you might want
to use.

RAD Studio provides simple tools to develop and deploy your ASP.NET Web Services applications. Additionally, RAD Studio
helps you import WSDL documents that describe particular Web Services applications and expose their functionality to the client
application. You can use the sample WebMethod provided by RAD Studio, which lets you create and access an ASP.NET Web
Services application.

This topic includes:

• ASP.NET Web Services Client Support

• ASP.NET Web Services Server Support

• ASP.NET Web Services Namespaces

ASP.NET Web Services Client Support

You can create a Web Services application that is simply a provider, or a server application. This application resides on a web
server and can be accessed by any client that understands the application architecture. If you want to consume a Web Services
application yourself, you need to create a client application. RAD Studio provides different tools you can use to build client
applications:

• Web Forms

• Web References

Virtues of ASP.NET Web Forms

If you need to provide a thin-client application that performs simple data manipulation or satisfies a single-purpose requirement,
consider using ASP.NET Web Forms. Web Forms are platform-independent interfaces that display in a web browser and invoke
Web Services applications over a simple protocol like HTTP.

You can also create an ASP.NET Web Services application as a console application which can be accessed through either a
console window, or by another Web Services application, even one without a client.

Add Web Reference

You can add a Web Reference to your client application to access web services. A Web Reference refers to either a WSDL
document or an XML schema, which is imported into your client application. The WSDL document or XML schema describes a
web service. When you import one of these documents, RAD Studio generates the interfaces and class definitions needed for
calling that web service. Right-click the WebService node in the Project Manager and select Add Web Reference . A UDDI
Browser appears. To add the web service to your client application, you must navigate within the browser and locate the WSDL
document for the web service.

ASP.NET Web Services Server Support

The ASP.NET Web Services application you build in RAD Studio, provides programmatic access to the application logic of one
or more web services. You define the services you want to expose, how the services are to be used, and the infrastructure that
receives and processes requests and responses.

When you create a new ASP.NET Web Service application, the New ASP.NET Application dialog box lets you specify the

ASP.NET Web Services Support RAD Studio for Microsoft .NET 1.7 Developing Web Services with

102

1

name and location of the ASP.NET Web Services application, and automatically creates the files required for deployment. When
you specify the application settings, RAD Studio generates the .asmx file that acts as a base URL for clients calling the
ASP.NET Web Services application.

ASP.NET Web Services Namespaces

For more information on System.Web.Services namespaces, refer to the Microsoft .NET Framework SDK.

See Also

ASP.NET Web Services Overview (see page 97)

Web Service Protocol Stack (see page 100)

Building an ASP.NET "Hello World" Web Services Application (see page 206)

Accessing an ASP.NET "Hello World" Web Service Application (see page 202)

1.7 Developing Web Services with RAD Studio for Microsoft .NET ASP.NET Web Services Support

103

1

2 Procedures

This section provides how-to information for various areas of RAD Studio development.

Topics

Name Description

Database Procedures (see page 106) This section provides how-to information on developing database applications.

Interoperable Applications Procedures (see page 139) This section provides how-to information on building interoperable applications.

Modeling Procedures (see page 141) This section provides how-to information for modeling applications.

VCL for .NET Procedures (see page 145) This section provides how-to information on developing VCL for .NET
applications.

ASP.NET Procedures (see page 167) This section provides how-to information on developing ASP.NET Web Forms
applications.

Web Services Procedures (see page 202) This section provides how-to information on developing and using web services.

2 RAD Studio for Microsoft .NET

105

2

2.1 Database Procedures
This section provides how-to information on developing database applications.

Topics

Name Description

Adding a New Connection to the Data Explorer (see page 107) You can add new connections to the Data Explorer , which persist as long as the
connection object exists.

Adding a BDP Reconcile Error dialog to your BDP Application (see page 108) You can modify your BDP applications to call the BDP Reconcile Error dialog to
handle an update exception (as occurs sometimes when two people are trying to
simultaneously update the same row of a database table).

Browsing a Database in the Data Explorer (see page 109) Once you have a live connection, you can use the Data Explorer to browse
database objects.

Connecting to the AdoDbx Client (see page 110) You can establish a database connection using AdoDbx Client in several ways.

Creating Database Projects from the Data Explorer (see page 111) You can drag and drop data from the Data Explorer to any forms such as
Windows Forms or Web Forms, and Global.asax files. to populate datasets and
quickly build a database project. This allows you to automatically hook up
database components to your project and eliminates the need to provide a
connection string, which can be prone to errors if entered manually.

Creating Table Mappings (see page 112) Using the TableMappings property, you can map columns between a data source
and an in-memory dataset. This allows you to use different, often more
descriptive names for your dataset columns. You can also map a column in a
database table to a column in the dataset different from that which is selected by
default. The TableMappings property also allows you to create a dataset that
contains fewer or more columns than those retrieved from the database schema.

Executing SQL in the Data Explorer (see page 113) You can write, edit, and execute SQL in an SQL Window , which is available from
within the Data Explorer .

Handling Errors in Table Mapping (see page 114) Whenever you perform any type of comparison function between a data source
and an in-memory data representation, there is potential for error. Errors can
occur when a data source and its corresponding dataset do not share uniform
numbers of columns, or when column types in a data source do not correspond
to the column types in the dataset. In addition, other, internal errors can occur for
which there is no designtime workaround. You can use both the
MissingMappingAction property and the MissingSchemaAction property to
respond to errors in your table mapping operations. Use the
MissingMappingAction when you want to specify... more (see page 114)

Migrating Data Between Databases (see page 115) The DataExplorer makes it easy to migrate data from one database to another,
and even between providers. The DataExplorer lets you quickly copy a table from
one database and paste it into another database. Both the structure and the data
for the table or tables is migrated.
Data migration is supported by the BdpCopyTable class, which is available as a
designtime component from the Tool Palette . You can use this component to
programmatically migrate data.
Note: The BdpCopyTable class does not copy foreign keys or dependent
objects.

Modifying Connections in the Data Explorer (see page 116) You can modify connections in a variety of ways from the Data Explorer .

Modifying Database Connections (see page 117) The basic elements of a connection string tend to be the same from one
database type to another. However, each database type supports slightly
different connection string syntax. This topic addresses those differences.

Building a Database Application that Resolves to Multiple Tables (see page
122)

RAD Studio supports multi-table resolution with BDP.NET. Specifically, the
DataSync and DataHub components are designed to provide and resolve a .NET
DataSet from multiple heterogeneous data sources. In addition, these
components support the display of live data at designtime, and provide and
resolve master-detail data by generating optimal SQL for resolving to BDP data
sources.
The DataHub acts as a conduit between a DataSet and a DataSync. The
DataPort property for a DataHub can be set to any IDataProvider implementation.
DataSync implements IDataProvider and has a Providers collection that can
contain any .NET data provider that implements IDbDataAdapter. The GetData...
more (see page 122)

RAD Studio for Microsoft .NET 2.1 Database Procedures

106

2

Passing Parameters in a Database Application (see page 124) The following procedures describe a simple application that allows you to pass a
parameter value at runtime to a DataSet. Parameters allow you to create
applications at design time without knowing specifically what data the user will
enter at runtime. This example process assumes that you already have your
sample Interbase Employee database set up and connected. For purposes of
illustration, this example uses the default connector IBConn1, which is set to a
standard location. Your database location may differ.

Using the Data Adapter Preview (see page 126) CodeGear RAD Studio provides a tool that enables communication between a
data source and a dataset. You can use the Data Adapter Preview to specify
what data to move into and out of the dataset either in the form of SQL
statements or stored procedures that are invoked to read or write a database.

Using the Command Text Editor (see page 127) In order to create a DataSet, your BdpDataAdapter needs to have at least a SQL
Select statement defined for the CommandText property. This statement, once
built, appears as the CommandText of the BdpCommand object for the
BdpDataAdapter. You can enter this Select statement manually, or you can use
the Command Text Editor to construct the statement, along with Update, Insert,
and Delete statements, using a simple point-and-click mechanism. Using this
method, once you have a connection to a live data source, you will be able to see
the names of tables and columns in the Command Text Editor . You... more (
see page 127)

Using the Data Adapter Designer (see page 128) The Data Adapter contains, at a minimum, a SQL Select statement of the
SELECT command property. You can enter this statement yourself, or using the
Data Adapter designer you can construct the Select, along with the Update,
Insert, and Delete statements. The BdpCommandBuilder constructs the Update,
Insert, and Delete statements based on the tables and columns you have
selected. The Data Adapter designer uses a live connection to retrieve metadata
from which you can build the appropriate SQL statements for manipulating the
data you want to move from a DataSet back into your database.

Using the Connection Editor Designer (see page 128) Each connection object can support multiple named connections. These
connections can represent connections to multiple databases and database
types.

Using Standard DataSets (see page 129) The standard DataSet provides an in-memory representation of one or more
tables or views retrieved from a connected data source. Because of the level of
indirection used in coding the underlying data structure, you are only able to see
the column names from your data source at runtime. When you generate a
DataSet, it retrieves everything you specified in your Select statement in the Data
Adapter Configuration dialog. You can limit your columns by changing the Select
statement and creating a new DataSet.

Using Typed DataSets (see page 132) Typed DataSets provide certain advantages over standard DataSets. For one
thing, they are derived from an XML hierarchy of the target database table. The
XML file containing the DataSet description allows the system to provide
extensive code-completion capabilities not available when using standard
DataSets. Strong typing of DataSet methods, properties, and events allows
compile-time type checking, and can provide a performance improvement in
some applications.

Connecting to a Database using the dbExpress Driver Framework (see page
134)

This procedure tells how to use the dbExpress driver framework to connect to a
database and read its records. In the sample code, the dbExpress ini files
contain all the information about the particular database connection, such as
driver, user name, password, and so on.

Building a Distributed Database Application (see page 136) Data remoting is fundamental to developing distributed database applications.
The .NET remoting technology provides a flexible and extensible framework for
interprocess communication. With .NET remoting you can interact with objects in
different application domains, in different processes running on the same
machine, or in different machines on a network.
Using the RemoteServer and RemoteConnection components, you can easily
migrate a client/server application that uses DataHub and DataSync components
to a multi-tier DataSet remoting application. RemoteServer implements
IDataService and publishes itself as a singleton server activated object (SAO).
On the client side, the RemoteConnection properties form the URL for connecting
to... more (see page 136)

2.1.1 Adding a New Connection to the Data Explorer

You can add new connections to the Data Explorer , which persist as long as the connection object exists.

2.1 Database Procedures RAD Studio for Microsoft .NET Adding a New Connection to the Data

107

2

To add a new connection

1. Choose View Data Explorer . This displays the Data Explorer .

2. Select a provider from the tree list.

3. Right-click to display a pop-up menu.

4. Choose Add New Connection . This displays the Add New Connection dialog.

5. Enter the name of the new connection.

6. Click OK.

Tip: If you need to modify your new connection settings, right-click on your new connection and scroll down to modify a
connection

. A Connection Editor dialog appears. Enter your connection settings and click OK.

See Also

ADO.NET Component Designers (see page 21)

Browsing a Database (see page 109)

Executing SQL in the Data Explorer (see page 113)

Modifying Connections (see page 116)

2.1.2 Adding a BDP Reconcile Error dialog to your BDP
Application

You can modify your BDP applications to call the BDP Reconcile Error dialog to handle an update exception (as occurs
sometimes when two people are trying to simultaneously update the same row of a database table).

To add a BDP Reconcile Error dialog:

1. Add a BDPDataAdapter component to your existing WinForm.

2. Choose the Events tab on the Object Inspector window

3. Double-click in the content section of the blank pull-down list next to the OnUpdateError event. This will populate the first level
of the pull-down list. It will also create the code for the BdpDataAdapter method definition and implementation.

4. Add the lines that are in bold below to the method implementation to handle the event (the following example is using the C#
language):

private void bdpDataAdapter1_OnUpdateError(object sender,
Borland.Data.Common.BdpUpdateErrorEventArgs e)
 {
 Borland.Data.Common.ReconcileErrorForm f = new
Borland.Data.Provider.ReconcileErrorForm(e);
 f.ShowDialog();
 }

5. Save the changes to your WinForm.

The BDP Reconcile Error dialog will now appear whenever one user is trying to modify data in the same row of a database that
another user is working on. The dialog works as follows. As each row in a table is updated

Your new Error Reconcile Form will display four columns in the upper portion of the window, and six radio buttons in the bottom
portion of the window. The following table describes each of the columns.

Adding a BDP Reconcile Error dialog to RAD Studio for Microsoft .NET 2.1 Database Procedures

108

2

Column Label Meaning

Column Name The names of the columns of the table in which an error has occurred.

Current Row The contents of the row that is currently in contention.

Original Row What the row contained before the contentious data was entered.

Server Row The last update that was saved to the Server. (This represents what the row contains on the server.)

The three radio buttons on the lower left portion of the window allow you to indicate how to continue processing after handling
the error. You can only choose one option from the following three choices.

Radio Button Label Meaning

Retry update using
primary key

The error will be cleared, and then the update will be attempted again with the primary key. If the data
row from the server cannot be found, this option will be disabled.

Skip current row and
continue

Choose this option when you have decided not to attempt to update changes for the current row, but
you want to try to update the rest of the rows.

Abort updates The latest updates will not be applied, and error will be cleared, but no more updates will be attempted.

The three radio buttons in the lower right portion of the window allow you to indicate which data to write to the database. You can
only choose one option from the following three choices.

Radio Button Label Meaning

Use original values Place the data from the Original Row column (described previously) into the row where the contention
occurred.

Use server values Place the data from the Server Row column, (described previously) into the row where the contention
occurred.

Use current values Place the data from the Current Row column, (described previously) into the row where the contention
occurred.

See Also

ADO.NET Component Designers (see page 21)

Browsing a Database (see page 109)

Executing SQL in the Data Explorer (see page 113)

Modifying Connections (see page 116)

2.1.3 Browsing a Database in the Data Explorer

Once you have a live connection, you can use the Data Explorer to browse database objects.

To browse database objects

1. Choose View Data Explorer .

2. Expand a provider node to expose the list of available connections.

3. Expand a connection node to view the list of database objects (tables, views, and procedures).

Note: If you receive an error because your connection is not live, you should refresh your provider, and/or modify your
connection.

2.1 Database Procedures RAD Studio for Microsoft .NET Browsing a Database in the Data Explorer

109

2

To retrieve data from the database

1. Expand a connection in the Data Explorer .

2. Double-click a table name or view name to retrieve data. This operation returns a result set into a tabbed Data Explorer page
in the Code Editor .

Tip: You can also select a table in the Data Explorer

and right-click to display a pop-up menu with a Retrieve Data From Table command.

To run a stored procedure

1. Choose View Data Explorer .

2. Expand a connection in the Data Explorer and locate a stored procedure.

3. Double-click the stored procedure to view its parameters. The parameters open in a separate page on the design surface.

4. Edit input parameters as necessary.

5. Click the Execute button in the top left corner of the page to execute the procedure. The result set appears in a datagrid.

