made with doc-{0)-matic

Blackfish SQL

Copyright(C) 2008 Embarcadero Technologies, Inc. All Rights Reserved.

Blackfish SQL

Table of Contents

Preface

Overview

System Architecture

Establishing Connections

Administering Blackfish SQL

Using Blackfish SQL Security

Using Stored Procedures and User Defined Functions
Using Triggers in Blackfish SQL Tables

Stored Procedures Reference

SQL Reference

Optimizing Blackfish SQL Applications
Deploying Blackfish SQL Database Applications
Troubleshooting

Index

23

31

35

41

55

59

75

125

133

137

1 Blackfish SQL

Preface

This Preface describes the manual, lists technical resources, and provides CodeGear contact information.

Intended Audience

This document is for:

» Developers implementing Blackfish SQL database applications
» System administrators responsible for installing, deploying, and maintaining Blackfish SQL databases
Blackfish SQL for Windows users should have a working knowledge of:
« Delphi, C++, C#, or VB.NET programming
» Basic dbExpress 4 or ADO.NET 2.0
« Basic SQL
Blackfish SQL for Java users should have a working knowledge of:
 Java programming
« DataExpress
« JDBC
. SQL
Document Conventions

This document uses the following typographic conventions:

Font or Symbol Use

nono space Computer output, files, directories, URL, and code elements such as command lines,
keywords, function names, and code examples

nono space italic Parameter names and variables

Bold GUI elements, emphasis, section subheadings

Italic Book titles, new terms

underlined font Hyperlink

Blackfish SQL 1

Online Technical Resources

General product information and technical information are available on the Blackfish SQL community page at:
http://www.codegear.com/products/blackfish/.

To discuss issues with other Blackfish SQL users, visit the Blackfish newsgroups at:
http://support.codegear.com/forums/directory/Blackfish.

CodeGear Support

CodeGear offers a variety of support options for Blackfish SQL. For pre-sales support, installation support, and a variety of
technical support options, visit: http://support.codegear.com.

When you are ready to deploy Blackfish SQL, you may need additional deployment licenses. To purchase licenses and
upgrades, visit the CodeGear Online Shop at: http://shop.codegear.com.

Additional Resources

Useful technical resources include:
JDBC

« JDBC™ API Documentation at java.sun.com

« JDBC API Tutorial and Reference, by Seth White, et al; published by Addison Wesley

SQL

« A Guide to The SQL Standard, by C. J. Date and Hugh Darwen; published by Addison Wesley

DataExpress JavaBeans

» DataExpress Component Library Reference in the Blackfish SQL for Java Help
See Also

Overview (@ see page 3)

System Architecture (@ see page 7)

Establishing Connections (@ see page 23)

Administering Blackfish SQL (i@ see page 31)

Using Blackfish SQL Security (@ see page 35)

Using Stored Procedures and User Defined Functions (@l see page 41)

Using Triggers in Blackfish SQL Tables (@ see page 55)

Stored Procedures Reference (@ see page 59)

SQL Reference (@ see page 75)

Optimizing Blackfish SQL Applications (& see page 125)

Deploying Blackfish SQL Database Applications (& see page 133)

Troubleshooting (@ see page 137)

http://www.codegear.com/products/blackfish
http://support.codegear.com/forums/directory/Blackfish

Blackfish SQL

Overview

This chapter describes Blackfish SQL features.

Blackfish SQL
Blackfish SQL DataStore

Compatibility Between Windows and Java

Blackfish SQL for Java Connectivity
Blackfish SQL API for Windows

Administration and Utility Functions Available from SQL

Blackfish SQL

Blackfish™ SQL is a high-performance, small-footprint, transactional database. Blackfish SQL was originally implemented as an
all-Java database called JDataStore. This is now called Blackfish SQL for Java. Blackfish SQL was then ported from Java to C#.
The C# implementation is called Blackfish SQL for Windows.

The design and implementation of Blackfish SQL emphasizes database performance, scalability, ease of use, and a strong
adherence to industry standards. Blackfish SQL capabilities include the following:

Industry standards compliance:

Entry level SQL-92

Unicode storage of character data

Unicode-based collation key support for sorting and indexing
dbExpress 4 drivers for Win32 Delphi and C++

ADO.NET 2.0 providers for .NET

JDBC for Java

JavaBean data access components for Java

XA/JTA Distributed transactions for Java

High performance and scalability for demanding online transaction processing (OLTP) and decision support system (DSS)
applications

Delphi, C#, and VB.NET stored procedures and triggers for Windows

Java-stored procedures and triggers

Blackfish SQL 2

« Zero-administration, single assembly or single-jar deployment

« Database incremental backup and failover in the Java version

Blackfish SQL DataStore

Blackfish SQL is the name of the product, its tools, and of the file format. Within RAD Studio, there are assemblies that include
classes that start with Dat aSt or e.

Compatibility Between Windows and Java

Blackfish SQL for Windows and Blackfish SQL for Java are compatible, though some restrictions apply. The database file format
is binary-compatible between the two. The database clients and servers are interchangeable. Windows clients can connect to
Java servers and Java clients can connect to Windows servers. However, because the Blackfish SQL for Windows
implementation is more recent, some Blackfish SQL for Java features are not yet supported for the Windows version.

For additional information about Blackfish SQL compatibility, see System Architecture.

Blackfish SQL for Windows Connectivity

Blackfish SQL for Windows provides the following database drivers:

« DBXClient: This 100% Object Pascal dbExpress 4 database driver enables C++ and Win32 Delphi applications to connect to
a remote Blackfish SQL for Windows or Blackfish SQL for Java server.

« Local ADO.NET 2.0 Provider: This 100% managed code driver enables .NET applications to connect to a local Blackfish
SQL for Windows server. The local ADO.NET driver executes in the same process as the BlackFish SQL database kernel, for
better performance.

 Remote ADO.NET 2.0 Provider: This 100% managed code driver enables .NET applications to acquire a remote connection
to either a Blackfish SQL for Windows or Blackfish SQL for Java server.

For instructions on using these drivers, see Establishing Connections.

Blackfish SQL API for Windows

The Blackfish SQL APl may be used in Delphi and C++ programs with the DBXClient DBX4 driver. .NET applications can use
the APl with the ADO.NET Provider. In RAD Studio the APl is in the Borl and. Data.DataStore and
Bor | and. Dat a. Met aDat a namespaces.

The administrative capabilities listed below are not yet supported in DataExplorer for Blackfish SQL for Windows. Use SQL
commands or Blackfish SQL built-in DB_ADMIN stored procedures to complete these tasks.

» Create/alter autoincrement and max inline properties for columns
« Create secondary indexes

« Create, alter, drop users and roles

« Create, alter, drop database mirrors

« Database encryption

» Database backup

Administration and Utility Functions Available From SQL

Two classes are available, DB_ADMIN and DB_UTIL. These methods can be called from SQL using the CALL statement. They
can be called without creating a METHOD alias, because the Blackfish SQL dialect recognizes methods in DB_ADMIN as built-in
methods.

Blackfish SQL

DB_ADMIN Class

DB_ADMIN is a group of stored procedures for performing a variety of database administration tasks. Some of the capabilities
include:

Configuring automatic failover and incremental backup
Viewing and altering database configurations

Backing up databases (explicit)

Encrypting databases

Mirror management

For more information, see the Stored Procedures Reference.

DB_UTIL Class

DB_UTIL is a set of SQL stored procedures for performing numeric, string and date/time operations on data stored in database
tables. These procedures include such functions as:

Mathematical functions, such as trigonometric, arithmetic, and random
String manipulation functions

Date and time functions

For more information, see the Stored Procedures Reference.

ADO.NET

Blackfish SQL includes an ADO.NET implementation. This is similar to the AdoDbx Client, which is also an ADO.NET
implementation.

DataStoreCommand: Provides execution of SQL statements and execution of stored procedures.

DataStoreCommandBuilder: Generates single-table commands to reconcile changes made to a DataSet with its underlying
database.

DataStoreConnection: Provides a connection to a database.

DataStoreConnectionPool: Provides access to a connection pool.

DataStoreDataAdapter: Fills a DataSet and updates a database.

DataStoreDataReader: Gives access to a result table from a database server.
DataStoreDataSourceEnumerator: Provides enumerator for finding all data sources on local network.
DataStoreParameter: Specifies parameter for DataStoreCommand.

DataStoreParameterCollection: Collection of parameters for DataStoreCommand.
DataStoreProviderFactory: Base class for a provider's implementation of data source classes.
DataStoreRowUpdatedEventArgs: Holds data for RowUpdated event of DataStoreDataAdapter.
DataStoreRowUpdatingEventArgs: Holds data for RowUpdating event of DataStoreDataAdapter.

DataStoreTransaction: Provides a transaction.

See Also

Preface (@ see page 1)

System Architecture (@ see page 7)

Establishing Connections (@ see page 23)

Administering Blackfish SQL (@ see page 31)

Blackfish SQL

Using Blackfish SQL Security (@ see page 35)

Using Stored Procedures and User Defined Functions (@ see page 41)
Using Triggers in Blackfish SQL Tables (@ see page 55)

Stored Procedures Reference (i@ see page 59)

SQL Reference (@ see page 75)

Optimizing Blackfish SQL Applications (@ see page 125)

Deploying Blackfish SQL Database Applications (@ see page 133)

Troubleshooting (@ see page 137)

3 Blackfish SQL

System Architecture

This chapter provides an overview of Blackfish SQL system architecture.

« Compatibility

* Windows Connectivity

« Java Connectivity

» Differences Between Local and Remote Drivers

» Database Files

« Database File System

« Transaction Management

* High Availability

* Heterogeneous Replication Using DataExpress
Blackfish SQL Compatibility

Blackfish SQL for Windows and Blackfish SQL for Java are compatible in these ways:

» The database file format is binary-compatible between the two
« The database clients and servers are interchangeable
« Windows clients can connect to Java servers and Java clients can connect to Windows servers

Compatibility is restricted in the following ways:

» The Obj ect type uses platform-specific serialization; therefore the data cannot be shared between two different clients:
« An ADO driver cannot read a Java serialized object.
« A Java driver cannot read a .NET serialized object.
* A DbxClient driver cannot read Java or .NET serialized objects.

* The maximum scale for a decimal is different in Java and .NET.

» For Blackfish SQL for Java, the Ti nest anp type has two more digits in the fractional portion.

The following Blackfish SQL for Java features are not yet supported in the Windows version:

* ISQL SQL Command Line Interpreter

Blackfish SQL 3

« High Availability features, including incremental backup and failover
« Graphical tooling for some administrative capabilities
« Access to file and object streams
« Tracking and resolving of row-level insert, update and delete operations
« Access to the Blackfish SQL File System directory
Blackfish SQL for Windows Connectivity
Windows applications can use one or more of the following connectivity solutions to access a Blackfish SQL database

programmatically:

« DBXClient DBXClient is a 100% Object Pascal dbExpress 4 database driver that enables Win32 Delphi and C++
applications to connect to a Blackfish SQL for Windows or Blackfish SQL for Java server.

« ADO.NET ADO.NET is the Microsoft standard for database connectivity on the .NET platform. Blackfish SQL for Windows has
the following ADO.NET providers:

* Local ADO.NET 2.0 Provider: This 100% managed code driver enables .NET applications to connect to a local Blackfish
SQL server. The local ADO.NET driver executes in the same process as the BlackFish SQL database kernel, for better
performance.

* Remote ADO.NET 2.0 Provider: This 100% managed code driver enables .NET applications to acquire a remote
connection to either a Blackfish SQL for Windows or Blackfish SQL for Java server.

See Establishing Connections for instructions and code examples for using these drivers.

Blackfish SQL for Java Connectivity
Java applications can use one or more of the following connectivity solutions to access a Blackfish SQL database
programmatically:

« JDBC Type 4 Drivers JDBC is the industry standard SQL call-level interface for Java applications. Blackfish SQL for Java
provides the following JDBC drivers:

e Local JDBC driver: This 100% managed code driver enables Java applications to connect to a local Blackfish SQL server.
The local JDBC driver executes in the same process as the BlackFish SQL database kernel, for better performance.

« Remote JDBC driver: This 100% managed code driver enables Java applications to acquire a remote connection to either
a Blackfish SQL for Windows or Blackfish SQL for Java server.

« ODBC to JDBC Gateway Provided by EasySoft Limited, this gateway is an industry standard SQL call-level interface. The
EasySoft ODBC to JDBC Gateway enables native applications to access Blackfish SQL databases.

- DataExpress JavaBeans DataExpress JavaBeans provides additional functionality not addressed by the JDBC standard.
See DataExpress JavaBeans for details.

See Establishing Connections for instructions and code examples for using these drivers.

DataExpress JavaBeans
NOTE: This feature is available only with Blackfish SQL for Java.
DataExpress is a set of JavaBean runtime components that provide functionality not addressed by the JDBC standard.
JavaBean is an industry-standard component architecture for Java. The JavaBean standard specifies many important aspects of

components needed for RAD development environments. JavaBean components can be designed in a visual designer and can
be customized with the properties, methods, and events that they expose.

DataExpress is included in the component palette of CodeGear JBuilder Visual Designer. For information on using DataExpress
from within JBuilder, see the JBuilder Help.

Because DataExpress is a set of runtime components, you need not use JBuilder to develop and deploy applications that use
DataExpress.

The majority of DataExpress JavaBean components are those required to build both server-side and client-side database

Blackfish SQL

applications. Client-side applications require high quality data binding to visual components such as grid controls, as well as
support for reading and writing data to a database.

Server-side applications require data access components to help with reading and writing data to a database, but presentation is
typically handled by a web page generation system such as Java Server Pages (JSPs). Even though DataExpress has extensive
support for client-side data binding to visual component libraries such as dbSwing and JBCL, the DataExpress design still
separates the presentation from the data access layer. This allows DataExpress components to be used as a data access layer
for other presentation paradigms such as the JSP/servlet approach employed by JBuilder InternetBeans Express technology.

The DataExpress architecture allows for a pluggable storage interface to cache the data that is read from a data source.
Currently, there are only two implementations of this interface, Menor y St or e (the default), and Dat aSt or e. By setting just two
properties on a St or ageDat aSet JavaBean component, a Blackfish SQL table can be directly navigated and edited with a
St or ageDat aSet JavaBean. By setting the Dat aSet property of a dbSwing grid control, the entire contents of large tables can
be directly browsed, searched, and edited at high speed. This effectively provides an ISAM-level data access layer for Blackfish
SQL tables.

Automating Administrative Functions with DataExpress JavaBeans

There are many DataExpress components that can be used to automate administrative tasks. Commonly-used components are:

DataExpress Administrative Components

Task Component

Custom server start and shutdown com.borland.datastore.jdbc.DataStoreServer

Database backup, restore, and pack com.borland.datastore.DataStoreConnection.copyStreams()
Security administration com.borland.datastore.DataStoreConnection

Transaction management com.borland.datastore.TxManager com.borland.datastore.DataStore

DataExpress JavaBean Source Code

JBuilder provides a source code . j ar file that includes a large portion of the DataExpress JavaBean components. This enables
you to more easily debug your applications and gain a better understanding of the DataExpress JavaBean components.

Differences Between Local and Remote Drivers

The primary difference between using local and remote drivers with Blackfish SQL is:

» Local driver: The Blackfish SQL database engine executes in the same process as the application.

* Remote driver: The Blackfish SQL database engine executes in either the same process or in a different process as the
application.

Advantages of Using a Local Driver to Access a Database

A local Blackfish SQL driver provides the following benefits:

« High-speed interface to the database Driver calls are made directly into the database kernel on the same call stack. There
are no remote procedure calls to a database server running in another process.

» Easy to embed in an application The database server does not need to be configured or started. The executable code for
the database kernel, database driver and application execute in the same process.

Blackfish SQL 3

Advantages of Using a Remote Driver to Access a Database

You can use a remote Blackfish SQL driver to execute Blackfish SQL in a separate database server process. However, before
the application can use a remote driver, the Blackfish SQL server process must be started. Executing the Blackfish SQL
database kernel in a separate database server process provides the following benefits:

* Multi process access to a database If multiple processes on one or more computers need to access a single Blackfish SQL
database, a Blackfish SQL server must be started and the remote drivers must be used by the application.

» Improved performance using multiple computers If your application or web server is consuming a large portion of the
memory or CPU resources, it is often possible to achieve better performance by running the Blackfish SQL server on a
separate computer.

« Improved fault tolerance Applications that use a remote connection typically run in a separate process. Errant applications
can be terminated without having to shutdown the database server.

Advantages of Using Both Local and Remote Drivers to Access a Database

Using both the local and remote driver to access the same database can give you the best of both worlds. A Blackfish SQL
database file can be held open by only one operating system process. When you connect using the local driver, the process that
uses the local driver holds the database file open. When the remote driver makes the connection, the Blackfish SQL server
process holds the database file open.

Since the local driver causes the database file to be open in the same process, it prevents connections from the remote driver.
However, if the process that uses the local driver also starts a Blackfish SQL server in the same process, then other processes
using the remote driver can access the same database as the local driver.

The Blackfish SQL server can be started inside an application by using a single line of Java code that instantiates a
Dat aSt or eSer ver component and executes its start method. The Dat aSt or eServer runs on a separate thread and
services connection requests from processes that use the remote driver to access a Blackfish SQL database on the computer
that on which the Dat aSt or eSer ver was started.

In addition, the local driver can be used by the application that launched the Dat aSt or eSer ver for faster in-process driver calls
into the Blackfish SQL database engine.

Blackfish SQL Database Files

10

These files are created and used by Blackfish SQL:

» file-name.jds: a single file storage for all database objects.

« database-name_LOGA_*: transactional log files. If the database file is moved, the log files must be moved with it.
« database-name_LOGA_ANCHOR: redundantly stores log file configuration information.

» database-name_STATUS*: log files created if status logging is enabled for the database.

A Blackfish SQL database can still be used if the anchor or status log files do not exist.

A non-transactional (read only) database only needs the .jds database file.

The specifications for Blackfish SQL database file capacity are:

Blackfish SQL Database File Capacity

Specification Value
Minimum block size: 1KB
Maximum block size: 32 KB
Default block size 4 KB

3 Blackfish SQL

Maximum Blackfish SQL database file size 2 billion blocks. For the default block size, that yields a maximum of
8,796,093,022,208 bytes (8TB).

Maximum number of rows per table stream 281,474,976,710,656

Maximum row length 1/3 of the block size. Long Strings, objects, and input streams that are
stored as Blobs instead of occupying space in the row.

Maximum Blob size 2GB each

Maximum file stream size 2GB each

Blackfish SQL Database File System

A Blackfish SQL database file can contain these types of data streams:

» Table streams: These are database tables typically created using SQL. A table stream can have secondary indexes and
Blob storage associated with it.

» File streams: There are two types of file streams:
« Arbitrary files created with Dat aSt or eConnect i on. cr eat eFi | eSt r ean()
» Serialized Java objects stored as file streams

A single Blackfish SQL database can contain all stream types.

Streams are organized in a file system directory. The ability to store both tables and arbitrary files in the same file system allows
all of the data for an application to be contained in a single portable, transactional file system. A Blackfish SQL database can
also be encrypted and password protected.

The specifications for Blackfish SQL database file systems are:

Blackfish SQL Database File System Specifications

Specification Value

Directory separator |/
character for streams

Maximum stream name 192 bytes

length « Best case (all single-byte character sets): 192 characters
* Worst case (all double-byte character sets): 95 characters (one byte lost to indicate DBCS)
Reserved names Stream names that begin with SYS are reserved. Blackfish SQL has the following system tables:

¢ SYS/Connections
e SYS/Queries
¢ SYS/Users

Blackfish SQL for Java Specific Streams

Some table streams and all file streams are currently only accessible from Java applications.

If the r esol vabl e property for the table is set, all insert, update, and delete operations made against the table are recorded.
This edit tracking feature enables DataExpress components to synchronize changes from a replicated table to the database from
which the table was replicated.

File streams are random-access files. File streams can be further broken down into two different categories:

« Arbitrary files created with DataStoreConnection.createFileStream(): You can write to, seek in, and read from these

11

Blackfish SQL 3

streams.
« Serialized Java objects stored as file streams: You can write to, seek in, and read from these streams.

Each stream is identified by a case-sensitive name referred to as a st or eNane in the API. The name can be up to 192 bytes
long. The name is stored along with other information about the stream in the internal directory of the Blackfish SQL database.
The forward slash (/) is used as a directory separator in the name to provide a hierarchical directory organization. JdsExplorer
uses this structure to display the contents of the directory in a tree.

Advantages of Using the Blackfish SQL File System

For the simple persistent storage of arbitrary files and objects, using the Blackfish SQL file system has a number of advantages
over using the JDK classes in the j ava. i o package:

« ltis simpler, because one class is needed instead of four (Fi | eQut put St r eam Cbj ect Qut put St r eam
Fi | el nput St r eam Cbj ect | nput St r ean).

* You can keep all your application files and objects in a single file and access them easily with a logical hame instead of
streaming all of your objects to the same file.

* Your application can use less storage space, due to how disk clusters are allocated by some operating systems. The default
block size in a Blackfish SQL database file is small (4KB).

* Your application is more portable, since you are no longer at the mercy of the host file system. For example, different
operating systems have different allowable characters for names. Some systems are case sensitive, while others are not.
Naming rules inside the Blackfish SQL file system are consistent on all platforms.

» Blackfish SQL provides a transactional file system that can also be encrypted and password protected.

Blackfish SQL Directory Contents

12

Note: Currently, the directory for the Blackfish SQL database can be accessed only from Java applications. Fortunately, most
applications do not need to access the directory directly.

The JdsExplorer tree provides a hierarchical view of the the Blackfish SQL directory. The Blackfish SQL directory can also be
opened programmatically with a DataExpress St or ageDat aSet component. This provides a tabular view of all streams stored
in the Blackfish SQL file system. The directory table has the following structure:

Blackfish SQL Directory Table Columns

Name Constant Type Contents

1 State DIR_STATE short Whether the stream is active or deleted

2| DeleteTime DIR_DEL_TIME long If deleted, when; otherwise zero

3| StoreName DIR_STORE_NAME String The store name

4 Type DIR_TYPE short Bit fields that indicate the type of streams

5 1d DIR_ID int A unique ID number

6 | Properties DIR_PROPERTIES String Properties and events for a DataSet stream

7 | ModTime DIR_MOD_TIME long Last time the stream was modified

8| Length DIR_LENGTH long Length of the stream, in bytes

9| BlobLength DIR_BLOB_LENGTH long Length of the Blobs in a table stream, in bytes

You can reference the columns by name or by number. There are constants defined as Dat aSt or e class variables for each of
the column names. The best way to reference these columns is to use these constants. The constants provide compile-time
checking to ensure that you are referencing a valid column. Constants with names ending with the suffix _STATE exist for the
different values for the St at e column. There are also constants for the different values and bit masks for the Type column, with

3 Blackfish SQL
names ending with the suffix _STREAM See the online help for the Dat aSt or e class for a listing of these constants.

Stream Details

Time columns in the Blackfish SQL directory are Coordinated Universal Time (UTC).

As with many file systems, when you delete a stream in Blackfish SQL, the space it occupied is marked as available, but the
contents and the directory entry that points to it are not immediately reused for new allocations. This means you can sometimes
restore a deleted stream if it has not been overwritten.

For more information on deleting and restoring streams, see Deleting Streams, How Blackfish SQL Reuses Blocks, and
Restoring Streams.

The Type column indicates whether a stream is a file or table stream, but there are also many internal table stream subtypes (for
example, for indices and aggregates). These internal streams are marked with the HI DDEN_STREAM bit to indicate that they
should not be displayed. Of course, when you are reading the directory, you can decide whether these streams should be hidden
or visible.

These internal streams have the same St or eNane as the table stream with which they are associated. This means that the
St or eNane alone does not always uniquely identify a stream. Some internal stream types can have multiple instances. The ID
for each stream is always unique; however, the St or eNane is sufficiently unique for the st or eName parameter used at the API
level. For example, when you delete a table stream, all the streams with that St or eNae are deleted.

Directory Sort Order

The directory table is sorted by the first five columns. Because of the values stored in the St at e column, all active streams are
listed first in alphabetical order by name. These are then followed by all deleted streams ordered by their delete time, oldest to
most recent.

NOTE: You cannot use a Dat aSet Vi ewto create a different sort order.

Blackfish SQL File System Storage Allocation

Database contents are stored in a single file. If the database has transaction support enabled, there are additional files for
transactional logs.

A database file has a block size property that defaults to 4096 bytes. The database block size property is the unit size used for
new allocations in the database. This size also determines the maximum storage size of a Blackfish SQL database. The formula
for computing the maximum database file size is:

<bytes-per-block> * 2731
For a block size of 4096 bytes, this is about 8.8 terabytes.

A Blackfish SQL database file does not automatically shrink as data is deleted or removed from it. However, new allocations
reuse the space from deleted allocations. Deleted space in the file system is made available to new allocations in two ways:

» Deleted blocks In this case, an entire block is reallocated from the list of deleted blocks.

» Blocks that are partially full In this case, free space can be reused only on a per-stream basis. Specifically, the free space
in a block in Table A can be reused only by a new allocation for a row in Table A. From an allocation perspective, tables,
secondary indices, Blobs, and files are all separate streams.
On average, partially allocated blocks are kept at least 50 percent full. The file system goes to great lengths to ensure this is true
for all stream types in the Blackfish SQL file system. The one exception to this rule occurs when a stream has a small number of
blocks allocated.

A Blackfish SQL database file can be compacted to remove all deleted space and to defragment the file system so that blocks
for each stream are located in contiguous regions. To compact a database using JdsExplorer, choose Tools > Pack. You can
accomplish this programmatically by using the DB_ADM N. COPY_USERS and DB_ADM N. COPY_STREAMS methods.

13

De

Blackfish SQL 3

leting Streams

Deleting a stream does not actually overwrite or clear the stream contents. As in most file systems, the space used by the
stream is marked as available, and the directory entry that points to that space is marked as deleted. The time at which the
stream was deleted is recorded in the directory. Over time, new stream allocations overwrite the space that was formerly
occupied by the deleted stream, making the content of the deleted streams unrecoverable.

You can use JdsExplorer to delete streams, or you can delete streams programmatically using the
Dat aSt or eConnect i on. del et eSt r eanm() method, which takes as an argument the name of the stream to delete.

How Blackfish SQL Reuses Blocks

Blocks in the Blackfish SQL database file that were formerly occupied by deleted streams are reclaimed according to the
following rules:

» Blackfish SQL always reclaims deleted space before allocating new disk space for its blocks.

 If the database is transactional, the transaction that deleted the stream must commit before the used space can be reclaimed.
* The oldest deleted streams (those with the earliest delete times) are reclaimed first.

» For table streams, the support streams (those for indices and aggregates) are reclaimed first.

» Space is reclaimed from the beginning of the stream to the end of the stream. This means you are more likely to recover the
end of a file or table than the beginning.

» Because of the way table data is stored in blocks, you never lose or recover a partial row in a table stream, only complete
rows.

« When all the space for a stream has been reclaimed, the directory entry for the stream is automatically erased, since there is
nothing left to restore.

Restoring Streams

Blackfish SQL allows deleted streams to be restored if their space has not be consumed by new allocations as described in
above. You can restore a stream either by using JdsExplorer to restore it, or by calling the
Dat aSt or eConnect i on. undel et eSt r eam() method.

Because table streams have multiple streams with the same name, the stream name alone is not sufficient for attempting to
restore a stream programmatically. You must use a row from the Blackfish SQL directory. The row contains enough information
to uniquely identify a particular stream.

The Dat aSt or eConnecti on. undel et eSt rean() method takes such a row as a parameter. You can pass the directory
dataset itself. The current row in the directory dataset is used as the row to restore.

If you create a new stream with the name of a deleted stream, you cannot restore that stream while the same name is being
used by an active stream.

Transaction Management

14

The lifecycle of a transaction begins with any read or write operation through a connection. Blackfish SQL uses stream locks to
control access to resources. To read a stream or modify any part of a stream (e.g., a byte in a file, a row in a table), a connection
must acquire a lock on that stream. Once a connection acquires a lock on a stream, it holds the lock until the transaction is
committed or rolled back.

In single-connection applications, transactions primarily provide crash recovery and allows an application to undo changes. Or,
you may decide to make a Blackfish SQL database transactional so that it can be accessed through JDBC. If you want to access
that Blackfish SQL database using DataExpress, you must deal with transactions.

Blackfish SQL

Transaction Isolation Levels
Blackfish SQL supports all four isolation levels specified by the ANSI/ISO SQL (SQL/92) standards.

The serializable isolation level provides complete transaction isolation. An application can employ a weaker isolation level to
improve performance or to avoid lock manager deadlocks. Weaker isolation levels are susceptible to one or more of the following
isolation violations:

« Dirty reads One connection is allowed to read uncommitted data written by another connection.

* Nonrepeatable reads A connection reads a committed row, another connection changes and commits that row, and the first
connection rereads that row, getting a different value the second time.

« Phantom reads A connection reads all of the rows that satisfy a WHERE condition, a second connection adds another row that
also satisfies that condition, and the first connection sees the new row that was not there before, when it reads a second time.

SQL-92 defines four levels of isolation in terms of the behavior that a transaction running at a particular isolation level is
permitted to experience, which are:

SQL Isolation Level Definitions

Isolation Level Dirty Read Nonrepeatable Read Phantom Read
Read uncommitted Possible Possible Possible

Read committed Not Possible Possible Possible
Repeatable read Not possible Not possible Possible
Serializable Not possible Not possible Not possible

Choosing an Isolation Level for a Blackfish SQL Connection

Guidelines for choosing an isolation level for a connection include:

Isolation Level Guidelines

Isolation
level

Read
Uncommitted

Read
Committed

Repeatable
Read

Serializable

Description

This isolation level is suitable for single-user applications for reports that allow transactionally inconsistent views
of the data. It is especially useful when browsing Blackfish SQL tables with dbSwing and DataExpress DataSet
components. This isolation level incurs minimal locking overhead.

This isolation level is commonly used for high-performance applications. It is ideal for data access models that
use Optimistic Concurrency Control. In these data access models, read operations are generally performed first.
In some cases, read operations are actually performed in a separate transaction than write operations.

This isolation level provides more protection for transactionally consistent data access without the reduced
concurrency of TRANSACTION_SERIALIZABLE. However, this isolation level results in increased locking
overhead because row locks must be acquired and held for the duration of the transaction.

This isolation level provides complete serializability of transactions at the risk of reduced concurrency and
increased potential for deadlocks. Although row locks can still be used for common operations with this isolation
level, some operations cause the Blackfish SQL lock manager to escalate to using table locks.

Blackfish SQL Locking
The locks used by the Blackfish SQL Lock Manager are:

Blackfish SQL Locking

15

Blackfish SQL 3

Lock Description

Critical | These are internal locks used to protect internal data structures. Critical section locks are usually held for a short
section | period of time. They are acquired and released independent of when the transaction is committed.
locks

Row Row locks are used to lock a row in a table. These locks support shared and exclusive lock modes. Row locks are
locks | released when the transaction commits.

Table | Table locks are used to lock an entire table. These locks support shared and exclusive lock modes. Table locks are
locks released when the transaction commits.

DDL DDL table locks are locks acquired when database metadata is created, altered, or dropped. These support shared
table and exclusive lock modes:

locks « Shared DDL locks are held by transactions that have tables opened. Shared DDL locks are held until the

transaction commits and the connection closes the table and all statements that refer to the table.

« Exclusive DDL locks are used when a table must be dropped or structurally modified and are released when a
transaction commits.