Tip: You can also select a procedure in the Data Explorer

and right-click to display a pop-up menu with an Execute command.

See Also

ADO.NET Component Designers (see page 21)

Adding a New Connection (see page 107)

Executing SQL in the Data Explorer (see page 113)

Modifying Connections (see page 116)

2.1.4 Connecting to the AdoDbx Client

You can establish a database connection using AdoDbx Client in several ways.

To make a connection using dbxconnections.ini file

1. The ConnectionName property referenced in the code sample is the name of a connection in the dbxconnections.ini file.

2. Use the following Delphi code to connect:

uses System.Data.Common
...
var
 Factory: System.Data.Common.DbProviderFactory;
 Connection: System.Data.Common.DbConnection;
begin
 Factory := System.Data.Common.DbProviderFactories.GetFactory('Borland.Data.AdoDbxClient');
 Connection := Factory.CreateConnection();
 Connection.ConnectionString := 'ConnectionName=IBConnection';
 Connection.Open;
end

To make a connection using a System.Configuration file

1. For this to work, the property settings in dbxconnections.ini and dbxdriver.ini for the database you are connecting to must be
migrated to the machine.config file. Here is an example of connection string text to add to the <connectionStrings> section of

Connecting to the AdoDbx Client RAD Studio for Microsoft .NET 2.1 Database Procedures

110

2

machine.config:

<add name="IBConnection"
 connectionString="ConnectionName=IBCONNECTION;
 drivername=Interbase;
 database=workerbee:C:\Borland\Interbase\examples\database\employee.gdb;
 rolename=RoleName;
 user_name=user;
password=password;
 sqldialect=3;localecode=0000;blobsize=-1;
 commitretain=False;waitonlocks=True;interbase transisolation=ReadCommited;
 trim char=False" providerName="Borland.Data.AdoDbxClient"/>

2. Use the following Delphi code to connect:

var
 Factory: System.Data.Common.DbProviderFactory;
 Connection: System.Data.Common.DbConnection;
 Config: System.Configuration.Configuration;
 ConnectSection: System.Configuration.ConnectionStringsSection;
 CurrentSettings: System.Configuration.ConnectionStringSettings;
begin
 Factory:= System.Data.Common.DbProviderFactories.GetFactory('Borland.Data.AdoDbxClient');
 Connection:= Factory.CreateConnection();
 Config:=
System.Configuration.ConfigurationManager.OpenExeConfiguration(ConfigurationUserLevel.None);
 ConnectSection:= Config.ConnectionStrings;
 CurrentSettings:= ConnectSection.ConnectionStrings['IBConnection'];
 Connection.ConnectionString:= CurrentSettings.ConnectionString;
 Connection.Open;
end;

See Also

AdoDbx Client Overview (see page 5)

Deploying the AdoDbx Client

2.1.5 Creating Database Projects from the Data Explorer

You can drag and drop data from the Data Explorer to any forms such as Windows Forms or Web Forms, and Global.asax files.
to populate datasets and quickly build a database project. This allows you to automatically hook up database components to
your project and eliminates the need to provide a connection string, which can be prone to errors if entered manually.

To create a database project from the Data Explorer

1. Make sure you have a live connection to a database.

2. From the View menu, select Data Explorer .

3. Choose File New Other and select a Delphi for .NET project. Typically, this will be either a Windows Form, a VCL Form, or
an ASP.NET application.

4. Expand the Data Explorer Tree by drilling down to the Table or View level. If the connection to your database is live, the
small red x will disappear when you expand the connection node for the database. If it's not live, you may need to modify the
connection string.

5. Using the cursor, grab one of the tables named in the list.

6. Drag and drop the table object onto your form. An AdoDbxConnection and an AdoDbxDataAdapter appear in the component
tray.

7. Specify the appropriate database properties for each database component. For instance, set the Active property to True if you
want to be able to view data in your component at design time.

2.1 Database Procedures RAD Studio for Microsoft .NET Creating Database Projects from the Data

111

2

Note: A DataGrid will not appear automatically so make sure you drop a DataGrid component onto your form to appropriately
display data, when necessary.

See Also

ADO.NET Component Designers (see page 21)

Browsing a Database (see page 109)

Executing SQL in the Data Explorer (see page 113)

Modifying Connections (see page 116)

2.1.6 Creating Table Mappings

Using the TableMappings property, you can map columns between a data source and an in-memory dataset. This allows you to
use different, often more descriptive names for your dataset columns. You can also map a column in a database table to a
column in the dataset different from that which is selected by default. The TableMappings property also allows you to create a
dataset that contains fewer or more columns than those retrieved from the database schema.

To create a table mapping

1. Create an application.

2. Add and configure database components.

3. Set the table mappings in the TableMappings dialog.

Note: This procedure assumes you are using BDP.NET database components.

To create an application

1. Choose File New Windows Forms Application for either Delphi for .NET or C#.

2. Click the Data Explorer tab to display your data sources.

3. Expand the list and locate a live data source.

4. Drag-and-drop a table name onto your Windows Form to add a data source to your application. You should see two objects in
the Component Tray : a BdpDataAdapter and a BdpConnection.

For more information about how to create database applications, refer to the additional ADO.NET and database topics in this
Help system.

To configure the database components

1. Select the BdpDataAdapter icon in the Component Tray .

2. Click the Configure Data Adapter designer verb to open the Data Adapter Configuration dialog.

3. Select the DataSet tab.

4. Click the New DataSet radio button.

5. Click OK. This creates a new dataset and displays an icon for it in the Component Tray .

To set table mappings

1. Select the BdpDataAdapter icon in the Component Tray .

2. Double-click the Collections field for the TableMappings property in the Object Inspector . This displays the
TableMappings dialog.

Creating Table Mappings RAD Studio for Microsoft .NET 2.1 Database Procedures

112

2

3. If you want to use an existing dataset as a model for the columns, check the Use a dataset to suggest table and column
names check box. This provides you with a list of column names from an existing dataset based on the schema of that
dataset. The column names are not linked to anything when you use this process.

4. If you checked the Use a dataset to suggest table and column names check box, you can choose the dataset from the
DataSet drop down list.

5. Select the source table from the Source table drop down list. If there is more than one table in the data source, their names
appear in the drop down list.

6. If you chose to use a dataset to suggest table and column names, and that dataset contains more than one table, you can
select the table you want to use from the Dataset table drop down list. The column names from the source table and from the
dataset should appear in the Column mappings grid. As they are displayed by default, they represent the mapping from
source to dataset; in other words, the data adapter reads data from each column named on the left side of the grid and stores
the data in the dataset column named in the corresponding field on the right side of the grid. You can change the names on
either side by typing new names or by selecting different tables. This allows you to store queried data into different dataset
columns than the ones created in the dataset by default.

7. If you want to modify a mapping, type a new name in the Dataset table column next to the target Source table column. This
results in the data from the Source table column being stored in the new dataset column.

Note: If you want to reset the column names so that the dataset columns match the data source columns, you can click the
Reset

button.

To delete a mapping

1. Select the grid row that you want to delete.

2. Click Delete. This will cause the query to ignore that column in the source table and to not fill the dataset column with any
data.

See Also

ADO.NET Overview (see page 14)

ADO.NET Component Designers (see page 21)

Handling Errors in Table Mappings (see page 114)

2.1.7 Executing SQL in the Data Explorer

You can write, edit, and execute SQL in an SQL Window , which is available from within the Data Explorer .

To open a SQL Window

1. Choose View Data Explorer .

2. Select a connection.

3. Right-click the connection and choose SQL Window . This opens a tabbed SQL Window in the Code Editor .

To execute SQL

1. Enter a valid SQL statement or stored procedure name in the multi-line text box at the top of the SQL Window .

2. Click Execute SQL . If the SQL statement or stored procedure is valid, the result set appears in the bottom pane of the SQL
Window .

Note: The SQL statement or stored procedure must operate against the current connection and its target database. You
cannot execute SQL against a database to which you are not connected.

2.1 Database Procedures RAD Studio for Microsoft .NET Executing SQL in the Data Explorer

113

2

3. Click Clear All SQL to clear the SQL statement or stored procedure from the multi-line text box.

See Also

ADO.NET Component Designers (see page 21)

Browsing a Database (see page 109)

Adding a New Connection (see page 107)

Modifying Connections (see page 116)

2.1.8 Handling Errors in Table Mapping

Whenever you perform any type of comparison function between a data source and an in-memory data representation, there is
potential for error. Errors can occur when a data source and its corresponding dataset do not share uniform numbers of columns,
or when column types in a data source do not correspond to the column types in the dataset. In addition, other, internal errors
can occur for which there is no designtime workaround. You can use both the MissingMappingAction property and the
MissingSchemaAction property to respond to errors in your table mapping operations. Use the MissingMappingAction when you
want to specify how the adapter should respond when the mapping is missing. Use the MissingSchemaAction when you want to
specify how the adapter should respond when it tries to write data to a column that isn't defined in the dataset.

To set the MissingMappingAction property

1. Once you have created an AdoDbxDataAdapter and have set up your table mappings, click the drop down list next to the
MissingMappingAction property in the Object Inspector.

2. Select Passthrough if you want the adapter to load the data source column data into a dataset column of the same name, or,
if there is no corresponding dataset column, if you want the adapter to perform the action specified in the
MissingSchemaAction property.

3. Select Ignore if you want to keep data from being loaded when data source columns are not properly mapped to dataset
columns. This could occur if mapped columns are of incompatible data types, lengths, or have other errors.

4. Select Error if you want the adapter to raise an error that you can trap.

To set the MissingSchemaAction property

1. Select Add if you want the data source table or column added to the dataset and its schema. Setting the
MissingMappingAction property to Passthrough and the MissingSchemaAction to Add results in a duplication of data source
table and column names in the dataset.

2. Select AddWithKey if you want the data source table or column added to the dataset and its schema along with the table's or
column's primary key information.

3. Select Ignore if you don't want a table or column added to the dataset, when that table or column aren't already represented in
the dataset schema. Specify Ignore when you want the dataset loaded only with data explicitly specified in the table
mappings. This may be necessary if your adapter calls a stored procedure or a user-defined SQL statement that returns more
columns than are defined in the dataset.

4. Select Error if you want the adapter to raise an error that you can trap.

See Also

ADO.NET Overview (see page 14)

ADO.NET Component Designers (see page 21)

Creating Table Mappings (see page 112)

Migrating Data Between Databases RAD Studio for Microsoft .NET 2.1 Database Procedures

114

2

2.1.9 Migrating Data Between Databases

The DataExplorer makes it easy to migrate data from one database to another, and even between providers. The DataExplorer
lets you quickly copy a table from one database and paste it into another database. Both the structure and the data for the table
or tables is migrated.

Data migration is supported by the BdpCopyTable class, which is available as a designtime component from the Tool Palette .
You can use this component to programmatically migrate data.

Note: The BdpCopyTable class does not copy foreign keys or dependent objects.

To migrate multiple tables

1. Choose View Data Explorer .

2. Right-click a provider type, such as Interbase, and choose Migrate Data. The Data Explorer page for data migration opens in
the Code Editor . This data migration page lets you select one or more tables from a source provider connection and a
destination connection to which the tables will be migrated.

3. Choose a connection from the Source Connection drop-down list box. The tables associated with this connection appear in
the list box beneath the connection.

4. Choose a connection from the Destination Connection drop-down list box. The tables associated with this connection appear
in the list box beneath the connection.

5. Select one or more tables to migrate from the list of tables associated with the source connection. To select consecutive
tables, click the first table, press and hold down the SHIFT key, and then click the last table. To select nonconsecutive tables,
press and hold down CTRL, and then click each table.

6. Click the Include (>) button to include these tables for migration to the destination connection. The selected tables appear in
the list of tables for the destination connection. If one of the selected tables has the same name as a table in the destination
connection, it cannot be migrated.

7. Click Migrate to copy the tables to the destination connection. The Data Migration page shows the progress as SQL types are
mapped, tables are created, data is retrieved from the source connection, and data is populated in the new table in the
destination connection. The result of each operation is reported for each table.

8. Right-click the Tables node in the destination provider and choose Refresh. Nodes for any new tables appear.

9. Double-click a new table node to confirm its structure and contents. The table opens in a page on the design surface.

To migrate a single table

1. Choose View Data Explorer .

2. Expand the Tables node in the source provider, and select the database table containing the data and structure you want to
migrate. You must have a valid connection to expand the provider nodes.

3. Right-click the table you want to migrate and choose Copy Table.

4. Expand the Tables node of the provider into which you want to migrate the data.

5. Right-click any table and choose Paste Table. The New Table Name dialog box appears.

6. Enter a name for the new table and click OK.

7. Right-click the Tables node in the destination provider and choose Refresh. A node for the new table appears.

8. Double-click the new table node to confirm its structure and contents. The table opens in a page on the design surface.

See Also

Data Providers for Microsoft .NET (see page 27)

Modifying Connections in the Data Explorer (see page 116)

2.1 Database Procedures RAD Studio for Microsoft .NET Migrating Data Between Databases

115

2

Browsing a Database in the Data Explorer (see page 109)

2.1.10 Modifying Connections in the Data Explorer

You can modify connections in a variety of ways from the Data Explorer .

To modify connections

1. Choose View Data Explorer .

2. Select a provider.

3. Right-click to display a pop-up menu to view your options.

To refresh a connection

1. Choose View Data Explorer .

2. Select a provider.

3. Right-click to display a pop-up menu.

4. Choose Refresh . This operation reinitializes all connections defined for the selected provider.

To delete a connection

1. Choose View Data Explorer .

2. Select a connection.

3. Right-click to display a pop-up menu.

4. Choose Delete Connection . This displays a confirmation message that asks if you want to delete the connection.

5. Click OK.

To modify a connection

1. Choose View Data Explorer .

2. Select a connection.

3. Right-click to display a pop-up menu.

4. Choose Modify Connection . This displays the Connections Editor dialog.

5. Make changes to the appropriate values in the editor.

6. Click OK.

To close a connection

1. Choose View Data Explorer .

2. Select a connection.

3. Right-click to display a pop-up menu.

4. Choose Close Connection . If the connection is open, this operation closes it.

Note: If the Close Connection

command is disabled in the menu, the connection is not open.

To rename a connection

1. Choose View Data Explorer .

Modifying Connections in the Data Explorer RAD Studio for Microsoft .NET 2.1 Database Procedures

116

2

2. Select a connection.

3. Right-click to display a pop-up menu.

4. Choose Rename Connection . This displays Rename Connection dialog.

5. Enter a new name.

6. Click OK. The Data Explorer displays the connection with its new name.

See Also

ADO.NET Component Designers (see page 21)

Browsing a Database (see page 109)

Executing SQL in the Data Explorer (see page 113)

Adding a New Connection (see page 107)

2.1.11 Modifying Database Connections

The basic elements of a connection string tend to be the same from one database type to another. However, each database type
supports slightly different connection string syntax. This topic addresses those differences.

To modify different types of database connections

1. Click on the Data Explorer tab in the IDE.

2. Select the database type of your choice.

3. Right-click to display the popup menu.

4. Choose Modify Connection to display the Connections Editor . The properties in the Connections Editor are organized into
three categories: Connections, Options, and Provider Settings. The Connections options designate the database and
authentication parameters. The Options area includes various database-specific database options, including transaction
isolation types. The Provider Settings area specifies assemblies and the client libraries required to accomplish the connection
to the given database.

Note: All of the procedures in this topic assume that you already have installed a database client, server, or both, and that
the database instance is running.

To modify an InterBase connection

1. Either enter the database name or navigate to the database on your local disk or a network drive, by clicking the ellipsis
button to browse. The standard supplied databases are typically installed into C:\Program Files\Common
Files\CodeGear Shared\Data .

2. Enter the password and username. By default, these are masterkey and sysdba , respectively.

3. Set the following options, if necessary. The default values are shown in the following table.

Option Description Default

CommitRetain Commits the active transaction and retains the transaction context after a commit. False

LoginPrompt Determines if you want the user to be prompted for a login every time the application
tries to connect to the database.

False

QuoteObjects Specifies that table names, column names, and other objects should be quoted or
otherwise delimited when included in a SQL statement. This is required for databases
that allow spaces in names, such as MS Access.

False

2.1 Database Procedures RAD Studio for Microsoft .NET Modifying Database Connections

117

2

RoleName If there is a role for you in the database, you can enter the rolename here. The role is
generally an authentication alias, that combines your identify with your access rights.

myRole

ServerCharSet Specifies the character set on the server. —

SQLDialect Sets or returns the SQL dialect used by the client. 3

TransactionIsolation Shared locks are held while the data is being read to avoid dirty reads, but the data
can be changed before the end of the transaction, resulting in non-repeatable reads or
phantom data. This specifies the value for the TAdoDbxTransaction. IsolationLevel
property.

ReadCommitted

WaitOnLocks Specifies that a transaction wait for access if it encounters a lock conflict with another
transaction.

False

4. You should be able to accept the defaults for the following Provider Settings:

Option Default

Assembly Borland.Data.Interbase,Version=Current Product Version,Culture=neutral,PublicKeyToken=Token

Provider Interbase

VendorClient gds32.dll

5. Click Test to see if the connection works.

6. Click OK to save the connection string.

Note: If you are writing ASP.NET applications, and are running the ASP.NET Web Forms locally for testing purposes, you
might need to modify the path statement that points to your database, to include the localhost: designation. For example,
you would modify the path shown earlier in this topic as such: localhost:C:\Program Files\Common
Files\CodeGear Shared\Data\employee.gdb .

Note: Your connection string should resemble something like

database=C:\Program Files\Common Files\CodeGear Shared\Data\EMPLOYEE.GDB;
assembly=Borland.Data.Interbase,Version=2.0.0.0,Culture=neutral,PublicKeyToken=91d62ebb5b0d1b1b
;
vendorclient=gds32.dll;provider=Interbase;username=sysdba;password=masterkey

To modify an MS SQL Server connection

1. Enter the database name in the Database field of the Connections Editor . For example, use one of the sample MS SQL
Server databases, such as Pubs or Northwind. There is no need to add the file extension to the name.

2. Enter the hostname. If you are using a local database server, enter (local) in this field.

3. If you are deferring to your OS authentication, set OSAuthentication to True.

4. If you are using database authentication, enter the password and username into the appropriate fields. By default, the SQL
Server database username is sa .

5. Change the database options if necessary. The default values are shown in the following table.

Option Description Default

BlobSize Specifies the upper limit of the size of any BLOB field. 1024

LoginPrompt Determines if you want the user to be prompted for a login every time the application
tries to connect to the database.

False

Modifying Database Connections RAD Studio for Microsoft .NET 2.1 Database Procedures

118

2

QuoteObjects Specifies that table names, column names, and other objects should be quoted or
otherwise delimited when included in a SQL statement. This is required for databases
that allow spaces in names, such as MS Access.

False

TransactionIsolation Shared locks are held while the data is being read to avoid dirty reads, but the data
can be changed before the end of the transaction, resulting in non-repeatable reads or
phantom data. This specifies the value for the TAdoDbxTransaction. IsolationLevel
property.

ReadCommitted

6. You should be able to accept the defaults for the following Provider Settings:

Option Default

Assembly Borland.Data.Mssql,Version=Current Product Version,Culture=neutral,PublicKeyToken=Token #

Provider MSSQL

VendorClient sqloledb.dll

7. Click Test to see if the connection works.

8. Click OK to save the connection string.

Note: If you are writing ASP.NET applications, and are running the ASP.NET Web Forms locally for testing purposes, you
might need to modify the path statement that points to your database, to include the localhost: designation, prepended to
the path.

Note: Your connection string should resemble something like

assembly=Borland.Data.Mssql,Version=2.0.0.0,Culture=neutral,PublicKeyToken=91d62ebb5b0d1b1b;
vendorclient=sqloledb.dll;osauthentication=True;database=Pubs;username=;hostname=(local);passwo
rd=;
provider=MSSQL

To modify a DB2 connection

1. Enter the path to the database.

2. Enter the password and username into the appropriate fields.

3. Set the following database options, if necessary. The default values are shown in the following table.

Option Description Default

LoginPrompt Determines if you want the user to be prompted for a login every time the application
tries to connect to the database.

False

QuoteObjects Specifies that table names, column names, and other objects should be quoted or
otherwise delimited when included in a SQL statement. This is required for databases
that allow spaces in names.

False

TransactionIsolation Shared locks are held while the data is being read to avoid dirty reads, but the data
can be changed before the end of the transaction, resulting in non-repeatable reads or
phantom data. This specifies the value for the TAdoDbxTransaction. IsolationLevel
property.

ReadCommitted

4. You should be able to accept the defaults for the following Provider Settings:

Option Default

Assembly Borland.Data.Db2,Version=Current Product Version,Culture=neutral,PublicKeyToken=Token #

Provider DB2

2.1 Database Procedures RAD Studio for Microsoft .NET Modifying Database Connections

119

2

VendorClient db2cli.dll

5. Click Test to see if the connection works.

6. Click OK to save the connection string.

To modify an Oracle connection

1. Enter the path to the database.

2. If you are deferring to your OS authentication, set OSAuthentication to True. This means that the system defers to your local
system username and password to login to the database.

3. If you are using database authentication, enter the password and username into the appropriate fields. For example, the
typical Oracle username and password for the sample database is SCOTT and TIGER, respectively.

4. Set the following database options, if necessary. The default values are shown in the following table.

Option Description Default

LoginPrompt Determines if you want the user to be prompted for a login every time the application
tries to connect to the database.

False

QuoteObjects Specifies that table names, column names, and other objects should be quoted or
otherwise delimited when included in a SQL statement. This is required for databases
that allow spaces in names.

False

TransactionIsolation Shared locks are held while the data is being read to avoid dirty reads, but the data
can be changed before the end of the transaction, resulting in non-repeatable reads or
phantom data. This specifies the value for the TAdoDbxTransaction. IsolationLevel
property.

ReadCommitted

5. You should be able to accept the defaults for the following Provider Settings:

Option Default

Assembly Borland.Data.Oracle,Version=Current Product Version,Culture=neutral,PublicKeyToken=Token

Provider Oracle

VendorClient oci.dll

6. Click Test to see if the connection works.

7. Click OK to save the connection string.

To modify an MS Access connection

1. Either enter the database name or navigate to the database on your local disk or a network drive, by clicking the ellipsis
button to browse. If you have the Office Component Toolkit installed, you might find Northwind in C:\Program
Files\Office Component Toolpack\Data\Northwind.mdb .

2. Enter the username and password. By default, you can generally try admin for the username and leave the password field
empty.

3. Set the following database options, if necessary. The default values are shown in the following table.

Option Description Default

BlobSize Specifies the upper limit of the size of any BLOB field. 1024

LoginPrompt Determines if you want the user to be prompted for a login every time the application
tries to connect to the database.

False

Modifying Database Connections RAD Studio for Microsoft .NET 2.1 Database Procedures

120

2

QuoteObjects Specifies that table names, column names, and other objects should be quoted or
otherwise delimited when included in a SQL statement. This is required for databases
that allow spaces in names, such as MS Access.

False

TransactionIsolation Shared locks are held while the data is being read to avoid dirty reads, but the data
can be changed before the end of the transaction, resulting in non-repeatable reads or
phantom data. This specifies the value for the TAdoDbxTransaction. IsolationLevel
property.

ReadCommitted

4. You should be able to accept the defaults for the following Provider Settings:

Option Default

Assembly Borland.Data.Msacc,Version=Current Product Version,Culture=neutral,PublicKeyToken=Token #

Provider MSAccess

VendorClient msjet40.dll

5. Click Test to see if the connection works.

6. Click OK to save the connection string.

Note: Your connection string should resemble something like

database=C:\Program Files\Office Component Toolpack\Data\Northwind.mdb;
assembly=Borland.Data.Msacc,Version=2.0.0.0,Culture=neutral,PublicKeyToken=91d62ebb5b0d1b1b;
vendorclient=msjet40.dll;provider=MSAccess;username=admin;password=

To modify a Sybase connection

1. Enter the path to the database.

2. Enter the password and username into the appropriate fields.

3. Set the following database options, if necessary. The default values are shown in the following table.

Option Description Default

BlobSize Specifies the upper limit of the size of any BLOB field. 1024

ClientAppName Client application name set by the middle-tier application. —

ClientHostName Client host name set by the middle-tier application. —

LoginPrompt Determines if you want the user to be prompted for a login every time the application
tries to connect to the database.

False

PacketSize Specifies the number of bytes per network packet transferred from the database
server to the client.

512

QuoteObjects Specifies that table names, column names, and other objects should be quoted or
otherwise delimited when included in a SQL statement. This is required for databases
that allow spaces in names, such as MS Access.

False

TransactionIsolation Shared locks are held while the data is being read to avoid dirty reads, but the data
can be changed before the end of the transaction, resulting in non-repeatable reads or
phantom data. This specifies the value for the TAdoDbxTransaction. IsolationLevel
property.

ReadCommitted

4. You should be able to accept the defaults for the following Provider Settings:

2.1 Database Procedures RAD Studio for Microsoft .NET Modifying Database Connections

121

2

Option Default

Assembly Borland.Data.Sybase,Version=Current Product Version,Culture=neutral,PublicKeyToken=Token

Provider Sybase

VendorClient libct.dll

5. Click Test to see if the connection works.

6. Click OK to save the connection string.

Note: Your connection string should resemble something like

assembly=Borland.Data.Sybase,Version=2.0.0.0,Culture=neutral,
PublicKeyToken=91d62ebb5b0d1b1b;vendorclient=libct.dll;database=Pubs;
username=admin;hostname=host1;password=;provider=Sybase

See Also

ADO.NET Overview (see page 14)

Database Providers for .NET (see page 27)

ADO.NET Component Designers (see page 21)

Building an ASP.NET Database Application (see page 171)

Creating Database Projects from the Data Explorer (see page 111)

Passing Parameters in a Database Application (see page 124)

2.1.12 Building a Database Application that Resolves to
Multiple Tables

RAD Studio supports multi-table resolution with BDP.NET. Specifically, the DataSync and DataHub components are designed to
provide and resolve a .NET DataSet from multiple heterogeneous data sources. In addition, these components support the
display of live data at designtime, and provide and resolve master-detail data by generating optimal SQL for resolving to BDP
data sources.

The DataHub acts as a conduit between a DataSet and a DataSync. The DataPort property for a DataHub can be set to any
IDataProvider implementation. DataSync implements IDataProvider and has a Providers collection that can contain any .NET
data provider that implements IDbDataAdapter. The GetData method for DataSync iterates through all the DataProviders in the
collection and returns a DataSet. SaveData resolves DataSet changes back to the database through the DataProvider collection.
While resolving changes through a BdpDataAdapter the resolver generates optimal SQL. For non-BDP data providers, their
respective CommandBuilder is used.

Building a database application that resolves multiple tables consists of the following steps:

1. Create a simple database project from the Data Explorer with multiple BdpDataAdapter objects to connect to multiple
providers

2. Add and configure a DataSync component to connect the providers

3. Add and configure a DataHub component to connect the DataSync to a DataSet

Building a Database Application that RAD Studio for Microsoft .NET 2.1 Database Procedures

122

2

To create a database project from the Data Explorer

1. Choose File New Windows Forms Application for either Delphi for .NET. The Windows Forms designer appears.

2. Choose View Data Explorer to access the Data Explorer .

3. Expand the Data Explorer Tree to expose the providers and database tables you want to use. You must have a live
connection to exprovider nodes. If you do not have a live connection, you may need to modify the connection string.

4. Drag and drop tables from one or more providers onto your form. For each table you drag onto your form, a BdpConnection
and a BdpDataAdapter appear in the component tray. If you add multiple tables from the same provider, you can delete all but
one BdpConnection for that provider.

5. Configure each BdpDataAdapter component. There is no need to set the Active or DataSet properties, as the DataSet will be
populated by the DataHub component.

6. Add a DataSet component to your form from the Data Components category of the Tool Palette .

7. Add and configure a DataGrid component to your form from the Data Controls category of the Tool Palette . Set the
DataSource property for the DataGrid to the name of the added DataSet component (for example, dataSet1).

To add and configure a DataSync component

1. Drag a DataSync component onto your form from the Borland Data Provider category of the Tool Palette .

2. In the Component Tray , select the DataSync component.

3. In the Object Inspector , select the Providers property, and click the ellipsis button to open the DataProvider Collection
Editor .

4. In the the DataProvider Collection Editor , add a DataProvider for each table you want to provide and resolve. You should
have a DataProvider for each BdpDataAdapter in your project.

5. For each DataProvider, select the DataProvider in the Members pane, and set the DataAdapter property to the appropriate
BdpDataAdapter.

6. When you have finished configuring your DataProviders, click OK to close the DataProvider Collection Editor .

7. In the Object Inspector , set the CommitBehavior property to specify how failures are handled during resolving. There are
three options for resolving logic:

• Atomic—transactions are attempted for each provider. If a transaction fails, no further transactions are attempted, and all
preceding transactions are rolled back. If there are no failed transactions, all transactions are committed.

• Individual—a transaction is attempted for a provider, and if it succeeds, it is committed. The next transaction is attempted, and
if it succeeds, it is committed, and so on. If a transaction fails for a provider, that transaction is rolled back, and no further
transactions are attempted.

• ForceIndividual—a transaction is attempted for a provider, and if it succeeds, it is committed. The next transaction is
attempted, and if it succeeds, it is committed, and so on. If a transaction fails for a provider, that transaction is rolled back, and
the next transaction is attempted.