Controlling Blackfish SQL Locking Behavior

You can specify case-insensitive connection properties to control locking behavior. The property names are:

Case-Insensitive Connection Properties for Controlling Locking Behavior

Property Behavior

tableLockTables | Specifies the tables for which row locking is to be disabled. This can be a list of tables, defined as a string of
semicolon-separated, case-sensitive table names. Set this property to “*”.

maxRowLocks Specifies the maximum number of row locks per table that a transaction should acquire before escalating to
a table lock. The default value is 50.

lockWaitTime Specifies the maximum number of milliseconds to wait for a lock to be released by another transaction.
When this timeout period expires, an appropriate exception is thrown.

readOnlyTxDelay | Specifies the maximum number of milliseconds to wait before starting a new read-only view of the database.
For details, see the discussion on read only transaction, in Tuning Blackfish SQL Concurrency Control
Performance

Blackfish SQL Locking and Isolation Levels

The use of table locks and row locks varies between the different isolation levels. The t abl eLockTabl es connection property
disables row locking and affects all isolation levels. Critical section and DDL locks are applied in the same manner for all
isolation levels.

All isolation levels acquire at least an exclusive row lock for row update, delete, and insert operations. In some lock escalation
scenarios, an exclusive table lock occurs instead.

The row locking behavior of the Blackfish SQL connection isolation levels are:

Lock Use and Isolation Levels

16

3 Blackfish SQL

Connection Row locking behavior
isolation
level

Read This level does not acquire row locks for read operations. It also ignores exclusive row locks held by other
Uncommitted | connections that have inserted or updated a row.

Read This level does not acquire row locks for read operations. A transaction using this isolation level blocks when

Committed | reading a row that has an exclusive lock held by another transaction for an insert or update operation. This block
terminates when one of the following occurs: the write transaction commits, a deadlock is detected, or the
lockTimeOut time limit has expired.

Repeatable | This level acquires shared row locks for read operations.
Read

Serializable | This level acquires shared row locks for queries that select a row based on a unique set of column values such
as a primary key or INTERNALROW column. In SQL, the WHERE clause determines whether or not unique
column values are being selected. Exclusive row locks are also used for insert operations and update/delete
operations on rows that are identified by a unique set of column values. The following operations escalate to a
shared table lock:

» Read operations that are not selected based on a unique set of column values

» Read operations that fail to find any rows

» Insert and update operations performed on a non-uniquely specified row

Note that although lock escalation from row locks to table locks occurs in some situations for Seri al i zabl e as described
above, it also occurs for all isolation levels if the maxRowLocks property is exceeded.

Concurrency Control Changes

Blackfish SQL database files created with earlier versions of Blackfish SQL continue to use table locking for concurrency control.
There are, however, some minor concurrency control improvements for older database files. These include:

» Support for Read Unconmi tted and Seri al i zabl e connection isolation levels

» Shared table locks for read operations; earlier versions of Blackfish SQL software used exclusive table locks for read and
write operations.

Blackfish SQL for Windows Connection Pooling

In an application that opens and closes many database connections, it is efficient to keep unused Connect i on objects in a pool
for future reuse. This saves the overhead of having to create a new physical connection each time a connection is needed.

Using the DBXClient dbExpress Driver

Use the TDBXPool delegate driver to provide connection pooling support for DBXClient connections.

Using ADO.NET Providers

By default, the .NET client drivers implement a connection pool that is always in effect. Each Connecti onSt ri ng has its own
pool. There are connection properties that affect the maximum number of connections in a pool, and other attributes. There is
also a Connect i onPool property that provides access to all active connection pools.

Blackfish SQL for Java Connection Pooling and Distributed Transaction Support

Blackfish SQL provides several components for dealing with JDBC Dat aSour ces, connection pooling, and distributed
transaction (XA) support. These features require J2EE. If you are running with a JRE version less than 1.4, download the
J2EE. j ar file from java.sun.com, and add it to the classpath.

17

Blackfish SQL 3

Blackfish for Java Connection Pooling

Th

Th

The JdbcConnect i onPool object supports pooled XA transactions. This feature allows Blackfish SQL to participate in a
distributed transaction as a resource manager. Blackfish SQL provides XA support by implementing these standard interfaces
specified in the Java Transaction API (JTA) specification:

e javax. sgl . XAConnecti on
e javax. sql . XADat aSour ce
e javax.transaction. xa. XAResour ce

To acquire a distributed connection to a Blackfish SQL database from a JdbcConnectionPool, call
JdbcConnect i onPool . get XAConnecti on(). The connection returned by this method works only with the Blackfish SQL
JDBC driver. XA support is useful only when combined with a distributed transaction manager, such as the one provided by
Borland Enterprise Server.

Under normal operation, all global transactions should be committed or rolled back before the associated XAConnect i on is
closed. If a connection is participating in a global transaction that is not yet in a prepared state but is in a successful started or
suspended state, the transaction will be rolled back during any crash recovery that may occur.

e Heuristic Completion JDBC Extended Property

Blackfish SQL provides heuri sti cConpl eti on, an extended JDBC property that allows you to control the behavior when one
or more databases fail during a two-phase commit. When XA transactions are prepared but not completed (no commit or rollback
has been performed), the behavior is determined by one of these property settings:

* commit causes the transaction to be heuristically committed when Blackfish SQL reopens the database. This is the default.
» rollback causes the transaction to be heuristically rolled back when Blackfish SQL reopens the database.

* none causes Blackfish SQL to keep the transaction state when reopening a database. When this option is used, the locks that
were held when the transaction was prepared are reacquired and held until the transaction is committed or rolled back by a
JTA/JTS-compliant transaction manager.

The heuristic conmi t and r ol | back options allow for more efficient execution, because the locks can be released sooner and

less information is written to the transaction log file.

e Blackfish SQL High Availability Server

NOTE: This feature is currently available only for Blackfish SQL for Java. It is not currently available in Blackfish SQL for
Windows.

One of the most important areas of concern for any database application is eliminating single points of failure. The Blackfish SQL
server provides a broad range of capabilities for making a database application fail-safe by avoiding application down time and
loss of critical data. The High Availability server uses database mirroring technologies to ensure data availability in the event of
software or hardware failure, and to provide a method of routine incremental backup. While a more general database replication
scheme could provide similar protection, a mirroring approach provides advantages in terms of simplicity, ease of use, and
performance.

A more general data replication solution could be employed to solve many of the same problems that the Blackfish SQL High
Availability server addresses. Even though a more general solution would solve a broader variety of synchronization needs, it
would do so at a much higher set of costs, including greater complexity and slower performance.

The Blackfish SQL database engine uses its transactional log files to maintain read-only mirror images of a database. The same
TCP/IP database connections used for general database access are also used to synchronize mirrored databases.

Mirror Types

18

These mirror types can be used by an application:

3 Blackfish SQL

e Primary
* Read-only

« Directory

The Primary Mirror

The primary mirror is the only mirror type that can accept both read and write operations to the database. Only one primary
mirror is allowed at any time.

Read-only Mirrors

There can be any number of read-only mirrors. Connections to these databases can only perform read operations. Read-only
mirrors provide a transactionally consistent view of the primary mirror database. However, a read-only mirror database might not
reflect the most recent write operations against the primary mirror database. Read-only mirrors can be synchronized with
changes to the primary mirror instantly, on a scheduled basis, or manually. Instant synchronization is required for automatic
failover. Scheduled and manual synchronization can be used for incremental synchronization or backup.

Directory Mirrors
Directory mirror databases mirror only the mirror configuration table and the tables needed for security definition. They do not
mirror the actual application tables in the primary mirror.

There can be any number of directory mirrors. Connections to these databases can perform read operations, only. The storage
requirements for a directory mirror database are very small, since they contain only the mirror table and security tables. Directory
mirrors redirect read-only connection requests to read-only mirrors. Writable connection requests are redirected to the primary
mirror.

The Blackfish SQL Engine and Failover

Blackfish SQL Engine failover handling capabilities include the following:

« Transaction log records
» Automatic failover

* Manual failover

Transaction log records

Blackfish SQL uses transaction log records to incrementally update mirrored databases. It transmits these log records to mirrors
at high speed during synchronization operations. The same mechanism used for crash recovery and rollback is used to apply
these changes. Existing code is used for all synchronization. The existing Blackfish SQL support for read-only transactions
provides a transactionally consistent view of the mirrored data while the mirror is being synchronized with contents of more
recent write transactions from the primary mirror.

Automatic failover

When a primary mirror that is configured with two or more automatic failover mirrors fails, one of the read-only mirrors that is
configured for automatic failover is promoted to be the primary mirror. The application can be affected in one of two ways:

« If an application has already connected to the primary before it failed, all operations attempted against the failed primary will
encounter SQLException or IOException errors. The application can cause itself to be hot swapped over to the new primary
by rolling back the transaction. This is identical to how database deadlock is handled in high-concurrency OLTP applications.

» If an application has never connected to the primary before it failed, its connection attempt fails. Directory mirrors can be used
to automatically redirect new connection requests to the new primary mirror.

19

Blackfish SQL 3

Manual failover

Unlike automatic failover, manual failover is performed only on request. Any read-only mirror can become the primary mirror.
This is useful when the computer the primary server is executing on needs to be taken off line for system maintenance.

Advantages of the High Availability Server

The Blackfish SQL High Availability server provides a broad range of benefits, including:

No single point of failure Since multiple copies of the same database are maintained across several computers, there is no
need for a shared storage device. The High Availability server maintains the highest level of database availability with no
single point of failure and with high speed failover and recovery, guaranteed data consistency, and transaction integrity.

« Complete data and disaster protection By maintaining copies of the database on multiple servers, the High Availability
server guarantees that data remains intact in the event of media failure, a server crash, or any other catastrophic event.

Single, highly tuned network transport layer The high-performance transport layer used for current database connections
is also used for all synchronization operations.

Portability The file format and synchronization is portable across all platforms that are capable of executing a Java Virtual
Machine.

Large cost savings The High Availability server provides a significant savings on today's high availability equipment and
labor costs. It runs on standard low-cost hardware. There is no need for special technology such as shared disks, private
LANS, or fiber channels, and no need for additional software or operating systems such as Linux, Windows, Solaris, or Mac
OSX.

Easy to set up, administer and deploy The High Availability server provides a high-performance, easy-to-use solution for
some common database problems. There is no need for clustering expertise. All configuration settings and explicit operations
can be performed using the Blackfish SQL Server Console, SQL scripts, or Java code.

Increased scalability and load balancing Read-only operations can be performed against read-only mirrors, reducing the
transaction work load of the primary mirror, which must be used for all transactions that perform write operations. By
connecting to directory mirrors, new connection requests can be balanced across several read-only mirrors. This can
dramatically reduce the work load of the primary server.

Synch delegation You can specify the mirror to be used to synchronize another mirror. This allows the primary mirror to
synchronize just one or a small number of read-only mirrors. These read-only mirrors can then synchronize other mirrors. This
reduces the workload of the primary mirror, which must service all write requests.

Incremental database backup Read-only mirrors can be synchronized with the primary mirror automatically by scheduling
one or more synchronization time periods. Read-only mirrors can also be used for manual backup by making an explicit
synchronization request.

Distributed directory Since this failover system supports the automatic and manual failover of servers, a distributed directory
mechanism is useful for locating the primary mirror and available read-only mirrors. All mirrors maintain a table of all other
mirrors. An application can make any type of connection request (read/write or read-only) to any existing mirror. The mirror
uses the mirror table to determine where the current mirrors are located.

Heterogeneous Replication Using DataExpress with Blackfish SQL

20

NOTE: This feature is supported only for Blackfish SQL for Java.

The replication support provided by DataExpress for Blackfish SQL easier to use and deploy than most replication solutions. This
replication solution is also heterogeneous because it uses JDBC for database access.

The replication topology provided is best described as a simple client-server relationship. Blackfish SQL does not require the
server-side software or database triggers required for more complex publish-subscribe solutions. Complex multi-level hierarchies
and network topologies are not directly supported.

There are three distinct phases in the replication cycle when using DataExpress JavaBean components with Blackfish SQL for a
disconnected or mobile computing model:

Provide Phase: Provides the client database with a snapshot of the server tables being replicated.

3 Blackfish SQL

« Edit Phase: The client application, which need not be connected to the database, reads/edits the client database.

* Resolve Phase: The client database edits are saved back to the server database.

The Provide Phase

A St or ageDat aSet provider implementation initially replicates database contents from the server into a client. The client is
always a Blackfish SQL database. The server is typically some server that can be accessed with a JDBC driver. The JDBC
provider uses either a SQL query or stored procedure to provide data that will be replicated in the client-side Blackfish SQL
database. Since there is no server-side software running in this architecture, there is no support for incremental updates from the
server to the client. If the client needs to be refreshed, the same SQL query/stored procedure used to provide that the initial
replication must be re-executed.

A StorageDat aSet provider is a pluggable interface. QueryDataSet and ProcedureDataSet are extensions of
St or ageDat aSet , which preconfigure JdbcPr ovi der s that can execute SQL queries and stored procedures to populate a
St or ageDat aSet . For memory-constrained clients such as PDAs, a Dat aSet Dat a component can be used to provide data.
The Dat aSet Dat a component uses Java Serialization to create a data packet that can be easily transmitted between a client
and server.

The provide operation for a collection of database tables can be performed in a single transaction, so that a transactionally
consistent view of a collection of tables can be replicated.

The Edit Phase

Once the provide phase is complete, both DataExpress and JDBC APIs can read and write to the Blackfish SQL tables that are
replicating the database. All insert/update/delete write operations since the last provide operation are automatically tracked by
the Blackfish SQL storage system. Part of the St orageDat aSet store interface contract is that all insert/update/delete
operations must be recorded if the St or ageDat aSet property resolvable is set.

The Resolve Phase

DataExpress provides an automatic mechanism for using SQL DML or stored procedures to save all changes made on the client
back to a server, via a JDBC driver. An optimistic concurrency approach is used to save the changes back to the server. One or
more tables can be resolved in a single transaction. By default, any conflicts, such as two users updating the same row, cause
the transaction to roll back. However, there is a Sgl Resol uti onManager JavaBean component that you can use to customize
the handling of resolution errors. The Sgl Resol uti onManager has event handlers that enable an application to respond to an
error condition with an i gnor e, retry, abort, | og, or other appropriate response.

There are also higher-level Dat aSt or ePunp and Dat aSt or eSync components that you can use to perform provide and
resolve operations for a collection of tables. For details, see Administering Blackfish SQL.

See Also

Preface (@ see page 1)

Overview (@ see page 3)

Establishing Connections (@ see page 23)

Administering Blackfish SQL (@ see page 31)

Using Blackfish SQL Security (@ see page 35)

Using Stored Procedures and User Defined Functions (@ see page 41)
Using Triggers in Blackfish SQL Tables (@ see page 55)

Stored Procedures Reference (@ see page 59)

21

Blackfish SQL

SQL Reference (@ see page 75)
Optimizing Blackfish SQL Applications (@ see page 125)
Deploying Blackfish SQL Database Applications (& see page 133)

Troubleshooting (& see page 137)

22

Blackfish SQL

Establishing Connections

This chapter explains the basics for establishing a connection to a Blackfish SQL database, using dbExpress, ADO.NET, or
JDBC.

Types of Connections

Using dbExpress to Connect to the Server

Using ADO.NET to Connect to the Server

Using JDBC to Connect to the Server

Specifying Connection Properties

Using Blackfish SQL with JBuilder and Borland Enterprise Server
DataDirectory Macro Support

Types of Connections

Connections can be local, remote, or a combination of both:

Local connections Local connections access the Blackfish SQL database engine in-process. This provides improved
performance over a remote driver, but requires that the Blackfish SQL engine be present and running in the same process as
the application. Several simultaneous local connections created in the same process can connect to a database. However,
only one process can have a database file open at a time. Consequently, while a process has a database file open, it
becomes the only process that can connect to that database over a local connection.

Remote connections To use a remote connection, first launch the Blackfish SQL server. (For instructions, see Administering
Blackfish SQL.) The remote driver communicates with the server over TCP/IP. Remote connections can be slower for
database interactions that involve multiple round trips between the client and the database for small packets of data. Remote
connections allow more than one process running on one or more computers to access the same database. If several
processes require simultaneous access, it is best to use remote connections.

Combination of local and remote connections A third option is to use a combination of the local and remote connections. If
there is one process that performs the majority of database interactions, this process can launch the Blackfish SQL Server
inside its own process. In this way, the demanding database process can use the local driver while still allowing other
processes to access the same database via the remote driver.

Using dbExpress to Connect to the Server

Native applications can use dbExpress to establish remote connections with a Blackfish SQL server. Local connections are
currently not supported for dbExpress. You must start the Blackfish SQL server before you can use the remote dbExpress driver
to connect. (For instructions, see Administering Blackfish SQL.)

23

Blackfish SQL 4

Example
This example shows how to acquire a remote dbExpress connection:
[Bl ackfi shSQ]

uses DBXConmon;

uses DBXdient;

var Connection: TDBXConnecti on;

Connection : =
TDBXConnect i onFact ory. Get Connecti onFact ory. Get Connecti on(' BLACKFI SHSQLCONNECTI ON') ;

The dbExpress dbxdriver.ini file contains default driver properties appropriate for most applications. The dbExpress
dbxconnections.ini file has a BLACKFI SHSQLCONNECTI ON section that contains the default connection settings. New
connections can copy most of these properties. This list of properties are typically customized for new connections:

e [BLACKFI SHCUSTOMCONNECTI ON]
e Host Nane=| ocal host

e port=2508

» Dat abase=c:/tnp/test

Using ADO.NET to Connect to the Server

Lo

Lo

24

The Blackfish SQL assembly Bor | and. Dat a. Bl ackfi shSQL. Local i ent. dl | contains an ADO.NET 2.0 driver. You can
build an application without directly referencing this assembly by using the DbPr ovi der Fact ory class. For this approach to
work, the file machi ne. conf i g must contain references to the Blackfish SQL assemblies in the DbPr ovi der Fact ory section,
and the Blackfish SQL assemblies must be installed in the Global Assembly Cache (GAC). For easier deployment, use a direct
reference to the Blackfish SQL assembly.

You can use a local ADO connection, a remote ADO connection, or a combination of both to connect with the Blackfish SQL
server.

cal Connections Using ADO.NET
You can establish a local ADO connection in either of the following ways:
* Local ADO.NET Connection Using DbProviderFactory

* Local ADO.NET Connection Using a Direct Class Reference

cal ADO.NET Connection Using DbProviderFactory
Example
This example illustrates how to acquire a local ADO connection using DbPr ovi der Fact ory:

[Ref erences: System Data.dl]

uses System Dat a. Common;

var Factory: DbProviderFactory;

var Connection: DbConnection;

Factory := DbProvi derFactories. Get Factory(' Borl and. Dat a. Bl ackfi shSQ.. Local Client');

Connection : = Factory. Creat eConnection();
Connecti on. ConnectionString : = 'database=<fil enane>; user =<user name>; passwor d=<passwor d>' ;

Connect i on. Open;

4 Blackfish SQL

Local ADO.NET Connection Using a Direct Class Reference
Example
This example illustrates how to acquire a local ADO connection by using a direct class reference:

[Ref erences: System Data.dl|]
[Ref erences: Borl and. Dat a. Bl ackfi shSQ.. Local ient.dl]

uses System Dat a. Common;

uses Borl and. Dat a. Dat aSt or e;

var Connection: DbConnection;

Connecti on : = Dat aSt oreConnecti on. Creat e;

Connecti on. ConnectionString : = 'database=<fil enane>; user =<user nane>; passwor d=<passwor d>' ;

Connect i on. Open;

Remote Connections Using ADO.NET

Managed applications can use ADO.NET to establish remote connections with the Blackfish SQL server. You must start the
server before you can use the remote ADO driver to connect. (For Instructions, see Administering Blackfish SQL.) Once the
server is running, you can acquire a remote ADO connection in either of the following ways:

* Remote ADO.NET Connection Using DbProviderFactory

* Remote ADO.NET Connection Using a Direct Class Reference

Remote ADO.NET Connection Using DbProviderFactory

Example This example shows how to acquire a remote ADO connection using DbPr ovi der Fact ory:

[Ref erences: System Data.dl]

uses System Dat a. Conmon;

var Factory: DbProviderFactory;

var Connection: DbConnecti on;

Factory : = DbProviderFactories. Get Factory(' Borl and. Dat a. Bl ackfi shSQL. RenpteClient');

Connection : = Factory. Creat eConnection();
Connecti on. ConnectionString : =
' dat abase=<fi | ename>; user =<user nane>; passwor d=<passwor d>; host =<ser ver nane>; pr ot ocol =TCP' ;

Connect i on. Open;

Remote ADO.NET Connection Using a Direct Class Reference

Example This example shows how to acquire a remote ADO connection using a direct class reference:

[Ref erences: System Data.dl]
[Ref erences: Borl and. Dat a. Bl ackfi shSQ.. RenoteCl i ent. dl |]

uses System Dat a. Common;

uses Borl and. Dat a. Dat aSt or e;

var Connection: DbConnecti on;

Connection : = DataStoreConnection. Create;

Connecti on. ConnectionString : =

' dat abase=<fi | ename>; user =<user nane>; passwor d=<passwor d>; host =<ser ver nane>; pr ot ocol =TCP' ;

Connect i on. Open;

25

Us

Lo

Lo

Lo

Blackfish SQL 4

ing JDBC to Connect to the Server

You can use a local JDBC connection, a remote JDBC connection, or a combination of both to connect with the Blackfish SQL
server. The following sections provide instructions for each of these procedures.

cal Connections Using JDBC

A Blackfish SQL local JDBC connection allows an application to run in the same process as the Blackfish SQL engine.
Applications that make large numbers of method calls into the JDBC API will see a significant performance advantage using the
local Blackfish SQL driver.

You can establish a local JDBC connection in either of the following ways:

» Local JDBC Connection Using the DriverManager
» Local JDBC Connection Using a JDBC DataSource

cal JDBC Connection Using the DriverManager

Example This example shows how to acquire a local JDBC connection using the DriverManager:

[jdsserver.jar nmust be in classpath]

java.sql.DriverManager.regi sterDriver(new com borl and. dat astore. jdbc. DataStoreDriver());
connection = java.sql.DriverManager. get Connecti on("j dbc: borl and: dsl ocal : <fi | ename>",
"<usernane>", "<password>");

cal JDBC Connection Using a JDBC DataSource

Example This example shows how to acquire a local JDBC connection using a JDBC DataSource:

[jdsserver.jar nust be in classpath]

com bor | and. j avax. sql . JdbcDat aSour ce dat aSource = new com borl and. j avax. sql . JdbcDat aSour ce() ;
dat aSour ce. set Dat abaseNane(" <fi | ename>");

connecti on = dataSource. get Connecti on("<usernanme>", "<password>");

Remote Connections Using JDBC

Managed applications can use JDBC to establish remote connections with the Blackfish SQL server. You must start the server
before you can use the remote ADO driver to connect. (For instructions, see Administering Blackfish SQL.)

You can establish a remote JDBC connection in either of the following ways:

* Remote JDBC Connection Using the DriverManager

* Remote JDBC Connection Using a JDBC DataSource

Remote JDBC Connection Using the DriverManager

26

Example
This example shows how to acquire a remote JDBC connection using the DriverManager:

[jdsrenpote.jar nust be in classpath]

java.sql.DriverManager.regi sterDriver(new com borl and. dat astore. j dbc. DataStoreDriver());
connection =

java. sql . Dri ver Manager . get Connecti on("j dbc: borl and: dsrenot e: // <ser ver nane>/ <fi | enane>",
"<usernane>", "<password>");

4 Blackfish SQL

Remote JDBC Connection Using a JDBC DataSource
Example This example shows how to acquire a remote JDBC connection using a JDBC DataSource:

[jdsrenote.jar nmust be in classpath]
com bor | and. j avax. sql . JdbcDat aSour ce dat aSource = new com borl and. j avax. sql . JdbcDat aSour ce() ;
dat aSour ce. set Dat abaseNane(" <fi | ename>");

dat aSour ce. set Net wor kPr ot ocol ("tcp");
dat asour ce. set Ser ver Name(" <ser ver name>");

connection = dataSource. get Connecti on("<username>", "<password>");
Specifying Connection Properties

You can specify connection properties for:

« dbExpress

« ADO

« JDBC

For more information, see the RAD Studio help for Bor | and. Dat a. Dat aSt or e. Connect i onProperti es.

Specifying dbExpress Connection Properties
dbExpress connection properties are documented in the DbxCommon.pas unit and in the Blackfish SQL
Connect i onProperti es class. dbExpress connection properties are stored in the dbxconnecti ons. i ni t file.
Example
This example shows a sample Blackfish SQL connection properties section in the dbxconnecti ons. i ni file:

[BLACKFI SHSQLCONNECTI ON|

Dri ver Name=Bl ackfi shSQL

Host Nanme=I ocal host

port=2508

Dat abase=/t np/ t est
create=true

User _Name=sysdba

Passwor d=nast er key

Bl obSi ze=-1

Tr ansl sol ati on=ReadConmi tt ed
The Host Nang, port, and cr eat e properties are documented in Connect i onProperti es. The Dri ver Nane, User _Nane,

Bl obSi ze, and Tr ansl sol at i on properties are documented in TDBXPr oper t yNames of the DBXCommon unit.

Specifying ADO Connection Properties

The ConnectionString property in DbConnection or DataStoreConnection can contain settings from
Connecti onProperties.

You can use DataExplorer to set and modify values for Connect i onProperti es. For instructions, see the RAD Studio help for
the DataExplorer Connection dialog box.

Specifying JDBC Connection Properties
You can specify JDBC connection properties using either:
+ aJDBC URL

e java.util.Properties

27

Blackfish SQL 4

Specifying JDBC Connection Properties in a JDBC URL

You can specify connection properties in a JDBC URL, using semicolons to separate the properties:

j dbc: borl and: dsl ocal : c: / nydb. j ds; creat e=true

Specifying JDBC Connection Properties with java.util.Properties

Example
This example shows how to specify JDBC connection properties using aj ava. util . Properti es object:

java.util.Properties props = new java.util.Properties();

props. setProperty("create", "true");

props. set Property("user", " SYSDBA");

props. set Property("password", "mast erkey");

connection = Driver Manager. get Connection("j dbc: borl and: dsl ocal : c:/ nydb.jds", props);

Using Blackfish SQL with JBuilder and Borland Enterprise Server

To make the latest version of Blackfish SQL available to JBuilder and the Borland Enterprise Server (BES), copy these files from
the Blackfish SQL | i b directory to the | i b directory of the target product:

* beandt.jar
e dbtools.jar
e dx.jar
 jds.jar
* jdsrenote.jar
* jdsserver.jar
1. For JBuilder or BES, find the listed files in the | i b directory of the install tree and copy them to a backup directory.
2. Find the files in the | i b directory of the Blackfish SQL installation and copy them to the | i b directory of JBuilder or BES.

DataDirectory Macro Support

28

You can use the Dat abDi rect ory macro to specify relative path names for database files. The Dat abDi r ect ory macro is
supported for both the Blackfish SQL ADO.NET and DBXClient drivers. If a database file name is prepended with the following
string:

| Dat aDi rect ory|

for example:

| Dat abDi rect ory| enpl oyee. j ds

the string | Dat aDi r ect ory| will be replaced with the appropriate string, as follows:
Blackfish SQL for Windows:

« For ASP.NET web based applications, this will be the App_Dat a folder name.

« For non-web applications, this defaults to the directory of the application executable. You can override the default by setting
the Dat aDi rect ory property for AppDonai n:

AppDonai n. Cur r ent Donai n. Set Dat a(" Dat aDi rect ory", "CustomAppPath")

Blackfish SQL for Java:

If the Syst emproperty bl ackfi shsql . dat adi rectory is set, the setting for this property will be used as the replacement
string. Otherwise the setting for the user . hone property will be used.

Blackfish SQL

See Also

Preface (@ see page 1)

Overview (@ see page 3)

System Architecture (@ see page 7)

Administering Blackfish SQL (i@ see page 31)

Using Blackfish SQL Security (@ see page 35)

Using Stored Procedures and User Defined Functions (@ see page 41)
Using Triggers in Blackfish SQL Tables (@ see page 55)

Stored Procedures Reference (@ see page 59)

SQL Reference (@ see page 75)

Optimizing Blackfish SQL Applications (@ see page 125)
Deploying Blackfish SQL Database Applications (& see page 133)

Troubleshooting (@ see page 137)

29

5 Blackfish SQL

Administering Blackfish SQL

This chapter provides a brief overview of basic Blackfish SQL administrative procedures and tools. For related information see
the SQL Reference.

» Using the Graphical Consoles for Administrative Tasks
* Using SQL for Administrative Tasks
» Starting the Blackfish SQL Server

Using the Graphical Consoles for Administrative Tasks
You can use visual tools to administer Blackfish SQL.

For Blackfish SQL for Windows:

You can use RAD Studio DataExplorer to perform many administrative tasks. DataExplorer has been enhanced with a
connection string editor for Blackfish SQL for Windows, and the ability to create or alter Blackfish SQL databases. DataExplorer
enables you to browse and view stored procedures. Some DataExplorer tasks are not yet supported for Blackfish SQL for
Windows. See the DataExplorer help for more information.

For Blackfish SQL for Java:

You can use one of the JBuilder administrative consoles.

« JdsExplorer

» ServerConsole

Documentation for both JdsExplorer and ServerConsole are provided with JBuilder.
Using SQL for Administrative Tasks

You can perform virtually all Blackfish SQL administrative tasks either by using SQL commands or by using the built-in
administrative stored procedures in the DB_ADM N class.

Use administrative SQL commands to:

« Create, alter, and drop tables and views
» Create, alter, and drop users and roles
» Create and drop stored procedures and triggers

For details, see the SQL Reference.

31

Blackfish SQL 5

Use DB_ADMIN stored procedures to:

» Alter database properties

» Verify database integrity

» Configure Database logging

» View open server connections

» Create, alter, and drop database mirrors

» Miscellaneous mirror administration capabilities

For details, see the Stored Procedures Reference.

Starting the Blackfish SQL Server

A server must be running before you can establish a remote connection. The server may be started as a .NET process or a Java
process.

Starting and Stopping the Server as a .NET Process
To start or stop the server as a .NET process use either:
e The BSQ.Ser ver. exe command

* The Windows Management Console

Using BSQLServer.exe
e To start the server: BSQLSer ver . exe
» To stop the server: Bsql Server. exe -shutdown or Type Ctrl - Cin the Console window
« Toinstall the server as a Windows service: Bsql Server. exe -install
» To remove the Windows server: Bsql Server. exe -renove

» To explore other options for server configuration: Bsql Server. exe -?

Using the Windows Management Console
» To start the server: net start Bl ackfi shSQ

* To stop the server: net stop Bl ackfi shSQL

Starting the Server as a Java Process
To start or stop the server as a .NET process use either:
e The JdsServer. exe command

e The Windows Management Console

Using JdsServer.exe
» To start the server: JdsSer ver . exe
» To stop the server: JdsServer. exe -shutdown or Type Ctrl - Cin the Console window

* To install the server as a Windows service: JdsServer. exe -install JDataStore

32

5 Blackfish SQL

« To remove the Windows server: JdsSer ver. exe -renove JDat aStore

» To explore other options for the server configuration: JdsSer ver . exe -?

Using the Windows Management Console
e To start the server: net start JDataStore
e To stop the server: net stop JDataStore
See Also

Preface (@ see page 1)

Overview (@ see page 3)

System Architecture (@ see page 7)

Establishing Connections (@ see page 23)

Using Blackfish SQL Security (& see page 35)

Using Stored Procedures and User Defined Functions (@l see page 41)
Using Triggers in Blackfish SQL Tables (@ see page 55)

Stored Procedures Reference (@ see page 59)

SQL Reference (@ see page 75)

Optimizing Blackfish SQL Applications (& see page 125)
Deploying Blackfish SQL Database Applications (@ see page 133)
Troubleshooting (@ see page 137)

6 Blackfish SQL

Using Blackfish SQL Security

This chapter provides a brief overview of basic Blackfish SQL security features and the SQL commands you can use to
implement them. For a complete description of the syntax, use, and examples for a specific command, see the SQL Reference
or the Stored Procedures Reference.