To add and configure a DataHub component

1. Drag a DataHub component onto your form from the Borland Data Provider category of the Tool Palette .

2. In the Component Tray , select the DataHub component.

3. In the Object Inspector , set the DataPort property to the added DataSync component (for example, DataSync1).

4. Set the DataSet property to the added DataSet (for example, dataSet1)

5. Choose Run Run. The application compiles and displays a Windows Form with a DataGrid.

See Also

ADO.NET Overview (see page 14)

Data Providers for .NET (see page 27)

2.1 Database Procedures RAD Studio for Microsoft .NET Building a Database Application that

123

2

ADO.NET Component Designers (see page 21)

Building a Distributed Database Application (see page 136)

2.1.13 Passing Parameters in a Database Application

The following procedures describe a simple application that allows you to pass a parameter value at runtime to a DataSet.
Parameters allow you to create applications at design time without knowing specifically what data the user will enter at runtime.
This example process assumes that you already have your sample Interbase Employee database set up and connected. For
purposes of illustration, this example uses the default connector IBConn1, which is set to a standard location. Your database
location may differ.

To pass a parameter

1. Create a data adapter and connection to the Interbase employee.gdb database.

2. Add a text box control, a button control, and a data grid control to your form.

3. Configure the data adapter.

4. To add a parameter to the data adapter.

5. Configure the data grid.

6. Add code to the button Click event..

7. Compile and run the application.

To create a data adapter and connection

1. Choose File New Windows Forms Application for either Delphi for .NET or C#. The Windows Forms designer appears.

2. Click on the Data Explorer tab and drill down to find the IBConn1 connection under the Interbase node.

3. Drag and drop the EMPLOYEE table onto the Windows Form. This creates a BdpDataAdapter and BdpConnection and
displays their icons in the Component Tray .

4. Select the data adapter icon, then click the Configure Data Adapter designer verb in the Designer Verb area at the bottom
of the Object Inspector. This displays the Data Adapter Configuration dialog.

5. Rewrite the SQL statement that is displayed in the Select tab of the dialog to:

SELECT EMP_NO, FIRST_NAME, LAST_NAME, SALARY FROM EMPLOYEE WHERE FIRST_NAME = ?;

As you can see, this statement is limiting the number of fields. It also contains a ? character as part of the Where clause. The ?
character is a wildcard that represents the parameter value that your application passes in at runtime. There are at least two
reasons for using a parameter in this way. The first reason is to make the application capable of retrieving numerous instances of
the data in the selected columns, while using a different value to satisfy the condition. The second reason is that you may not
know the actual values at design time. You can imagine how limited the application might be if we retrieved only data where
FIRST_NAME = 'Bob' .

6. Click the DataSet tab.

7. Click New DataSet .

8. Click OK. This creates the DataSet that represents your query.

To add a parameter to the data adapter

1. Select the data adapter icon, then expand the properties under SelectCommand in the Fill area of the Object Inspector . You
should be able to see your Select statement in the SelectCommand property drop down list box.

2. Change the ParameterCount property to 1.

Passing Parameters in a Database RAD Studio for Microsoft .NET 2.1 Database Procedures

124

2

3. Click the (Collection) entry next to the Parameters property. This displays the BdpParameter Collection Editor .

4. Click Add to add a new parameter.

5. Rename the parameter to emp.

6. Set BdpType to String, DbType to Object, Direction to Input, Source Column to FIRST_NAME, and ParameterName to emp.

7. Click OK.

8. In the Object Inspector , set the Active property under Live Data to True.

To add controls to the form

1. Drag and drop a TextBox control onto the form.

2. Drag and drop a Button onto the form.

3. Change the Text property of the button to Get Info.

4. Drag and drop a DataGrid data control onto the form.

5. Arrange the controls how you want them to appear, making sure that the DataGrid is long enough to display four fields of
data.

To configure the data grid

1. Select the data grid.

2. Set the DataSource property to the name of the DataSet (dataSet1 by default).

3. Set the DataMember property to Table1. This should display the column names of the columns specified in the SQL
statement that you entered into the data adapter.

To add code to the button Click event

1. Double-click the button to open the Code Editor.

2. In the button1_Click event code block, add the following code:

bdpSelectCommand1.Close();
/* This closes the command to make sure that we will pass the parameter to */
/* the most current
bdpSelectCommand.

*/

 bdpDataAdapter1.Active = false;
/* This clears the data adapter so that we don't maintain old
data */

 bdpSelectCommand1.Parameters["emp"].Value = textBox1.Text;
/* This sets the parameter value to whatever value is in the text field. */

 bdpDataAdapter1.Active = true;
/* This re-activates the data adapter so the refreshed data appears in the data grid. */
Self.bdpSelectCommand1.Close();
/* This closes the command to make sure that we will pass the parameter to */
/* the most current
bdpSelectCommand.

*/

 Self.BdpDataAdapter1.Active := false;
/* This clears the data adapter so that we don't maintain old
data */

 Self.bdpSelectCommand1.Parameters['emp'].Value := textBox1.Text;
/* This sets the parameter value to whatever value is in the text field. */

2.1 Database Procedures RAD Studio for Microsoft .NET Passing Parameters in a Database

125

2

 Self.BdpDataAdapter1.Active := true;
/* This re-activates the data adapter so the refreshed data appears in the data grid. */

If you have changed the names of any of these items, you need to update these commands to reflect the new names.

3. Save your application.

To compile and run the application

1. Press Shift + F9 to compile the application.

2. Press F9 to run the application.

3. Type one of the names John, Robert, Roger, Kim, Terri, Katherine, or Ann into the text box.

4. Click the button. This displays the employee number, first name, last name, and salary of the employee with that name in the
data grid. If there is more than one person with the same first name, the grid displays all occurrences of employees with that
name.

See Also

ADO.NET Overview (see page 14)

Data Providers for Microsoft .NET (see page 27)

Building a Windows Forms Database Application

2.1.14 Using the Data Adapter Preview

CodeGear RAD Studio provides a tool that enables communication between a data source and a dataset. You can use the Data
Adapter Preview to specify what data to move into and out of the dataset either in the form of SQL statements or stored
procedures that are invoked to read or write a database.

To use the Data Adapter Preview

1. After you have dropped a BdpDataAdapter component onto the designer, click the Configure Data Adapter designer verb
that appears at the bottom of the Object Inspector .

2. Click the Preview tab to display the Data Adapter Preview .

3. To limit the number of rows fetched, click the Limit rows check box.

4. Enter the number of rows you want the result set to contain, in the Rows to fetch text box.

5. Click Refresh to re-execute the query and to refill the list box with the new number of rows.

See Also

ADO.NET Overview (see page 14)

ADO.NET Component Designers (see page 21)

Building a Windows Forms Database Application

Using the Command Text Editor (see page 127)

Using the Connection Editor Designer (see page 128)

Using the Generate Dataset Designer (see page 132)

Using the Data Adapter Designer (see page 128)

Using the Command Text Editor RAD Studio for Microsoft .NET 2.1 Database Procedures

126

2

2.1.15 Using the Command Text Editor

In order to create a DataSet, your BdpDataAdapter needs to have at least a SQL Select statement defined for the CommandText
property. This statement, once built, appears as the CommandText of the BdpCommand object for the BdpDataAdapter. You
can enter this Select statement manually, or you can use the Command Text Editor to construct the statement, along with
Update, Insert, and Delete statements, using a simple point-and-click mechanism. Using this method, once you have a
connection to a live data source, you will be able to see the names of tables and columns in the Command Text Editor . You
can pick from listboxes to build the statement. Also, if you create your BdpDataAdapter using the Data Explorer and a live
connection to a data source, a boilerplate Select statement is created for you in the form select * from tablename . You
can use this statement to return all rows from the named data source, or you can modify the statement prior to generating the
DataSet.

To generate the commands

1. Select a connection from the Connection drop-down list box. This must be a BdpConnection you have already defined. Your
associated BdpDataAdapter object must also be defined and must have the DataSet Active property set to True. This
populates the Tables and Columns list boxes with data from the database.

2. Select a table from the Tables list box.

3. Select each column that you want to appear in your SQL statements. As you select the column names, they appear in the
SQL text box.

4. Select the check box next to each statement type you want to generate.

5. Click the Generate SQL button.

See Also

ADO.NET Overview (see page 14)

ADO.NET Component Designers (see page 21)

Building a Windows Forms Database Application

Using the Connection Editor Designer (see page 128)

Using the Data Adapter Designer (see page 128)

Using the Generate DataSet Designer (see page 132)

Using the Data Adapter Preview (see page 126)

2.1.16 Using the Data Adapter Designer

The Data Adapter contains, at a minimum, a SQL Select statement of the SELECT command property. You can enter this
statement yourself, or using the Data Adapter designer you can construct the Select, along with the Update, Insert, and Delete
statements. The BdpCommandBuilder constructs the Update, Insert, and Delete statements based on the tables and columns
you have selected. The Data Adapter designer uses a live connection to retrieve metadata from which you can build the
appropriate SQL statements for manipulating the data you want to move from a DataSet back into your database.

To invoke the commands

1. Select a connection from the Connection drop-down list box. This must be a BdpConnection you have already defined. This
populates the Tables and Columns list boxes with data from the database.

2.1 Database Procedures RAD Studio for Microsoft .NET Using the Data Adapter Designer

127

2

2. Select a table from the Tables list box.

3. Select each column that you want to appear in your SQL statements.

4. Select the check box next to each statement type you want to generate.

5. Click the Generate SQL button.

6. Edit the generated text if desired, or reselect different columns and click Generate SQL again.

7. Click OK.

Note: Command components are automatically created as needed based on the selections in the dialog.

See Also

ADO.NET Overview (see page 14)

ADO.NET Component Designers (see page 21)

Building a Windows Forms Database Application

Using the Connection Editor Designer (see page 128)

Using the Command Text Editor (see page 127)

Using the Generate DataSet Designer (see page 132)

Using the Data Adapter Preview (see page 126)

2.1.17 Using the Connection Editor Designer

Each connection object can support multiple named connections. These connections can represent connections to multiple
databases and database types.

To add a new connection

1. Select an existing BdpConnection component in the designer, or drop a BdpConnection component onto the designer to
create a new object.

2. Click the component designer tab at the bottom of the Object Inspector to display the Connection Editor dialog.

3. Click Add to display the Add New Connection dialog.

4. Select a provider from the Provider Name drop-down list box.

5. Enter a new name for the connection in the Connection Name text box.

6. Click OK.

7. Enter the appropriate values for your particular data source.

8. Click OK.

To remove a connection

1. Select the connection type until it is highlighted.

2. Click Remove . A Confirm Delete dialog box appears.

3. Click Yes.

To rename a connection

1. Right-click on the connection and choose Rename.

Using the Connection Editor Designer RAD Studio for Microsoft .NET 2.1 Database Procedures

128

2

2. Type the new name of the connection.

3. Click OK.

See Also

ADO.NET Overview (see page 14)

ADO.NET Component Designers (see page 21)

Connection Pooling Options (see page 8)

Building a Windows Forms Database Application

Using the Command Text Designer (see page 127)

Using the Data Adapter Designer (see page 128)

Using the Generate Dataset Designer (see page 132)

Using the Data Adapter Preview (see page 126)

2.1.18 Using Standard DataSets

The standard DataSet provides an in-memory representation of one or more tables or views retrieved from a connected data
source. Because of the level of indirection used in coding the underlying data structure, you are only able to see the column
names from your data source at runtime. When you generate a DataSet, it retrieves everything you specified in your Select
statement in the Data Adapter Configuration dialog. You can limit your columns by changing the Select statement and creating a
new DataSet.

To use DataSets

1. Generate a DataSet.

2. Add multiple tables to a DataSet.

3. Define primary keys for DataTables in the DataSet.

4. Define column properties for your DataSet columns.

5. Define constraints for your columns.

6. Define relationships between tables in your DataSet.

To generate a DataSet

1. From the Data Explorer , select a data source.

2. Drill down in the tree, then drag and drop the name of a table onto your Windows Form or Web Form. This creates the
BdpDataAdapter and BdpConnection for that data source and displays icons for those objects in the Component Tray .

Note: You can also drag a data source only onto the form, rather than a table, but in that case, RAD Studio creates only a
connection object for you. You must still create and configure the BdpDataAdapter object explicitly.

3. Click the BdpDataAdapter icon (named bdpDataAdapter1, by default) to select it.

4. Click the Configure Data Adapter designer verb in the Designer Verb area at the bottom of the Object Inspector . This
displays the Data Adapter Configuration dialog.

5. If the SQL statement that is pre-filled on the dialog is acceptable, click the DataSet tab, otherwise, modify the SQL statement,
then click the DataSet tab.

6. Select the New DataSet radio button.

2.1 Database Procedures RAD Studio for Microsoft .NET Using Standard DataSets

129

2

Tip: You can accept the default name or change the name of the DataSet.

7. Click OK to generate the DataSet. A DataSet icon appears in the Component Tray indicating that your DataSet has been
created.

Note: By reviewing the code for the DataSet in the Code Editor, you can see that the columns are defined as generic
dataColumns, whose columnName properties are assigned the value of the column name from the database table. This
differs from how a typed DataSet is constructed, wherein the object name is constructed from the actual database column
name, rather than assigned as a property value.

To add multiple tables to one DataSet

1. From the Data Explorer , select a data source.

2. Drill down in the tree, then drag and drop the names of multiple tables, one at a time, onto your Windows Form or Web Form.
This creates the BdpDataAdapter for each table and one BdpConnection for that data source and displays icons for those
objects in the Component Tray .

3. Click the BdpDataAdapter icon (named bdpDataAdapter1, by default) to select it.

4. Click the Configure Data Adapter designer verb in the Designer Verb area at the bottom of the Object Inspector . This
displays the Data Adapter Configuration dialog.

5. If the SQL statement that is pre-filled on the dialog is acceptable, click the DataSet tab, otherwise, modify the SQL statement,
then click the DataSet tab.

6. Select the New DataSet radio button.

Tip: You can accept the default name or change the name of the DataSet.

7. Click OK to generate the DataSet. A DataSet icon appears in the Component Tray indicating that your DataSet has been
created.

8. Repeat the Data Adapter configuration for each of the other data adapters, but select Existing Data Set on the DataSet tab
when generating the DataSets for all data adapters except the first one you configure. This generates a DataTable for each
data adapter and stores them all in one DataSet.

Note: It is also possible to generate multiple DataSets, either one for each data adapter, or combinations of DataTables.

To define primary keys for each DataTable in the DataSet

1. Select each data adapter in turn and set the Active property under Live Data in the Object Inspector to True.

2. Select the DataSet in the Component Tray .

3. In the Object Inspector , in the Tables property, click the ellipsis button. This displays the Tables Collection Editor . If you
have set all of the data adapters' Active properties to True, the Tables Collection Editor will contain one member for each
DataTable stored in the corresponding DataSet.

4. Select a table from the members list.

5. In the Primary Key field in the Table Properties, click on the DataColumn[] entry to display a pop-up list of column names.

6. Click the gray check box next to the column name of the column or columns that comprise the Primary Key. The number 1
appears in the gray check box when selected.

7. Define Column properties and Constraints for your Primary Key columns.

To define column properties for your DataSet columns

1. In the Tables Collection Editor, click the (Collections) entry next to Columns in the Table Properties pane. This displays the
Columns Collection Editor for the selected column.

Using Standard DataSets RAD Studio for Microsoft .NET 2.1 Database Procedures

130

2

2. Set the property values for the individual columns.

3. Repeat the process for each column.

To define constraints for your columns

1. In the Tables Collection Editor , click the (Collections) entry next to Constraints in the Table Properties pane. This displays
the Constraints Collection Editor for the selected column.

2. Click Add to add either a Unique Constraint or a Primary Key Constraint.

3. If you selected Unique Constraint, the Unique Constraint dialog appears. Select one or more of the displayed column names.
You can also select the Primary Key check box if you want to set the column as a primary key. By setting the Unique
Constraint on a column, you are enforcing the rule that all values in the column must be unique. This is useful for columns that
contain identification numbers, such as employee numbers, social security numbers, part numbers, and so on.

Note: If you have already defined a primary-foreign key relationship between two tables, you may not be able to set a column
as a primary key, based on the fact that it may already be set as the primary key, or based on a conflict with another
relationship.

4. If you selected Foreign Key Constraint, the Foreign Key Constraint dialog appears. Select the tables you want to relate by
choosing them from the Parent table and Child table drop down lists.

5. Click Key Columns to select the primary key column from the list.

6. Click Foreign Key Columns to select the foreign key column from the list.

Warning: The primary key and foreign key columns must have the same data type and must contain unique values. Columns
that can contain duplicates are not good choices for primary or foreign keys. It is common to choose the same column name
from each table for your primary-foreign key relationship.

To define relationships between tables in the DataSet

1. Once you have defined primary keys for each DataTable, select the DataSet in the Component Tray if it is not already
selected.

2. Click the ellipsis button next to the Relations property in the Object Inspector . This displays the blank Relations Collection
Editor dialog.

3. Click Add . This displays the Relation editor dialog

4. From the Parent table and Child table dropdown lists, choose the tables you want to relate.

5. Click the Key Columns field to choose a Primary Key column from the list of column names from the parent table.

6. Click the Foreign Key Columns field to choose a Foreign Key column from the list of column names from the child table.

Note: If you have already performed this procedure while setting constraints for your DataTables, you may find that all of the
appropriate values are already established.

Warning: The primary key and foreign key columns must have the same data type and must contain unique values. Columns
that can contain duplicates are not good choices for primary or foreign keys. It is common to choose the same column name
from each table for your primary-foreign key relationship.

7. Click OK.

8. Repeat the process to define additional relations between the same DataTables.

See Also

ADO.NET Overview (see page 14)

ADO.NET Component Designers (see page 21)

Building a Windows Forms Database Application

2.1 Database Procedures RAD Studio for Microsoft .NET Using Standard DataSets

131

2

Using the Command Text Designer (see page 127)

Using the Connection Editor Designer (see page 128)

Using the Data Adapter Designer (see page 128)

Using the Data Adapter Preview (see page 126)

Using Typed DataSets (see page 132)

2.1.19 Using Typed DataSets

Typed DataSets provide certain advantages over standard DataSets. For one thing, they are derived from an XML hierarchy of
the target database table. The XML file containing the DataSet description allows the system to provide extensive
code-completion capabilities not available when using standard DataSets. Strong typing of DataSet methods, properties, and
events allows compile-time type checking, and can provide a performance improvement in some applications.

To create a strongly typed DataSet

1. From the Database Explorer, select the data source you want to use.

2. Drag and drop the name of the database table you want to use onto your form. This displays a BdpConnection icon and a
BdpDataAdapter icon in the Component Tray .

3. Select the BdpDataAdapter.

4. Click the Configure Data Adapter designer verb in the Designer Verb area beneath the Object Inspector . This displays the
Data Adapter Configuration dialog.

5. Modify the pre-filled SQL statement if you like.

6. Click OK.

Note: Do not create a DataSet by selecting the DataSet tab

in the Configure Data Adapter dialog. That tab applies only to standard DataSets.

7. Click the Generate Typed Dataset designer verb in the Designer Verb area beneath the Object Inspector . This displays the
Generate Dataset dialog.

8. Select the database table you want to use.

9. Click OK. This creates an instance of the typed DataSet and displays an icon <DataSet Name>1 in the Component Tray . For
example, if your DataSet is DataSet1, the new instance will be named dataSet11. You will also see that an XML .xsd file and
a new program file appear in the Project Manager under your project.

To modify how columns appear

1. After you have created a new typed DataSet, drop a DataGrid component onto your form.

2. Set the DataSource property to point to the typed DataSet and the DataMember property to point to the target table.

3. Click the (Collection) entry next to the TableStyles property. This displays the DataGridTableStyle Collection Editor .

4. Click Add to add a new member to the members list.

5. Click the drop down list next to the MappingName property.

6. Click the (Collection) entry next to the GridColumnStyles property. This displays the DataGridColumnStyle Collection
Editor .

7. Click Add to add a new item to the members list.

Note: By default the item is created as a Text Box Column. You can also expand the Add

Using Typed DataSets RAD Studio for Microsoft .NET 2.1 Database Procedures

132

2

button and select the BoolColumn if you want a boolean.

8. Click the MappingName property, select the column you want to display in your grid, then change any additional properties
you want, including the header name that will appear as the column header in the runtime grid.

9. Click OK twice.

Note: When you build and run the application, only the columns that you explicitly defined by following the steps in this
procedure appear.

To modify the structure of the dataset

1. In the Project Manager , double-click the .xsd file that contains the XML definition of your dataset.

2. Edit the XML file to reflect how you want the dataset to be structured. You can change data types, names, and anything else
about the structure.

3. If you have the program code file (<dataset>.cs or <dataset>.pas) open in the Code Editor , close it now.

4. Choose Project Compile to recompile the .xsd file. If you re-open the program code file, you will see that the file contains
the changes you made to the XML in the .xsd file.

To set the Namespace property for a dataset

1. In the Project Manager , double-click the .xsd file that contains the XML definition of your dataset.

2. Find the targetNamespace property.

3. Change the following text to a relevant namespace:

http://www.changeme.now/DataSet1.xsd

4. If you have the program code file (<dataset>.cs or <dataset>.pas) open in the Code Editor , close it now.

5. Choose Project Compile to recompile the .xsd file. If you re-open the program code file, you will see that the InitClass()
class now contains the new namespace.

See Also

ADO.NET Overview (see page 14)

ADO.NET Component Designers (see page 21)

Building a Windows Forms Database Application

Using the Command Text Editor (see page 127)

Using the Connection Editor Designer (see page 128)

Using the Data Adapter Designer (see page 128)

Using the Data Adapter Preview (see page 126)

Using Standard DataSets (see page 129)

Using Annotations with a Typed DataSet

2.1.20 Connecting to a Database using the dbExpress Driver
Framework

This procedure tells how to use the dbExpress driver framework to connect to a database and read its records. In the sample
code, the dbExpress ini files contain all the information about the particular database connection, such as driver, user name,

2.1 Database Procedures RAD Studio for Microsoft .NET Connecting to a Database using the

133

2

password, and so on.

To connect to a database and read its records

1. Configure the connections ini file with the information about the database you are connecting to. This includes setting the
driver name, user name, password, and so on.

2. Obtain a TDBXConnectionFactory, which is returned by TDBXConnectionFactory.GetConnectionFactory.

3. Get a TDBXConnectionobject returned by TDBXConnectionFactory.GetConnection.

4. Open the database connection by calling TDBXConnection.Open on the TDBXConnection instance.

5. Get a TDBXCommandobject by calling TDBXConnection.CreateCommand on the TDBXConnection instance.

6. Set the TDBXCommand's Textproperty to the desired SQL command. Call TDBXCommand.Prepare on the TDBXCommand
instance.

7. Execute the SQL query by calling TDBXCommand.ExecuteQuery, which returns a TDBXReader instance.

8. Read the first database record by calling TDBXReader.Next. Call this method to retrieve successive database records.

9. Get whatever information you want from the database. For instance, TDBXReader.GetColumnCount returns the number of
database columns. The TDBXReader properties ValueTypeand Value contain the data type and value for a given column
number in the current record.

// This sample connects to a database using the ini files.
// These files must be configured for the database.
// Once connected, the sample reads values and displays the
// ANSI values for the first 100 records in a listbox.

// Get a TDBXConnection using a TDBXConnectionFactory.
// ConnectionName = section in the connections ini file.
class function TForm1.BuildConnectionFromConnectionName(
 ConnectionName: WideString): TDBXConnection;
var
 ConnectionFactory: TDBXConnectionFactory;
 ConnectionProps: TDBXProperties;
begin
 ConnectionFactory := TDBXConnectionFactory.GetConnectionFactory;
 ConnectionProps := ConnectionFactory.GetConnectionProperties(ConnectionName);
 Result := ConnectionFactory.GetConnection(ConnectionProps,
 ConnectionProps.Values[TDBXPropertyNames.UserName],
ConnectionProps.Values[TDBXPropertyNames.Password]);
end ;

procedure Connect;
var
 connection: TDBXConnection;
 command: TDBXCommand;
 reader: TDBXReader;
 value: TDBXValue;
 valueType: TDBXValueType;
 colCountStr: string ;
 i, j: Integer;
 numCols: integer;
 ListBox1: TListBox;

const
 sqlCommand = 'select * from employee';

begin
 // Open connection to DB.
 connection := BuildConnectionFromConnectionName('ConnectionName');
 connection.Open;

Connecting to a Database using the RAD Studio for Microsoft .NET 2.1 Database Procedures

134

2

 // Get command
 command := connection.CreateCommand();
 command.Text := sqlCommand;

 // Execute query
 command.Prepare;
 reader := command.ExecuteQuery;

 // Get values from DB
 if reader.Next then
 begin
 numCols := reader.GetColumnCount;
 Str(numCols, colCountStr);
 ListBox1.Items.Add('Number of columns = ' + colCountStr);
 j := 1;
 repeat
 for i := 0 to reader.GetColumnCount - 1 do
 begin
 valueType := reader.ValueType[i];
 if valueType.DataType = TDBXDataTypes.AnsiStringType then
 begin
 value := reader.Value[i];
 ListBox1.Items.Add(valueType.Name + ' = ' +
 value.GetString);
 end
 else
 ListBox1.Items.Add(valueType.Name);
 end ;
 Inc(j);
 until (j > 100) or not reader.Next;

 reader.Next;
 end ;

 // Free resources
 command.Free;
end ;

2.1.21 Building a Distributed Database Application

Data remoting is fundamental to developing distributed database applications. The .NET remoting technology provides a flexible
and extensible framework for interprocess communication. With .NET remoting you can interact with objects in different
application domains, in different processes running on the same machine, or in different machines on a network.

Using the RemoteServer and RemoteConnection components, you can easily migrate a client/server application that uses
DataHub and DataSync components to a multi-tier DataSet remoting application. RemoteServer implements IDataService and
publishes itself as a singleton server activated object (SAO). On the client side, the RemoteConnection properties form the URL
for connecting to the RemoteServer. Channel specifies the protocol to use (TCP/IP or HTTP), Port specifies the port on which
the RemoteServer is listening for requests, and URI refers to the unique resource identifier for the RemoteServer.

Building a distributed application with data remoting components consists of the following steps:

• Build a server-side Windows Forms application with one or more connections to a BDP.NET data provider, a DataSync
component to collect the connections and set the commit behavior, and a RemoteServer component to set the communication
protocol and URI for communicating with clients

• Build a client-side Windows Forms application with RemoteConnection component with properties to specify the connection to
the server-side application, a DataHub component for passing data to and from a DataSet, and a DataGrid to display the data

Note: The RemoteServer component is hosted in Windows Forms applications without adding any additional code manually.

2.1 Database Procedures RAD Studio for Microsoft .NET Building a Distributed Database Application

135

2

To create the server-side application

1. Choose File New Windows Forms Application for either Delphi for .NET or C#. The Windows Forms designer appears.

2. Choose View Data Explorer to access the Data Explorer , and expand the Data Explorer Tree to expose the providers and
database tables you want to use. You must have a live connection to expand provider nodes. If you do not have a live
connection, you may need to modify the connection string.

3. Drag and drop tables from one or more providers onto your form. For each table you drag onto your form, a BdpConnection
and a BdpDataAdapter appear in the component tray. If you add multiple tables from the same provider, you can delete all but
one BdpConnection for that provider.

4. Configure each BdpDataAdapter component. There is no need to set the Active or DataSet properties, as the DataSet will be
populated by the DataHub component on the client-side.

5. Drag a DataSync component onto your form from the Borland Data Provider category of the Tool Palette , and configure the
following DataSync properties in the Object Inspector :

Property Description

Providers Specifies a collection of DataProviders to use as data sources. Click the ellipsis button to open the
DataProvider Collection Editor , and add a DataProvider for each table you want to provide and resolve.

CommitBehavior Specifies the logic (Atomic, Individual, or ForceIndividual) for handling failures during resolving.

6. Drag a RemoteServer component onto your form from the Borland Data Provider category of the Tool Palette , and
configure the following RemoteServer properties in the Object Inspector :

Property Description

DataSync Specifies the DataSync that needs remoting. Select the DataSync from the drop-down list in the Object
Inspector .

AutoStart Specifies whether or not to start the remote server automatically when the application runs. Set this property to
True.

ChannelType Specifies the channel type: Http (HTTP) or Tcp (TCP/IP). Select the channel type from the drop-down list in the
Object Inspector .

Port Specifies the port the remote server will be listening on. Enter a new value, or accept the default port value,
8000.

URI Specifies the universal resource identifier for the remote server. By default, the URI property is the same as the
Name property.

7. Choose Run Run to start the server-side application.

To create the client-side application

1. Choose File New Windows Forms Application for either Delphi for .NET or C#. The Windows Forms designer appears.

2. Drag a DataSet component onto your form from the Data Components category of the Tool Palette .

3. Drag a DataGrid component to your form from the Data Controls category of the Tool Palette , and set the DataSource
property for the DataGrid to the name of the added DataSet component (for example, dataSet1).

4. Drag a RemoteConnection component onto your form from the Borland Data Provider category of the Tool Palette , and
configure the following RemoteConnection properties in the Object Inspector :

Property Description

ProviderType Specifies the type of provider published by the remote server. In this case, the property should be set to
Borland.Data.Provider.DataSync . If the remote server is running, you can select this value from the
drop-down list. Otherwise, you must enter the value.

Building a Distributed Database Application RAD Studio for Microsoft .NET 2.1 Database Procedures

136

2

ChannelType Specifies the channel type: Http (HTTP) or Tcp (TCP/IP). Select the channel type from the drop-down list in the
Object Inspector . This should match the setting for the remote server.

Host The name or IP address of the remote server.

Port Specifies the port the remote server will be listening on. Enter a new value, or accept the default port value,
8000. This should match the setting for the remote server.

URI Specifies the universal resource identifier for the remote server. This should match the URI property for the
RemoteServer component in the remote server application.