Blackfish SQL provides the following built-in security features:
» User authentication
* User authorization
« Database encryption
User Authentication

User authentication restricts access to a Blackfish SQL database to authorized users only. Users must log into the database
using an authorized user account and password. Permissions can be granted to or revoked from an account to fine tune access.
In general, full access is reserved for the Administrator account(s), and a more restricted account or accounts are provided for
general users.

The Administrator Account

By default, Blackfish SQL has one built-in Administrator account, sysdba/ mast er key. You can secure a database by changing
the password for the sysdba account and restricting use of that account to database administrators only. You can then create a
user account with limited access rights to be used for general access. You can also create additional Administrator accounts,
which may or may not be granted database startup privileges.

The following section describes how to create and modify user accounts.

Managing User Accounts

You can use the following SQL statements to add, delete, and modify user accounts:

Adding a User
CREATE <useri d> PASSWORD <passwor d>

Where:
<useri d>is the account to be added

<passwor d> is the password for this account

35

Blackfish SQL 6

Removing a User

DROP <userid> [CASCADE| RESTRI CT]

Where:

<useri d> is the account to be removed.

CASCADE deletes the user and all objects that the user owns.

RESTRI CT causes the statement to fail if the user owns any objects, such as tables, views, or methods.

(no option) causes the statement to fail if the user owns any objects, such as tables, views, or methods.

Changing a User's Password

ALTER USER <useri d> SET PASSWORD " <passwor d>";
Where:
<useri d> is the account for which the password should be changed.

<passwor d> is the new password.

User Authorization

There are several database access privileges which you can grant to or revoke from an account The following section describes
the set of access privileges, and how to grant and revoke privileges for an account.

Changing User Access Privileges

36

You can use the GRANT and REVOKE statements to change the access privileges for one or more user accounts. You can
grant or revoke access to specific database resources or specific objects in the database. In addition, you can grant specific
privileges to named roles, and you can then grant or revoke these roles for specific users.

To grant or revoke a privilege for an account, use the following SQL commands:

GRANT <rol e>| <privil ege> TO <userid>

Grants the specified privilege or role to the specified user account.

REVOKE <rol e>| <privi | ege> FROM <useri d>

Revokes the specified privilege or role from the specified user account.

Where:

<useri d> is the account to be modified.

<r ol e> is the user role to be granted or revoked, such as ADM N. This can be a single role, or a comma-separated list of roles.

<privil ege> is the privilege to be granted or revoked. This can be a single privilege or a comma-separated list of privileges,
and can be one or more of the following:

« STARTUP confers the ability to open a database that is shut down. The user's password is required to add STARTUP rights to
a user account. You can also specify STARTUP rights at the time the user account is created.

« ADM NI STRATOR confers the ability to add, remove, and change rights of users, and the ability to encrypt the database. Also
includes the four stream rights: WRI TE, CREATE, DROP, RENAME. By default, STARTUP rights are granted to an Administrator
account when the account is created, but you can remove STARTUP rights from the account. You cannot remove WRI TE,
CREATE, DROP, or RENAME privileges from an Administrator account; attempts to remove these rights are ignored.

* V\RI TE confers the ability to write to file or table streams in the Blackfish SQL database.
» CREATE confers the ability to create new file or table streams in the Blackfish SQL database.

» DROP confers the ability to remove file or table streams from the Blackfish SQL database.

Blackfish SQL

RENAME confers the ability to rename file or table streams in the Blackfish SQL database.

Database Encryption

Only a user with Adni ni strat or privileges can encrypt a database. When a database is encrypted, the STARTUP privilege is
automatically revoked for all users (including Administrators) other than the Administrator issuing the encryption command.
Consequently, after encrypting you must use the same Administrator account to restart the database. You can reassign
STARTUP privileges to other users after the database has been encrypted and restarted.

Encrypting a Blackfish SQL Database

You can use the built-in stored procedure DB_ADM N. ENCRYPT() to encrypt a new or empty Blackfish SQL database. For
instructions on encrypting a non-empty database, see Encrypting a Database with Existing Content

To encrypt a new database, log in from an Administrator account, and issue the following SQL command:

CALL DB_ADM N. ENCRYPT(<Adm nPasswor d>, <Encr ypti onSeed>)

Where:

DB_ADM N. ENCRYPT() is the built-in stored procedure for encrypting a database.

<Admi nPasswor d> is the password for the user issuing the encryption command.

<Encrypti onSeed> is a 16 character seed value.

Encrypting a Database with Existing Content
For Blackfish SQL for Java:

To encrypt a Blackfish SQL for Java database that has existing tables, use the JBuilder utility, JdsExplorer. For instructions, see
the JBuilder online help for JdsExplorer.

For Blackfish SQL for Windows:

To encrypt a database with existing content, do the following:

1.
2.

Use RAD Studio DataExplorer to create a new database. For instructions, see the online help for DataExplorer.

Copy the existing users to the new database. DB_ADM N. COPY_USERS(<Ot her Fi | enanme>, <Admi nUser >,

<Admi nPass>, <DoCopyEncrypti on>, <Repl aceExi stingUsers>) Where: <Q her Fi | enane> is the filename of the
destination database. <Admi nUser > is a user with ADMIN privileges in destination database. <Adm nPass> is a password of
the specified adminUser in destination database. If <DoCopyEncr ypt i on> is TRUE and the current database is encrypted,
then encrypt the target database with the same key. If <Repl aceExi sti ngUser s> is TRUE, then the existing users in the
target database is replaced with the users in the source database.

3. Encrypt the new database. DB_ADM N. ENCRYPT(<passwor d>, <Encr ypt i onSeed>)

4. Copy the contents of the old database into the newly encrypted database.

DB_ADM N. COPY_STREAMS(<Ct her Fi | ename>, <Admi nUser >, <Adni nPass>, <DoOverwite>,

<Dol gnor eErrors>) Where: <O her Fi | enanme> is the filename of the destination database. <Adm nUser > is a user
with ADMIN privileges in destination database. <Adnmi nPass> is a password of the specified adminUser in destination
database. If <DoOver wr i t e> is TRUE, it allows tables to be overwritten. If FALSE, this would be an error. If

<I gnor eEr r or s> is TRUE, then this method can be used to repair a corrupted database.

For additional information, see the Stored Procedures Reference.

Deciding How to Apply Blackfish SQL Security

In this discussion, an opponent is someone who is trying to break the Blackfish SQL security system.

The authentication and authorization support is secure for server-side applications where opponents do not have access to the
physical Blackfish SQL database files. The SYS.USERS table stores passwords, user IDs, and rights in encrypted form. The
table also stores the user ID and rights in an unencrypted column, but this is for display purposes only. The encrypted values for
user ID and rights are used for security enforcement.

37

Blackfish SQL 6

The stored passwords are encrypted using a strong TwoFish block cipher. A pseudo-random number generator is used to salt
the encryption of the password. This makes traditional password dictionary attacks much more difficult. In a dictionary attack, the
opponent makes guesses until the password is guessed. This process is easier if the the opponent has personal information
about the user, and the user has chosen an obvious password. There is no substitution for a well chosen (obscure) password as
a defense against password dictionary attacks. When an incorrect password is entered, the current thread sleeps for 500
milliseconds.

If a Blackfish SQL database is unencrypted, it is important to restrict physical access to the file, for the following reasons:

« If a Blackfish SQL database file is not password protected, and it is possible for an opponent to write to it with a separate file
editing utility or program, the authentication and authorization support can be disabled.

« Ifitis possible for an opponent to read a Blackfish SQL database file that is not encrypted with a separate file-editing program,
the opponent might be able to reverse-engineer the file format and view its contents.

For environments where a dangerous opponent may gain access to physical copies of a Blackfish SQL database, the database

and log files should be encrypted, in addition to being password protected. WARNING: The cryptographic techniques that

Blackfish SQL uses to encrypt data blocks are state-of-the-art. The TwoFish block cipher used by Blackfish SQL has never been

defeated. This means that if you forget your password for an encrypted Blackfish SQL database, you will not be able to access

the database. The best chance of recovering the data would be to have someone guess the password.

There are measures that can be used to guard against forgetting a password for an encrypted database. It is important to note
that there is a master password used internally to encrypt data blocks. Any user that has STARTUP rights has the master
password encrypted using their password in the SYS.USERS table. This allows one or more users to open a database that has
been shut down, because their password can be used to decrypt a copy of the master password. This feature can be used to
create a new database that has one secret user who has Administrator privileges (which includes STARTUP rights). If you use
this virgin database whenever a new empty database is needed, you will always have one secret user who can unlock the
encryption.

Encrypting a database has some effect on performance. Data blocks are encrypted when they are written from the Blackfish
SQL cache to the Blackfish SQL database and are decrypted when they are read from the Blackfish SQL database into the
Blackfish SQL cache. So the cost of encryption is only incurred when file 1/O is performed.

Blackfish SQL encrypts all but the first 16 bytes of . j ds file data blocks. There is no user data in the first 16 bytes of a data
block. Some blocks are not encrypted. This includes allocation bitmap blocks, the header block, log anchor blocks and the
SYS.USERS table blocks. Note that the sensitive fields in the SYS.USERS table are encrypted using the user's password. Log
file blocks are completely encrypted. Log anchor and status log files are not encrypted. The temporary database used by the
query engine is encrypted. Sort files used by large merge sorts are not encrypted, but they are deleted after the sort completes.

NOTE: The remote client for Blackfish SQL currently uses sockets to communicate with a Blackfish SQL Server. This
communication is not secure. Since the local client for Blackfish SQL is in-process, it is secure.

See Also

38

Preface (@ see page 1)

Overview (@ see page 3)

System Architecture (@ see page 7)

Establishing Connections (@ see page 23)

Administering Blackfish SQL (@ see page 31)

Using Stored Procedures and User Defined Functions (@ see page 41)
Using Triggers in Blackfish SQL Tables (@ see page 55)

Stored Procedures Reference (i@ see page 59)

SQL Reference (@ see page 75)

Blackfish SQL

Optimizing Blackfish SQL Applications (@ see page 125)
Deploying Blackfish SQL Database Applications (@ see page 133)
Troubleshooting (@ see page 137)

39

7 Blackfish SQL

Using Stored Procedures and User
Defined Functions

Blackfish SQL supports stored procedures to encapsulate business logic in the schema of a database. In addition, Blackfish SQL
supports User Defined Functions (UDFs) to extend the built-in SQL support. Where many other database vendors have invented
their own SQL-like language for stored procedures, Blackfish SQL can access stored procedures and UDFs created in any .NET
language such as Delphi, C#, VB and Java.

Stored procedures can also increase the performance of an application, since they are executed in the same Virtual Machine as
the Blackfish SQL database engine itself. This results in execution with minimal overhead. While a stored procedure is executing
SQL statements, no network traffic is generated. The stored procedure uses an in-process ADO.NET connection. This provides
the same performance advantage as using the in-process Blackfish SQL ADO.NET driver rather than the remote driver.

Stored procedures and UDFs provide these additional benefits:

» Business logic, such as integrity constraints, is isolated in the database engine, where the logic is available and reinforced for
all clients.

« Data is retrieved locally, which is faster than sending that data to and from the client.
» Blackfish SQL language can be extended with C#, Delphi, or Visual Basic functions.

« There is no performance penalty, since the stored procedures are executing in the same virtual machine as the database
itself.

* You can debug .NET stored procedures in the same manner as debugging the client application.

This chapter covers:

» About Stored Procedures
« About User Defined Functions (UDFs)
« Creating Stored Procedures for the .NET Platform
» Debugging .NET Stored Procedures
» Using a Stored Procedure to Produce an ADO.NET IDataReader
» Creating Stored Procedures for the Java Platform
About Stored Procedures

Stored procedures are procedures that are stored on the database server and executed on request from an SQL client. Often the

41

Blackfish SQL 7

stored procedure executes several SQL queries against the tables of the database to yield the desired result. In Blackfish SQL,
these SQL queries are written in the language of choice, that is available on the .NET or Java platforms. The desired effect may
be to update a set of tables, or to calculate an accumulated value from one or more tables, or to add specialized integrity
constraints. A stored procedure may have several parameters, which can be either input only, output only, or both.

Example

Consider an ADD_ORDER procedure that takes a cust onmer I d, anitenl d, and a quanti ty value as input, and adds a record
to the ORDERS t abl e. However, suppose that you also want to verify that this customer has paid for previous orders. To
achieve this, you can cause the procedure to throw an exception if this is not the case.

The stored procedure is executed with an | DbConmand object by setting the properties ConmandType and CommandText , and
then adding the appropriate parameters.

CommandText CommandType Parameters
'CALL ADD_ORDER(?,?,?)' CommandType.Text Added in order from left to right
'CALL CommandType.Text Added by name of marker

ADD_ORDER(:CUSTID,:ITEMID,:QUANTITY)'

'ADD_ORDER' CommandType.StoredProcedure | Added by name of parameter

Notice the difference in the interpretation of the parameters, depending on the combination of CommandType and the style of the
parameter markers that are used. If the ConmandType is St or edPr ocedur e, the parameter names are taken from the
implementation of the stored procedure, in which case it is possible to omit optional parameters.

About User Defined Functions (UDFs)

A User Defined Function is a code snhippet that is written to extend the built-in SQL support. Like stored procedures, they are
executed on the database server and called from an SQL client. UDFs must return a value, and are usually written to be used in
the WHERE clause of SELECT queries. However, a UDF may also be called by itself, similar to a stored procedure.

Example

Consider a MAX_VALUE function that takes two values, <val uel> and <val ue2>, and returns the greater of the two. The UDF
can be executed in an SQL statement:

' SELECT * FROM PEOPLE WHERE MAX_VALUE(HEI GHT, 5*W DTH) < ?'
Or, in an SQL CALL statement:
' ?=CALL MAX_VALUE(?,?)'

Creating Stored Procedures for the .NET Platform

This section provides detailed information on how to create Blackfish SQL stored procedures and UDFs for the .NET platform.

Creating a Stored Procedure for a Blackfish SQL Database

42

There are three steps involved in creating a Blackfish SQL stored procedure:

1. Write the code for the stored procedure as a static public member of a class.

2. Build an assembly with the stored procedures. Blackfish SQL must be able to locate the assembly. When developing in
Delphi, Blackfish SQL is able to find the assembly in BDSCOMMONDI R. That is, it is not necessary to move the assembly to any
special location. For deployment, it is recommended that you copy the assembly to the subdirectory where the executable for
the Blackfish SQL server (BSQLSer ver . exe) resides, or install it in the Global Assembly Cache (GAC).

3. Create the binding of a SQL identifier to the assembly member.

Example

This example uses the sample ADD_ORDER from the previous example in About Stored Procedures, with this schema:

Blackfish SQL

CUSTOMER TABLE

Field Type Description

CUST_ID INT Customer identifier

CREDIT DECIMAL(10,2) Credit amount available to the customer
NAME VARCHAR(80) Customer name
ORDERS TABLE

Field Type Description
CUST_ID INT Customer identifier
ITEM_ID INT Item identifier
QUANTITY INT How many items
SALE_AMOUNT DECIMAL(10,2) Total sale amount
PAID DECIMAL(10,2) Amount paid
ITEMS TABLE

Field Type Description
ITEM_ID INT Item identifier
NAME VARCHAR(60) Name of the item
PRICE DECIMAL (10,2) Unit price
STOCK INT Stock count

Step 1: Write the code for the stored procedure.
1. Create a Delphi.NET package and name it MyProcs. dl | .
2. Add a reference to Syst em Dat a. dl | .
3. Add a unit:

P1 := Command. Par aneters. Add(' P1',
P2 : = Conmmand. Par anet ers. Add(' P2', DbType. Int32);
P1.Direction := ParaneterDirection. Qutput;

P2. Val ue : = Custld;

Conmand. Execut eNonQuery;

DbType. Deci nal) ;

i f P1.Value = DBNull.Val ue then
Oned := 0

el se

Oned : = Deci mal (P1. Val ue);

Oned = Oned + Anount;

Command. Par aneters. d ear;

Conmand. CommandText := 'SELECT CREDI T | NTO ? FROM CUSTOVER WHERE CUST_| D=?";
P1 : = Command. Par aneters. Add(' P1', DbType. Deci mal);

P2 : = Command. Par anet ers. Add(' P2', DbType. | nt32);

Pl1.Direction := ParaneterDirection. Qutput;

Blackfish SQL 7

P2. Val ue := Custld;
Conmand. Execut eNonQuery;

Credit := Decimal (P1. Val ue);

if Oved > Credit then

rai se Exception. Create(' Customer doesn''t have that nuch credit');
Command. Par aneters. d ear;

Conmand. CommandText : = ' UPDATE | TEMS SET STOCK=STOCK-? WHERE | TEM | D=?";
P1 : = Command. Par aneters. Add(' P1', DbType.Int32);

P2 : = Conmmand. Par anet ers. Add(' P2', DbType.Int32);

P1. Val ue := Quantity;

P2.Value := ltenld;

Conmand. Execut eNonQuery;

Command. Par aneters. d ear;

Command. ConmandText := ' | NSERT | NTO ORDERS (CUST ID, | TEMID, QUANTITY, SALE AMOUNT) '+
'VALUES (2, 2, 2, ?)';

P1 : = Conmmand. Paraneters. Add(' P1', DbType.Int32);
P2 := Conmand. Par anet ers. Add(' P2', DbType. | nt 32);
P3 : = Command. Paraneters. Add(' P3', DbType.Int32);
P4 : = Command. Par anmet ers. Add(' P4', DbType. Deci mal) ;
P1. Val ue := Custld;

P2.Value := ltend;

P3. Val ue :: Quantity;

P4. Val ue : = Anount;

Command. Execut eNonQJer Y;
Conmand. Fr ee;
end;

end.

Step 2: Build the assembly and make it available to the Blackfish SQL server process.
After completing the code for the stored procedure:
1. Build an assembly DLL (for example, Procs. dl |) which contains the class Myd ass shown in Step 1.

2. When deploying, copy the assembly to the subdirectory where the executable for the Blackfish SQL server
(BSQLSer ver . exe) resides.

Step 3: Create the binding of an SQL identifier to the class member.

Now that the code is ready to be executed, the Blackfish SQL database must be made aware of the class member that can be
called from SQL. To do this, start DataExporer and issue a CREATE METHCD statement:

CREATE METHOD ADD_ORDER AS ' MyProcs: : Sanpl eSt or edPr ocedur es. TM/Cl ass. AddOr der '

M/Pr ocs is the name of the package, and the method name is fully-qualified with unit name and class name.
Execute the stored procedure ADD_ORDER from a Delphi Console application:

unit MyConpany;

interface

i mpl enent ati on
uses

44

7 Blackfish SQL

Syst em Dat a;

type
TSonet hing = cl ass
public
procedure AddOrder (

Connection: DbConnecti on;
Custld: Integer;
Item d: Integer;
Quantity: Integer);

end;

{ Assune:
Connection: is a valid Blackfish SQ. connecti on.
Cust | d: is a custonmer in the CUSTOMVER tabl e.
Item d: is an itemfromthe | TEMS table.
Quantity: is the quantity of this item ordered.

procedur e TSonet hi ng. AddOr der (
Connection: DbConnecti on;
Custld: Integer;
Item d: Integer;
Quantity: Integer);

var
Command: DbCommand;
P1, P2, P3: DbParaneter;

begin
Command : = con. Cr eat eConmand;
Commrand. CommandText : = ' ADD_ORDER ;

Oomrand ConmandType : = CormandType St or edPr ocedur e;

P1 Command. Par anet ers. Add(' custld', DbType.lnt32);
P2 := Commrand. Paraneters. Add('item d', DbType.Int32);
P3 : = Command. Par anet ers. Add("' quantlty , DbType. |l nt32);
P1. VaI ue : = Custld;

P2.Value := Item d;

P3. Val ue := Qantity;

Command. Execut eNonQuery;

Command. Fr ee;

end;

end.

When TSoneThi ng. AddOr der is called in the client application, this in turn calls the stored procedure ADD_ORDER, which
causes TM/Cl ass. AddOr der to be executed in the Blackfish SQL server process. By making TM/Cl ass. AddOr der into a
stored procedure, only one statement has to be executed over a remote connection. The five statements executed by
TMyC ass. AddOr der are executed in-process of the Blackfish SQL server, using a local connection.

Note that the application is not passing a connection instance to the call of the ADD_ORDER stored procedure. Only the actual
logical parameters are passed.

Blackfish SQL generates an implicit connection object, when it finds a stored procedure or UDF where the first argument is
expected to be a Syst em Dat a. | DbConnect i on instance.

Handling Output Parameters and DBNull Values

The Delphi language supports output parameters and reference parameters. The Blackfish SQL database recognizes these
types of parameters and treats them accordingly.

Database NULL values require special handling. The System Stri ng can be handled by the NULL value. However, for all
other types, the formal parameter type must be changed to TCbj ect , since NULL is not a valid value for a .NET Val ueType. If
the formal parameter is a TObj ect type, then the value of Syst em DBNul | is used for a database NULL value. Blackfish SQL
will also accept nullable types in stored procedures written in C# (for example, i nt).

45

Blackfish SQL 7

Examples:

Example of a stored procedure with an INOUT parameter; NULL values are ignored:

cl ass procedure TMyd ass. AddFi ve(ref Param |nteger);
begin

Param : = Param + 5;
end;

Example of a stored procedure with an INOUT parameter; NULL values are kept as NULL values:
cl ass procedure TMyd ass. AddFour (ref Param TObject);
begin
if Param <> nil then
Param : = TObj ect (I nt eger (Param + 4);
end;

Use:

procedure TryAddi ng(Connecti on: DbConnection);

var
Command: DbCommand;

begin
Command : = Connecti on. Cr eat eCommand;
Conmand. CommandText : = ' ADD FlI VE' ;

Conmand. CommandType : = CommandType. St or edPr ocedur e;
P1 : = Command. Par anet ers. Add(' param , DbType. | nt 32);
P1.Direction := ParaneterDirection.|nputQutput;
P1. Val ue = 17;
Conmand. Execut eNonQuery;
if 22 <> Integer(P1. Val ue) then
rai se Exception.Create(' Wong result');

Command. Par aneters. d ear;
Conmand. CommandText : = ' ADD_FOUR ;
Conmand. CommandType : = CommandType. St or edPr ocedur e;
P1 := Conmand. Par anet ers. Add(' param, DbType. | nt 32);
P1.Direction := ParanmeterDirection. | nputQutput;
P1. Val ue = 17;
Conmand. Execut eNonQuery;

if 21 <> Integer(P1. Val ue) then

rai se Exception.Create('Wong result');

P1. Val ue = DBNul | . Val ue;
Conmand. Execut eNonQuery;
if DbNull.Value <> P1.Val ue then
rai se Exception.Create(' Wong result');

Command. Fr ee;
end;

The above implementation of AddFour uses a TCbj ect wrapper class for integers. This allows the developer of addFour to
recognize NULL values passed by Blackfish SQL, and to set an output parameter to NULL to be recognized by Blackfish SQL.

In contrast, in the implementation for AddFi ve, it is impossible to know if a parameter was NULL, and it is impossible to set the
result of the output parameter to NULL.

Expanding SQL for the Blackfish SQL Database

If for some reason an operator (for example: a bitwise AND operator) is needed for a wher e clause, and Blackfish SQL does not
offer that operator, you can create one in Delphi, Visual Basic, C#, or C++ and call it as a UDF. However, use this capability with
caution, since Blackfish SQL will not recognize the purpose of such a function, and will not be able to use any indices to speed
up this part of the query.

46

7 Blackfish SQL

Consider the UDF example given earlier, involving the MAX_VALUE UDF:

' SELECT * FROM PEOPLE WHERE MAX_VALUE(HEI GHT, 5*W DTH) < ?'
That query is equivalent to this query:

' SELECT * FROM PEOPLE WHERE HEI GHT < ? AND 5*WDTH < ?

where the same value is given for both parameter markers. This SQL statement yields the same result, because the
implementation of MAX_VALUE is known. However, Blackfish SQL will be able to use only indices available for the HEI GHT and
W DTH column for the second query. If there were no such indices, the performance of the two queries would be about the same.
The advantage of writing a UDF occurs when functionality does not already exist in Blackfish SQL (for example: a bit wise AND
operator).

Debugging .NET Stored Procedures

To debug .NET stored procedures:

* When the protocol is in-process or not set

* When the protocol is TCP

Debugging Stored Procedures When the Protocol Is In-process or Not Set

To debug stored procedures when the protocol is in-process or not set:

1. Create a project to use for debugging. Using your favorite IDE, create a project that includes the client code of the application,
the stored procedures, and a reference to the Bor | and. Dat a. Bl ackfi shSQL. Local d i ent. dl | library.

2. Add breakpoints to the stored procedure(s). The debugger will handle the stored procedures in the same way as with the
client code.

Debugging Stored Procedures When the Protocol Is TCP
To debug stored procedures when the protocol is TCP:
If your IDE supports remote debugging:
Delphi will be able to attach to the Blackfish SQL Server process.
1. Compile the stored procedures with debug information.
. Copy the assembly to the bin directory of the Blackfish SQL installation.

2
3. Start the client application in the debugger and attach to the server process.
4

. Add breakpoints to the stored procedure(s). The debugger will handle the stored procedures in the same way as with the
client code.

If your IDE does not support remote debugging:
1. Create a project to use for debugging. Set up the project to debug the server directly.
2. Create an executable that calls Bor | and. Dat a. Dat aSt or e. Dat aSt or eSer ver. St art Def aul t Ser ver .
3. Add a breakpoint to the stored procedure.
4. Run the separate client process.
Using a Stored Procedure to Produce an ADO.NET IDataReader
A stored procedure can produce an ADO.NET DbDat aReader simply by returning a DbDat aReader .

Example 6
class function GetRi skyCustomers(

47

Blackfish SQL 7

Connecti on: DbConnecti on;

Credit: Decinmal credit): DbDataReader;
var

Conmand: DbConmand;

P1: DbParaneter;

begi n
Command : = Connecti on. Creat eCommand;
Command. CommandText := ' SELECT NAME FROM CUSTOVER WHERE CREDIT > ? ';

P1 := Conmand. Par amet ers. Add(' param , DbType. Deci nal);
Pl.Value := Credit;
Result := Command. Execut eReader ;

end;

Note that the conmand object is not freed at the end of the method. If the command was freed, it would implicitly close the

DbDat aReader , which results in no data being returned from the stored procedure. Instead, Blackfish SQL closes the command
implicitly after the stored procedure has been called.

The Get Ri skyCust oner s stored procedure can be used as follows, in ADO:

function Get Ri skyCust oners(
Connecti on: DbConnection): Arraylist;
var
Conmand: DbConmand;
Reader: DbReader;
List: Arraylist;
begin
List := ArraylList.Create;
Conmand : = Connecti on. Cr eat eConmand;
Command. CommandText : = ' GETRI SKYCUST' ;
Conmand. CommandType : = CommandType. St or edPr ocedur e;
P1 := Command. Paraneters. Add(' Credit', DbType. Deci mal);
P1. Val ue : = 2000;
Reader := Command. Execut eReader ;
whi | e Reader. Read do
Li st. Add(Reader. Get String(0));
Conmand. Fr ee;
Result := List;
end;

Creating Stored Procedures for the Java Platform

This section provides detailed information on how to create Blackfish SQL stored procedures and UDFs for the Java platform.

Creating a Stored Procedure for a Blackfish SQL Database

Stored procedures and UDFs for Blackfish SQL for Java must be written in Java. The compiled Java classes for stored
procedures and UDFs must be added to the CLASSPATH of the Blackfish SQL server process in order to be available for use.
This should give the database administrator a chance to control which code is added. Only public static methods in
publ i ¢ classes can be made available for use.

You can update the classpath for the Blackfish SQL tools by adding the classes to the <j ds_hone>/1i b/ st or edproc
directory.

« If the stored procedure consists of a . j ar file, then place the jar file in <j ds_honme>/ st or edproc/ | i b/jars.

« If the stored procedure consists of one or more class files, place the class files in <j ds_hone>/ st or edpr oc/ cl asses. For
example, if your stored procedure file is com acre. MyPr oc, then you would place it as:
c:<jds_hone>/1ib/storedproc/classes/ conl acnme/ MyProc. cl ass

Making a Stored Procedure or UDF Available to the SQL Engine

After a stored procedure or a UDF has been written and added to the CLASSPATH of the Blackfish SQL server process, use this
SQL syntax to associate a method name with it:

48

7 Blackfish SQL

CREATE JAVA METHOD <net hod- nanme> AS <net hod-definition-string>

<met hod- nanme> is a SQL identifier such as | NCREASE_SALARY and <met hod- def i ni ti on-string> is a string with a fully
qualified method name. For example:

com nmyconpany. util. M ass.increaseSal ary
Stored procedures and UDFs can be dropped from the database by executing:
DROP JAVA METHOD <net hod- nane>

After a method is created, it is ready for use. The next example shows how to define and call a UDF.

A UDF Example

This example defines a method that locates the first space character after a certain index in a string. The the first SQL snippet
defines the UDF and and the second shows an example of how to use it.

Assume that TABLE1 has two VARCHAR columns: FI RST_NAME and LAST_NAME. The CHAR_LENGTH function is a built-in SQL
function.

package com nmyconpany. util;
public class Myd ass {
public static int findNextSpace(String str, int start) {
return str.indexOF (' ',start);
}

}

CREATE JAVA METHOD FI ND_NEXT_SPACE AS
'com nyconpany. util.Md ass. fi ndNext Space' ;

SELECT * FROM TABLE1L
VHERE FI ND_NEXT_SPACE(FI RST_NAME, CHAR LENGTH(LAST_NAME)) < O;

Input Parameters

A final type-checking of parameters is performed when the Java method is called. Numeric types are cast to a higher type if
necessary in order to match the parameter types of a Java method. The numeric type order for Java types is:

1. doubl e or Doubl e

2. f1 oat or Fl oat

3. java. nat h. Bi gDeci nal
4. 1 ong or Long

5.int orlnteger

6. short or Short

7. byte orByte

The other recognized Java types are:
» bool ean or Bool ean

e String

» java.sql.Date

e java.sql.Tine

» java.sgl.Tinestanp
 byte[]

e java.io.lnputStream

49

Blackfish SQL 7

Note that if you pass NULL values to the Java method, you cannot use the primitive types such as short and doubl e. Use the
equivalent encapsulation classes instead (Shor t , Doubl e). A SQL NULL value is passed as a Java nul | value.

If a Java method has a parameter or an array of a type that is not listed in the tables above, it is handled as SQL OBJECT type.

Output Parameters

If a Java method parameter is an array of one of the recognized input types (other than byt e[]), the parameter is expected to
be an output parameter. Blackfish SQL passes an array of length 1 (one) into the method call, and the method is expected to
populate the first element in the array with the output value. The recognized Java types for output parameters are:

» doubl e[] or Doubl e[]

o« float[] orFloat[]

« java. nath. Bi gDeci mal []
* long[] orLong[]

e int[] orlnteger[]

e short[] orShort[]

« Byte[] (butnotbyte[] since thatis a recognized input parameter by itself)
* bool ean[] or Bool ean[]

e String[]

e java.sql.Date[]

e java.sql.Tine[]

e java.sql. Tinmestanp[]

« byte[][]

e java.io.lnputStreani]

Output parameters can be bound only to variable markers in SQL. All output parameters are essentially | NOUT parameters,
since any value set before the statement is executed is passed to the Java method. If no value is set, the initial value is arbitrary.
If any of the parameters can output a SQL NULL (or have a valid NULL input), use the encapsulated classes instead of the
primitive types.