5. Drag a DataHub component onto your form from the Borland Data Provider category of the Tool Palette , and configure the
following DataHub properties in the Object Inspector :

Property Description

DataPort Specifies the data source. Set the DataPort property to the added RemoteConnection component (for example,
RemoteConnection1).

DataSet Specifies the DataSet to hold the data retrieved from the specified data source. Set this property to the added
DataSet (for example, dataSet1).

6. Choose Run Run. The application compiles and displays a Windows Form with DataGrid.

See Also

ADO.NET Overview (see page 14)

Data Providers for .NET (see page 27)

ADO.NET Component Designers (see page 21)

Building a Database Application that Resolves to Multiple Tables (see page 122)

2.1 Database Procedures RAD Studio for Microsoft .NET Building a Distributed Database Application

137

2

2.2 Interoperable Applications Procedures
This section provides how-to information on building interoperable applications.

Topics

Name Description

Adding a J2EE Reference (see page 139) RAD Studio provides a way to generate a .NET assembly from a J2EE archive.
After creating the assembly, a reference is automatically added to your project.

Adding a Reference to a COM Server (see page 139)

2.2.1 Adding a J2EE Reference

RAD Studio provides a way to generate a .NET assembly from a J2EE archive. After creating the assembly, a reference is
automatically added to your project.

To add a J2EE reference

1. In the Project Manager , right-click on the top-level project node and choose Add J2EE Reference . The Select a J2EE
Archive dialog displays.

2. In the Select a J2EE Archive dialog, navigate to the .jar or .ear file from which to generate the .NET assembly.

3. In the Select J2EE Archive dialog, click Open. The Select EJBs from List dialog displays.

4. In the Select EJBs from List dialog, you may generate an assembly for all EJBs, or for individual EJBs in the archive.

2.2.2 Adding a Reference to a COM Server

To Add a Reference to a COM Server

1. In the Project Manager , right-click the References tree node of your project, and select Add Reference.

2. In the Add Reference dialog box, click the COM Imports tab. The IDE will scan the system registry for all registered type
libraries and COM servers.

3. Select the item or items you want to reference in your project.

Tip: You can individually select multiple items from the list by holding down the CTRL

key as you click each item. To select a range of items, select the first item, then hold down the SHIFT key as you select the
second item.

4. Click the Add Reference button. All of the items you selected will appear in the New References list in the bottom portion of
the dialog.

Tip: You can remove items from the New References

list. Select the item or items and click the Remove button.

5. If the COM component you want to reference does not appear in the list, click the Browse button to add an explicit reference
to it.

6. In the Select a reference dialog box, navigate to the folder where the component is located.

Adding a Reference to a COM Server RAD Studio for Microsoft .NET 2.2 Interoperable Applications Procedures

138

2

7. Select it, and click Open.

8. When you have selected all of the COM servers you wish to add, click OK.

After you click the OK button in the Add Reference dialog, the IDE will generate interop assemblies for each item you selected
(unless a Primary Interop Assembly has already been created). These assemblies will be named
Interop.LibraryName.dll , where LibraryName is the name of the component's type library (note this name might differ
from the control's DLL file name). The generated assemblies will be stored in a folder called COMImports , under your project
directory. Each generated interop assembly will be set to Copy Local, meaning, when the project is built, the assembly will be
copied to the build target folder automatically.

The COMImports folder might not exist, for example, if you move the project to a new machine, or if you delete it on the
machine where the project resides. If the COMImports folder does not exist when the project is reopened, the IDE will
recreate it and regenerate the interop assemblies. In order for this to work, the COM servers must first be registered on the
machine where the project resides.

If a Primary Interop Assembly for the COM server exists, the IDE will not generate a new interop assembly. Instead a reference
to the Primary Interop Assembly will be added, and the Copy Local setting will be turned off, since Primary Interop Assemblies
are deployed in the Global Assembly Cache.

Note: To see the Copy Local setting on any referenced assembly, right click the mouse on the assembly in the Project
Manager

. The Copy Local setting is an item on the context menu. The project will still retain references to the interop assemblies,
even if the COMImports folder could not be regenerated. In this case, the Project Manager will highlight the referenced
assembly to indicate that it currently does not exist on the machine.

See Also

COM Interop Overview (see page 38)

Adding an ActiveX Control to the Tool Palette

2.2 Interoperable Applications Procedures RAD Studio for Microsoft .NET Adding a Reference to a COM Server

139

2

2.3 Modeling Procedures
This section provides how-to information for modeling applications.

Topics

Name Description

Exporting a Code Visualization Diagram to an Image (see page 141) You can export a code visualization diagram to an image and then open the
image in any graphic viewer that supports the Windows bitmap (.bmp) file format.

Importing and Exporting a Model Using XML Metadata Interchange (XMI) (see
page 142)

RAD Studio supports XMI version 1.1. Please see the link to the OMG website at
the end of this document for more information on XMI or to download the
complete specification.

Using the Model View Window and Code Visualization Diagram (see page 143) Code Visualization allows you view and navigate the logical structure of your
application, as opposed to the file-centric view of the Project Manager .

Using the Overview Window (see page 144) Large, real-world models will not fit within the diagram window. To help you view
the diagram, you can use the Overview window.

2.3.1 Exporting a Code Visualization Diagram to an Image

You can export a code visualization diagram to an image and then open the image in any graphic viewer that supports the
Windows bitmap (.bmp) file format.

To export a diagram to an image

1. Open a project.

2. Click the Model View tab.

3. Right-click the diagram node in the tree and choose Export to Image

4. Adjust zoom settings, if necessary.

5. Click Save.

6. Name the image and click Save.

See Also

UML Features in Delphi for .NET

Integrated Modeling Tools Overview

Code Visualization Overview (see page 54)

Importing and Exporting a Model Using XMI (see page 142)

Using the Model View Window and Code Visualization Diagram (see page 143)

Using the Overview Window (see page 144)

Adding Columns to a Component

Using the OCL Expression Editor

Importing and Exporting a Model Using RAD Studio for Microsoft .NET 2.3 Modeling Procedures

140

2

2.3.2 Importing and Exporting a Model Using XML Metadata
Interchange (XMI)

RAD Studio supports XMI version 1.1. Please see the link to the OMG website at the end of this document for more information
on XMI or to download the complete specification.

To import a model in XMI format

1. Export the model from the modeling tool, using the XMI format. When exporting from Rational Rose, choose XMI version 1.1,
using the Unisys extension.

2. In RAD Studio, choose File New Other .

3. Select ECO Windows Forms Application from the New Items dialog box.

Note: You can use either Delphi for .NET, or C# when starting the new ECO application.

4. Open the Model View Window , right-click the top-level project node in the tree, and choose Import Project from XMI .

5. In the XMI Import dialog box, click the Browse button to navigate to the XMI file you exported in step one.

6. Click the Import button in the XMI Import dialog box.

RAD Studio will generate ECO-enabled, Delphi or C# source code for the model elements on the class diagrams in the XMI file.

To export a model in XMI format

1. Open the Model View Window , right-click the top-level project node in the tree, and choose Export Project to XMI .

2. In the XMI Export dialog box, select the XMI version and XMI encoding appropriate for the tool you will ultimately use to open
the model file.

3. Click the Browse button to navigate to the destination folder.

4. Enter a target file name for the exported file.

5. Click the Export button in the XMI Export dialog box.

See Also

Object Management Group (OMG) Website

UML Features in Delphi for .NET

Integrated Modeling Tools Overview

Code Visualization Overview (see page 54)

Using the Model View Window and Code Visualization Diagram (see page 143)

Using the Overview Window (see page 144)

Adding Columns to a Component

Using the OCL Expression Editor

2.3 Modeling Procedures RAD Studio for Microsoft .NET Using the Model View Window and Code

141

2

http://www.omg.org

2.3.3 Using the Model View Window and Code Visualization
Diagram

Code Visualization allows you view and navigate the logical structure of your application, as opposed to the file-centric view of
the Project Manager .

To Display the Model View Window

1. Start a new project or load an existing one.

2. Select View Model View . The Model View window will open, showing the elements of your project in a tree view.

Using the Model View window with Code Visualization diagrams

To... ...do this

View or hide nested elements within a UML
package, class, or interface

Click the plus sign (+) next to the element's icon to view nested items, or click
the minus sign (-) to hide nested items.

View a Code Visualization diagram for a
.NET namespace, or Delphi unit

Expand the namespace or unit icon () and double-click the diagram icon ()
in the Model View tree .

View a Code Visualization diagram for the
entire project

Expand the project icon () in the Model View tree, and double-click the
diagram icon.

Open the source code editor on a specific
item in the Model View tree

Right-click the item and choose Open Source. Note that a .NET namespace
can span multiple source files. You cannot open a source file for a
namespace directly from the Model View tree .

Open the Code Visualization diagram on a
specific item in the Model View tree

Right-click the item and choose Show Element on Diagram.

The Code Visualization diagram has a set of functions that can help you view large models, show or hide attributes, properties,
etc., and to move from the graphical depiction on the diagram, directly to the source code for that item.

Using the Code Visualization diagram

To... ...do this

Rearrange items on the diagram Click the item and drag it to a new location.

View or hide the attributes, operations,
properties, and nested types for an item on
the diagram

Click the plus sign (+) next to the category (attributes, operations, etc.) you want
to view. Click the minus sign (-) to hide items of a particular category.

Perform an automatic layout of the items
on the diagram

Right-click anywhere in the Code Visualization diagram window and choose
Layout Do Full Layout , or Layout Optimize Sizes .

Print the diagram Right-click anywhere in the Code Visualization diagram window and choose
Print.

Open the source code editor on a
specific item on the Code Visualization
diagram

Right-click the item, and choose Go to Definition.

Save the diagram as an image Right-click anywhere in the Code Visualization diagram and choose Export to
Image.

Note: With the exception of the Code Visualization Overview, and Using the Overview Window, the links below are only
available in the RAD Studio Architect edition.

Using the Model View Window and Code RAD Studio for Microsoft .NET 2.3 Modeling Procedures

142

2

See Also

Code Visualization Overview (see page 54)

Using the Overview Window (see page 144)

UML Features in Delphi for .NET

Integrated Modeling Tools Overview

Importing and Exporting a Model Using XMI (see page 142)

Building an ECO Enabled User Interface

Adding Columns to a Component

Using the OCL Expression Editor

2.3.4 Using the Overview Window

Large, real-world models will not fit within the diagram window. To help you view the diagram, you can use the Overview window.

To Scroll the Model with the Overview Window

1. Click the Overview button in the lower right corner of the diagram. A miniature view of the entire diagram is displayed in its
own sizable window. A smaller rectangle within the Overview window contains that portion of the model that is currently
displayed on the diagram.

2. Click and drag the floating rectangle within the Overview window to dynamically scroll to the portion of the diagram you want
to view.

3. Click anywhere outside of the Overview window to close it.

Tip: The Overview

window has a sizing grip in the upper left corner. Click and drag the sizing grip to resize the Overview window. As you resize
the window, its contents are scaled to fit the current size.

Resizing is useful when the model is large enough that you cannot read the text on the miniature representation in the
Overview window.

Note: With the exception of the Code Visualization Overview, and Using the Model View Window and Code Visualization
Diagram, the links below are only available in the RAD Studio Architect edition.

See Also

Code Visualization Overview (see page 54)

Using the Model View Window and Code Visualization Diagram (see page 143)

UML Features in Delphi for .NET

Integrated Modeling Tools Overview

Importing and Exporting a Model Using XMI (see page 142)

Adding Columns to a Component

Using the OCL Expression Editor

2.3 Modeling Procedures RAD Studio for Microsoft .NET Using the Overview Window

143

2

2.4 VCL for .NET Procedures
This section provides how-to information on developing VCL for .NET applications.

Topics

Name Description

Building VCL Forms Applications With Graphics (see page 147) Each of the procedures listed below builds a VCL Form application that uses
graphics. Build one or more of the examples.

1. Draw straight lines.

2. Draw rectangles and ellipses.

3. Draw a polygon.

4. Display a bitmap image.

5. Place a bitmap in a combo box.

Building a VCL.NET Forms ADO.NET Database Application (see page 148) The following procedure describes how to build an ADO.NET database
application.
Building a VCL.NET ADO.NET application consists of the following major steps:

1. Set up the database connection.

2. Set up the dataset.

3. Set up the data provider, client dataset, and data source.

4. Connect a DataGrid to the connection components.

5. Run the application.

Building a VCL Forms Application (see page 149) The following procedure illustrates the essential steps to building a VCL Forms
application using RAD Studio.

Creating Actions in a VCL Forms Application (see page 150) Using RAD Studio, the following procedures illustrate how to create actions using
the ActionList tool. You will set up a simple application and create an edit menu
with cut and paste actions that can be used to cut and paste to a memo.
Creating the VCL application consists of the following major steps:

1. Add main menu, actionlist, and memo tools to a form.

2. Create the cut and paste actions.

3. Add the actions to the main menu and associate with the
edit action category.

4. Build and run the application.

Building a VCL Forms Hello World Application (see page 151) The Windows Forms Hello World application demonstrates the essential steps for
creating a VCL Forms application. The application uses a VCL Form, a control,
an event, and displays a dialog in response to a user action.
Creating the Hello World application consists of the following steps:

1. Create a VCL.NET Form with a button control.

2. Write the code to display "Hello World" when the button is
clicked.

3. Run the application.

RAD Studio for Microsoft .NET 2.4 VCL for .NET Procedures

144

2

Using ActionManager to Create Actions in a VCL Forms Application (see page
152)

Using RAD Studio, the following procedure illustrates how to create actions using
ActionManager. It sets up a simple user interface with a text area, as would be
appropriate for a text editing application, and describes how to create a file menu
item with a file open action.
Building the VCL application with ActionManager actions consists of the following
major steps:

1. Add a file open action to the ActionManager on a form.

2. Create the main menu.

3. Add the action to the menu.

4. Build and run the application.

Building a VCL Forms dbExpress.NET Database Application (see page 153) The following procedures describe how to build a dbExpress database
application.
Building a VCL Forms dbExpress.NET application consists of the following major
steps:

1. Set up the database connection.

2. Set up the unidirectional dataset.

3. Set up the data provider, client dataset, and data source.

4. Connect a DataGrid to the connection components.

5. Run the application.

Building an Application with XML Components (see page 155) This example creates a VCL Forms application that uses an XMLDocument
component to display contents in an XML file.

Making Changes Required Due to 64-bit .NET 2.0 Support (see page 157) Changes have been made to support 64-bit .NET 2.0. These changes might
require minor code changes so that existing applications work correctly. This
document describes these changes in detail. There are two general areas:

1. Changed code patterns

2. Windows API declarations for some callbacks and records

Warning: These changes are required due to changes
made to support 64-bit systems. They must be made for
applications intended for both 32-bit and 64-bit systems.

Creating a New VCL.NET Component (see page 159) You can use the New VCL Component wizard to create a new VCL.NET
component and add it to the Tool Palette .

Displaying a Bitmap Image in a VCL Forms Application (see page 160) These procedures load a bitmap image from a file and displays it to a VCL form.