Example 8

package com myconpany. util;
public class Myd ass {
public static void max(int i1, int i2, int i3, int result[]) {
result[0] = Math.max(i 1, Math.max(i2,i3));
}

}

CREATE JAVA METHOD NMAX
AS ' com nyconmpany. util.Md ass. max';

CALL MAX(1,2,3,7);

The CALL statement must be prepared with a Cal | abl eSt at enent in order to get the output value. See the JDBC
documentation for how to use j ava. sql . Cal | abl eSt at enent . Note the assignment of r esul t [0] in the Java method. The
array passed into the method has exactly one element.

Implicit Connection Parameters

If the first parameter of a Java method is of type j ava. sql . Connecti on, Blackfish SQL passes a connection object that
shares the transactional connection context used to call the stored procedure. This connection object can be used to execute
SQL statements using the JDBC API.

50

7 Blackfish SQL

Do not pass anything for this parameter. Let Blackfish SQL do it.

Example 9

package com nmyconpany. util;
public class MyC ass {
public static void increaseSal ary(java. sqgl.Connection con,
j ava. mat h. Bi gDeci mal anmount) {
j ava. sql . Prepar edSt at ement st nt
= con. prepar eSt at enent (" UPDATE EMPLOYEE SET SALARY=SALARY+?");
stnt. set Bi gDeci nal (1, amount) ;
stnt . execut eUpdat e();
stnt.close();

CREATE JAVA_METHOD | NCREASE_SALARY
AS 'com nyconpany. util. MU ass.increaseSal ary';

CALL | NCREASE_SALARY(20000. 00) ;

Note:

« | NCREASE_SALARY requires only one parameter: the amount by which to increase the salaries. The corresponding Java
method has two parameters.

 Donotcallcommit (), roll back, set AutoConmmit (), orcl ose() on the connection object passed to stored procedures.
For performance reasons, it is not recommended to use this feature for a UDF, even though it is possible.

Stored Procedures and JDBC ResultSets

A Java stored procedure can produce a Resul t Set on the client by returning either a Resul t Set or a DataExpress Dat aSet
from the Java implementation of the stored procedure. The Dat aSet is automatically converted to a Resul t Set for the user of
the stored procedure.

Example
This example returns a Resul t Set :
package com nmyconpany. util;

public class Myd ass {
public static void getMarri edEnpl oyees(j ava. sql . Connecti on con)
java.sql. Statenment stnt = con.get Statenent();
java. sql . Resul t Set rset
= stnt.executeQuery("SELECT | D, NAME FROM EMPLOYEE
VWHERE SPOUSE | S NOT NULL");
return rset;

}

Note: Do not close the st nt statement. This statement is closed implicitly.
Example

This example returns a Dat aSet , which is automatically converted to a ResultSet:
package com nmyconpany. util;

public class Myd ass {
public static void getMarriedEnpl oyees()
com bor | and. dx. dat aset . Dat aSet dat aSet = get Dat aSet Fr omSoneWer e();
return dataSet;

}

Note: Do not close the st nt statement. This statement is closed implicitly.

51

Blackfish SQL 7

Example
Register and call the previous examples like this:

java.sql . Statement stnt = connection. getStatenent();
st mt . execut eUpdat e(" CREATE JAVA METHOD GET_MARRI ED EMPLOYEES AS "+

"'com nyconpany. util.Md ass. get Marri edEnpl oyees' ") ;
java.sql.ResultSet rset = stnt.executeQuery("CALL GET_MARRI ED_EMPLOYEES()");
int id=rset.getlnt(1);
String nane = rset.getString(2);

Overloaded Method Signatures

Java methods can be overloaded to avoid numeric loss of precision.

Example 10

package com nmyconpany. util;
public class Myd ass {
public static int abs(int p) {
return Math. abs(p);

}

public static |ong abs(long p) {
return Math. abs(p);

}

public static BigDeci nal abs(java. math. Bi gDeci nal p) {
return p.abs();

public static doubl e abs(double p) {
return Math. abs(p);

}
}

CREATE JAVA METHOD ABS _NUMBER AS ' com nycompany. util.M/d ass. abs’;

SELECT * FROM TABLE1 WHERE ABS(NUMBERL) = 2.1434;

The overloaded method abs is registered only once in the SQL engine. Now imagine that the abs method taking a Bi gDeci nmal
is not implemented! If NUMBERL is a NUMERI C with decimals, then the abs method taking a double would be called, which can
potentially lose precision when the number is converted from a Bi gDeci mal to a double.

Return Type Mapping

52

The return value of the method is mapped into an equivalent SQL type. Here is the type mapping table:

Return type of method Blackfish SQL SQL type
byte or Byte SMALLINT

short or Short SMALLINT

int or Integer INT

long or Long BIGINT
java.math.BigDecimal DECIMAL

float or Float REAL

double or Double DOUBLE

String VARCHAR

Blackfish SQL

boolean or Boolean BOOLEAN

java.io.InputStream (Any type derived from java.io.InputStream is also handled as an INPUTSTREAM
INPUTSTREAM)

java.sql.Date DATE

java.sqgl.Time TIME

java.sgl.Timestamp TIMESTAMP

All other types: OBJECT
See Also

Preface (@ see page 1)

Overview (@ see page 3)

System Architecture (& see page 7)

Establishing Connections (@ see page 23)
Administering Blackfish SQL (@ see page 31)

Using Blackfish SQL Security (& see page 35)

Using Triggers in Blackfish SQL Tables (@ see page 55)
Stored Procedures Reference (i@ see page 59)

SQL Reference (@ see page 75)

Optimizing Blackfish SQL Applications (@ see page 125)
Deploying Blackfish SQL Database Applications (@ see page 133)

Troubleshooting (@ see page 137)

53

8 Blackfish SQL

Using Triggers in Blackfish SQL Tables

This chapter discusses triggers and Blackfish SQL tables.

« About Triggers

* Viewing Triggers

« Creating Triggers in Blackfish SQL for Windows Databases

« Creating Triggers in Blackfish SQL for Java Databases
About Triggers

You can create row level triggers for a Blackfish SQL table. In Blackfish SQL for Java, you can implement them in Java. In
Blackfish SQL for Windows, you can implement them in Delphi, C#, or VB.NET.

All trigger methods must be declared static and have only one parameter of type Tri gger Cont ext. The Tri gger Cont ext
class is symantically identical in Blackfish SQL for Java and Blackfish SQL for Windows. However, there are differences in
syntax for the two different platforms. On the Windows platform, the class TriggerContext is in the
Bor | and. Dat a. Dat aSt ore namespace. On the Java platform, the TriggerContext class is in the
com bor | and. dat ast or e package.

The trigger context can be used to obtain access to:

« A connection object
» The new row for insert, and update triggers
« The old row for update and delete triggers

These rules apply:

* New row values are modified in a BEFORE UPDATE or BEFCRE | NSERT trigger.
» Old row values cannot be modified.
« Foreign key and primary key constraints are applied after BEFORE triggers.

» AFTERtriggers are called after the operation has completed, including successful completion of foreign key and primary key
constraints.

» The trigger implementation should avoid DML operations against the same table. This has the potential for infinite recursion.

 If there are multiple triggers of the same type for the same table, the calling order of the triggers is the order in which they
were created.

55

Blackfish SQL 8

« Commit and rollback operations are ignored inside the execution of the trigger If an exception is thrown from inside a trigger.
The affects of the statment that caused the trigger to be executed will be rolled back.

The requirements for deploying applications with trigger implementations are the same for both stored procedures and triggers.
Viewing Triggers

To view the triggers created for a table, call the DB_ADM N. GET_TRI GGERS stored procedure. For a complete description see
the Stored Procedures Reference.

Creating Triggers in Blackfish SQL for Windows Databases

Use the CREATE TRI GGER statement to create a trigger in a Blackfish SQL for Windows database. See the SQL Reference for
syntax and examples of the CREATE TRI GGER statement.

Example
These example statements create triggers for the Cust oner class:

CREATE TRl GGER BEFORE_| NSERT_CUSTOVER BEFORE | NSERT ON CUSTOVER AS
O der EntryAssenbl y: : Order Ent ry. Cust oner . bef orel nsert Tri gger

CREATE TRI GGER BEFORE_UPDATE_CUSTOVER BEFORE UPDATE ON CUSTOVER AS
Order EntryAssenbl y: : Order Entry. Cust oner . bef or eUpdat eTri gger

CREATE TRI GGER BEFORE_DELETE CUSTOVER BEFORE DELETE ON CUSTOVER AS
O der EntryAssenbl y: : Order Ent ry. Cust oner . bef or eDel et eTri gger

CREATE TRI GGER AFTER | NSERT_CUSTOMER AFTER | NSERT ON CUSTOVER AS
OrderEntryAssenbl y: : OrderEntry. Custoner. afterlnsertTri gger
CREATE TRI GGER AFTER_UPDATE_CUSTOMER AFTER UPDATE ON CUSTOVER AS
Order EntryAssenbl y: : Order Entry. Cust oner. af t er Updat eTr i gger
CREATE TRI GGER AFTER DELETE CUSTOVER AFTER DELETE ON CUSTOVER AS
Order EntryAssenbl y: : Order Entry. Cust oner . af t er Del et eTri gger

This shows the Delphi implementation of the Cust omer class triggers:

TCust omer = cl ass
cl ass procedure BeforelnsertTrigger(Context: TriggerContext); static;
cl ass procedure BeforeUpdateTrigger(Context: TriggerContext); static;
cl ass procedure BeforeDel eteTrigger(Context: TriggerContext); static;
cl ass procedure AfterlnsertTrigger(Context: TriggerContext); static;
cl ass procedure AfterUpdateTrigger(Context: TriggerContext); static;
cl ass procedure AfterDel eteTrigger(Context: TriggerContext); static;

end;

{ TCustoner }
cl ass procedure TCustomer. AfterDel eteTrigger(Context: TriggerContext);

belql:algdl eBef or el nsert (Cont ext . Get NewRow()) ;

cl Zgg procedure TCustomer. AfterlnsertTrigger(Context: TriggerContext);
belg—liazdl eBef or eUpdat e(Cont ext . Get O dRow(), Context. Get NewRow());

cl 222 procedure TCustoner. AfterUpdat eTri gger (Context: TriggerContext);
belg-llazdl eBef or eDel et e(Cont ext. Get O dRow(), Context. Get NewRow()) ;

cl 222 procedur e TCust omer. Bef oreDel et eTri gger (Cont ext: Tri gger Cont ext);
beIqllagdl eAfterlnsert (Context.get NewRow());

cl 322 procedure TCustomner. BeforelnsertTrigger(Context: TriggerContext);
belql:slgdl eAf t er Updat e(Cont ext . get NewRow()) ;

cl Egg procedure TCustomrer. Bef oreUpdat eTri gger (Context: Tri gger Context);

egin

56

8 Blackfish SQL
Handl eAft er Del et e(Cont ext . get NewRow()) ;
end;
This shows the C# implementation of the Cust oner class triggers:

public class Customer {
public static void BeforelnsertTrigger(TriggerContext Context)

Handl eBef or el nsert (Cont ext . Get NewRow()) ;

Lubl ic static void BeforeUpdateTrigger(TriggerContext Context)
Handl eBef or eUpdat e(Cont ext . Get O dRow(), Context. Get NewRow());

|}oubl ic static void beforeDel eteTrigger(TriggerContext Context)
Handl| eBef or eDel et e(Cont ext . get NewRow()) ;

|}oubl ic static void afterlnsertTrigger(TriggerContext Context)
Handl eAf t er I nsert (Cont ext. get NewRow()) ;

public static void afterUpdateTrigger(TriggerContext Context)
Handl eAf t er Updat e(Cont ext . get NewRow()) ;

Lubl ic static void afterDel eteTrigger(TriggerContext Context)

{
Handl eAf t er Del et e(Cont ext . get NewRow()) ;

}
}

Creating Triggers in Blackfish SQL for Java Databases

Use the CREATE TRI GGER statement to create a trigger in a Blackfish SQL for Java database. See the SQL Reference for
syntax and examples of the CREATE TRI GCGER statement.

Examples:

These example statements create triggers for the Cust oner class:

CREATE TRI GGER BEFORE_| NSERT_CUSTOMER BEFORE | NSERT ON CUSTOMER AS
orderentry. Cust oner . bef orel nsert Tri gger

CREATE TRI GGER BEFORE_UPDATE_CUSTOMER BEFORE UPDATE ON CUSTOMER AS
orderentry. Cust oner . bef or eUpdat eTr i gger

CREATE TRI GGER BEFORE_DELETE CUSTOVER BEFORE DELETE ON CUSTOMER AS
orderentry. Cust oner. bef oreDel et eTri gger

CREATE TRI GGER AFTER_| NSERT_CUSTOVER AFTER | NSERT ON CUSTOVER AS
orderentry. Custoner. afterlnsertTrigger

CREATE TRI GGER AFTER_UPDATE_CUSTOVER AFTER UPDATE ON CUSTOMER AS
orderentry. Cust oner. af t er Updat eTr i gger

CREATE TRI GGER AFTER _DELETE_CUSTOVER AFTER DELETE ON CUSTOMER AS
orderentry. Custoner. afterDel et eTri gger

This shows the Java implementation of the Cust oner class triggers:

public class Customer {
public static void beforelnsertTrigger(TriggerContext context)
t hrows Exception
handl| eBef or el nsert (cont ext. get NewRow()) ;

}
public static void beforeUpdateTrigger(TriggerContext context)
throws Exception

handl eBef or eUpdat e(cont ext . get O dRow(), context.get NewRow());
}

57

Blackfish SQL

public static void beforeDel eteTrigger(TriggerContext context)
t hrows Exception

handl| eBef or eDel et e(cont ext. get O dRow(), context.get NewRow());

public static void afterlnsertTrigger(TriggerContext context)
handl eAft erl nsert (cont ext. get NewRow()) ;

public static void afterUpdateTrigger(TriggerContext context)
handl eAf t er Updat e(cont ext . get NewRow()) ;

publ}i c static void afterDel eteTrigger(TriggerContext context)

handl eAf t er Del et e(cont ext . get NewRow()) ;

}
}

See Also

Preface (@ see page 1)

Overview (@ see page 3)

System Architecture (@ see page 7)

Establishing Connections (@ see page 23)

Administering Blackfish SQL (@ see page 31)

Using Blackfish SQL Security (@ see page 35)

Using Stored Procedures and User Defined Functions (@ see page 41)
Stored Procedures Reference (@ see page 59)

SQL Reference (@ see page 75)

Optimizing Blackfish SQL Applications (@ see page 125)
Deploying Blackfish SQL Database Applications (@ see page 133)
Troubleshooting (@ see page 137)

58

9 Blackfish SQL

Stored Procedures Reference

Many administrative tasks are supported by stored procedures in the DB_ADM N class. The DB_UTI L class provides stored
procedures for numeric, string, and date/time operations.

- DB_ADMIN Stored Procedures
e DB_UTIL Numeric, String, and Date/Time Stored Procedures
DB_ADMIN Stored Procedures

DB_ADM Nis a group of stored procedures for performing a variety of database administration tasks. For example:

¢ Viewing metadata
« Altering automatic failover and incremental backup
» Altering database properties
« Verifying tables
» Database copy for backup purposes
» Database encryption
» Change database password
« Displaying database staus, such as the following:
* locks
e status log IDs

These methods can be called from SQL using the CALL statement. They can be called without creating a METHOD alias because
the Blackfish SQL recognizes the methods in DB_ADM N as built-in methods.

DB_ADMIN Methods

The following sections provide the syntax and a brief description of each DB_ADM N method.

ALTER_DATABASE
ALTER DATABASE(string properties)

Alters specified database properties. properties is a comma-separated list of settings for the columns from the
Dat abaseCol ums class. Each property is specified as follows: <COLUMN_NAME>=<VALUE>. See the online help for
information on the Dat abaseCol umms class.

59

Blackfish SQL 9

ALTER_MIRROR

ALTER M RROR(string mrrorName, string properties)

Alters an existing mirror configuration. mi rror Name is a value from the SysM rrors. NAVE column. properties is a
comma-separated list of settings for the columns from the SysMrrors class. Each property is specified as follows:
<COLUWN_NAME>=<VALUE>. See the online help for information on the SysM rr or s class.

ALTER_MIRROR_SCHEDULE

ALTER M RROR_SCHEDULE(I NT32 mirrorld, string properties)

Alters an existing mirror schedule item. m rr or Nane is value from the SysM rror Schedul e. NAMVE column. properties A
comma separated list of settings for the columns from the SysM rr or Schedul e class. Each property is specified as follows:
<COLUWN_NAME>=<VALUE>. See the online help for information on the SysM r r or Schedul e class.

CHANGE_PASSWORD

CHANGE_PASSWORD(st ri ng ol dpassword, string newPassword)

Changes the password for the currently connected user.

CLOSE_CONNECTION

CLOSE_CONNECTI ON(I NT32 connectionld, INT64 birthTimeM I |iseconds)

Closes an open connection. Can be used to close unwanted connections. connecti onl d From the | D column returned by
GET_CONNECTI ONS. birt hTi meM | | i seconds from the Bl RTH column returned by GET_CONNECTI ONS. Returns true if
successful See GET_CONNECTI ONS to obtain a table of connections to close.

CLOSE_OTHER_CONNECTIONS

CLOSE_OTHER CONNECTI ONS()

Closes all other open connections. Administrator rights are required to execute this method.

COPY_STREAMS

COPY_STREAMS(string otherFilename, string adm nUser, string adm nPass, boolean doOverwite,
bool ean dol gnor eErrors)

Copies all tables and indexes from the current database to another database. COPY_USERS method should be called first if users
have been added to the database. ot her Fi | enamne is the file name of the destination database. adm nUser is the user with
ADMIN privileges in the destination database. adm nPass is the password of the ADMIN user in the destination database.
overw ite allows the tables to be overwritten. If false this will cause an error. i gnor eErr or s causes errors to be ignored
when recovering a corrupt database.

COPY_USERS

COPY_USERS(string otherFilenane, string adm nUser, string adm nPass, bool ean doCopyEncryption,
bool ean repl aceExi sti ngUsers)

Copies all users from the current database to another specified database. ot her Fi | enane is the file name of the destination
database. admi nUser user with ADMIN privileges in the destination database. adni nPass password of the ADMIN user in the
destination database. copyEncrypti on if the current database is encrypted then encrypt the target database with the same
key. r epl aceExi st i ngUser s if true replace the existing users in the target database.

CREATE_MIRROR

60

CREATE_M RROR(string properties)

9 Blackfish SQL

Creates a new mirror with the configuration properties provided. properti es A comma-separated list of settings for the
columns from the SysM rrors class. Each property is specified as follows: <COLUMN_NAME>=<VALUE>. Returns a unique 1D
for new new mirror. See the online help for information on the SysM rr or s class.

CREATE_MIRROR_SCHEDULE
CREATE_M RROR_SCHEDULE(string mirrorName, string properties)
Creates a new mirror synchronization schedule. mi rror Nane the name of the mirror to add the mirror schedule item for.
properties a comma-separated list of settings for the columns in the SysM rr or Schedul e table. Each property is defined by

specified as follows: <COLUMN_NAME>=<VALUE>. Returns a unique INT64 identifier for the new schedule item. See the online
help for information on the SysM rr or Schedul e class.

DROP_MIRROR
DROP_M RROR(string mrrorNane)

Drops an existing mirror configuration. i rr or Nane is a value from the SysM rrors. NAME column. See the online help for
information on the SysM r r or s class.

DROP_MIRROR_SCHEDULE
DROP_M RROR_SCHEDULE(| NT32 i rrorl D)

Drops an existing mirror schedule item. i rror | Dis a value from the SysM rr or Schedul e. | D column See the online help for
information on the SysM rr or Schedul e class.

ENCRYPT
ENCRYPT(stri ng adm nPassword, string masterKeySeed)
Encrypts an empty database. adm nPass password of the user performing this command. mast er KeySeed a random

sequence of 16 characters that is used internally as the master password. Once provided, it does not needed to be provided for
access to the database. This should be very random sequence of characters.

GET_ALL_LICENCES
GET_ALL_LI CENCES()

Returns a result table with zero or more rows of all licenses that could be found. The columns for this result table are defined in
Li censeCol umms class. See the online help for information on the Li censeCol umms class.

GET_COLUMN_PRIVILEGES

GET_COLUWN_PRI VI LEGES(string catal ogPattern, string schemaPattern, string tablePattern, string
col umPat t er n)

cat al ogPat t er n specifies the LI KE catalog search pattern. Not used. Reserved for future use. schenmaPat t er n specifies the
LI KE schema search patttern. nul | means means that the schema name should not be used to narrow the search.
t abl ePat t er n specifies the LI KE table search patttern. nul | means means that the table name should not be used to narrow
the search. col unmmPat t er n specifies the LI KE column search patttern. nul | means means that the column name should not
be used to narrow the search. Returns a result table with column privileges for the specified table(s). The columns for this result
table are defined in the ColumPrivilegeColums class. See the online help for information on the
Col umPri vi | egeCol ums class.

GET_COLUMNS

GET_COLUMNS(string cat al ogPat t er n, string schemaPat t er n, string tabl ePattern, string
col umpPat t er n)

61

Blackfish SQL 9

cat al ogPat t er n specifies the LI KE catalog search pattern. Not used. Reserved for future use. schenaPat t er n specifies the
LI KE schema search patttern. null means means that the schema name should not be used to narrow the search.
t abl ePat t er n specifies the LI KE table search patttern. nul I means means that the table name should not be used to narrow
the search. col unmPat t er n specifies the LI KE column search patttern. nul | means means that the column name should not
be used to narrow the search. Returns a result table with metadata for the columns of the specified table(s). The columns for this
result table are defined in the Col utmsCol umms class. See the online help for information on the Col unmsCol unms class.

GET_CONNECTIONS
GET_CONNECTI ONS()
Returns a result table of the open connections for the current server connection. The columns for this result table are defined in

the ConCol umms class. See the online help for information on the ConCol umms class.

GET_DATABASE_PRIVILEGES
GET_DATABASE_PRI VI LEGES(bool ean for Rol es)

forRoles if t r ue, grantee is a role; if f al se, grantee is a user.
Returns a result table with database access rights for each user or role using the following columns:

1. GRANTCR String => grantor of access
2. GRANTEE String => grantee of access

3. PRI VI LEGE String => name of access (STARTUP, ADM NI STRATOR, WRI TE, CREATE, DROP, RENANE, CREATE._ROLES,
CREATE_SCHEMAS)

4. 1 S_GRANTABLE String => YES if grantee is permitted to grant to others; NOif not

GET_DATABASE_PRODUCT NAME
GET_DATABASE_PRODUCT _NAME()

Returns the product name of the server as a string.

GET_DATABASE_PRODUCT_VERSION
GET_DATABASE_PRODUCT _VERSI ON()

Returns the product version of the server as a string

GET_DATABASE_PROPS
GET_DATABASE_PROPS()

Returns a result table with the properties for the current database. The columns for this result table are defined in the
Dat abaseCol uims class. See the online help for information on the Dat abaseCol urms class.

GET_DATABASE_STATUS
GET_DATABASE_STATUS()

Returns a result table with one row of status information about the current database. The columns for this result table are defined
in the Dat abaseSt at usTabl e class. See the online help for information on the Dat abaseSt at usTabl e class.

GET_DATABASE_STATUS_LOG_FILTER
GET_DATABASE_STATUS_LOG FI LTER()

Returns an INT32 filter that controls what kind of logging information is logged to the status log file for all current database

62

9 Blackfish SQL

connections. The meaning of the bit masks is found in LogFi | t er Codes class. See the online help for information on the
LogFi | t er Codes class.

GET_DATATYPES
GET_DATATYPES()

Returns a result table with a row for each supported data type in the database server. The columns for this result table are
defined in the Dat aTypesCol umms class. See the online help for information on the Dat aTypesCol umms class.

GET_FOREIGN_KEYS
CGET_FOREI GN_KEYS(cat al ogPattern, schemaPattern, tablePattern)

cat al ogPat t er n specifies the LI KE catalog search pattern. Not used. Reserved for future use. schenaPat t er n specifies the
LI KE schema search patttern. nul | means means that the schema name should not be used to narrow the search.
t abl ePat t er n specifies the LI KE table search patttern. nul I means means that the table name should not be used to narrow
the search. Returns a result table with a row for each foreign key in the specified table(s). The columns for this result table are
defined in the For ei gnKeyCol uimsCol umms class. See the online help for information on the For ei gnKeyCol uimsCol unms
class.

GET_FOREIGN_KEY_COLUMNS
GET_FOREI GN_KEY_COLUWNS(string catalogPattern, string schemaPattern, string tablePattern,
string foreignKeyPattern, string primryCatalogPattern, string prinmrySchemaPattern, string
pri maryTabl ePattern, string prinmaryl ndexPattern)

cat al ogPat t er n specifies the LI KE catalog search pattern. Not used. Reserved for future use. schenmaPat t er n specifies the
LI KE schema search patttern. nul | means means that the schema name should not be used to narrow the search.
t abl ePat t er n specifies the LI KE table search patttern. nul | means means that the table name should not be used to narrow
the search. f or ei gnKeyPat t er n specifies the LI KE foreign key search patttern. nul | means means that the table name
should not be used to narrow the search. pri mar yCat al ogPat t er n specifies the LI KE primary catalog search pattern. Not
used. Reserved for future use. pri marySchemaPat t er n specifies the LI KE primary schema search patttern. nul | means
means that the primary schema name should not be used to narrow the search. pri maryTabl ePat t er n specifies the LI KE
primary table search patttern. nul| means means that the table name should not be used to narrow the search.
pri maryl ndexPat t er n specifies the LI KE primary table index search patttern. nul | means means that the table name
should not be used to narrow the search. Returns a result table with a row for each foreign key column pairs in the specified
table(s). The columns for this result table are defined in the For ei gnKeyCol umms class. See the online help for information on
the For ei gnKeyCol umms class.

GET_INDEXES
GET_| NDEXES(string catal ogPattern, string schemaPattern, string tablePattern)
cat al ogPat t er n specifies the LI KE catalog search pattern. Not used. Reserved for future use. schenaPat t er n specifies the
LI KE schema search patttern. nul | means means that the schema name should not be used to narrow the search.
t abl ePat t er n specifies the LI KE table search patttern. nul | means means that the table name should not be used to narrow

the search. Returns a result table with the indexes of the specified table(s). The columns for this result table are defined in the
I ndexesCol umms class. See the online help for information on the | ndexesCol unms class.

GET_INDEX_COLUMNS

GET_| NDEX_COLUWNS(string catal ogPattern, string schemaPattern, string tablePattern, string
i ndexPattern)

cat al ogPat t er n specifies the LI KE catalog search pattern. Not used. Reserved for future use. schenmaPat t er n specifies the
LI KE schema search patttern. nul | means means that the schema name should not be used to narrow the search.

63

Blackfish SQL 9

t abl ePat t er n specifies the LI KE table search patttern. nul I means means that the table name should not be used to narrow
the search. indexPattern specifies the LI KE index search patttern. nul | means means that the table name should not be used
to narrow the search. Returns a result table with the column information of the specified table index(es). The columns for this
result table are defined in the |ndexColumsColums class. See the online help for information on the
I ndexCol utmsCol umms class.

GET_KEYWORDS
GET_KEYWORDS()

Returns a result table with the reserved keywords in this database.

GET_LICENSE
GET_LI CENSE()

Returns a result table with one row of license information for the best deployment license found. The columns for this result table
are defined in the Li censeCol umms class. See the online help for information on the Li censeCol umms class.

GET_LICENSE_SEARCH_DIRS
GET_LI CENSE_SEARCH_DI RS()

Returns a result table with a row for each directory that is searched for license files.

GET_LOCKS
GET_LOCKS()

Returns a result table of all the currently held table and row locks for all connections to the current database. The columns for
this result table are defined in the LockCol umms class. See the online help for information on the LockCol umms class.

GET_MIRROR_ID
GET_M RROR |)

Returns the INT64 mirror id of the current mirror if this is a mirror.

GET_MIRRORS
GET_M RRORS(mi rrorNane, checkSt at us)

namne is the name of the mirror or nul | to get all mirrors. checkSt at us is set to TRUE to provide additional columns on the
status of the mirror. Status checking requires more work to be performed, but provides additional information on a mirror.

Returns a result table with a row for each mirror. The columns for this result table are defined in the M rr or St at usCol ums
class. See the online help for information on the M r r or St at usCol umms class.

GET_NEWEST _STATUS LOG_ID

GET_NEWEST_STATUS_LOG | ()

Returns the INT32 ID of the newest log file that can be retrieved using the GET_STATUS_LOG&) method.
GET_OLDEST STATUS LOG_ID

GET_OLDEST_STATUS LOG | ()

Returns the INT32 ID of the oldest log file that can be retrieved using the GET_STATUS_LO&) method.

64

9 Blackfish SQL

GET_PROCEDURES
CGET_PROCEDURES(string catalogPattern, string schemaPattern, string procedurePattern, string
type)

cat al ogPat t er n specifies the LI KE catalog search pattern. Not used. Reserved for future use. schenmaPat t er n specifies the
LI KE schema search patttern. nul | means means that the schema name should not be used to narrow the search.
procedur ePat t er n specifies the LI KE procedure search patttern. nul | means means that the procedure name should not be
used to narrow the search. procedur eType a procedure type; must be either PROCEDURE or FUNCTION or nul | for any
procedure type. Returns a result table with metadata for the known stored procedures. The columns for this result table are
defined in the Pr ocedur eCol umms class. See the online help for information on the Pr ocedur eCol umms class.

GET_PROCEDURE_COLUMNS

GET_PROCEDURE_COLUMNS(string catal ogPattern, string schenaPattern, string procedurePattern,
string paraneterPattern)

cat al ogPat t er n specifies the LI KE catalog search pattern. Not used. Reserved for future use. schenaPat t er n specifies the
LI KE schema search patttern. null means that the schema name should not be used to narrow the search.
procedur eNamePat t er n specifies the LI KE procedure search patttern. nul | means that the procedure name should not be
used to narrow the search. col unmNanePat t er n specifies the LI KE column search patttern. nul | means that the column
name should not be used to narrow the search. Returns a result table with the parameters of the specified procedure(s). The
columns for this result table are defined in the Procedur ePar anet er sCol unms class. See the online help for information on
the Pr ocedur ePar anet er sCol umms class.

GET_PROCEDURE_PRIVILEGES

GET_PROCEDURE_PRI VI LEGES() Returns a result table with descriptions of the access rights for each procedure. The result
table has the following columns:

1. PROCEDURE_CAT String => procedure catalog (is always nul |)

2. PROCEDURE_SCHEMString => procedure schema

3. PROCEDURE_NAME String => procedure name

4. GRANTOR String => grantor of access

5. GRANTEE String => grantee of access

6. PRI VI LEGE String => name of access (EXECUTE)

7. 1'S_GRANTABLE String => YES if grantee is permitted to grant to others; NOif not

GET_ROLES
GET_ROLES()

Returns a result table with the roles in the database. The columns for this result table are defined in the Rol esCol utms class.
See the online help for information on the Rol esCol urms class.

GET_ROLE_GRANTS
GET_ROLE_GRANTS(bool ean for Rol es)

forRoles set to t r ue, grantee is a role; set to f al se, grantee is a user.
The result table has the following columns:

1. ROLE_NANME String => name of the role granted

65

Blackfish SQL 9

2. GRANTOR String => grantor of role
3. GRANTEE String => grantee of role
4. 1 S_GRANTABLE String => YES if grantee is permitted to grant to others; NOif not.

GET_SCHEMAS
GET_SCHEMAS(string catal ogPattern)

cat al ogPat t er n specifies the LI KE catalog search pattern. Not used. Reserved for future use. Returns a result table with the
schemas in the database.