1. Create a VCL form with a button control.

2. Provide a bitmap image.

3. Code the button's onClick event handler to load and
display a bitmap image.

4. Build and run the application.

Drawing Rectangles and Ellipses in a VCL Forms Application (see page 161) These procedures draw a rectangle and ellipse in a VCL form.

1. Create a VCL form.

2. Code the form's OnPaint event handler to draw a
rectangle and ellipse.

3. Build and run the application.

Drawing a Rounded Rectangle in a VCL Forms Application (see page 162) These procedures draw a rounded rectangle in a VCL form.

1. Create a VCL form.

2. Code the form's OnPaint event handler to draw a polygon.

3. Build and run the application.

2.4 VCL for .NET Procedures RAD Studio for Microsoft .NET

145

2

Drawing Straight Lines In a VCL Forms Application (see page 163) These procedures draw two diagonal straight lines on an image in a VCL form.

1. Create a VCL form.

2. Code the form's OnPaint event handler to draw the
straight lines.

3. Build and run the application.

Placing a Bitmap Image in a Control in a VCL Forms Application (see page
164)

These procedures add a bitmap image to a combo box in a VCL forms
application.

1. Create a VCL form.

2. Place components on the form.

3. Set component properties in the Object Inspector.

4. Write event handlers for the component's drawing action.

5. Build and run the application.

Importing .NET Controls to VCL.NET (see page 165) You might want to use .NET components on your VCL.NET forms. There is no
direct way to use .NET components. You can, however, wrap the components in
an ActiveX wrapper, which then can be added to your VCL.NET application. RAD
Studio provides the .NET Import Wizard to accomplish this task.

2.4.1 Building VCL Forms Applications With Graphics

Each of the procedures listed below builds a VCL Form application that uses graphics. Build one or more of the examples.

1. Draw straight lines.

2. Draw rectangles and ellipses.

3. Draw a polygon.

4. Display a bitmap image.

5. Place a bitmap in a combo box.

See Also

VCL.NET Overview (see page 71)

Drawing Straight Lines In a VCL Application (see page 163)

Drawing Rectangles and Ellipses in a VCL Application (see page 161)

Drawing a Rounded Rectangle in a VCL Application (see page 162)

Displaying a Bitmap Image in a VCL Application (see page 160)

Placing A Bitmap Image In a Combo Box of a VCL Application (see page 164)

2.4.2 Building a VCL.NET Forms ADO.NET Database
Application

The following procedure describes how to build an ADO.NET database application.

Building a VCL.NET ADO.NET application consists of the following major steps:

1. Set up the database connection.

Building a VCL.NET Forms ADO.NET RAD Studio for Microsoft .NET 2.4 VCL for .NET Procedures

146

2

2. Set up the dataset.

3. Set up the data provider, client dataset, and data source.

4. Connect a DataGrid to the connection components.

5. Run the application.

To add an ADO connection component

1. Choose File New Other Delphi for .NET Projects VCL Forms Application . The VCL Forms Designer displays.

2. From the dbGO category of the Tool Palette , place a TADOConnection component on the form.

3. Double-click the TADOConnection component to display the ConnectionString dialog.

4. If necessary, select Use Connection String ; then click the Build button to display the Link Properties dialog box.

5. On the Provider page of the dialog, select Microsoft Jet 4.0 OLE DB Provider ; then click the Next button to display the
Connections page.

6. On the Connections page, click the ellipsis button to browse for the dbdemos.mdb database. The default path to this
database is C:\Program Files\Common Files\Borland Shared\Data .

7. If it is not already filled in, enter Admin in the User name field and select the Blank password check box.

8. Click Test Connection to confirm the connection. A dialog appears, indicating the status of the connection.

9. Click OK twice to close the Data Link Properties dialog box and the ConnectionString dialog box.

To set up the dataset

1. From the dbGO category, double-click a TADODataSet component to place it on the form.

2. In the Object Inspector , set the Connection property drop-down list from the Linkages category to ADOConnection1 .

3. Set the CommandText to an SQL command, for example, Select * from orders . You can either type the Select
statement in the Object Inspector or click the ellipsis button to the right of CommandText to display the Command Text
Editor where you can build your own query statement.

Tip: If you need additional help while using the CommandText Editor

, click the Help button or press F1.

4. Set the Active property to True to open the dataset. You are prompted to log in.

5. Enter Admin for the username.

6. Leave the password field blank.

To add the provider

1. From the Data Access category of the Tool Palette , double-click a TDataSetProvider component to place it at the top of the
form.

2. In the Object Inspector , set the DataSet property to ADODataSet1 .

To add client dataset

1. From the Data Access category of the Tool Palette , double-click a TClientDataSet component to place it to the right of the
DataSetProvider component on the form.

2. In the Object Inspector , set the ProviderName property to DataSetProvider1 .

3. Set the Active property to True to allow data to be passed to your application. A data source connects the client dataset with
data-aware controls. Each data-aware control must be associated with a data source component to have data to display and
manipulate. Similarly, all datasets must be associated with a data source component for their data to be displayed and
manipulated in data-aware controls on the form.

2.4 VCL for .NET Procedures RAD Studio for Microsoft .NET Building a VCL.NET Forms ADO.NET

147

2

To add the data source

1. From the Data Access category of the Tool Palette , double-click a TDataSource component to place it to the right of the
ClientDataSet on the form.

2. In the Object Inspector , set the DataSet property to ClientDataSet1 .

To connect a DataGrid to the DataSet

1. From the Data Controls area of the Tool Palette , double-click a TDBGrid component to place it on the form.

2. In the Object Inspector , set the DataSource property to DataSource1 .

3. SelectRun Run. You are prompted to log in.

4. Enter Admin for the username.

5. Leave the password field blank.

6. Click OK. The application compiles and displays a VCL form with a DBGrid.

See Also

VCL.NET Overview (see page 71)

Building a VCL Forms dbExpress.NET Database Application (see page 153)

2.4.3 Building a VCL Forms Application

The following procedure illustrates the essential steps to building a VCL Forms application using RAD Studio.

To create a VCL Form

1. Choose File New Other . The New Items dialog appears.

2. Select Delphi for .NET Projects .

3. Double-click VCL Forms Application . The VCL Forms Designer displays.

4. From the Tool Palette , place components onto the form to create the user interface.

5. Write the code for the controls.

To associate code with a control

1. Double-click a component on the form. The Code Editor displays, cursor in place within the event handler block.

2. Code your application logic.

3. Save and compile the application.

See Also

VCL.NET Overview (see page 71)

2.4.4 Creating Actions in a VCL Forms Application

Using RAD Studio, the following procedures illustrate how to create actions using the ActionList tool. You will set up a simple
application and create an edit menu with cut and paste actions that can be used to cut and paste to a memo.

Creating the VCL application consists of the following major steps:

Creating Actions in a VCL Forms RAD Studio for Microsoft .NET 2.4 VCL for .NET Procedures

148

2

1. Add main menu, actionlist, and memo tools to a form.

2. Create the cut and paste actions.

3. Add the actions to the main menu and associate with the edit action category.

4. Build and run the application.

To add the main menu, actionlist, and memo to a form

1. Choose File New Other Delph for .NET Projects VCL Forms Application to create a new form.

2. Click the Design tab to switch to the VCL Form Designer .

3. From the Standard category of the Tool Palette , place a TMainMenu, TActionList, and TMemo component on the form.

To create the actions

1. Double-click ActionList1 on the form. The ActionList Editor displays.

2. Select New Standard Action from the drop-down list to display the Standard Action Classes dialog box.

3. Scroll to the TEditCut action, select it, and click OK. EditCut1 displays in the Actions list in the editor.

4. Select New Standard Action from the drop-down list to display the Standard Action Classes dialog box.

5. Scroll to the TEditPaste action, select it, and click OK. EditPaste1 displays in the Actions list in the editor.

6. Close the ActionList Editor window.

To add the cut and paste actions to the edit category in the main menu

1. Double-click MainMenu1 on the form. The MainMenu1 Editor displays with the first blank command category selected.

2. In the Object Inspector , enter Edit for the Caption property and press ENTER. Edit displays as the first command category.

3. Click Edit to display a blank action just below it.

4. Click the blank action to select it.

5. In the Object Inspector , select EditCut1 from the drop-down list of actions in the Action property, located in the Linkage
category.

6. If not already filled in, expand the list of Action properties, enter Cut for the Caption property, enter Edit for the category, and
press ENTER. Cut displays as the first action.

7. In the MainMenu1 Editor , click the second blank action beneath Cut to select it.

8. In the Object Inspector , select EditPaste from the drop-down list of actions in the Action property, located in the Linkage
category.

9. Expand the list of Action properties, and if necessary, enter Paste for the Caption property, enter Edit for the category, and
press ENTER. Paste displays as the second action.

To build and run the application

1. Save all files in the project.

2. Choose Run Run. The application executes, displaying a form with the main menu bar and the Edit menu.

3. In the application, select text in the memo.

4. Choose Edit Cut . The text is cut from the memo.

5. Choose Edit Paste. The text is pasted back into the memo.

See Also

VCL.NET Overview (see page 71)

Building a VCL Forms Application (see page 149)

2.4 VCL for .NET Procedures RAD Studio for Microsoft .NET Building a VCL Forms Hello World

149

2

2.4.5 Building a VCL Forms Hello World Application

The Windows Forms Hello World application demonstrates the essential steps for creating a VCL Forms application. The
application uses a VCL Form, a control, an event, and displays a dialog in response to a user action.

Creating the Hello World application consists of the following steps:

1. Create a VCL.NET Form with a button control.

2. Write the code to display "Hello World" when the button is clicked.

3. Run the application.

To create a VCL Form

1. Choose File New Other Delphi for .NET Projects VCL Forms Application . The VCL Forms Designer displays.

2. Click the Design tab to display the form view.

3. From the Standard category of the Tool Palette , place a TButton component on the form.

To display the "Hello World" string

1. Select Button1 on the form.

2. In the Object Inspector , double-click the OnClick event handler on the Events tab. The Code Editor appears, with the cursor
in the TForm1.Button1Click event handler block.

3. Place the cursor before the begin reserved word and then press Return . This creates a new line above the code block.

4. Insert the cursor on the new line created, and type the following variable declaration:

var s: string;

5. Insert the cursor within the code block, and type the following code:

s:= 'Hello World!';
ShowMessage(s);

To run the "Hello World" application

1. Save your project files.

2. Choose Run Run to build and run the application. The form displays with a button called Button1 .

3. Click Button1 . A dialog box displays the message "Hello World!".

4. Click OK to close the message dialog.

5. Close the VCL form to return to the IDE.

See Also

VCL.NET Overview (see page 71)

Building a VCL Forms Application (see page 149)

2.4.6 Using ActionManager to Create Actions in a VCL Forms
Application

Using RAD Studio, the following procedure illustrates how to create actions using ActionManager. It sets up a simple user

Using ActionManager to Create Actions in RAD Studio for Microsoft .NET 2.4 VCL for .NET Procedures

150

2

interface with a text area, as would be appropriate for a text editing application, and describes how to create a file menu item
with a file open action.

Building the VCL application with ActionManager actions consists of the following major steps:

1. Add a file open action to the ActionManager on a form.

2. Create the main menu.

3. Add the action to the menu.

4. Build and run the application.

To add a file open action to ActionManager

1. Choose File New Other Delphi for .NET Projects VCL Forms Application to create a new form.

2. From the Additional page of the Tool Palette , add a TActionManager component to the form.

3. Double-click the TActionManager component to display the Action Manager editor.

Tip: To display captions for nonvisual components such as TActionManager, choose Tools->Environment Options

. On the Designer tab, check Show component captions , and click OK.

4. If necessary, click the Actions tab.

5. Select New Standard Action from the drop-down list to display the Standard Action Classes dialog.

6. Scroll to the File category, and click the TFileOpen action.

7. Click OK to close the dialog.

8. In the Action Manager editor, select the File category. Open... displays in the Actions: list box.

9. Click Close to close the editor.

To create the main menu and add the File action to it

1. From the Additional page of the Tool Palette , place a TActionMainMenuBar component on the form.

2. Open the Action Manager editor, and select the File category from the Categories list box.

3. Drag File to the blank menu bar. File displays on the menu bar.

4. Click Close to close the editor.

To build and run the application

1. Select Run Run. The application executes, displaying a form with the main menu bar and the File menu.

2. Select File Open. The Open file dialog displays.

See Also

VCL.NET Overview (see page 71)

Building a VCL Forms Application (see page 149)

2.4.7 Building a VCL Forms dbExpress.NET Database
Application

The following procedures describe how to build a dbExpress database application.

Building a VCL Forms dbExpress.NET application consists of the following major steps:

2.4 VCL for .NET Procedures RAD Studio for Microsoft .NET Building a VCL Forms dbExpress.NET

151

2

1. Set up the database connection.

2. Set up the unidirectional dataset.

3. Set up the data provider, client dataset, and data source.

4. Connect a DataGrid to the connection components.

5. Run the application.

To add a dbExpress connection component

1. Choose File New VCL Forms Application . The VCL Forms Designer displays.

2. From the dbExpress category of the Tool Palette , place a TSQLConnection component on the form.

3. Double-click the TSQLConnection component to display the Connection Editor .

4. In the Connection Editor , set the Connection Name list to IBConnection .

5. In the Connections Setting box, specify the path to the InterBase database file called employee.gdb in the Database
field. By default, the file is located in C:\Program Files\Common Files\CodeGear Shared\Data .

6. Accept the value in the User_Name field (sysdba) and Password field (masterkey).

7. To test the connection, click the button with the checkmark on it (just above the Connection Name list).

Note: By default, you are prompted to log in. Use the masterkey password. If the connection works a confirmation message
appears. If you cannot connect to the database, make sure you have installed Interbase and that the server is started.

8. Click OK to close the Connection Editor and save your changes.

To set up the unidirectional dataset

1. From the dbExpress category of the Tool Palette , place a TSQLDataSet component at the top of the form.

2. In the Object Inspector , set the SQLConnection property drop-down list to SQLConnection1 .

3. Set the CommandText to a SQL command, for example, Select * from sales . For the SQL command, you can either
type a Select statement in the Object Inspector or click the ellipsis to the right of CommandText to display the Command
Text Editor where you can build your own query statement.

Tip: If you need additional help while using the Command Text Editor

, click the Help button or press F1.

4. In the Object Inspector , set the Active property to True to open the dataset.

To add the provider

1. From the Data Access category of the Tool Palette , place a TDataSetProvider component at the top of the form.

2. In the Object Inspector , set the DataSet property drop-down list to SQLDataSet1 .

To add client dataset

1. From the Data Access category of the Tool Palette , place a TClientDataSet component to the right of the DataSetProvider
component on the form.

2. In the Object Inspector , set the ProviderName drop-down to DataSetProvider1 .

3. Set the Active property to True to allow data to be passed to your application.

A data source connects the client dataset with data-aware controls. Each data-aware control must be associated with a data
source component to have data to display and manipulate. Similarly, all datasets must be associated with a data source
component for their data to be displayed and manipulated in data-aware controls on the form.