GET_STATUS_LOG_FILTER
GET_STATUS_LOG FI LTER()

Returns the INT32 filter that controls the type of logging information to be logged to the status log for this connection. The
meaning of the bit masks is found in LogFi | t er Codes class. See the online help for information on the LogFi | t er Codes
class.

GET_STATUS_LOG
GET_STATUS LOG(INT32 log_id, |INT64 offset)

i d is the ID of the log file being retrieved. of f set is the offset into the log file from the start of the file. Returns the status log for
the current databas as a stream.

GET_STATUS_LOGS
GET_STATUS_LOGS()

Returns a result table with id of the existing logs for this database. The columns for this result table are defined in the
St at usLogCol umms class. See the online help for information on the St at usLogCol umms class.

GET_TABLE_PRIVILEGES
GET_TABLE_PRI VI LEGES(string catal ogPattern, string schemaPattern, string tabl ePattern)

cat al ogPat t er n specifies the LI KE catalog search pattern. Not used. Reserved for future use. schenmaPat t er n specifies the
LI KE schema search patttern. nul | means means that the schema name should not be used to narrow the search.
t abl ePat t er n specifies the LI KE table search patttern. nul | means means that the table name should not be used to narrow
the search. Returns a result table privilege descriptions for the selected table(s). The columns for this result table are defined in
the Tabl ePri vi | egeCol umms class. See the online help for information on the Tabl ePri vi | egeCol ums class.

GET_TABLES

GET_TABLES(string catal ogPattern, string schemnaPattern, string tablePattern, string type)

cat al ogPat t er n specifies the LI KE catalog search pattern. Not used. Reserved for future use. schenmaPat t er n specifies the
LI KE schema search patttern. nul | means means that the schema name should not be used to narrow the search.
t abl ePat t er n specifies the LI KE table search patttern. nul I means means that the table name should not be used to narrow
the search. types comma separated list of TABLE, VIEW, SYSTEM_TABLE or null. Returns a result table with metadata for the
specified table(s). The columns for this result table are defined in the Tabl eCol unns class. See the online help for information
on the Tabl eCol unms class.

GET_THIS_MIRROR
GET_THI S_M RROR(bool ean checkSt at us) checkStatus TRUE to provide additional columns on the status of the mirror.

66

9 Blackfish SQL

Like GET_M RRORS except that it returns information for only the mirror this procedure is executed against. Returns a result table
with a row for this mirror. The columns for this result table are defined in the M rr or St at usCol urms class. See the online help
for information on the M r r or St at usCol umms class.

GET_TRIGGERS
CGET_TRI GCERS(string catal ogPattern, string schemaPattern, string tablePattern, string trigger)
cat al ogPat t er n specifies the LI KE catalog search pattern. Not used. Reserved for future use. schenaPat t er n specifies the
LI KE schema search patttern. nul | means means that the schema name should not be used to narrow the search.
t abl ePat t er n specifies the LI KE table search patttern. nul | means means that the table name should not be used to narrow

the search. tri gger Pat t er n specifies the LI KE trigger search patttern. nul | means means that the trigger name should not
be used to narrow the search. Returns a result table of the triggers of the specified table(s).

The result table has the following columns:

1. TRI GGER_CAT String => trigger catalog (is always nul |)
. TRI GGER_SCHEMString => trigger schema

. TRI GGER_TABLE String => trigger table

. TRI GGER_TYPE String => trigger type

. TRI GGER_METHOCD String => name of the trigger method

a b WN

GET_USERS
GET_USERS()

Returns a result table with the users in the database.

GET_VIEWS
GET_VI EWS(string catal ogPattern, string schemaPattern, string view)
cat al ogPat t er n specifies the LI KE catalog search pattern. Not used. Reserved for future use. schemaPat t er n specifies the
LI KE schema search patttern. nul | means means that the schema name should not be used to narrow the search.
vi ewmNanePat t er n specifies the LI KE view search patttern. nul | means that the view name should not be used to narrow the

search. Returns a result table with the definitions of the specified view(s). The columns for this result table are defined in the
Vi ews Col uims class. See the online help for information on the Vi ewsCol umms class.

SET_DATABASE_STATUS LOG_FILTER
SET_DATABASE_STATUS_LOG FI LTER(INT32 filter)

Sets the filter that controls the type of logging information to be entered in the status log file for all current database connections.

SET_PRIMARY_MIRROR
SET_PRI MARY_M RROR(| NT64 txTer m nati onTi meout , bool ean forceTransacti onAbort, bool ean
forceSw tch)

Sets the current mirror to the primary mirror. t XxTer mi nati onTi neout is milliseconds to wait for existing transactions to
terminate. f orceTxTer mi nati on causes existing transactions to abort after t xTer mi nati onTi meout milliseconds have
elapsed. f or ceSwi t ch causes this mirror to become the primary mirror even if other mirrors could not be synchronized with this
change.

SET_STATUS_LOG_FILTER
SET_STATUS_LOG FI LTER(I NT32 filter)

67

Blackfish SQL 9

Sets the filter that controls the type of logging information to be logged to the status log file for the current connection.

SYNCH_MIRROR

SYNCH_M RROR(string mrrorNane)

Updates the mirror specified for mi r r or Narre with the most recent log files of its update mirror if necessary.

VALIDATE_PRIMARY_MIRROR

VALI DATE_PRI MARY_M RROR()

Validates a primary mirror so that write transactions can be performed against it.

VERIFY

VERI FY(string catal ogPattern, string schemaPattern, string tablePattern, |NT32 displayOptions,
I NT32 errorCount, out |INT32 errorsEncountered, out String output)

Verifies one or more tables in the database. cat al ogPat t er n specifies the LI KE catalog search pattern. Not used. Reserved
for future use. schenaPat t er n specifies the LI KE schema search patttern. nul | means means that the schema name should
not be used to narrow the search. t abl ePat t er n specifies the LI KE table search patttern. nul I means means that the table
name should not be used to narrow the search. di spl ayOpt i ons one or more of the St reanVeri fi er Di spl ay bit settings
ORed together that instruct the verifier to display progress messages as the stream is verified. err or Count specifies the
number of errors that can be ignored before an exception is thrown. er r or SEncount er ed is an output parameter that returns
the number of errors that were encountered. out put is an output parameter that can be used to return a string with diagnostic
output from the verifier.

VERIFY

VERI FY(string tabl ePattern, | NT32 di spl ayOpti ons, I NT32 error Count, out | NT32
errorsEncountered, out String output)

Verifies one or more tables in the database. t abl ePat t er n specifies the LI KE table search patttern. nul | means means that
the table name should not be used to narrow the search. di spl ayOpti ons one or more of the StreanVeri fi er Di spl ay bit
settings ORed together that instruct the verifier to display progress messages as the stream is verified. er r or Count specifies
the number of errors that can be ignored before an exception is thrown. error sEncount er ed is an output parameter that
returns the number of errors that were encountered. out put is an output parameter that can be used to return a string with
diagnostic output from the verifier.

DB_UTIL: Numeric, String, and Date/Time Functions

DB_UTI L is a set of SQL stored procedures for performing numeric, string and date/time operations on data stored in database
tables. These functions are implemented as Java UDFs in DB_UTI L.

Examples

The following statement computes the square root of the column COL1:

SELECT DB_UTI L. SQRT(COL1) FROM TABLEL;

The following statement computes some timestamps that are equal to the timestamp COL2 plus five hours.

SELECT DB_UTI L. TI MESTAMPADD(' SQL_TSI _HOUR , 5, COL2) FROM TABLE1;

Numeric Functions

68

9 Blackfish SQL

ACOS
ACOS(expr essi on)

Returns the arccosine in radians of a number.

ASIN
ASI N(expr essi on)

Returns the arcsine in radians of a number.

ATAN
ATAN(expr essi on)

Returns the arctangent in radians of a number.

ATAN2
ATAN2(y, X)

Returns the arctangent of the quotient of its two arguments. The angle returned is a numeric value in radians between Pl and -PI
and represents the counterclockwise angle between the positive X axis and the point (X, y). Note that the y value is passed in
first.

CEILING
CEl LI N& expr essi on)

Returns the smallest integer that is greater than or equal to the argument. The return is of the same data type as the input.

Cos
COS(expr essi on)

Returns the cosine of an angle.

COoT
COT(expr essi on)

Returns the cotangent of an angle.

DEGREES
DEGREES(expr essi on)

Converts an angle in radians to degrees.

EXP

EXP(expr essi on)

Returns the exponential value of expression.
FLOOR

FLOOR(expr essi on)

Returns the largest integer that is equal to or less than expression. The return is of the same data type as the input.

69

Blackfish SQL 9

LOG
LOG expr essi on)

Returns the natural logarithm of a number.

LOG10
LOGLO(expr essi on)

Returns the base 10 logarithm of a number.

MOD

MOD(expr essi onl, expression2)
Returns the remainder for expression divided by expression, where both expressions evaluate to integers of type SHORT, | NTs
or LONGs. The return is of the same data type as the input.
PI
PI()

Returns the constant PI.

POWER

PONER(expr essi onl, expression2)

Returns the value of expressionl raised to the power of expression2.

RADIANS
RADI ANS(expr essi on)

Converts an angle in degrees to radians.

RAND
RAND()

Generates a random floating point number.

RAND
RAND(expr essi on)

Generates a random floating point number using expression as a seed integer.

ROUND
ROUND(expr essi onl, expression2)

Rounds expressionl to expression2 number of decimal places.

SIGN
SI GN\(expr essi on)

Returns –l if the value of expression is negative, zero if expression is zero, and 1 if expression is positive. The return is of
the same data type as the input.

70

9 Blackfish SQL

SIN

SI N(expr essi on)

Returns the sine in radians of an angle.
SQRT

SQRT(expr essi on)

Returns the square root of a number.

TAN
TAN(expr essi on)

Returns the tangent of an angle given in radians.

TRUNCATE
TRUNCATE(expr essi onl, expressi on2)

Truncates the value of expressionl to expression2 decimal places.

String Functions

ASCII
ASCl | (string)

Returns an integer representing the ASCII code value of the leftmost character in st ri ng.

TO_CHAR
TO _CHAR(asci i _code)

Returns the char equivalent of the ASCII code argument.

DIFFERENCE
DI FFERENCE(stri ngl, string2)
Returns an integer in the range 0 through 4 indicating how many of the four digits returned by the function SOUNDEX for stringl
are the same as those returned for string2. A return value of 4 indicates that the SOUNDEX codes are identical.

INSERT_STRING
I NSERT_STRI NG(stringl, start, |ength, string2)

Returns a character string formed by deleting length characters from stringl beginning at start and then inserting string2 into
stringl at start.

LEFT_STRING
LEFT_STRI NG(string, count)

Returns the leftmost count characters from string.

REPEAT
REPEAT(string, count)

71

Blackfish SQL 9
A character string formed by repeating string string count times.
REPLACE
REPLACE (stringl, string2, string3)
Returns a character string formed by replacing all occurrences of string2 in string1 with string3.

RIGHT
RI GHT_STRI N&(stri ng, count)

Returns a string formed by taking the right-hand count characters from string.

SOUNDEX
SOUNDEX (string)

Returns a string that represents the sound of the words in string; the return is data source-dependent and could be a four-digit
SOUNDEX code, a phonetic representation of each word, or some other form.

SPACE
SPACE(count)

Returns a character string consisting of count spaces.

Date and Time Functions

DAYNAME
DAYNAME(dat e)

Returns the day of the week as a string from the given date.

DAYOFWEEK
DAYOFWEEK(dat €)

Returns the day of the week as as a number: 1=Sunday, 7=Saturday.

DAYOFYEAR
DAYOFYEAR(dat €)

Returns the day of the year as a number: 1=January 1.

MONTHNAME
MONTHNAVE(dat €)

Returns a string representing the month component of the given date.

QUARTER
QUARTER(dat e)

Returns the quarter as a number from the given date: 1=January through March, 2=April through June.

TIMESTAMPADD
TI MESTAMPADD(i nterval , count, timestanp)

72

9 Blackfish SQL

Returns a timestamp calculated by adding count number of intervals to timestamp.

interval can be any one of the following and must be enclosed in single quotes: SQL_TSI _FRAC_SECOND, SQL_TSI _SECOND,
SQL_TSI _MNUTE, SQL_TSI _HOUR SQL_TSI DAY, SQ._TSI WEEK, SQL_TSI MONTH, SQ._ TSI QUARTER, or
SQ._TSI _YEAR

ti mest anp can be any of the following SQL data types: DATE, Tl ME, TI MESTAMP.

TIMESTAMPDIFF
TI MESTAMPDI FF(i nterval , tinestanpl, tinestanp2)

Returns a number representing the number of intervals by which timestamp2 is greater than timestamp1.

interval can be any one of the following and must be enclosed in single quotes: SQL_TSI _FRAC_SECOND, SQL_TSI _SECOND,
SQ_TSI_MNUTE, SQ._TSI HOUR, SQ._TSI_ DAY, SQ. TSI WEEK, SQ. TSI MONTH, SQL TSI QUARTER, or
SQ._TSI _YEAR.

timestampl and timestamp2 can be any of the following SQL data types: DATE, Tl Mg, TI MESTAMP.

WEEK
\EEK(dat e)

Returns an integer from 1 to 53 representing the week of the year in date. 1=the first week of the year.
See Also

Preface (@ see page 1)

Overview (@ see page 3)

System Architecture (@ see page 7)

Establishing Connections (@@ see page 23)

Administering Blackfish SQL (@ see page 31)

Using Blackfish SQL Security (@ see page 35)

Using Stored Procedures and User Defined Functions (@ see page 41)

Using Triggers in Blackfish SQL Tables (@ see page 55)

SQL Reference (@ see page 75)

Optimizing Blackfish SQL Applications (& see page 125)

Deploying Blackfish SQL Database Applications (& see page 133)

Troubleshooting (& see page 137)

73

10 Blackfish SQL

SQL Reference

The SQL Reference includes the following topics:

Data Types
Literals Keywords
Identifiers List Syntax
Expressions Predicates
Functions Table Expressions
Statements Data Definition Statements
Transaction Control Statements Data Manipulation Statements
Security Statements Escape Sequences
Escape Functions ISQL

Data Types

In SQL, you can specify data types by using Blackfish SQL names or by using synonyms, which are more portable to other SQL
dialects. The following table lists the Blackfish SQL SQL data types and their Java equivalents. See Administering Blackfish SQL
for a description of each data type.

Strings are stored in UNICODE character format. However, if a string contains no high-bit characters. the high bytes are not
saved and the number of bytes is equal to the number of characters. In double-byte languages such as Japanese, the number of
bytes is double the number of characters.

NOTE: The word “inline” refers to the portion of the field data that is stored in the table row. When the maximum inline value is
surpassed, the remaining data is stored in a separate stream as a Blob.

SQL Data Types Supported by Blackfish SQL
The following table describes the SQL data types supported by Blackfish SQL:

Data Type SQL Equivalents 1
8 bit byte TINYINT BYTE
16 bit integer SMALLINT SHORT

75

32 bit integer

64 bit integer
Exact decimal number
64 bit floating point
32 bit floating point
Unicode string
Array of bytes
Serializable object
Boolean

Date

Time

Timestamp

Blackfish SQL

INT INTEGER

BIGINT LONG

DECIMAL (p,d) BIGDECIMAL(p,d)

FLOAT(p), p=24 through 52 FLOAT DOUBLE DOUBLE PRECISION
REAL FLOAT(p), p=1 through 23

VARCHAR(p,m) STRING(p,m)

VARBINARY (p,m) BINARY (p,m) INPUTSTREAM(p,m)
OBJECT(t,m)

BOOLEAN BIT

DATE

TIME

TIMESTAMP

10

1 In the SQL Equivalents column, bold indicates the more portable forms.

Examples

VARCHAR(30,10)

VARCHAR(30)

VARCHAR

DECIMAL(5,2)
DECIMAL(4)
DECIMAL
OBJECT

A string with a maximum size of 30 characters; the first 10 bytes are stored inline, the

remainder in a Blob (a separate stream for large objects)

A string with a maximum size of 30 characters, all stored inline because the precision is less

than default inline value of 64

A string with no length limit; the first 64 bytes are stored inline, any additional bytes are stored

in a Blob (a separate stream for large objects)

A BigDecimal with a precision of at least 5 and exactly 2 decimal places

A BigDecimal with a precision of at least 4 and exactly 0 decimal places

A BigDecimal with space for at least 72 significant digits and exactly O decimal places

A serializable Java object

OBJECT((java.math.Biginteger’) | A serializable Java object that must consist of java.math.BigInteger objects

Literals

76

The following table lists the types of scalar literal values supported:

Blackfish SQL
Data Type

SMALLINT INT '8
BIGINT

DECIMAL(p,d)

FLOAT(p)
VARCHAR(p,m)

BOOLEAN

Examples

2. 15.7 .9233

REAL DOUBLE 8EO 4E3 0.3E2 6.2E-72
'Hello' 'don"t do that'
VARBINARY (p,m) B'1011001'

Xfr7r
TRUE FALSE

Description

Integer data types

An exact numeric; can contain a decimal point

optionally signed integer

represented by two consecutive single quotes

X'FO8A' A binary or hexadecimal sequence enclosed in single quotes and preceded by

the letter B for binary or X for hexadecimal

An approximate numeric: a number followed by the letter E, followed by an

A string: must be enclosed in single quotes. The single quote character is

10 Blackfish SQL

DATE DATE '2002-06-17" Displays local time of origin; format is DATE 'yyyy-mm-dd'
TIME TIME '15:46:55' Displays local time of origin; format is TIME 'hh:mm:ss' in 24-hour format
TIMESTAMP TIMESTAMP Displays local time of display; format is TIMESTAMP 'yyyy-mm-dd hh:mm:ss'

'2001-12-31 13:15:45'

NOTE: There are no object literals in Blackfish SQL.

Keywords

The two lists below show all the current keywords for Blackfish SQL. The words in the first list are reserved and can be used as
SQL identifiers only when enclosed in double quotation marks. The keywords in the second list are not reserved and can be
used either with or without quotation marks.

Note that not all SQL-92 keywords are treated as a keyword by the Blackfish SQL SQL engine. For maximum portability,
don’t use identifiers that are treated as keywords in any SQL dialect.

Reserved Blackfish SQL Keywords

The words in this list are reserved keywords. They can be used as SQL identifiers only if they are enclosed in double gquotation
marks. When quoted in this fashion, they are case sensitive.

ABSOLUTE ACTION ADD CURRENT_ROLE INTO IS ISOLATION JOIN | RESTRICT REVOKE RIGHT
ADMIN ADMINISTRATOR ALL CURRENT_TIME KEY LEADING LEFT LEVEL SCHEMA SELECT SET
ALTER AND ANY AS ASC CURRENT_TIMESTAMP LIKE LOWER MAX MIN SMALLINT SOME SQRT
AUTHORIZATION CURRENT_USER DATE NATURAL NO NONE NOT STARTUP SUBSTRING
AUTOINCREMENT AVG | DECIMAL DEFAULT DELETE NULL NULLIF NUMERIC SUM TABLE THEN TIME
BETWEEN BIT BIT_LENGTH | DESC DISTINCT DOUBLE OCTET_LENGTH ON ONLY TIMESTAMP TO TRAILING
BOTH BY CALL CASCADE | DROP ELSE END ESCAPE OPTION OR ORDER | TRANSACTION TRIM
CASE CAST CHAR |EXCEPT EXECUTE EXISTS OUTER POSITION | TRUE UNION UNIQUE
CHAR_LENGTH CHARACTER EXTRACT FALSE FLOAT PRECISION PRIMARY UNKNOWN UPDATE
CHARACTER_LENGTH FOR FOREIGN FROM FULL PRIVILEGES PUBLIC REAL UPPER USER USING
CHECK COALESCE COLUMN GRANT GROUP HAVING IN REFERENCES RENAME | VALUES VARCHAR
CONSTRAINT COUNT INDEX INNER INSERT INT | RESOLVABLE VARYING VIEW WHEN
CREATE CROSS INTEGER INTERSECT WHERE WITH
CURRENT_DATE

Unreserved Blackfish SQL Keywords

The keywords in the following list are not reserved. They can be used as SQL identifiers either with or without quotation marks.
When used without quotation marks, they are case insensitive and are interpreted as all caps by the SQL parser. When enclosed
in double quotation marks, they are case sensitive.

ABS AUTOCOMMIT DAYOFMONTH DEC FN ' METHOD MINUTE | SHORT STRING T
BOOLEAN BIGDECIMAL GRANTED HOUR IFNULL MONTH NOW NOWAIT TIMESTAMPADD
BIGINT BINARY BYTE | INPUTSTREAM METHOD OBJECT OFF OJ TIMESTAMPDIFF
CASEINSENSITIVE CLASS LCASE LENGTH LOCATE PASSWORD READ TIMEZONEHOUR
COMMIT COMMITTED | LOCK LONG LONGINT | REPEATABLE ROLE | TIMEZONEMINUTE TINYINT
CONCAT CONVERT LONGVARBINARY ROLLBACK RTRIM | TS TYPE UCASE
CURDATE CURTIME D DAY LONGVARCHAR LTRIM SECOND SERIALIZABLE UNCOMMITTED VARBINARY
WORK WRITE YEAR
Identifiers

Unquoted SQL identifiers are case insensitive and are treated as uppercase. An identifier can be enclosed in double quotes, and
is then treated as case sensitive. An unquoted identifier must follow these rules:

77

Blackfish SQL 10

» The first character must be a letter recognized by the j ava. | ang. Char act er class.
» Each following character must be a letter, digit, underscore (), or dollar sign ($).
« Keywords can't be used as identifiers.

Quoted identifiers can contain any character string including spaces, symbols, and keywords. Examples

Valid identifiers:

Identifier Description

customer Treated as CUSTOMER
Help_me Treated as HELP_ME
"Hansen" Treated as Hansen

" Treated as a single space

Invalid identifiers:

Identifier Problem

_order Must start with a character
date date is a reserved keyword
borland.com Dots are not allowed

The forms in the following list are all the same identifier and are all treated as LAST_NAME:

+ |ast_nane

« Last_ Nane

« | AsT nAnE

e "LAST_NAME"
List Syntax

The following section contains element names ending with the words “list” or “commalist” that are not further defined. For
example:

<sel ect item comali st>
<col um constraint list>

These definitions are to be read as a lists with at least one element, comma separated in the case of a commalist:

<select itemconmalist> ::=
<select itenr [, <select itenr] *

<colum constraint list> ::=
<colum constraint> [<colum constraint> 1] *

Expressions

Expressions are used throughout the SQL language. They contain several infix operators and a few prefix operators. This is the
operator precedence from strongest to weakest:

e prefix + -
o infix* /
o infix+ - ||

e infix= <> < > <= >=
o prefix NOT
* infix AND

78

10

Blackfish SQL

+ infix OR

Syntax

<expression> ::=

<scal ar expression>
<condi tional expression>

<scal ar expression> ::=

<scal ar expression> {+ | - | * | [
<scal ar expressi on>
{+ | -} <scalar expression>

(<expression>)

(<table expression>)

<col um reference>

<user defined function reference>
<literal >

<aggregator function>

<function>

<par anet er narker >

<concat > }

For a list of functions supported in Blackfish SQL, see Functions.

<condi ti onal expression> ::=

<condi ti onal expression> OR <conditio
<condi ti onal expression> AND <conditi
NOT <condi ti onal expression>
<scal ar expressi on> <conpare oper at or
<scal ar expressi on> <conpare operator
(<t abl e expression>)
<scal ar expressi on> [NOT] BETWEEN <sc
<scal ar expressi on> [NOI] LIKE <scal a
[ESCAPE <scal ar expression>]
<scal ar expression> [NOT] IS { NULL
<scal ar expression> IN (<scal ar expr
<scal ar expression> IN (<table expre
EXI STS (<tabl e expression>)

<conpare operator> :

= | <> <| >] <= >=

<concat> ::= |]
<tabl e expression> ::=

<tabl e expression> UNTON [ALL] <tab
<t abl e expressi on> EXCEPT [ALL] <ta
<t abl e expressi on> | NTERSECT [ALL]
<j oi n expressi on>

<sel ect expression>

(<table expression>)

<aggregator function> ::=

<aggregator name> (<expression>)
COUNT (*)

<aggregator nane> ::=

<colum reference> ::= [<table qualifier>

<user

AVG
SUM
M N
MAX
COUNT

defined function reference> ::=

nal expression>
onal expression>

> <scal ar expressi on>
>{ ANY | SOVE | ALL }

al ar expression>
r expression>

TRUE | FALSE | UNKNOWN }
ession conmalist>)
ssion>)

| e expression>
bl e expressi on>
<t abl e expressi on>

] <col um nane>

<met hod name> ([<expression conmalist>])

<table qualifier> ::=

<tabl e name> | <correlation nanme>

<correlation nane> ::= <SQ identifier>

Examples

79

Blackfish SQL 10

The following statement selects the calculated value of Ambunt times Price from the Orders table for a to-be-provided
customer for orders in January:

SELECT Anpbunt * Price FROM Orders
WHERE Custld = ? AND EXTRACT(MONTH FROM Ordered) = 1;

The following statement gets data using a scalar subquery:

SELECT Nane, (SELECT JobName FROM Job WHERE | d=Per son. Jobl d)
FROM Per son;

Note that it is an error if the subquery returns more than one row.

Predicates

The following predicates, used in condition expressions, are supported.

BETWEEN

The BETWEEN predicate defines an inclusive range of values. The result of:
expr BETWEEN | ef t Expr AND ri ght Expr

is equivalent to the expression:

| ef t Expr <= expr AND expr <= right Expr

Syntax

<bet ween expression> ::=
<scal ar expression> [NOT] BETWEEN <scal ar expressi on>
AND <scal ar expressi on>

Example
The following statement selects all the orders where a customer orders between 3 and 7 items of the same kind:

SELECT * from Orders WHERE Anount BETWEEN 3 AND 7;

EXISTS

80

An EXI STS expression evaluates to either TRUE or FALSE depending on whether there are any elements in a result table.
Syntax
<exists predicate> ::= EXISTS (<table expression>)

Example

The following statement finds all diving equipment where the beginning of the name is the same as the beginning of a name of a
different piece of equipment.

SELECT * FROM zodi ac z
VWHERE EXI STS
(SELECT * FROM zodi ac z2 WHERE PCSI TION(z. nane IN z2.nane) = 1
AND z.nane < > z2.nane);

The | N clause indicates a list of values to be matched. Any one of the values in the list is considered a match for the SELECT
statement containing the | N clause.

Syntax

<in expression> ::=

10 Blackfish SQL

<scal ar expression> IN (<scal ar expression commalist>)
Example
The following statement returns all records where the name column matches either "leo" or "aquarius":
SELECT * FROM zodi ac WHERE narme IN ('leo', 'aquarius');
The | Nclause also has a variant where a subquery is used instead of an expression list.
Syntax

<in expression> ::= <scal ar expression>
IN (<table expression>)

Example 8
SELECT * FROM zodi ac WHERE nane | N (SELECT nane FROM peopl e);

The | S predicate tests expressions. Any expression can evaluate to the value NULL, but conditional expressions can evaluate to
one of the three values: TRUE, FALSE, or UNKNOWN. UNKNOWN is equivalent to NULL for conditional expressions. Note that for a
SELECT query with a WHERE clause, only rows that evaluate to TRUE are included. If the expression evaluates to FALSE or
UNKNOWN, the row isn't included. The output of the | S predicate can have two results: TRUE or FALSE.

Syntax

<is expression> ::=
<scal ar expression> IS [NOT] { NULL | TRUE | FALSE | UNKNOW }

Examples
TRUE | S TRUE evaluates to TRUE.
FALSE IS NULL evaluates to FALSE.

LIKE

The LI KE predicate provides SQL with simple string pattern matching. The search item, pattern, and escape character (if given)
must all evaluate to strings. The pattern can include the special wildcard characters _ and %where:

* Anunderscore (_) matches any single character
* A percent character (%) matches any sequence of n characters where n >=0

The escape character, if given, allows the two special wildcard characters to be included in the search pattern. The pattern
match is case-sensitive. Use the LONER or UPPER functions on the search item for a case-insensitive match. Syntax

<like expression> ::=
<search itenm> [NOT] LIKE <pattern> [ESCAPE <escape char>]

<search itenr ::= <scal ar expression>
<pattern> ::= <scal ar expression>
<escape char> ::= <scal ar expression>
Examples

1. The following expression evaluates to TRUE if | t emcontains the string "shoe" anywhere inside it:
Item LI KE ' %shoe%

2. The following expression evaluates to TRUE if | t emis exactly three characters long and starts with the letter "S":
IltemLIKE 'S '

81

Blackfish SQL 10

3. The following expression evaluates to TRUE if | t emends with the percent character. The * is defined to escape the two
special characters. If it precedes a special character, it is treated as a hormal character in the pattern:

Item Li ke ' 9% % ESCAPE '*'

Quantified Comparisons
An expression can be compared to some or all elements of a result table.
Syntax
<quantified conparison> ::=
<scal ar expressi on> <conpare oper at or >
{ ANY | SOVE | ALL } (<table expression>)
Example 9

SELECT * FROM zodi ac
VWHERE quantify <= ALL (SELECT quantify FROM zodiac);

Functions

Functions that act on strings work for strings of any length. Large strings are stored as Blobs, so you might want to define large
text fields as VARCHAR to enable searches.

ABSOLUTE
The ABSCLUTE function works on numeric expressions only, and yields the absolute value of the number passed.
Syntax
<absol ute function> ::= ABSOLUTE(<expression>)

Example 11
SELECT * FROM Scapes WHERE ABSOLUTE(Height - Wdth) < 50;

BIT_LENGTH
The Bl T_LENGTH function gives the length in bits of a STRI NG, | NPUTSTREAM or OBJECT value.
Syntax

<bit length function> ::=
Bl T_LENGTH(<expression>)

Example 12
SELECT * FROM TABLE1 WHERE BI T_LENGTH(binary_colum) > 8192;

CASE
The CASE function returns a conditional value.
Syntax

<case function> ::=
CASE [<expression>]
<when cl ause conmal i st>
ELSE <expression>
END

<when cl ause> :: =
WHEN <expressi on> THEN <expressi on>

82

10 Blackfish SQL

Examples

CASE
WHEN CCOL1 > 50 THEN ' Heavy |tem
WHEN COL1 > 25 THEN ' M ddl e wei ght Iteni
WHEN COL1 > 0O THEN 'Light Item
ELSE ' No wei ght specified'
END

CASE COL2
VWHEN 4 THEN ' A
VHEN 3 THEN ' B'
VHEN 2 THEN ' C
VWHEN 1 THEN ' D
ELSE 'Invalid G ade'
END

CAST
The CAST function casts one data type to another data type.
Syntax

<cast function> ::=
CAST (<col um nane> AS <data type>)

Example
The following example yields a row where a string column ID equals '001234'

SELECT * FROM enpl oyee WHERE CAST (id AS long) = 1234;

CHAR_LENGTH and CHARACTER_LENGTH
The SQL CHAR_LENGTH and CHARACTER_LENGTH functions yield the length of the given string.
Syntax

<char length function> ::=
CHAR_LENGTH (<scal ar expression>)
CHARACTER _LENGTH (<scal ar expression>)

COALESCE
The COALESCE function returns the first non-NULL value from the expression list.
Syntax

<coal esce function> ::=
COALESCE(expression commalist)

Example

The following statement yields a list of names. The name is the | ast _nane if this column is not NULL, otherwise it is the
first_nane.

SELECT COALESCE(| ast _nane, first_name) AS nane FROM tabl el;

83

Blackfish SQL 10

CURRENT_DATE, CURRENT_TIME, and CURRENT_TIMESTAMP

These SQL functions yield the current date and/or time. If one of these functions occurs more than once in a statement, it yields
the same result each time when the statement is executed.

Example 13
SELECT * from Returns where ReturnDate <= CURRENT_DATE;

CURRENT_ROLE
The CURRENT_ROLE function returns the current role, or NULL if no role has been set using the SET RCOLE statement.
Syntax
<current_role_function> ::= CURRENT_ROLE

Example

The following statement returns all notes from the CUSTOVERS table that were placed there by anyone using the MANAGER role.
The SOURCE column has a data type of VARCHAR.

SET ROLE MANAGER;

SELECT * FROM CUSTOMERS
VHERE SOQURCE = CURRENT_ROLE;

CURRENT_USER
The CURRENT _USER function returns the name of the current user.
Syntax
<current_user function> ::= CURRENT_USER

Example

The following statement returns returns all notes from the | NVO CES table that were placed there by the current user. The
SQOURCE column has a data type of VARCHAR.

SELECT * FROM | NVO CES
VHERE SCQURCE = CURRENT_USER,

EXTRACT
The SQL EXTRACT function extracts parts of date and time values. The expression can be a DATE, Tl Mg, or TI MESTAMP value.
Syntax

<extract function> ::=
EXTRACT (<extract field> FROM <scal ar expressi on>)

<extract field> ::=
YEAR

| MONTH

| DAY

| HOUR

| M NUTE

| SECOND

Examples

84

10 Blackfish SQL

EXTRACT(MONTH FROM DATE ' 1999- 05-17') vyields 5.
EXTRACT(HOUR FROM TI ME ' 18: 00: 00') yields 18.
EXTRACT(HOUR FROM DATE ' 1999-05-17') yields an
exception.

LOWER and UPPER
The SQL LOVER and UPPER functions convert the given string to the requested case, either all lowercase or all uppercase.
Syntax

<l ower function> ::=
LONER (<scal ar expression>)

<upper function> ::=
UPPER (<scal ar expression>)

NULLIF

The NULLI F function compares two expressions. It returns NULL if the expressions are equal. Otherwise, it returns the first
expression. It is logically equivalent to the following CASE expression: CASE WHEN exprl = expr2 THEN NULL ELSE
expr1l END.

Syntax

<NULLIF> :: =
(<scal ar expression>, <scal ar expression>)

Example

The following statement returns a row with the | ast _namne value for each row in TABLE1 where the first name is not the same
as the last name. If the first_name value is the same as the last_name value, it returns NULL.

SELECT NULLI F(1 ast_name, first_nanme) FROM TABLE1L;

OCTET_LENGTH
The OCTET_LENGTH function gives the length in bytes of a STRI NG, | NPUTSTREAM or OBJECT value.
Syntax
<octet | ength> ::= OCTET_LENGTH(<expressi on>)
Example 14
SELECT * FROM TABLE1 WHERE OCTET_LENGTH(bi nary_col umm) >1024;

POSITION

The SQL PGSI TI ON function returns the position of a string within another string. If any of the arguments evaluate to NULL, the
result is NULL.

Syntax

<position function> ::=
PCSI TION (<string> I N <anot her>)

Examples

POSI TION(' BCD' I N ' ABCDEFG) vyi el ds 2.

85

Blackfish SQL 10

POSI TION('* I N ' ABCDEFG) yields 1.
POSI TION(' TAG I N ' ABCDEFG) vyields 0.

SQRT
The SQRT function works on numeric expressions only, and yields the square root of the number passed.
Syntax
<sgrt function> ::= SQRT(<expression>)
Example 15
SELECT * FROM Scapes WHERE SQRT(HEI GHT*W DTH - ?) > ?;

SUBSTRING

The SQL SUBSTRI NG function extracts a substring from a given string. If any of the operands are NULL, the result is NULL. The
start position indicates the first character position of the substring, where 1 indicates the first character. If FOR is used, it
indicates the length of the resulting string.

Syntax

<substring function> ::=
SUBSTRI NG (<string expression>
FROM <start pos> [FOR <length>1])

Examples

SUBSTRI N ' ABCDEFG FROM 2 FOR 3)
yields 'BCD'.

SUBSTRI NG(' ABCDEFG FROM 4)

yields 'DEFG'.

SUBSTRI NG ' ABCDEFG FROM 10)

yields ".

SUBSTRI NG(' ABCDEFG FROM -6 FOR 3)
yields 'ABC'.

SUBSTRI N ' ABCEDFG FROM 2 FOR -1)

raises an exception.

TRIM

The SQL TRI M function removes leading and/or trailing padding characters from a given string. The <paddi ng> must be a
string of length 1, which is the character that is removed from the string.

« If <paddi ng> is omitted, space characters are removed.

» Ifthe <t ri m spec> is omitted, BOTH is assumed.

+ If both <paddi ng>and <t ri m spec> are omitted, the FROMkeyword must be omitted.
Syntax

<trimfunction> ::=
TRIM ([<trimspec>] [<padding>] [FROM <scalar expression>)

<trimspec> ::=

86

10 Blackfish SQL

LEADI NG
| TRAILING
| BOTH
<padding> ::=
<scal ar expression>
Examples
TRIM' Hello world ")
yields 'Hello world'.
TRI M LEADI NG ' 0' FROM ' 00000789. 75")

yields '789.75'.

USER
The USER function returns the name of the current user; this function is the same as CURRENT_USER.
Syntax
<user function> ::= USER

Example

The following statement returns all notes from the | NVO CES table that were placed there by the current user.

SELECT * FROM | NvO CES
WHERE SOURCE = USER;

Table Expressions

This section describes a number of conventions that are used in the following statements reference. Specifically:

» Select expressions
« Unions, intersections, and differences
« Join expressions

<tabl e expression> ::= <table expressi on> UN ON
[ALL] <tabl e expression> |
<t abl e expressi on> EXCEPT [ALL] <table expression> |

<t abl e expressi on> | NTERSECT [ALL] <tabl e expression> |
<join expression> | <select expression> | (<table
expression>)

Select Expressions

A select expression is the table expression most often used in a SELECT statement.

» Specify DI STI NCT to remove any duplicates in the result.

» Specify GROUP BY and HAVI NGin connection with aggregate functions to calculate summary values from the data in a table.
The WHERE clause (if present) limits the number of rows included in the summary. If an aggregate function is used without a
GROUP BY clause, a summary for the whole table is calculated. If a GROUP BY clause is present, a summary is computed for
each unique set of values for the columns listed in the GROUP BY. Then, if the HAVI NG clause is present, it filters out
complete groups given the conditional expression in the HAVI NG clause.

Summary queries have additional rules about where columns can appear in expressions:
» There can be no aggregate functions in the WHERE clause.
» Column references appearing outside an aggregator must be in the GROUP BY clause.

* You cannot nest aggregator functions.

87

88

Blackfish SQL

Syntax

<sel ect expression> ::=
SELECT [ALL | DI STINCT] <select item conmalist>
FROM <t abl e reference conmmali st >
[WHERE <conditional expression>]
[GROUP BY <colum reference commalist>]
[HAVI NG <condi tional expression>]
<select itemr ::=
<scal ar expression> [[AS] <output colum nane>]
| [<range variable> .] *
<table reference> ::=
<j oi n expression>
| <table nane> [<output table rename>]
| (<table expression>) [<output table rename>]

<out put table renanme> ::=
[AS] <range variable> [(<columm nane commalist>)]

<condi ti onal expression> ::=

<condi ti onal expression> OR <conditional expression>
<condi ti onal expression> AND <conditional expression>
NOT <condi ti onal expression>
<scal ar expressi on> <conpare operator> <scal ar expressi on>
<scal ar expressi on> <conpare operator> { ANY | SOMVE | ALL }

(<tabl e expression>)
| <scal ar expression> [NOT] BETWEEN <scal ar expressi on>
| <scal ar expression> [NOT] LIKE <scal ar expressi on>

[ESCAPE <scal ar expression>]

| <scalar expression> [NOT] IS { NULL | TRUE | FALSE | UNKNOWN }
| <scal ar expression> IN (<scal ar expression comralist>)
|
I

<scal ar expression> IN (<table expression>)
EXI STS (<tabl e expression>)

<colum reference> ::=
[<table qualifier> .] <colum nane>

<scal ar expression> ::=
<scal ar expression> {+ | - | * | / | <concat> } <scal ar expression>
| {+] -} <scalar expression>
| (<expression>)
| (<table expression>)
| <colum reference>
| <user defined function reference>
| <literal>
| <aggregator function>
| <function>
| <paraneter narker>

<tabl e name> ::=
[<schema name> .] <SQ identifier>

<schema nane> ::=
<SQL identifier>

<user defined function reference> ::=
<nmet hod name> ([<expression conmalist>])

Example 1
The following statement yields a single row with the total value of all orders.
SELECT SUM Anpunt * Price) FROM Orders;

Example 2

10

10

Blackfish SQL

The following statement returns a single row with the number of orders where Amount is non-null for the customer 123.

SELECT COUNT(Anmpunt) FROM Orders WHERE Custld = 123;

Example 3

The following statement returns a set of rows where the total value of all orders grouped by customers for the customers with an
ID number less than 200.

SELECT CustId,

SUM Amount * Price), COUNT(Anpbunt)

WHERE Custld < 200 GROUP BY Cust | d;

Example 4

The following example yields a set of big customers with the value of all their orders.

SELECT Custld,

SUM Amount * Price), COUNT(Anpunt)

GROUP BY Custld HAVI NG SUM Anount * Price) > 500000;

Example 5

The following statement is illegal because it has nested aggregators.

SELECT Custld,

Example 6

COUNT(23 + SUM Amount)) GROUP BY Cust | d;

The following statement is illegal because the Cust | d column is referenced in the select item list, but it is not present in the
GROUP BY reference list.

SELECT Cust | d,

SUM Amount * Price) GROUP BY Anpbunt;

For the syntax of table expressions see "Table expressions".

Unions, Intersections, and Differences

A table expression is an expression that evaluates to an unnamed table. Of the following operators, | NTERSECT binds the
strongest and UNI ON and EXCEPT are equal.

UNION ALL Creates the union of two tables including all duplicates.

UNION Creates the union of two tables. If a row occurs multiple times in both tables, the result has this row exactly
twice. Other rows in the result have no duplicates.

INTERSECTION | Creates the intersection of two tables including all duplicates.

ALL

INTERSECTION | Creates the intersection of two tables. If a row has duplicates in both tables, the result has this row exactly
twice. Other rows in the result has no duplicates.

EXCEPT ALL Creates a table that has all rows that occur only in the first table. If a row occurs m times in the first table and
n times in the second, the result holds that row the larger of zero and m-n times.

EXCEPT Creates a table that has all rows that occur only in the first table. If a row occurs m times in the first table and
n times in the second, the result holds the row exactly twice if m > 1 and n = 0. Other rows in the result has
no duplicates.

Example 1

SELECT * FROM T1 UNI ON SELECT * FROM T2 UNI ON SELECT * FROM T3;

is executed as:

(SELECT * FROM T1 UNI ON SELECT * FROM T2) UNI ON SELECT * FROM T3;

Example 2

SELECT * FROM T1 UNI ON SELECT * FROM T2 | NTERSECT SELECT * FROM T3;

89

Blackfish SQL 10

is executed as:

SELECT * FROM T1 UNI ON (SELECT * FROM T2 | NTERSECT SELECT * FROM T3);

Join Expressions

In Blackfish SQL, join expressions give access to a wide variety of join mechanisms. The two most commonly used, inner joins
and cross joins, can be expressed with a SELECT expression alone, but any kind of outer join must be expressed with a JO N
expression.

CROSS | A CROSS JOIN B produces the same result set as SELECT A.*, B.* FROM A,B
JOIN

INNER A INNER JOIN B ON A.X=B.X produces the same result as SELECT A.*, B.* FROM A,B WHERE A.X=B.X
JOIN

LEFT A LEFT OUTER JOIN B ON A.X=B.X produces the rows from the corresponding inner join plus the rows from A
OUTER | that didn't contribute, filling in the spaces corresponding to columns in B with NULLs.

RIGHT A RIGHT OUTER JOIN B ON A.X=B.X produces the rows from the corresponding inner join plus the rows from B
OUTER | that didn't contribute, filling in the spaces corresponding to columns in A with NULLSs.

FULL A FULL OUTER JOIN B ON A.X=B.X produces the rows from the corresponding inner join plus the rows from A
OUTER and B that didn't contribute, filling in the spaces corresponding to columns in B and A with NULLs.

UNION A UNION JO N B produces a result similar to the following: A LEFT OUTER JOIN B ON FALSE UNION ALL A
RIGHT OUTER JOIN B ON FALSE a table with columns for all columns in A and B, with all the rows from A having
NULL values for columns from B appended with all the rows from B having NULL values for columns from A.

The
following
are
mutually
exclusive:

ON ON is an expression that needs to be fulfilled for a JOIN expression.

USING USING(C1, C2, C3) is equivalent to the ON expression above A.C1=B.C1 AND A.C2=B.C2 AND A.C3=B.C3,
except that the resulting table has columns C1, C2, and C3 occurring once each as the first three columns.

NATURAL | NATURAL is the same as a USING clause with all the column names that appear in both tables A and B.

Syntax

<join expression> ::=
<tabl e reference> CRCSS JO N <tabl e reference>

| <table reference> [NATURAL] [INNER] JA N <tabl e reference>
[<join kind>]

| <table reference> [NATURAL] LEFT [QUTER] JO N <table reference>
[<join kind>]

| <table reference> [NATURAL] RIGHT [QUTER] JO N <tabl e reference>
[<join kind>]

| <table reference> [NATURAL] FULL [QUTER] JO N <table reference>
[<join kind>]

| <table reference> UNION JO N <tabl e reference>

<table reference> ::=
<j oi n expressi on>

| <table name> [<output table rename>]
<tabl e reference> CRCSS JO N <tabl e reference>

| <table reference> [NATURAL] [INNER] JO N <tabl e reference>
[<join kind>]

| <table reference> [NATURAL] LEFT [QUTER] JO N <tabl e reference>
[<join kind>]

| <table reference> [NATURAL] RIGHT [QUTER] JO N <tabl e reference>

90

10 Blackfish SQL

[<join kind>]

| <table reference> [NATURAL] FULL [QUTER] JO N <table reference>
[<join kind>]

| <table reference> UNION JO N <tabl e reference>

<table reference> ::=
<j oi n expressi on>
| <table name> [<output table rename>]| (<table expression>) [<output table renanme>]
<out put table renanme> ::=
[AS] <range variable> [(<columm nane commalist>)]

<range variable> ::=
<SQ. identifier>

<join kind> ::=
ON <condi ti onal expression>
| USING (<columm name conmalist>)

Examples

SELECT * FROM Ti nvoi ce FULL OUTER JO N Titem USI NG ("1 nvoi ceNunber");

SELECT * FROM Ti nvoice LEFT JO N Titem ON Ti nvoice. "I nvoi ceNunber"
= Titem "Il nvoi ceNunber";

SELECT * FROM Ti nvoi ce NATURAL RI GHT OUTER JO N Titem
SELECT * FROM Tinvoice INNER JON Titem USING ("I nvoi ceNunber");

SELECT * FROM Ti nvoice JON Titem ON Ti nvoi ce. "l nvoi ceNunber"
= Titem "Il nvoi ceNunber";

Statements
The Blackfish SQL JDBC driver supports a subset of the ANSI/ISO SQL-92 standard. In general, it provides:

» Data definition language for managing tables and indexes, schemas, views, and security elements.

« Data manipulation and selection with | NSERT, UPDATE, DELETE, and SELECT; but no cursors.

» Support for general table expressions including JO N, UNI ON, and | NTERSECT.

For Blackfish SQL for Java, cursor operations are supported through the JDBC version 3.0 ResultSet API.

Syntax

<SQ statenent> ::=
<data definition statenent>
| <transaction control statenent>
<dat a nani pul ati on statenent>
<data definition statenent> ::=
<create schenmn statenent>
<drop schenma statenent >
<create table statenent>
<alter table statenent>
<drop tabl e statenent>
<create vi ew statenent>
| <alter view statenent>
| <drop view statenent>
<create index statenent>
<drop index statenent>
<create nethod statenent>
<drop nethod statenent>
<create class statenent>
<drop cl ass statenent>
<create user statement>
<al ter user statenent>
<drop user statenent>
<create rol e statenent>

Blackfish SQL 10

| <drop rol e statenent>
| <grant statenent>

| <revoke statenent>

| <set role statenent>

<transaction control statenment> ::=

<commit statenent>
| <roll back statenent>
| <set autocommit statenent>
| <set transaction statenent>

<data nmani pul ation statenent> ::=

<sel ect statenent>
| <single row sel ect statenent>
| <del ete statenent>
| <insert statenent>
| <update statenent>
| <call statenent>
| <l ock statenent>

Data Definition Statements

CREATE SCHEMA

The CREATE SCHEMA statement creates a name space for tables, views, and methods. You can use it to create multiple objects
in one SQL statement.

You can create a table, view, or method in an existing schema in two ways:
e You can create it as part of a CREATE SCHEMA statement.

* You can specify a schema name as part of the object name when you issue a standalone CREATE TABLE, CREATE VI EW
or CREATE METHOD statement. If you use the latter method (using CREATE TABLE, for example), you must specify a
schema name that already exists.

To create an object in a new schema, specify a new schema name in the CREATE SCHEMA statement and then create the
table, view, or method as part of the CREATE SCHEMA statement.

The AUTHORI ZATIl ON clause names the owner of the schema. If you do not specify an owner, the owner is the user of the
SQL session. Only an administrator can specify a user name other than their own user name in the AUTHORI ZATI ON clause.

If you issue a standalone CREATE TABLE, CREATE VI EW or CREATE METHOD statement (meaning that it s not embedded in
a CREATE SCHEMA statement) and you do not specify a schema name as part of the CREATE statement, Blackfish SQL uses
the following algorithm to assign the new object to a schema:

« If you have explicitly created a schema that has the same name as your current user name, then you have created a
personal default schema. The table, view, or method belongs to your default schema.

« If you have not created a personal default schema, the table, view, or method belongs to the DEFAULT_SCHEMA schema.

You can create schemas with names other than your user name, but you cannot create schemas that have other users'
names unless you have administrative privileges.

All objects created in early versions of Blackfish SQL that did not support schemas belong to the DEFAULT_SCHENMA schema
when migrated to version 7 or later.

A semicolon marks the end of the CREATE SCHEMA statement. There cannot be any semicolons between the schema
elements.

All the statements in the schema element list are executed as one statement in the same transaction.

Default Schemas

Initially your default schema is DEFAULT_SCHEMA. When you create a schema with the same name as your current user name,
that schema becomes your default schema. You can create objects without specifying a schema name and those objects

92

10 Blackfish SQL

automatically belongs to your default schema. Assume, for example, that user PETER created a schema PETER. At a later time,
PETER creates a table without specifying a schema. The table belongs to the PETER schema.

In the following example, the created table would actually be named PETER. FOO.

[USER. PETER]

CREATE TABLE FOO (COL1 I NT, COL2 VARCHAR);

You are permitted to create schemas with names other than your user name, but they can never be your default schema. You
cannot create a schema that has another user's name unless you are an administrator.

Syntax

<create schema statement> ::=
CREATE SCHEMA [<schema nane>]
[AUTHORI ZATI ON <user nane>]
<schema el enment |ist>

<schema name> ::=
<SQ. identifier>

<schema el ement commalist> ::=
<create table statenent>
| <create view statenent>
| <create nethod statenent>
| <grant statenent>

See GRANT for more information about GRANT statements.

Example

The following statement creates the schema BORI S with a table T1 and a view V1. In this schema, the user BJORN is granted
SELECT privileges on view V1. After this statement executes, BORI Sis the default schema for user BORI S.

[USER. BORI S

CREATE SCHEMA BORI S
CREATE TABLE T1 (CLl INT, C2 VARCHAR)
CREATE VI EW V1 AS SELECT C2 FROM T1
GRANT SELECT ON V1 TO BJORN;

DROP SCHEMA
The DROP SCHENA statement deletes the specified schema. If the command is used without options, it is the same as specifying
the RESTRI CT option: the schema to be dropped must be empty. The command fails if the schema contains any objects.
« The RESTRI CT option causes the statement to fail if there are any objects in the schema. RESTRI CT is the default option.

» Used with the CASCADE option, DROP SCHENA deletes the named schema including all of its tables, views, foreign key
dependencies, and methods.

WARNING: The DROP SCHEMA command used with the CASCADE option is extremely powerful and should be used with caution.
When this command is issued, it drops the schema and all of its objects and dependencies without any chance to change your
mind. There is no undo.

TIP: If you want to drop a schema but wish to preserve some of its tables, use the ALTER TABLE command to assign the tables
to another schema. For example:

ALTER TABLE OLDSCHEMNA. JOBS
RENAME TO NEWSCHEMA. JOBS;

Syntax

<drop schenma statenent> ::=
DROP SCHEMA <schema nane> [CASCADE | RESTRICT]

93

Blackfish SQL 10

Examples

1. The following two statements are the same: they drop the schema BORI S; they both fail if the schema contains any objects.
DROP SCHEMA BORI S;

DROP SCHEMA BORI' S RESTRI CT;

2. The following statement drops the schema BORI S and all of its tables, views, and methods. It also drops any dependent views
and foreign keys.

DROP SCHEMA BORI' S CASCADE;

CREATE TABLE

The CREATE TABLE statement creates a Blackfish SQL table. Each column definition must include at least a column name and
data type. Optionally, you can specify a default value for each column, along with uniqueness constraints.

You can also optionally specify a foreign key and primary key. Blackfish SQL supports the use of one or more columns as a
primary key or foreign key.

Specifying Schemas
To create a table in a particular schema, specify the schema name as part of the table name:
CREATE TABLE SOVESCHENMA. MYTABLE(. . .);

If you do not specify a schema name, the table is created in your default schema. See CREATE SCHEMA for more information
about schemas.

Tracking Data Changes for DataExpress

Note: This feature is supported for Blackfish SQL for Java, only.

If you specify RESOLVABLE as part of the table definition, Blackfish SQL keeps track of changes made to the data. The recorded
changes are available to the DataExpress application, but not to SQL. The default is NOT RESOLVABLE.

Overriding Consistency Checks

The NO CHECK option creates the foreign key without checking the consistency at creation time. Use this option with caution.

Using Autolncrement Columns with SQL

To create or alter a column to have the Autoincrement property using SQL, add the AUTO NCREMENT keyword to your <t abl e
el enent > definition.

The following statement creates table T1 with an integer autoincrement column called C1:

CREATE TABLE T1 (Cl1 I NT AUTO NCREMENT, C2 DATE, C3 CHAR(32));

To obtain the Autoincrement value of a newly inserted row using the JDS JDBC driver (JVM version 1.3 or earlier), call the
JdsSt at enent . get Gener at edKeys method. This method is also available in the statement interface of JDBC 3 in JVM 1.4.)

Specifying Column Position

In the columns definition, use the PCSI TI ON option to force a column to be in a particular position in the table (second column,
for example). The following code snippet forces column COLD to be the second column:

CREATE TABLE(COLA | NT, COLB STRING COLC INT, COLD STRING PCSI TION 2);
Syntax

<create table statenent> ::=
CREATE TABLE <tabl e name> (<table el ement commalist>)

94

10

Blackfish SQL

<tabl e nane> ::=
[<schema nanme> .] <SQ identifier>

<schema nane> ::=
<SQ identifier>
<table element> ::=
<col um definition>
| <primary key>
| <uni que key>
| <foreign key>
| [NOT] RESOLVABLE
<columm definition> ::=
<col um nane> <data type>
[DEFAULT <default val ue>]

[CONSTRAI NT <constraint name>] PRI MARY KEY]
[CONSTRAI NT <constraint name>] UN QUE]
[[CONSTRAINT <constraint name>] <references definition>]
<col um name> ::=
<SQ. identifier>

[
% PCSI TION <integer literal >]
[
[

<default value> ::=
<literal >
| <current date function>
<current date function> ::=
CURRENT_DATE
| CURRENT_TI ME
| CURRENT_TI MESTAMP
<primary key> ::=
[CONSTRAI NT <constraint name>] PRI MARY KEY <col umm nane conmal i st>)

<uni que key> ::=
[CONSTRAI NT <constraint name>] UNIQUE (<col um nane commal i st >
)

<foreign key> ::=
[CONSTRAI NT <constraint nane>] FOREIGN KEY (<columm nane comalist>)
<references definition>

<references definition> ::=
REFERENCES <t abl e name> [(<colum nanme conmalist>)]
[ON DELETE <action>]
[ON UPDATE <action>]
[NO CHECK]

<action> ::=
NO ACTI ON
| CASCADE
| SET DEFAULT
| SET NULL

<constraint name> ::=
<SQ identifier>

Example 1

The following statement creates a table with four columns. The Cust | d column is the primary key and the Or der Dat e column
has the current time as the default value.

CREATE TABLE Orders (Custld I NTEGER PRI MARY KEY, Item VARCHAR(30),
Amount | NT, OrderDate DATE DEFAULT CURRENT_DATE);

Example 2

The following statement creates a table that uses two columns for the primary key constraint:

95

Blackfish SQL

CREATE TABLE T1 (Cl INT, C2 STRING C3 STRING PRI MARY KEY (Cl1, C2));

Example 3
The following statement creates a table T1 in the BORI S schema:

CREATE TABLE BORIS. T1 (C1 INT, C STRING C3 STRING;

ALTER TABLE
The ALTER TABLE statement performs the following operations:

« Adds or removes columns in a Blackfish SQL table
« Sets or drops column defaults and NULLability
« Changes column data types

» Adds or drops primary key, unique key, and foreign key column constraints and table constraints; changes the referenced
table and type of action for these constraints

* Renames columns

« Renames tables; this also allows you to move tables from one schema to another
« Adds or drops the RESOLVABLE table property

» Repositions columns within the table

Syntax

<alter table statement> ::=
ALTER TABLE <t abl e nanme> <change definition commalist>

<table nane> ::= [<schema nane> .]<SQ identifier>
<change definition> ::=
<add col um el erment >

| <drop columm el enent >

| <alter colum el ement>

| <add constraint>

| <drop constraint>

| [RENAME] TO <t abl e nane>

| [NOT] RESCOLVABLE

<add columm elenment> ::= ADD [COLUMN] <col um definition>

<colum definition> ::=
<col um nane> <data type> [DEFAULT <default value>]
[[NOT] NULL]
[AUTO NCREMENT]
[POSITION <integer literal>]
[[CONSTRAINT <constraint nanme>] PRI MARY KEY]
[[CONSTRAINT <constraint name>] UN QUE]
[[CONSTRAINT <constraint name>] <references definition>]

<drop columm el enent> ::= DROP [COLUM\] <col umm name>
<alter columm element> ::=
ALTER [COLUM\] <col utm name> [TYPE] <data type>
| ALTER [COLUMN] <col umm nanme> SET DEFAULT <def aul t-val ue>
| ALTER [COLUMN] <col umm nanme> DROP DEFAULT
| ALTER [COLUMN] <col umm nane> [NOT] NULL
| ALTER [COLUMN] <col umm nane> [RENAME] TO <col utm nane>
| ALTER [COLUMN] <col umm name> [PCSITION] <integer literal >
| ALTER [COLUMN] <col umm nanme> AUTO NCREMENT
| ALTER [COLUMN] <col umm nane> DROP AUTO NCREMENT

<add constraint> ::= ADD <base table constraint>

96

10 Blackfish SQL
<base table constraint> ::=
<primary key> | <unique key> | <foreign key>
<drop constraint> ::= DROP CONSTRAI NT <constrai nt nane>

<primary key> ::=
[CONSTRAI NT <constraint nanme>]
PRI MARY KEY <col unmm name commal i st >)

<uni que key> ::=
[CONSTRAI NT <constraint name>]
UNI QUE (<col umm name conmal i st>)

<foreign key> ::=
[CONSTRAI NT <constraint name>]
FOREI GN KEY (<col um name commal i st>)
<references definition>

<references definition> ::=
REFERENCES <t abl e nane> [(<columm nane commalist>)]
[ON DELETE <action>]
[ON UPDATE <action>]
[NO CHECK]

<action> ::=

| SET DEFAULT
| SET NULL

<constraint name> ::= <SQ identifier>

In ALTER [COLUMN] , the optional COLUWN keyword is included for SQL compatibility. It has no effect.

Example

The following example adds a column named Shi pDat e to the Or der s table and drops the Anount column from the table.

ALTER TABLE Orders
ADD Shi pDat e DATE,
DROP Anpunt ;

The following example moves the Jobs table from the O dSchena schema to the NewSchenma schema.

ALTER TABLE 4 dSchena. Jobs
RENAME TO NewSchena. Jobs;

DROP TABLE
The DROP TABLE statement deletes a table and its indexes from a Blackfish SQL database.
« The RESTRI CT option guarantees that the statement will fail if there are foreign key or view dependencies on the table.
« The CASCADE option causes all dependent views and foreign keys to be dropped when the table is dropped.

« Specifying neither RESTRI CT nor CASCADE drops the table and any foreign keys that reference it. The statement fails if there
are dependent views.

Syntax

<drop table statement> ::=
DROP TABLE [<schema name> .]<table nanme> [CASCADE| RESTRI CT]

<schema name> ::= <SQ identifier>

Examples

97

Blackfish SQL 10

1. The following statement drops the Or der s table only if there are no dependent views. If there are dependent foreign keys, the
statement succeeds and the foreign keys are dropped.

DROP TABLE Orders;

2. The following statement drops the Or der s table only if there are no dependent views or foreign keys.
DROP TABLE Orders RESTRICT;

3. The following statement drops the Or der s table. All dependent views and dependent foreign keys are also dropped.
DROP TABLE Orders CASCADE;

CREATE VIEW

The CREATE VI EWstatement creates a derived table by selecting specified columns from existing tables. Views provide a way
of accessing a consistent subcollection of the data stored in one or more tables. When the data in the underlying tables changes,
the view reflects this change.

Views look just like ordinary database tables, but they are not physically stored in the database. The database stores only the
view definition, and uses this definition to filter the data when a query referencing the view occurs.

When you create a view, you can specify names for the columns in the view using the optional <column name commalist>
portion of the syntax. If you do not specify column names, the names of the table columns from which the view columns are
derived are used. If you do specify column names, you must specify exactly the number of columns that will be returned from the
SELECT query.

The W TH CHECK OPTI ON clause causes a runtime check to be performed to ensure that an inserted or updated row will not be
filtered out by the WHERE clause of the view definition.

Views are updatable only under limited conditions. If you want to execute | NSERT, UPDATE, or DELETE on a view, it must meet
all of the following conditions:

« Itis derived from a single table.
» None of the columns are calculated.
» The SELECT clause that defines the view does not contain the DI STI NCT keyword.
» The SELECT expression that defines the view does not contain any of the following:
e Subqueries
* A HAVI NGclause
< A CROUP BY clause
* An ORDER BY clause
* Aggregate functions
* methods
Syntax

<create view statenment> ::=
CREATE VI EW <vi ew nane> [(<colum nane conmmalist>)]
AS <sel ect expression> [WTH CHECK OPTI ON]

<vi ew name> ::=
[<schema name> .] <SQ. identifier>

Example
The following statement creates a view V1 from table T1. The columns in the view are named C1 and C2.

CREATE VI EW V1(C1, C2)
AS SELECT (C8+C9, C6 FROM T1 WHERE C8 < C9;

98

10 Blackfish SQL

ALTER VIEW

The ALTER VI EWstatement modifies a view without losing dependent views and existing GRANTSs. This statement can be used
to change the name of a view, the columns that comprise the view, and whether the view has the WTH CHECK OPTI ON
constraint.

Note that after ALTER VI EWexecutes, it is possible that there are dependent views that are no longer valid.