To add the data source

1. From the

Building a VCL Forms dbExpress.NET RAD Studio for Microsoft .NET 2.4 VCL for .NET Procedures

152

2

Data Access category of the Tool Palette , place a TDataSource component to the right of the ClientDataSet on the form.

2. In the Object Inspector , set the DataSet property drop-down to ClientDataSet1 .

To connect a DataGrid to the DataSet

1. From the Data Controls category of the Tool Palette , place a TDBGrid component on the form.

2. In the Object Inspector , set the DataSource property drop-down to DataSource1 .

3. Save all files in the project.

4. Select Run Run. You are prompted to enter a password.

5. Enter masterkey as the password. The application compiles and displays a VCL.NET form with a DBGrid.

See Also

VCL.NET Overview (see page 71)

2.4.8 Building an Application with XML Components

This example creates a VCL Forms application that uses an XMLDocument component to display contents in an XML file.

The basic steps are:

1. Create an XML document.

2. Create a VCL form.

3. Place an XMLDocument component on the form, and associate it with the XML file.

4. Create VCL components to enable the display of XML file contents.

5. Write event handlers to display XML child node contents.

6. Compile and run the application.

To create the XML document

1. Copy the text below into a file in a text editor.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<!DOCTYPE StockHoldings [
 <!ELEMENT StockHoldings (Stock+)>
 <!ELEMENT Stock (name)>
 <!ELEMENT Stock (price)>
 <!ELEMENT Stock (symbol)>
 <!ELEMENT Stock (shares)>
]>

<StockHoldings>
 <Stock exchange="NASDAQ">
 <name>Borland</name>
 <price>10.375</price>
 <symbol>BORL</symbol>
 <shares>100</shares>
 </Stock>

 <Stock exchange="NYSE">
 <name>MyCompany</name>
 <price>8.75</price>
 <symbol>MYCO</symbol>
 <shares type="preferred">25</shares>
 </Stock>

2.4 VCL for .NET Procedures RAD Studio for Microsoft .NET Building an Application with XML

153

2

</StockHoldings>

2. Save the file to your local drive as an XML document. Give it a name such as stock.xml .

3. Open the document in your browser. The contents should display without error.

Note: In the browser, you can choose View->Source

to view the source file in the text editor.

To create a form with an XMLDocument component

1. Start a new project.

2. Choose File New Other .

3. In the New Items dialog box, select Delphi for .NET Projects .

4. Double-click VCL Forms Application . The VCL Forms Designer displays.

5. From the Internet category on the Tool Palette , place an TXMLDocument component on the form.

6. In the Object Inspector , click the ellipsis button next to the FileName property, browse to the location of the XML file you
created, and open it. The XML file is associated with the TXMLDocument component.

7. In the Object Inspector , set the Active property to True.

To set up the VCL components

1. From the Standard page on the Tool Palette , place a TMemo component on the form.

2. From the Standard page on the Tool Palette , place two TButton components on the form just above Memo1.

3. In the Object Inspector with Button1 selected, enter Borland for the Caption property.

4. In the Object Inspector with Button2 selected, enter MyCompany for the Caption property.

To display child node contents in the XML file

1. Select Button1 .

2. In the Object Inspector double-click the OnClick event on the Events tab. The code displays with the cursor in the
TForm1.Button1Click event handler block.

3. Enter the following code to display the stock price for the first child node when the Borland button is clicked:

BorlandStock:=XMLDocument1.DocumentElement.ChildNodes[0];
 Price:= BorlandStock.ChildNodes['price'].Text;
 Memo1.Text := Price;

4. Add a var section just above the code block, above the begin statement in the event handler, and enter the following
local variable declarations:

var
 BorlandStock: IXMLNode;
 Price: string;

5. Select Button2 .

6. In the Object Inspector double-click the OnClick event on the Events tab. The code displays with the cursor in the
TForm1.Button2Click event handler block.

7. Enter the following code to display the stock price for the second child node when the MyCompany button is clicked:

MyCompany:=XMLDocument1.DocumentElement.ChildNodes[1];
Price:= MyCompany.ChildNodes['price'].Text;
Memo1.Text := Price;

8. Add a var section just above the code block, above the begin statement in the event handler, and enter the following local
variable declarations:

var
 MyCompany: IXMLNode;

Building an Application with XML RAD Studio for Microsoft .NET 2.4 VCL for .NET Procedures

154

2

 Price: string ;

To compile and run the application

1. Select Run Run to compile and execute the application. The application displays two buttons and a memo.

2. Click the Borland button. The stock price displays.

3. Click the MyCompany button. The stock price displays.

See Also

VCL.NET Overview (see page 71)

Building a VCL Forms Application (see page 149)

2.4.9 Making Changes Required Due to 64-bit .NET 2.0
Support

Changes have been made to support 64-bit .NET 2.0. These changes might require minor code changes so that existing
applications work correctly. This document describes these changes in detail. There are two general areas:

1. Changed code patterns

2. Windows API declarations for some callbacks and records

Warning: These changes are required due to changes made to support 64-bit systems. They must be made for applications
intended for both 32-bit and 64-bit systems.

To make required changes for various code patterns

1. Case statements Using a handle in a case statement no longer compiles. Replace statements like this:

case Msg.WParam of

with one of the following:

case Msg.WParam.ToInt64 of // VCL.NET specific
case Int64(Msg.WParam) of // Compatibile with VCL/Win32

2. Casting enumerations A handle can no longer be directly type cast to an enumerated type. Replace code like this:

LEnum := TEnum(GetWindowLong(...));

with this:

LEnum := TEnum(GetWindowLong(...).ToInt64);

3. Using handles with sets Overloading set operators isn’t supported, so code such as:

if Msg.WParam in [1..5] then

must be replaced with one of the following:

if Msg.WParam.ToInt64 in [1..5] then // VCL.NET specific
if Int64(Msg.WParam) in [1..5] then // Compatibile with VCL/Win32

4. Indexing into arrays Using a handle to index into an array no longer compiles. Code such as this:

S := StrArray[Msg.WParam];

must be changed to one of the following:

S := StrArray[Msg.WParam.ToInt64]; // VCL.NET specific
S := StrArray[Int64(Msg.WParam)]; // Compatibile with VCL/Win32

5. Assuming a specific handle size Code that is expected to run on 64-bit platforms should not assume the value of a handle

2.4 VCL for .NET Procedures RAD Studio for Microsoft .NET Making Changes Required Due to 64-bit

155

2

or an IntPtr is in the Int32 range. In the case of an IntPtr , the ToInt32 method throws an overflow exception if it
doesn't. Code such as this:

LIntPtr := IntPtr.Create(Buffer.ToInt32 + 10);

needs to be changed to this form:

LIntPtr := IntPtr.Create(Buffer.ToInt64 + 10);

Similarly, the following code:

var
 DC: HDC;
begin
 ...
 SendMessage(Window, Message, Integer(DC), 0);
end;

must be replaced by:

var
 DC: HDC;
begin
 ...
 SendMessage(Window, Message, WPARAM(DC), 0);
end;

To make required changes in various Windows callbacks

1. Examine the first column of the table below to determine if you have used any of these units.

2. If you have used any unit, determine if you have used any of the callbacks for that unit listed in the second column of the
table.

3. For each occurrence of such an callback, change the parameters noted in column 3 appropriately.

Unit Callback Details

DDEml TFNCallback Data1 and Data2 param types changed

MMSystem TFNDriverProc dwDriverId param type changed

MMSystem TFNDrvCallBack dwUser, dw1 and dw2 param types changed

MMSystem TFNTimeCallBack dwUser, dw1 and dw2 param types changed

RichEdit TEditStreamCallBack dwCookie param type changed

Windows TFNWndProc WParam, LParam and Result types changed

Windows TFNWndEnumProc LParam param type changed

Windows TFNTimerProc P3 param type changed

Windows TFNAPCProc dwParam param type changed

Windows TFNDlgProc Result type changed

Windows TFNSendAsyncProc P3 param type changed

Windows TFNPropEnumProcEx P4 param type changed

WinInet PFN_AUTH_NOTIFY dwContext param type changed

To make required changes in various Variant records

1. Examine the first column of the table below to determine if you have used any of these units.

2. If you have used any unit, determine if you have used any of the records for that unit listed in the second column of the table.

3. For each such record, find all places where a field was passed as a var parameter that has been changed to a property and

Making Changes Required Due to 64-bit RAD Studio for Microsoft .NET 2.4 VCL for .NET Procedures

156

2

modify the code appropriately. The compiler warns you whether you need to update or not.

Unit Record

ActiveX TPictDesc

ActiveX TPropSpec

ActiveX TStgMedium

ActiveX TTypeDesc

ActiveX TVarDesc

ActiveX TVariantArg

CommCtrl TPropSheetHeader

CommCtrl TPropSheetPage

CommCtrl TTVInsertStruct

CommCtrl TTVInsertStructA

CommCtrl TTVInsertStructW

MMSystem TMixerControlDetails

ShlObj TStrRet

Windows TInput

Windows TProcessHeapEntry

Windows TSystemInfo

WinSpool TPrinterNotifyInfoData

See Also

Changes Required Due to 64-bit .NET 2.0 Support (see page 58)

2.4.10 Creating a New VCL.NET Component

You can use the New VCL Component wizard to create a new VCL.NET component and add it to the Tool Palette .

General procedure for creating a new VCL.NET component

1. Create a package (.dll).

2. Create your new .NET VCL component:

1. Specify the ancestor component.

2. Specify the class name.

3. Register your component and add it to the VCL.

To create a package

1. Choose File->New->Other->Delphi for .NET Projects->Package.

2. RAD Studio creates the package and displays it in the Project Manager .

2.4 VCL for .NET Procedures RAD Studio for Microsoft .NET Creating a New VCL.NET Component

157

2

	RAD Studio for Microsoft .NET
	Table of Contents
	Concepts
	Developing Database Applications with ADO.NET
	AdoDbx Client Overview
	VCL for .NET Database Technologies
	BDP Connection Pooling Overview
	dbExpress Components overview
	dbGo Components Overview

	AdoDbx.NET Data Types
	ADO.NET Overview
	BDP Migration Overview
	Blackfish SQL Overview
	ADO.NET Component Designers
	Deploying Database Applications for the .NET Framework
	Data Providers for Microsoft .NET
	Stored Procedure Overview
	dbExpress Framework
	dbExpress Framework Compatibility
	Getting Started with InterBase Express

	Developing Applications with Unmanaged Code
	Using COM Interop in Managed Applications
	Using DrInterop
	Deploying COM Interop Applications
	Using Platform Invoke with Delphi for .NET
	Virtual Library Interfaces

	Modeling Concepts
	Code Visualization Overview

	Developing Reports for .NET Applications
	Using Rave Reports in RAD Studio

	Developing Applications with VCL.NET Components
	Changes Required Due to 64-bit .NET 2.0 Support
	Language Issues in Porting VCL Applications to RAD Studio
	Porting VCL Applications
	VCL for .NET Overview
	Porting Web Service Clients

	Developing Web Applications with ASP.NET
	ASP.NET Overview
	CodeGear DB Web Controls Overview
	Using DB Web Controls in Master-Detail Applications
	DB Web Controls Navigation API Overview
	DB Web Control Wizard Overview
	Using XML Files with DB Web Controls
	Working with DataViews
	Deploying ASP.NET Applications
	Working with WebDataLink Interfaces

	Developing Web Services with ASP.NET
	ASP.NET Web Services Overview
	Web Services Protocol Stack
	ASP.NET Web Services Support

	Procedures
	Database Procedures
	Adding a New Connection to the Data Explorer
	Adding a BDP Reconcile Error dialog to your BDP Application
	Browsing a Database in the Data Explorer
	Connecting to the AdoDbx Client
	Creating Database Projects from the Data Explorer
	Creating Table Mappings
	Executing SQL in the Data Explorer
	Handling Errors in Table Mapping
	Migrating Data Between Databases
	Modifying Connections in the Data Explorer
	Modifying Database Connections
	Building a Database Application that Resolves to Multiple Tables
	Passing Parameters in a Database Application
	Using the Data Adapter Preview
	Using the Command Text Editor
	Using the Data Adapter Designer
	Using the Connection Editor Designer
	Using Standard DataSets
	Using Typed DataSets
	Connecting to a Database using the dbExpress Driver Framework
	Building a Distributed Database Application

	Interoperable Applications Procedures
	Adding a J2EE Reference
	Adding a Reference to a COM Server

	Modeling Procedures
	Exporting a Code Visualization Diagram to an Image
	Importing and Exporting a Model Using XML Metadata Interchange (XMI)
	Using the Model View Window and Code Visualization Diagram
	Using the Overview Window

	VCL for .NET Procedures
	Building VCL Forms Applications With Graphics
	Building a VCL.NET Forms ADO.NET Database Application
	Building a VCL Forms Application
	Creating Actions in a VCL Forms Application
	Building a VCL Forms Hello World Application
	Using ActionManager to Create Actions in a VCL Forms Application
	Building a VCL Forms dbExpress.NET Database Application
	Building an Application with XML Components
	Making Changes Required Due to 64-bit .NET 2.0 Support
	Creating a New VCL.NET Component
	Displaying a Bitmap Image in a VCL Forms Application
	Drawing Rectangles and Ellipses in a VCL Forms Application
	Drawing a Rounded Rectangle in a VCL Forms Application
	Drawing Straight Lines In a VCL Forms Application
	Placing a Bitmap Image in a Control in a VCL Forms Application
	Importing .NET Controls to VCL.NET

	ASP.NET Procedures
	Building an ASP.NET Application
	Building an ASP.NET Database Application
	Developing an ASP.NET Application with Database Controls, Part 1
	Building an ASP.NET Application with Database Controls, Part 2
	Building an ASP.NET Application with Database Controls, Part 3
	Building an ASP.NET "Hello World" Application
	Building an ASP.NET SiteMap
	Creating a Briefcase Application with DB Web Controls
	Building an Application with DB Web Controls
	Converting HTML Elements to Server Controls
	Creating an XML File for DB Web Controls
	Creating Metadata for a DataSet
	Creating a Virtual Directory
	Adding Aggregate Values with DBWebAggregateControl
	Debugging and Updating ASP.NET Applications
	Deploying an ASP.NET Application using Blackfish SQL to a system without RAD Studio
	Generating HTTP Messages in ASP.NET
	Binding Columns in the DBWebGrid
	Setting Permissions for XML File Use
	Troubleshooting ASP.NET Applications
	Using the DB Web Control Wizard
	Using the ASP.NET Deployment Manager
	Using the HTML Tag Editor
	Working with ASP.NET User Controls

	Web Services Procedures
	Accessing an ASP.NET "Hello World" Web Services Application
	Adding Web References in ASP.NET Projects
	Building an ASP.NET "Hello World" Web Services Application
	Porting a Delphi for Win32 Web Service Client Application to Delphi for .NET

	Index