Syntax

<alter view statement> ::=
ALTER VI EW <vi ew nanme> [(<col umm nane conmmalist>)]

AS <sel ect expression> [WTH CHECK OPTI ON]

Example

The following statements show how the ALTER VI EWstatement can be used to validate an invalid view. The first two statements
create a table and then create a view based on that table. The third statement, SELECT, succeeds.

CREATE TABLE T1 (Cl I NT, C2 VARCHAR);
CREATE VIEW V1 AS SELECT Cl1, C2 FROM T1;
SELECT * FROM V1;

The following statement changes a column name in the table.
ALTER TABLE T1 ALTER COLUWN Cl1 RENAME TO I D

The next SELECT statement therefore fails because there is no longer a C1 column in the table T1, which is accessed by view
V1.

SELECT * FROM V1,
The following ALTER VI EWstatement changes the definition of the view, so that the next SELECT statement succeeds.

ALTER VIEWV1 (Cl1, C2) AS SELECT ID, C2 FROM T1;
SELECT * FROM V1;

DROP VIEW
The DROP VI EWstatement drops the named view. It fails if there are dependencies on the view.
« The RESTRI CT option is the same as specifying no options: the statement fails if there are dependencies on the view.
* The CASCADE option drops the view and any dependent views.
Syntax

<drop view statenment> ::=
DROP VI EW <vi ew name> [CASCADE | RESTRICT]

Example
The following code creates a table and two views:

CREATE TABLE T1 (Cl INT, C2 VARCHAR);
CREATE VIEW V1 AS SELECT Cl, C2 FROM T1;
CREATE VIEW V2 AS SELECT C1, C2 FROM V1,

The following statement fails because view V1 has a dependent view (V2).
DROP VI EW V1 RESTRI CT;
The following statement succeeds and both V1 and V2 are dropped.

DROP VI EW V1 CASCADE;

99

Blackfish SQL 10

CREATE INDEX

The CREATE | NDEX statement creates an index for a Blackfish SQL table. Each column can be ordered in ascending or
descending order. The default value is ascending order.

Syntax

<create index statement> ::=

CREATE [UNI QUE] [CASEI NSENSI Tl VE] | NDEX <i ndex name>
ON <t abl e name> (<index el enent conmalist>)
<tabl e nane> ::=
[<schema nane> .]<SQ. identifier>

<i ndex nane> ::=
<SQ ldentifier>

<i ndex elenent> ::=
<col um nane> [DESC| ASC]

Example
The following statement generates a non-unigue, case-sensitive, ascending index on the | t emcolumn of the Or der s table:
CREATE | NDEX Orderlndex ON Orders (ltem ASC);

DROP INDEX
The DROP | NDEX statement deletes an index from a Blackfish SQL table.
Syntax

<drop index statement> ::=
DROP | NDEX <i ndex nane> ON <t abl e name>

Example
The following statement deletes the Orderindex index from the Orders table:

DROP | NDEX Orderl ndex ON Orders;

CREATE METHOD

The CREATE METHOD statement makes a stored procedure or a UDF implemented in Java or a .NET language (e.g., Delphi, C#,
or VB.NET) available for use in Blackfish SQL. The class files for the code must be added to the classpath of the Blackfish SQL
server process before use. See Stored Procedures and UDFs for details about how to implement stored procedures and UDFs
for Blackfish SQL.

To create a method in a particular schema, specify the schema name as part of the table name:
CREATE METHOD SOVESCHEMA. MYMETHOD AS .
If you do not specify a schema name, the method is assigned to a schema as follows:

« If you have created a personal default schema (a schema that has the same name as your user name), the method is created
in that schema.

» If you have have not created a personal default schema, the method is created in the DEFAULT_SCHEMA schema.

See CREATE SCHEMA for more information about schemas. The AUTHORI ZATI ON clause causes the called stored procedure
to be run as if the username in the AUTHORI ZATI ON clause were the actual user. If this clause is omitted, the current_user is

100

10

Blackfish SQL

used as the actual user during method calls. This feature allows the current user controlled access to tables and views that
would not otherwise be accessible. Syntax

<create nethod statenent> ::=
CREATE METHOD <net hod name> [AUTHORI ZATI ON <user namne>]
AS <net hod definition>

<met hod name> ::=
[<schema name> .] <SQ identifier>

<schema name> ::= <SQ identifier>
<nmethod definition> ::= <string literal >
Example 19

CREATE METHOD ABS AS ' Mat hd ass. abs';

DROP METHOD

Ex

The DROP METHOD statement drops a stored procedure or a UDF, making it unavailable for use in Blackfish SQL SQL.
Syntax

<drop method statenent> ::=
DROP METHOD <net hod_nane>

ample 20
DROP METHOD ABS;

CREATE CLASS

The CREATE CLASS statement makes all public static methods of a class available to Blackfish SQL SQL as stored procedures
or UDFs. You must ensure that the class files for the code are on the classpath of the Blackfish SQL server process before use.
See the Stored Procedures and UDFs chapter for details.

The AUTHORI ZATI ON clause causes the called stored procedure to be run as if the username in the AUTHORI ZATI ON clause
were the actual user. If this clause is omitted, the current_user is used as the actual user during method calls. This feature allows
the current user controlled access to tables and views that would not otherwise be accessible.

Syntax

<create class statenent> ::=
CREATE CLASS <cl ass name> [AUTHORI ZATI ON <user nane>]
AS <cl ass definition>

<cl ass nane> ::=
[<schema nanme> .] <SQ identifier>

<schema nanme> ::= <SQ identifier>
<class definition> ::= <string literal >
Examples

CREATE CLASS MATH AS 'nscorlib:: System Math';

After the above statement executes, all public static methods in Syst em Mat h can be called from SQL. Note that the method
names are case sensitive.

Usage

The following statement calls the Abs() method in System.Math:

101

Blackfish SQL 10

SELECT * FROM CUSTOVER WHERE MATH. " Abs" (AGE - 50) < 5;

DROP CLASS
The DROP CLASS statement drops a stored class, making it unavailable for use in Blackfish SQL.
Syntax

<drop class statement> ::=
DROP CLASS <net hod_nane>

Example 21
DROP CLASS MATH;

CREATE TRIGGER

The CREATE TRI GCER statement creates a row level trigger for a table. You must ensure that the classes can be loaded by the
Blackfish SQL server process. See Triggers for Blackfish SQL for details on implementing trigger methods and ensuring that the
method classes can be loaded.

Syntax
create trigger statenment> ::= CREATE TRI GGER <trigger nanme>
<trigger action tinme> <trigger action nane>
ON <t abl e nane> AS <trigger spec>
<trigger name> ::= <SQ. identifier>
<tabl enanme> ::= <SQ identifier>
<triggeraction time> ::= <BEFORE | AFTER>
<trigger action nanme> ::= <INSERT | UPDATE | DELETE >

Bl ackfish SQ. for Java:

<trigger spec> ::= "[<package>.]<cl ass-nane>. <nmet hod- nane>"
Bl ackfish SQ. for w ndows:
<trigger spec> ::="<assenbly-name>::[<nane-space>.] <cl ass- name>. <nmet hod- nanme>"

Examples
Blackfish SQL for Windows:

CREATE
TRI GGER VALI DATE_CUSTOMVER BEFORE | NSERT ON CUSTOMVER AS

O der EntryAssenbl y: : Order Entry. Cust orrer s. Val i dat eCust omner
Blackfish SQL for Java:
CREATE TRI GGER VAL| DATE_CUSTOVER BEFORE | NSERT ON CUSTOVER AS

Order Entry. Cust oners. val i dat eCust oner

102

10 Blackfish SQL

DROP TRIGGER
The DROP TRI GGER statement drops a trigger, making it unavailable for use in Blackfish SQL.
Syntax
<drop trigger statenent> ::= DROP TRI GGER

<trigger
name>

ON <t abl e nanme>

<trigger name> ::= <SQ identifier>

<table nanme> ::= <SQL identifie
Example 22
DROP TRI GGER VAL| DATE_CUSTOMER on CUSTOVER

Transaction Control Statements

COMMIT
The COWM T statement commits the current transaction. It has an effect only if AUTOCOWMM T is turned off.
Syntax

<commt statement> ::=
COW T [WORK]

ROLLBACK

The ROLLBACK statement rolls back the current transaction. This statement does not have any effect when AUTOCOMM T is
turned on.

Syntax

<rol | back statenment> ::=
ROLLBACK [WWORK]

SET AUTOCOMMIT
The SET AUTOCOWM T statement changes the autocommit mode. Autocommit is initially ONwhen a JDBC connection is created.
The autocommit mode is also controllable using the JDBC Connect i on instance.
Syntax

<set autocommit statement> ::=
SET AUTOCOM T { ON | OFF };

SET TRANSACTION

The SET TRANSACTI ON statement sets the properties for the following transaction. You can use it to specify the isolation level
and whether the transaction is read-write or read-only. See System Architecture for a discussion of Blackfish SQL transaction

103

Blackfish SQL 10

management.

This command must be issued when there is no open transaction. It affects only the next transaction and does not itself start a
transaction.

To understand isolation levels, you should understand the following terms:

« Adirty read occurs when a row changed by one transaction is read by another transaction before any changes in that row
have been committed.

« Anon-repeatable read occurs when one transaction reads a row, a second transaction alters the row, and the first
transaction rereads the row, getting different values the second time.

« A phantom read occurs when one transaction reads all rows that satisfy a WHERE condition, a second transaction inserts a
row that satisfies that WHERE condition, and the first transaction rereads for the same condition, retrieving the additional
"phantom"” row in the second read.

Blackfish SQL offers the following transaction isolation levels: TRANSACTION_READ_UNCOMMITTED permits dirty reads,

non-repeatable reads, and phantom reads. If any of the changes are rolled back, the row retrieved by the second transaction is

invalid. This isolation level does not acquire row locks for read operations. It also ignores exclusive row locks held by other
connections that have inserted or updated a row.

TRANSACTION_READ_COMMITTED prevents dirty reads; non-repeatable reads and phantom reads are permitted. This level
only prohibits a transaction from reading a row with uncommitted changes in it. This level does not acquire row locks for read
operations, but blocks when reading a row that has an exclusive lock held by another transaction.

TRANSACTION_REPEATABLE_READ prevents dirty reads and non-repeatable reads but prevents phantom reads. It acquires
shared row locks for read operations. This level provides protection for transactionally consistent data access without the
reduced concurrency of TRANSACTI ON_SERI ALI ZABLE, but results in increased locking overhead.

TRANSACTION_SERIALIZABLE provides complete serializability of transactions at the risk of reduced concurrency and
increased potential for deadlocks.

Syntax

<set transaction statement> ::=
SET TRANSACTI ON <transaction option conmal i st>

<transaction option> ::=
READ ONLY
| READ WRI TE
| 1SOLATI ON LEVEL <isolation |evel >

<isolation level> ::=
READ UNCOWM TTED
| READ COWM TTED
REPEATABLE READ
| SERI ALI ZABLE

Example

In the following example the select from T1 will be a dirty read, meaning that the data cannot yet be committed by another user.
After the second COVM T, the isolation level returns to whatever was specified for the session.

COW T,

SET TRANSACTI ON | SOLATI ON LEVEL READ UNCOW TTED;

SELECT * FROM T1;
COW T,

Data Manipulation Statements

104

10 Blackfish SQL

SELECT

A SELECT statement retrieves data from one or more tables. The optional keyword DI STI NCT eliminates duplicate rows from the
result set. The keyword ALL, which is the default, returns all rows including duplicates. The data can optionally be sorted using
ORDER BY. The retrieved rows can optionally be locked for an upcoming UPDATE by specifying FOR UPDATE.

Syntax

<sel ect statenent> ::=
<tabl e expression> [ORDER BY <order itemlist>]
[FOR UPDATE| FOR READ ONLY]

<tabl e expression> ::=
<t abl e expressi on> UNI ON [ALL] <tabl e expression>
| <table expression> EXCEPT [ALL] <table expression>
| <tabl e expression> | NTERSECT [ALL] <table expression>
| <join expression>
| <sel ect expression>
| (<table expression>)

<order itemr ::= <order part> [ASC| DESC]

<order part> ::=
<integer literal> | <colum name> | <expression>

<sel ect expression> ::=
SELECT [ALL| DI STINCT] <select item commalist>
FROM <t abl e reference conmali st >
[WHERE <conditional expression>]
[GROUP BY <colum reference comualist>]
[HAVI NG <condi tional expression>]

Examples

The following statement orders the output by the first column in descending order.
SELECT |tem FROM Orders ORDER BY 1 DESC,

The next statement orders by the calculated column CALC:

SELECT Custld, Anount*Price+500.00
AS CALC FROM Orders
ORDER BY CALC,

The next statement orders the output by the given expression, Anmount *Pri ce:

SELECT Custld, Anpunt
FROM Or der s
CORDER BY Anmount *Pri ce;

SELECT INTO

A SELECT | NTO statement is a SELECT statement that evaluates into exactly one row, whose values are retrieved in output
parameters. It is an error if the SELECT evaluates into more than one row or to the empty set.

Syntax

<single row sel ect statenent> ::=
SELECT [ALL| DI STINCT] <select item conmalist>
I NTO <par aneter commal i st>
FROM <t abl e reference conmali st >
VWHERE <condi tional expression>]
[GROUP BY <colum reference comualist>]
[HAVI NG <condi tional expression>]

105

Blackfish SQL 10

Example

In the following statement, the first two parameter markers indicate output parameters from which the result of the query can be
retrieved:
SELECT Custld, Anount

INTO ?, ?

FROM Or ders

WHERE Cust | d=? ;

INSERT

The | NSERT statement inserts rows into a table in a Blackfish SQL database. The | NSERT statement lists columns and their
associated values. Columns that aren't listed in the statement are set to their default values.

Syntax

<insert statement> ::=
[SELECT AUTO NCREMENT FROM]
I NSERT | NTO <t abl e name> [(<col um name commal ist>)]
[<insert table expression> DEFAULT VALUES]

<tabl e nane> ::=
[<schema nanme> .]<SQ identifier>

<insert table expression> ::=
<sel ect expression> | VALUES (<expression conmalist>)

Example 1

The following statement inserts one row each time it is executed. It inserts one row each time it is executed. The columns not
mentioned are set to their default values. If a column doesn't have a default value, it is set to NULL.

I NSERT I NTO Orders (Custld, Item) VALUES (?,7?);
Example 2

The following statement finds all the orders from the customer with Cust | d of 123 and inserts the | t emof these orders into the
ResTabl e table.

| NSERT | NTO ResTabl e
SELECT |tem FROM Orders
VWHERE Custld = 123;

Example 3

The following statement inserts one row each time it is executed. In this case, the Cust | d column of the Or der s table is not
specified. It is assumed that the Cust | d is an AUTO NCREMENT column, for which the SQL engine automatically generates an
incremented value. In this example, SELECT AUTO NCREMENT FROMis specified, causing the generated value to be returned
as a result set. If the Or der s table does not have an AUTO NCREMENT column, and the result set will be the | NTERNALROW
values for the inserted rows.

SELECT AUTO NCREMENT FROM | NSERT | NTO Orders (Item) VALUES (?)

UPDATE

The UPDATE statement is used to modify existing data. The columns to be changed are listed explicitly. All the rows for which the
VWHERE clause evaluates to TRUE are changed. If no WHERE clause is specified, all rows in the table are changed.

Syntax

<update statenent> ::=

106

10 Blackfish SQL

UPDATE <t abl e nane>
SET <updat e assi gnnent conmal i st >
[WHERE <conditional expression>]

<tabl e name> ::=
[<schema name> .] <SQ identifier>

<updat e assignment> ::=
<col um reference> = <update expression>

<updat e expression> ::=
<scal ar expression>
| DEFAULT
| NULL

Example 1

The following statement changes all orders from customer 123 to orders from customer 500:
UPDATE Orders SET Custld = 500 WHERE Custld = 123;

Example 2

The following statement increases the amount of all orders in the table by 1:

UPDATE Orders SET Amount = Anount + 1;

Example 3

The following statement reprices all disposable underwater cameras to $7.25:

UPDATE Orders SET Price = 7.25
VWHERE Price > 7.25 AND |Item = ' UNCanmar as' ;

DELETE

A DELETE statement deletes rows from a table in a Blackfish SQL database. If no WHERE clause is specified, all the rows are
deleted. Otherwise only the rows that match the WHERE expression are deleted.

Syntax

<del ete statenment> ::=
DELETE FROM <t abl e nanme>
[WHERE <conditional expression>]
<table nane> ::=
[<schema name> .] <SQ
identifier>

Example
The following statement deletes all orders for shorts from the Or der s table.

DELETE FROM Orders WHERE Item = ' Shorts';

CALL
A CALL statement calls a stored procedure.
Syntax

<call statement> ::=
[2 =] CALL <nethod nanme> (<expression commalist>)

Example 1

107

Blackfish SQL 10

The parameter marker indicates an output parameter position from which the result of the stored procedure can be retrieved.
?=CALL ABS(-765);
Example 2

The method implementing | ncr easeSal ari es updates the sal ari es table with an increase of some percentage for all
employees. A connection object will be passed implicitly to the method. An updat eCount of all the rows affected by
I ncreaseSal ari es will be returned from St at enent . execut eUpdat e.

CALL I ncreaseSal ari es(10);

LOCK TABLE
The LOCK TABLE statement explicitly locks a table. The lock ceases to exist when the transaction is committed or rolled back.
Syntax

<l ock statenent> ::=
"LOCK <tabl e nane conmul i st>
<tabl e nanme> :: =
[<schema name> .] <SQ identifier>

Example
The following statement locks the Or der s and Li nel t ens tables.
LOCK Orders, Lineltens;

Security Statements

CREATE USER

The CREATE USER statement adds the named user and associated password to the database. Only an administrator can create
users.

Note: The password that you enter is always case sensitive. The user name is not case-sensitive.

A newly created user has all database privileges except ADM NI STRATOR by default. That is, they have STARTUP, WRI TE,
CREATE, DROP, CREATE ROLE, and CREATE SCHEMA privileges. If you wish to remove certain privileges from a user, use
REVOKE to remove them.

Syntax

<create user statenent> ::=
CREATE USER <user nane> PASSWORD <SQL identifier>

Example 26
CREATE USER j matt hews PASSWORD " @y G00dPas2d" ;

ALTER USER

The ALTER USER statement sets a new password for an existing user. Only an administrator or the named user can change a
password.

Note: The password that you enter is stored in all caps unless you enclose the password string in double quotation marks. It is
recommended that you always use the double quotes when specifying the password.

Syntax

108

10 Blackfish SQL
<al ter user statement> ::=
ALTER USER <user nane> SET PASSWORD <SQL identifier>

Example 27
ALTER USER GSM TH SET PASSWORD " uset hi sOnenOw';

DROP USER
The DROP USER statement drops a user and all objects that the user owns.
» Used with RESTRI CT or with no option, the statement fails if the user owns any objects, such as tables, views, or methods.
» Used with CASCADE, it deletes the user and all objects that the user owns.
Syntax

<drop user statement> ::=
DROP USER <user name> [CASCADE| RESTRI CT]

Example
The following statement drops the user gsmi t h and all tables, views, and methods that he owns.

DROP USER gsmi t h CASCADE;

CREATE ROLE
The CREATE ROLE statement creates a named role.
Using roles is a four-step process:
« Create a role using the CREATE RCLE statement.
« Grant privileges to the role using the GRANT statement.
< Grant the role to one or more users using the GRANT statement, thus authorizing that user to use that role.
« An authorized user accesses the privileges granted to a role by using the SET ROLE statement.

To create a role, the user must have the CREATE ROLE system privilege. All users have this by default, but this privilege can be
explicitly revoked. Syntax

<create role statenent> ::=
CREATE ROLE <rol e nanme>

Example 28
CREATE ROLE sal esperson;

SET ROLE

The SET ROLE statement makes the named role active. The current user acquires all privileges assigned to that role. Use SET
ROLE NONE to deactivate the current role without setting another role.

Note: This command must be issued when there is no active transaction. The role remains active until the end of the session or
until another SET ROLE command is issued.

Syntax

<set role statement> ::=
SET ROLE <rol e specification>

<role specification> ::=

109

Blackfish SQL 10
NONE
| <role nane>
Example
The following statement makes the Manager role active:
SET ROLE Manager;
The following statement removes the active role and makes no roles active:

SET ROLE NONE;

DROP ROLE
The DROP ROLE statement drops the specified role.

* When DROP RCLE is used with CASCADE, all privileges that were granted through this role are revoked.

* When DROP RCLE is used with RESTRI CT, the statement fails if the role is currently granted to any users or roles.
» Issuing DROP ROLE with neither option is the same as DROP ROLE with RESTRI CT.

Syntax

<drop role statement> ::=
DROP ROLE <rol e nane> [CASCADE| RESTRI CT]

Example

The following statement drops the Sal es role. All privileges that were granted to users or other roles through the Sal es role are
revoked.

DROP ROLE Sal es CASCADE;

GRANT

The GRANT statement performs the following three actions:

« It grants object privileges, such as | NSERT or SELECT, on tables or methods to PUBLI C, users, or roles.
« It grants database privileges (for example, STARTUP or RENAME) to users or roles.

It grants roles to users or roles.

GRANT options:

« When object privileges are granted with the GRANT option, the grantee has the power to pass on the granted object privileges
to other users.

* When database privileges or roles are granted with the ADM NI STRATOR option, the grantee has the power to pass on the
granted database privileges or roles to other users.

« The ADM NI STRATOR database privilege grants STARTUP, WRI TE, CREATE, DROP, RENAVE, CREATE RCOLE, and CREATE
SCHEMA privileges. When these privileges are acquired through the ADM NI STRATOR privilege, they can be revoked only by
revoking the ADM NI STRATOR privilege. In other words, if you grant ADM NI STRATOR to a user and then revoke CREATE, that
user still has CREATE privileges.

Note that when specifying the privilege object, you can use the optional TABLE keyword to grant privileges on either tables or
views. You do not use the VI EWkeyword in this context. You can also revoke privileges on a method, using the required METHOD
keyword. It is possible to grant the following database privileges:

Privilege Description

ADMINISTRATOR Grants startup, write, create, drop, rename, create role, and create schema privileges

110

Blackfish SQL

STARTUP User can start the database
WRITE User can write to the database
CREATE User can create tables

DROP User can drop tables
RENAME User can rename tables
CREATE ROLE User can create roles
CREATE SCHEMA User can create schemas

CREATE ROLE and CREATE SCHEMA are granted by default when a user is created.
Syntax

<grant statenent> ::=
<grant database privil eges statenent>
| <grant object privileges statenent>
| <grant role statemnment>

<grant database privileges statenent> ::=
GRANT <dat abase privil ege commal i st>
TO <grantee comal i st >
[WTH ADM N OPTI ON]

<grant object privileges statenent> ::=
GRANT < obj ect privil eges>
ON <privil ege object>
TO <grantee comal i st >
[WTH GRANT OPTI ON]
[GRANTED BY <grantor>]

<grant role statement> ::=
CRANT <rol e nanme comal i st>
TO <grantee comal i st>
[WTH ADM N OPTI ON]
[GRANTED BY <grantor>]

<dat abase privilege> ::=
STARTUP

| ADM NI STRATOR

| WRITE

| CREATE

| DROP

| RENAME

| CREATE ROLE

| CREATE SCHEMA

<grantee> ::=
PUBLI C

| <user nane>

| <role nane>

<obj ect privileges> ::=
ALL PRI VI LEGES
| <privilege conmalist>

<privilege> :=
SELECT
| INSERT [(<columm nane commalist>)]
| UPDATE [(<columm nane commalist>)]
| REFERENCES [(<columm name comalist>)]
| DELETE
| EXECUTE

111

Blackfish SQL 10

<privilege object> ::=
[TABLE] <table nane or view name>
| METHOD <net hod name> <grantor> ::=
CURRENT_USER
| CURRENT_RCLE

Examples

In the following example, USER 1 receives SELECT and | NSERT privileges on table T1. USER 2 receives SELECT privileges on
table T1 because the SELECT privilege was granted to ROLE_B and ROLE_B was granted to USER_2. However, USER 2 can use
this SELECT privilege only after enabling ROLE_B with a SET ROLE statement.

GRANT SELECT ON TABLE T1 TO USER 1, ROLE_B;
GRANT | NSERT ON T1 TO USER 1,

GRANT ROLE_B TO USER 2;

REVOKE

The REVCKE statement can perform the following operations:

» It revokes object privileges, such as | NSERT or SELECT, on tables or methods from PUBLI C, users, or roles.

« If the user or role has granted the now-revoked privilege to others, CASCADE revokes the privileges from those others as
well. If any views depend on the revoked privileges, they are dropped.

« When the REVOKE statement includes RESTRI CT, the statement fails if the grantee has granted the acquired privileges to
others.

» It revokes database privileges—such as STARTUP or RENAME—from users or roles.
It revokes roles from users or roles.
« It revokes the ADM N option from a role without revoking the role itself.

+ REVOKE GRANT OPTI ON FOR pri vi | ege revokes the power to grant the privilege to others without revoking the privilege
itself. REVOKE ADM N OPTI ON FOR r ol e similarly revokes the power to grant the named role without revoking the role
itself.

Note that when specifying the privilege object, you can use the optional TABLE keyword to revoke privileges on either tables or
views. You do not use the VI EWkeyword in this context. You can also revoke privileges on a method, using the required METHOD
keyword. Syntax

<revoke statenent> ::=
<revoke database privil eges statenent>
| <revoke object privileges statement>
| <revoke rol e statenent>

<revoke dat abase privileges statenent> ::=
REVOKE <dat abase privil ege conmmalist>
FROM <gr ant ee conmal i st >

<revoke object privileges statenent> ::=
REVOKE [GRANT OPTION FOR] < object privil eges>
ON <privil ege object>
FROM <gr ant ee commal i st >
[GRANTED BY <grantor>]
[CASCADE| RESTRI CT]

<revoke role statement> ::=
REVOKE [ADM N OPTION FOR] <rol e nane commal i st >
FROM <gr ant ee comal i st >
[GRANTED BY <grantor>]
[CASCADE| RESTRI CT]

112

10

Blackfish SQL

<dat abase privilege> ::
STARTUP

| ADM NI STRATCR

| WRITE

| CREATE

| DROP

| RENAME

| CREATE ROLE

| CREATE SCHEMA

<grantee> ::=
PUBLI C

| <user nane>

| <role nane>

<obj ect privileges> ::=
ALL PRI VI LEGES
| <privilege conmalist>
<privilege> :=
SELECT
| INSERT [(<columm nane commalist>)]
| UPDATE [(<columm nane commalist>)]
| REFERENCES [(<columm name commalist>)]
I
I

DELETE
EXECUTE

<privilege object> ::=
[TABLE] <table nanme or view nane>
| METHOD <net hod name> <grantor> ::=
CURRENT_USER
| CURRENT_RCLE

Example 1

In all of the following examples, the name before the colon is the nameof the user executing the statement.

The following GRANT statements are issued by users U1, U2, and U3 and are the context for the examples that follow:
Statement 1:

Ul: GRANT SELECT ON TABLE T1 TO U2 W TH GRANT OPTI ON;
Statement 2:
U2: GRANT SELECT ON TABLE T1 TO U3 W TH GRANT OPTI ON;
Statement 3:
U3: GRANT SELECT ON TABLE T1 TO U4 W TH GRANT OPTI ON;

Example la:

The RESTRI CT option causes the following REVOKE statement to fail because in Statement 2, user U2 exercised the privilege he
acquired in Statement 1.

Ul: REVOKE SELECT ON TABLE T1 FROM U2 RESTRI CT;

Example 1b:

The following example succeeds and Statements 1, 2, and 3 are negated.
Ul: REVOKE SELECT ON TABLE T1 FROM U2 CASCADE;

Example 1c:

The RESTRI CT option causes the following statement to fail because in Statement 2, user U2 exercised the GRANT OPTI ON
privilege he acquired in Statement 1.

113

Blackfish SQL 10

Ul: REVOKE GRANT OPTI ON FOR SELECT ON TABLE T1 FROM U2 RESTRI CT;
Example 1d:

The following statement succeeds and negates Statements 2 and 3. U2 retains SELECT privilege on T1, but cannot grant this
privilege to others.

Ul: REVOKE GRANT OPTI ON FOR SELECT ON TABLE T1 FROM U2 CASCADE;
Example 2

The following GRANT and CREATE statements are issued by users U1, U2, and U3 and are the context for the examples that
follow. The name before the colon is the name of the user who issued the statement.

Statement 1:

Ul: GRANT SELECT ON TABLE T1 TO U2 W TH GRANT OPTI ON;
Statement 2:

U2: GRANT SELECT ON TABLE T1 TO U3 W TH GRANT OPTI ON;
Statement 3:

U3: GRANT SELECT ON TABLE T1 TO U4 W TH GRANT OPTI ON;
Statement 4:

U2: CREATE VIEW V2 AS SELECT A, B FROM T1;

Statement 5:

U3: CREATE VIEWV3 AS SELECT A, B FROM T1;

Example 2a:

The following statement succeeds and negates Statements 1, 2, and 3. In addition, views V2 and V3 are dropped because U2
and U3 no longer have the SELECT privileges on T1 that are required by the views.

Ul: REVOKE SELECT ON TABLE T1 FROM U2 CASCADE
Example 2b:

The following statement succeeds and negates Statements 2 and 3. User U2 retains the SELECT privilege on T1, but cannot
grant this privilege to others. In addition, the view V3 is dropped because U3 no longer has the SELECT privilege on T1. View V2
is not dropped because U2 still holds SELECT privileges on T1.

Ul: REVOKE GRANT OPTI ON FOR SELECT ON TABLE T1 FROM U2 CASCADE
Example 3

The following GRANT and CREATE statements are issued by users U1, U2, and U3 and are the context for the examples that
follow. The name before the colon is the name of the user who issued the statement.

Statement 1:

Ul: CREATE RCLE Ri1;

Statement 2:

Ul: GRANT SELECT ON TABLE T1 TO R1;
Statement 3:

Ul: GRANT R1 TO U2 WTH ADM N OPTI ON,
Statement 4:

U2: GRANT R1 TO U3 WTH ADM N OPTI ON,

Statement 5:

114

10 Blackfish SQL

U3: GRANT R1 TO U4 WTH ADM N OPTI ON;

Example 3a:

The following statement fails because user U2 has exercised the privileges acquired as a result of being granted role R1.
Ul: REVOKE R1 FROM U2 RESTRI CT;

Example 3b:

The following statement succeeds. Statements 3, 4, and 5 above are negated.
Ul: REVOKE R1 FROM U2 CASCADE;

Example 3c:

The following statement fails because in Statement 3, user U2 exercised the ADM N OPTI ON.
Ul: REVOKE ADM N OPTI ON FOR R1 FROM U2 RESTRI CT;

Example 3d:

The following statement succeeds. Statements 4 and 5 are negated. U2 retains the privileges granted by role R1, but cannot
grant this role to others.

Ul: REVOKE ADM N OPTI ON FOR R1 FROM U2 CASCADE;
Escape Syntax
Blackfish SQL supports escape sequences for the following:
» Date and time literals
« QUTER JO N
« The escape character for a LI KE clause

« Calling stored procedures
Escapes must always be enclosed in braces {}. They are used to extend the functionality of SQL.

Date and Time Literals

{T 'hh:mm:ss'} Specifies a time, which must be entered in the sequence: hours, followed by minutes, followed by seconds.
{D 'yyyy-mm-dd} | Specifies a date, which must be entered in the sequence; year, followed by month, followed by day.

{TS 'yyyy-mm-dd Specifies a timestamp, which must be entered in the format indicated; year, month, day, hour, minute,
hh:mm:ss'} second.

Examples

I NSERT | NTO t abl ename VALUES({D '2004-2-3'}, {T '2:55:11'});
SELECT {T '10:24'} FROMtabl enane;

SELECT {D ' 2000- 02-01'} FROM t abl enane;

SELECT {TS ' 2000-02-01 10:24:32'} FROM t abl enane;

Outer Joins

I{OJ <join_table_expression>} An outer join is performed on the specified table expression. I

115

Blackfish SQL 10

Example 30
SELECT * FROM {QJ a LEFT JON b USI NG d)}

Escape Character for LIKE

I{ESCAPE <char>} The specified character becomes the escape character in the preceding LIKE clause. I

Example 31
SELECT * FROM a WHERE nane LIKE ' 9% % {ESCAPE '*'}

Calling Stored Procedures
{call <procedure_nane> (<argunent_list>)}
Or, if the procedure returns a result parameter:
{? = call <procedure_nane> (<argument_|ist>)}

Example 1

The method implementing IncreaseSalaries updates the salaries table with an increase of some percentage for all employees. A
connection object is passed implicitly to the method. An updat eCount of all the rows affected by | ncreaseSal ari es is
returned from St at enent . execut eUpdat e.

{CALL I ncreaseSal ari es(10)};
Example 2
The parameter marker indicates an output parameter position from which the result of the stored procedure can be retrieved.
{?=CALL ABS(-765)};
Escape Functions
Functions are written in the following format, where FN indicates that the function following it should be performed:

{fn <function_nane>(<argunent_list>) }

Numeric functions

Function name Function returns

ABS(number) Absolute value of number

ACOS(float) Arccosine, in radians, of float

ASIN(float) Arcsine, in radians, of float

ATAN(float) Arctangent, in radians, of float

ATAN2(floatl, float2) Arctangent, in radians, of float2 divided by floatl
CEILING(number) Smallest integer >= number

COS(float) Cosine of float radians

COT(float) Cotangent of float radians

116

10

DEGREES(number)
EXP(float)
FLOOR(number)
LOG(float)

LOG10(float)
MOD(integerl, integer2)
PI()

POWER(number, power)
RADIANS(number)
RAND(integer)
ROUND(number, places)
SIGN(number)

SIN(float)
SQRT(float)
TAN(float)

TRUNCATE(number, places)

Blackfish SQL

Degrees in number radians
Exponential function of float

Largest integer <= number

Base e logarithm of float

Base 10 logarithm of float

Remainder for integerl divided by integer2
The constant pi

number raised to (integer) power
Radians in number degrees

Random floating point for seed integer
number rounded to places places

–1 to indicate number is < 0; 0 to indicate number is = 0; 1 to indicate number is
>0

Sine of float radians
Square root of float
Tangent of float radians

number truncated to places places

String Functions

Function name
ASCII(string)
CHAR(code)

CONCAT(stringl,
string2)

DIFFERENCE(string1,
string2)

INSERT(string1,
length, string2)

LCASE(string)
LEFT(string, count)
LENGTH(string)

LOCATE(stringl,
string2[, start])

start,

LTRIM(string)
REPEAT (string, count)

REPLACE(string1,
string2, string3)

RIGHT((string, count)

Function returns
Integer representing the ASCII code value of the leftmost character in string
Character with ASCII code value code, where code is between 0 and 255

Character string formed by appending string2 to stringl; if a string is null, the result is
DBMS-dependent

Integer indicating the difference between the values returned by the function SOUNDEX for stringl
and string2

A character string formed by deleting length characters from stringl beginning at start, and inserting
string2 into stringl at start

Converts all uppercase characters in string to lowercase
The count leftmost characters from string
Number of characters in string, excluding trailing blanks

Position in string2 of the first occurrence of stringl, searching from the beginning of string2; if start is
specified, the search begins from position start. Returns zero if string2 does not contain stringl.
Position 1 is the first character in string2.

Characters of string with leading blank spaces removed
A character string formed by repeating stringcount times

Replaces all occurrences of string2 in stringl with string3

The count rightmost characters in string

117

RTRIM(string)

start, length)

SOUNDEX(string)

SPACE(count)
SUBSTRING(string,

The characters of string with no trailing blanks

A data source-dependent character string representing the sound of the words in string; this can be,
for example, a four-digit SOUNDEX code or a phonetic representation of each word.

A character string consisting of count spaces

A character string formed by extracting length characters from string beginning at start

Blackfish SQL 10

UCASE(string) Converts all lowercase characters in string to uppercase
Examples

SELECT {FN LCASE(' Hel 1 0')} FROM t abl enane;

SELECT {FN UCASE(' Hel 1 0')} FROM t abl enane;

SELECT {FN LOCATE(' xx', '1xx2')} FROMtabl enane;

SELECT {FN LTRIM ' Hello')} FROM tabl enane;

SELECT {FN RTRIM ' Hell 0')} FROM t abl enane;

SELECT {FN SUBSTRING(' Hel l o', 3, 2)} FROMtabl enane;

SELECT {FN CONCAT(' Hello ', "there.')} FROM tabl enane;

Date and Time Functions

Function name
CURDATE()
CURTIME()
DAYNAME(date)

DAYOFMONTH(date)
DAYOFWEEK(date)
DAYOFYEAR(date)
HOUR(time)
MINUTE(time)
MONTH(date)
MONTHNAME(date)

NOW()
QUARTER(date)
SECOND(time)

count, timestamp)

118

TIMESTAMPADD(interval, | A timestamp calculated by adding count number of intervals to timestamp; interval can be any one

Function returns
The current date as a date value
The current local time as a time value

A character string representing the day component of date; the name for the day is specific to the
data source

An integer from 1 to 31 representing the day of the month in date

An integer from 1 to 7 representing the day of the week in date; Sunday = 1
An integer from 1 to 366 representing the day of the year in date

An integer from 0 to 23 representing the hour component of time

An integer from 0 to 59 representing the minute component of time

An integer from 1 to 12 representing the month component of date

A character string representing the month component of date; the name for the month is specific to
the data source

A timestamp value representing the current date and time
An integer from 1 to 4 representing the quarter in date; January 1 through March 31 =1

An integer from 0 to 59 representing the second component of time

of the following: SQL_TSI_FRAC_SECOND, SQL_TSI SECOND, SQL_TSI_MINUTE,
SQL_TSI_HOUR, SQL_TSI_DAY, SQL_TSI_WEEK, SQL_TSI_MONTH, SQL_TSI_QUARTER, or
SQL_TSI_YEAR

10

WEEK(date)
YEAR(date)

TIMESTAMPDIFF(interval, | An integer representing the number of intervals by which timestamp?2 is greater than timestampl;
timestampl, timestamp2) |interval can be any one of the following: SQL_TSI_FRAC_SECOND, SQL_TSI_SECOND,

Blackfish SQL

SQL_TSI_MINUTE, SQL_TSI_HOUR, SQL_TSI_DAY, SQL_TSI WEEK, SQL_TSI_MONTH,
SQL_TSI_QUARTER, or SQL_TSI_YEAR

An integer from 1 to 53 representing the week of the year in date

An integer representing the year component of date

Examples

SELECT {FN
SELECT {FN
SELECT {FN
SELECT {FN
SELECT {FN
SELECT {FN
SELECT {FN
SELECT {FN

SELECT {FN

NOWN)} FROM t abl enane;

CURDATE() } FROMt abl enane;

CURTI ME() } FROMt abl enane;
DAYOFMONTH(dat ecol) } FROM t abl enane;
YEAR(dat ecol)} FROM t abl enane;

MONTH(dat ecol)} FROM t abl enane;
HOUR(ti necol) } FROM t abl enane;

M NUTE(ti mecol) } FROM t abl enane;
SECOND(ti necol) } FROMtabl enane;

System Functions

Function name Function returns

DATABASE() Name of the database

IFNULL(expression, value) value if expression is null; expression if expression is not null
USER() User name in the DBMS

Conversion Functions

Function name Function returns

CONVERT(value, |value converted to SQLtype where SQLtype can be one of the following SQL types: BIGINT, BINARY, BIT,

SQLtype) CHAR, DATE, DECIMAL, DOUBLE, FLOAT, INTEGER, LONGVARBINARY, LONGVARCHAR, REAL,
SMALLINT, TIME, TIMESTAMP, TINYINT, VARBINARY, or VARCHAR
Example 33
SELECT {FN CONVERT(' 34.5', DECI MAL(4, 2))} FROM t abl enane;
ISQL

ISQL is a SQL command interpreter that can be used to execute SQL statements interactively. This feature is currently available
for Blackfish SQL for Java only.

119

Blackfish SQL 10

Getting Help
To see a help display for Blackfish SQL ISQL, issue one of the following help commands: From the system prompt:
e isqgl -?displays ISQL startup options.
e isgl -hel pdisplays ISQL options.
From the SQL prompt:
+ HELP CREATE displays help on creating datasources.HELP SHOWdisplays a list of SHOWcommands with briefdescriptions.
» HELP SET displays a list of SET commands with brief descriptions of each.

Starting ISQL

To start Blackfish SQL ISQL, either ensure that <Bl ackfi shSQ._i nstal | _di r>\bi n is in your system path, or go to that
directory to issue the | SQL command. These options are available:

Startup Options for ISQL

Option and arguments Description

-user userName Specifies the userName for this connection

-password password Specifies the password associated with userName

-role roleName Activates the named role for the user

-input filename Executes all commands in the specified file and then quits
-output filename Redirects all output to the named file

-datasource filename Specifies an alternative datasource file

-echo Prints all commands before executing them

-stacktrace Prints a stacktrace for each error encountered
-pagelength length Prints column headers every length number of rows

-X Prints all the data definition statements from the current connection and exits
-z Shows version information and exits

Datasource and File Management

Once you have started 1ISQL, the following commands are available for managing datasource connections, file management and
session management. You can see a list of these commands during an ISQL session by issuing the following:

SHOW CREATE;

There are two additional groups of commands that are discussed later in this section: SHOW commands and SET commands.
The SQL commands that are available for data definition, data manipulation, security, and transaction management are
discussed throughout this chapter.

ISQL Datasource and File Management Commands

120

10 Blackfish SQL

Command Description

CREATE Associates a datasource with the dataSourceName. You pass this dataSourceName to CONNECT

DATASOURCE in order to connect to a database. See "Creating datasources with ISQL" below, for information on

dataSourceName creating datasources in ISQL.

[dataSourceClassName]

properties

CONNECT Connects to the datasource specified by dataSourceName. Before you can use CONNECT, you

dataSourceName must use CREATE DATASOURCE to associate a database with the dataSourceName that you pass

[userpassword] to CONNECT. You do not need to specify user name or password if it was specified as part of the
CREATE DATASOURCE statement.

INPUT filename Takes the contents of the named SQL file as input.

OUTPUT filename Writes the output to the specified file.

OUTPUT Writes the output to stdout.

EXPORT Exports the data definition statements and data of the current database to SQL.

EXPORT Exports the data definition statements and data of the current database to the specified datasource.

[userpassword] To export to a file, use EXPORT in conjunction with OUTPUT: OUTPUT sqlfile.txt; EXPORT;

IMPORT [userpassword] | Imports the data definition statements and data from the specified datasource.

VERSION Shows the version of ISQL and the version of any connected database.

EXIT Commits changes and exits.

QUIT Rolls back changes and exits.

Creating Datasources with ISQL

This section provides more detail about creating datasources in ISQL using the CREATE DATASOURCE command listed above.
The CREATE DATASOURCE syntax is as follows:

CREATE DATASOURCE dat aSour ceNane [dat aSour ceCl assNane] properties
The arguments for the CREATE DATASOURCE command are:
dat aSour ceNane identifies the new datasource; it can be any SQL identifier assigned by you.

dataSourceClassName is the class that specifies the properties needed to connect to a JDBC database. It must be an
implementation of the standard JDBC javax.sql.DataSource interface. If this argument is not provided,
com borl and. j avax. sql . JdbcDat aSource is used. To access InterBase databases, you can use
i nterbase.interclient. DataSource.

properties can include any properties in the class supplied as the dataSourceClassName. Properties are separated by commas
and commonly include the following:

e user="usernane' If youdo not supply a user name here, you can supply it as part of the CONNECT statement.
+ passwor d=' password' If you do not supply a password here, you can supply it as part of the CONNECT statement.
» dat abaseNane=' dat abase_nanme_t o_connect _t o'

Example

You can supply values for any properties in the datasource class. For example, to create a new database, add the following:

CREATE=t r ue: CREATE DATASOURCE
JDS user =SYSDBA, passwor d=nast er key,
dat abaseNane=' c: / dat abases/test.jds', CREATE=true';

121

Examples

Blackfish SQL

10

These examples both use the Blackfish SQL default class com borl and. j avax. sql . JdbcDat aSour ce, since no

cl assNane is specified.

The example below creates a local datasource, JDS_LOCAL:

CREATE DATASOURCE JDS_LOCAL
user =SYSDBA,
passwor d=mast er key,
create=true,

dat abaseName='c:/test.jds';

The next example creates a remote datasource, JDS_REMOTE. It also creates the test.jds database.

CREATE DATASOURCE JDS_REMOTE
user =SYSDBA,
passwor d=mast er key,
net wor kPr ot ocol =t cp,
server Nanme=| ocal host,
port Nunber =2508,
create=true,

dat abaseName='c:/test.jds';

ISQL SHOW Commands

Command

SHOW DATASOURCE [name]
SHOW DATABASE

SHOW VERSION

SHOW DDL

SHOW SYSTEM

SHOW TABLE [[schema.]table]
SHOW VIEW [[schema.]view]

SHOW PROCEDURE
[[schema.]lname]

SHOW FUNCTION [[schema.]name]

SHOW INDEX [index [ON
[schema.]table]]

SHOW ROLES
SHOW USERS
SHOW GRANT TABLE
[[schema.]table]
SHOW GRANT VIEW

[[schema.]view]

SHOW GRANT PROCEDURE
[[schema.]name]

SHOW GRANT FUNCTION
[[schema.]name]

SHOW GRANT ROLE [role]

122

Description

Displays all datasources or the specified datasource.

Displays settings for the current database.

Displays the ISQL version and the version of any connected database.
Displays the data definition statements for the current database.
Displays the system tables.

Displays all tables or the specified table.

Displays all views or the specified view.

Displays all procedures or the specified pprocedures

Displays all functions or the specified function.

Displays all indexes or the specified index.

Lists all roles defined in the database.
Lists all users defined in the database.
Lists all privileges on tables that have been granted WITH GRANT OPTION.

Lists all privileges on views that have been granted WITH GRANT OPTION.
Lists all privileges on procedures that have been granted WITH GRANT OPTION.
Lists all privileges on functions that have been granted WITH GRANT OPTION.

Lists all users who have been granted the specified role.

10 Blackfish SQL

SHOW GRANT DATABASE | Lists all database privileges that have been granted to the specified user or role.
[user]|role]

ISQL SET Commands

Command Description
SET Displays the current value of ECHO, STACKTRACE, and PAGELENGTH.
SET ECHO {ON|OFF} Toggles echoing of all commands to standard out.
SET STACKTRACE | Toggles display of error traces.
{ON|OFF}
SET PAGELENGTH | Sets the page length in lines; default is 0, meaning that the column headings print out only once.
number
See Also

Preface (@ see page 1)

Overview (@ see page 3)

System Architecture (@ see page 7)

Establishing Connections (@ see page 23)

Administering Blackfish SQL (@ see page 31)

Using Blackfish SQL Security (@ see page 35)

Using Stored Procedures and User Defined Functions (@ see page 41)
Using Triggers in Blackfish SQL Tables (@ see page 55)

Stored Procedures Reference (i@ see page 59)

Optimizing Blackfish SQL Applications (& see page 125)
Deploying Blackfish SQL Database Applications (& see page 133)

Troubleshooting (@ see page 137)

123

11 Blackfish SQL

Optimizing Blackfish SQL Applications

This section discusses ways to improve the performance, reliability, and size of Blackfish SQL applications. Unless otherwise
specified, Dat aSt or eConnect i on refers to either a Dat aSt or eConnect i on or Dat aSt or e object used to open a connection
to a Blackfish SQL database file.

» Loading Databases Quickly
» General Recommendations
» Optimizing Transactional Applications
* Pruning Deployed Resources for Blackfish SQL for Java Applications
» Autolncrement Columns
» Blackfish SQL Companion Components
» Using Data Modules for DataExpress Components
Loading Databases Quickly

Here are some tips that can improve the performance of your application when loading databases:

» Use prepared statements or commands whenever possible. If the number of parameters changes from one insert to the next,
clear the parameters before setting the new parameters.

» Create the table without primary keys, foreign keys, or secondary indexes. Load the table and then create any needed primary
keys, foreign keys, or secondary indexes.

Java-specific Database Loading Optimizations

Use the DataExpress Text Dat aFi | e class to import text files. It has a fast parser and can load data quickly. You must set the
St or ageDat aSet store to a Dat aSt or eConnecti on, and set the St or eNane property to the name of your table in the
Blackfish SQL database. When loading a new database:

1. First create the database as non-transactional.

2. While the database is non-transactional, use a DataExpress St or ageDat aSet . addRow or Text Dat aFi | e component to
load the database.

3. After the database has loaded, use the Dat aSt or e. TxManager property to make the database transactional.

This technique should enable the database to load two to three times faster.

125

Blackfish SQL 11

General Recommendations

This section provides some general guidelines for improving performance for Blackfish SQL applications.

Proper Database Shutdown

If a database is not properly shut down, the next time a process opens the database, there will be a delay. This is because
Blackfish SQL needs about 8 to 10 seconds to ensure that no other process has the database open. To ensure that a database
is shut down properly, make sure all connections are closed when they are no longer needed. If it is difficult to ensure that all
connections are closed, a connection with Administrator rights can call the DB_ADM N. CLOSE_OTHER_CONNECTI ONS built-in
stored procedure to ensure that all other connections are closed.

Another benefit to closing connections is that when they are all closed, the memory allocated to the Blackfish SQL cache is
released.

Currently, non-transactional databases can be accessed from SQL only if the database read-only property is true. However,
DataExpress JavaBeans can perform write operations on a non-transactional database.

Closing a non-transactional Blackfish SQL database ensures that all modifications are saved to disk. There is a daemon thread
for all open Dat aSt or eConnect i on instances that is constantly saving modified cache data. (By default modified data is saved
every 500 milliseconds.) If you directly exit the Java Virtual Machine without closing the database, the daemon thread might not
have the opportunity to save the last set of changes. There is a small chance that a non-transactional Blackfish SQL could
become corrupted.

A transactional Blackfish SQL database is guaranteed not to lose data, but the transaction manager rolls back any uncommitted
changes.

Java-specific Database Shutdown

If your application is using DataExpress JavaBean components, close all St or ageDat aSet s that have the st or e property set
to a Dat aSt or eConnecti on when you are finished with them. This frees up Blackfish SQL resources associated with the
St or ageDat aSet and allows the St or ageDat aSet to be garbage collected.

You can use the Dat aSt or e. shut down() method to make sure all database connections are closed before an application
terminates.

Optimizing the Blackfish SQL Disk Cache

The default maximum cache size for a Blackfish SQL database is 512 cache blocks. The default block size is 4096 bytes.
Therefore, the cache memory reaches its maximum capacity at approximately 512*4096 (2MB). Note that this memory is
allocated as needed. In some rare situations when all blocks are in use, the cache may grow beyond 512 cache blocks. You can
use the Dat aSt or e. M nCacheSi ze property to specify the minimum cache size.

NOTE: Do not arbitrarily change the database cache size. Be sure first to verify that doing so will improve the performance of
your application.

Keep in mind the following considerations when changing the Blackfish SQL cache size:

« Modern OS caches are typically high performance. In many cases, increasing the Blackfish SQL cache size does not
significantly improve performance, and simply uses more memory.

« There is only one Blackfish SQL disk cache for all Blackfish SQL databases open in the same process. When all Blackfish
SQL databases are shut down, the memory for this global disk cache is released.

» For handheld devices with small amounts of memory, set the Dat aSt or e. M nCacheSi ze property to a smaller number,
such as 96.

126

11

Blackfish SQL

Optimizing File Access

Blackfish SQL databases perform the majority of read/write operations against the following four file types:

The Blackfish SQL database file itself (flename extension is . j ds) as specified by the Dat aSt or e. Fi | eNane property

Blackfish SQL transactional log files (filename extension is LOGAnNnnnnnnnnn, where n is a numeric digit) as specified by the
TxManager . ALogDi r property

Temporary files used for large sort operations as specified by the Dat aSt or e. TenpDi r Nane property
Temporary . j ds files used for SQL query results as specified by the Dat aSt or e. TenpDi r Nane property

You can potentially improve performance by instructing Blackfish SQL to place the files mentioned above on different disk drives.

File Storage

The following are some guidelines for file storage handling that can improve performance of your applications:

It is especially important to place the log files on a separate disk drive. Note that log files are generally appended in sequential
order, and their contents must be forced to disk in order to complete commit operations. Consequently, it is advantageous to
have a disk drive that can complete write operations quickly.

On Win32 platforms, performance can be improved by placing Blackfish SQL log files in a separate directory. Storing
numerous files other than the log files in the log file directory can slow down the performance of commit operations. This
performance tip may also apply to platforms other than Windows NT/2000/XP.

Remember to defragment your disk drive file systems on a regular basis. This practice is especially important for the disk
drive that stores the log files, because Blackfish SQL performs many sequential read/write operations to this file.

For Win32 platforms, consider using a FAT32 file system with a large cluster size such as 64KB for the disk drive to which
your log files are written.

Non-transactional Database Disk Cache Write Options for Java

Note: This section applies only to Blackfish SQL for Java, which uses the DataExpress JavaBean components.

Use the saveMode property of the Dat aSt or e component to control how often cache blocks are written to disk. This property
applies only to non-transactional Blackfish SQL databases. The following are valid values for the method:

0
1

Let the daemon thread handle all cache writes. This setting gives the highest performance but the greatest risk of corruption.

Save immediately when blocks are added or deleted; let the daemon thread handle all other changes. This is the default
mode. Performance is almost as good as with saveMode(0).

Save all changes immediately. Use this setting whenever you debug an application that uses a DataStore component.

Unlike other properties of Dat aSt or e, saveMbde can be changed when the connection is open. For example, if you are using a
Dat aSt or eConnect i on, you can access the value through the dat aSt or e property:

Dat aSt or eConnecti on store = new Dat aSt or eConnection();

st 6r e. get Dat aStore().set SaveMde(2);

Note that this changes the behavior for all Dat aSt or eConnect i on objects that access that particular Blackfish SQL database
file.

Tuning Memory

You can tune the use of memory in a number of ways. Be aware that asking for too much memory can be as bad as having too
little.

Try increasing the Connect i onProperti es. M nCacheBl ocks property, which controls the minimum number of blocks
that are cached.

127

Blackfish SQL 11

» The Connecti onProperties. MaxSort Buf f er property controls the maximum size of the buffer used for in-memory sorts.
Sorts that exceed this buffer size use a slower disk-based sort.

Java-specific Memory Tuning

The Java heap tends to resist growing beyond its initial size, forcing frequent garbage collection with an ever-smaller amount of
free heap. Use the JVM - Xms option to specify a larger initial heap size. It is often beneficial to make the JVM - Xns and - Xnx
settings equal.

Miscellaneous Performance Tips

Here are some tips that can help performance:

« Setting the Connecti onProperties. TenpDi r Nanme property, used by the query engine, to a directory on another (fast)
disk drive can often help.

» Try changing the check point frequency for the Transaction Manager. A higher value can improve performance, but might
result in slower crash recovery. This can be updated from SQL by using the DB_ADM N. ALTER _DATABASE built-in stored
procedure. In Blackfish SQL for Java, you can use JdsExplorer to set this property by choosing TxManager > Mdify.

Optimizing Transactional Applications

The increased reliability and flexibility you gain from using transactional Blackfish SQL databases comes at the price of some
performance. You can reduce this cost in several ways, as described in the following sections.

Using Read-only Transactions

For transactions that are reading but not writing, significant performance improvements can be realized by using a read-only
transaction. The connection readOnl y property controls whether a transaction is read-only. The Blackfish SQL for Java
Dat aSt or eConnect i on JavaBean has ar eadOnl yTx property to enable read-only transactions.

Read-only transactions work by simulating a snapshot of the Blackfish SQL database. This snapshot sees only data from
transactions that were committed at the point the read-only transaction starts. This snapshot is created when the
Dat aSt or eConnect i on opens, and it refreshes every time a commi t method is called.

Another benefit of read-only transactions is that they are not blocked by writers or other readers. Both reading and writing usually
require a lock. But because a read-only transaction uses a snapshot, it does not require any locks.

You can further optimize the application by specifying a value for the property r eadOnl yTxDel ay. The r eadOnl yTxDel ay
property specifies the maximum age (in milliseconds) for an existing snapshot that the connection can share. When the property
is non-zero, existing snapshots are searched from most recent to oldest. If there is one that is under r eadOnl yTxDel ay in age,
it is used and no new snapshot is taken. By default, this property is set to 5000 milliseconds.

Using Soft Commit Mode

If you enable soft commit mode through the Sof t Conmi t property, the transaction manager still writes log records for committed
transactions, but does not use a synchronous write mechanism for commit operations. With soft commit enabled, the operating
system cache can buffer file writes from committed transactions. Typically the operating system ends up writing dirty cache
blocks to disk within seconds. Soft commit improves performance, but cannot guarantee the durability of the most recently
committed transactions. You can set the Sof t Conmi t property by calling the DB_ADM N. ALTER DATABASE built-in stored
procedure.

Disabling Status Logging for Transaction Log Files

You can improve performance by disabling the logging of status messages. To do this, set the Recor dSt at us property to
f al se. You can set the Recor dSt at us property by calling the DB_ADM N. ALTER_DATABASE built-in stored procedure.

128

11 Blackfish SQL

Tuning Blackfish SQL Concurrency Control Performance

The following are guidelines for optimizing the performance of Blackfish SQL concurrency control operations:

* Choose the weakest isolation level with which your application can function properly. Lower isolations tend to acquire fewer
and weaker locks.

» Batch multiple statements into a single transaction. Connections default to autocommit mode commit after every statement
execution.

« Commit transactions as soon as possible. Most locks are not released until a transaction is committed or rolled back.

* Reuse statement or command objects whenever possible, or better yet, use prepared statements or commands when
possible.

» Close all statements or commands, all result sets or readers, and all connection objects when they are no longer needed.
Single-directional result set or reader objects automatically close when the last row is read.

» Use read-only transactions for long-running reports or online backup operations. Use the DB_ADM N. COPYDATABASE method
for online backups. Read-only transactions provide a transactionally consistent (serializable), read-only view of the tables they
access. They do not acquire locks, so lock timeouts and deadlocks are not possible. See the section Using Read-only
Transactions.

« There is some overhead for maintaining a read-only view. Consequently, multiple transactions can share the same read-only
view. The Connect i onProperties. ReadOnl yTxDel ay property specifies how old the read-only view can be when a
read-only transaction is started. Committing the transaction for a read-only connection refreshes the view of the database.
Note that a read-only transaction uses the transactional log files to maintain views. Therefore, read-only connections should
be closed as soon as they are no longer needed.

Using Multithreaded Operations
Write transaction throughput can increase as more threads are used to perform operations, because each thread can share in
the overhead of commit operations through the “group commit” support provided by Blackfish SQL.

Pruning Deployed Resources for Blackfish SQL for Java Applications

When deploying a Blackfish SQL application, you can exclude certain classes and graphics files that are not used.

« If Blackfish SQL is used without the JDBC driver, exclude the following classes:
e com borl and. dat astore. Sqgl *. cl ass
e com borl and. dat astore. j dbc. *
e com borl and. datastore. gq2. *

» If you are using DataExpress, and the St or ageDat aSet . st or e property is always set to an instance of Dat aSt or e or
Dat aSt or eConnect i on, exclude the following classes:

e« com borl and. dx. nenorystore. *

« If St or ageDat aSet is used, but not Quer yDat aSet , Quer yPr ovi der, St or edPr ocedur eDat aSet or
St or edPr ocedur ePr ovi der , exclude the following classes:

 com borl and. dx. sql . *
« If DataExpress isn't using any visual components from the JBCL or dbSwing libraries, exclude the following classes:
« com borl and. dx. t ext . *
e Ifcom borl and. dx. dat aset . Text Dat aFi | e is not used, exclude the following classes:
e comborland.jb.io.*
« com bor| and. dx. dat aset . Text Dat aFi | e. cl ass

e com borl and. dx. dat aset . SchenaFi | e. cl ass

129

Blackfish SQL 11

Autolncrement Columns

You can specify columns of type i nt and | ong as having Aut ol ncr enent values.
The following attributes apply to all Aut ol ncr ement column values:

* They are always unique
* They can never be null
« Values from deleted rows can never be reused

These attributes make Aut ol ncr enent columns ideal for single column i nt eger /| ong primary keys.

An Aut ol ncrement column is the internal row identifier for a row, and so provides the fastest random access path to a
particular row in a Blackfish SQL table.

Each table can have only one Aut ol ncrenment column. Using an Aut ol ncr enent column saves the space of one integer
column and one secondary index in your table if you use it as a replacement for your primary key. The Blackfish SQL Query
Optimizer optimizes queries that reference an Autol ncrenment column in a WHERE clause. For instructions on using
Aut ol ncr ement columns with SQL, see “Using Autolncrement Columns with SQL” in the SQL Reference.

Autolncrement Columns Using Blackfish SQL for Java DataExpress JavaBeans

To create a table with an Aut ol ncrenent column using DataExpress, set the Col urm. Aut ol ncr enent property to true
before opening a table. If you are modifying an existing table, you need to call the St or ageDat aSet . rest r uct ur e() method.

Blackfish SQL Companion Components

The dbSwing component library provides two components (on the More dbSwing page of the Component Palette) that make it
easier to produce robust Blackfish SQL applications.

- DBDi sposeMoni t or automatically disposes of data-aware component resources when a container is closed. It has a
cl oseDat aSt or es property. When t r ue (the default), it automatically closes any Blackfish SQL databases that are
attached to components it cleans. For example, if you drop a DBDi sposelbni t or into a JFr ane that contains dbSwing
components attached to a Blackfish SQL database, when you close the JFr ane, DBDi sposeMoni t or automatically closes
the Blackfish SQL database for you. This component is particularly handy when building simple applications to experiment
using Blackfish SQL.

« DBExcepti onHandl er has an Exit button. You can hide it with a property setting, but it is visible by default. Clicking this
button automatically closes any open Blackfish SQL database files it can find. DBExcept i onHandl er is the default dialog
box displayed by dbSwing components when an exception occurs.

Using Data Modules for Blackfish SQL for Java DataExpress JavaBean Components

When using a Blackfish SQL table with a St or ageDat aSet , you should consider grouping them all inside data modules. Make
any references to these St or ageDat aSets through Dat aMbdul e accessor methods, such as
busi nessMbdul e. get Cust omer . You should do this because much of the functionality surfaced through St or ageDat aSet s
is driven by property and event settings.

Although most of the important structural St or ageDat aSet properties are persisted in the Blackfish SQL table itself, the
classes that implement the event listener interfaces are not. Instantiating the St or ageDat aSet with all event listener settings,
constraints, calculated fields, and filters implemented with events, ensures that they are properly maintained at both run time and
design time.

See Also

Preface (@ see page 1)
Overview (@ see page 3)
System Architecture (@ see page 7)

Establishing Connections (@ see page 23)

130

11 Blackfish SQL

Administering Blackfish SQL (i@ see page 31)

Using Blackfish SQL Security (@ see page 35)

Using Stored Procedures and User Defined Functions (@ see page 41)
Using Triggers in Blackfish SQL Tables (@ see page 55)

Stored Procedures Reference (@ see page 59)

SQL Reference (@ see page 75)

Deploying Blackfish SQL Database Applications (@ see page 133)

Troubleshooting (@ see page 137)

131

12 Blackfish SQL

Deploying Blackfish SQL Database
Applications

When you have finished developing your application, the next step is to deploy it. Deployment involves licensing considerations
and determining which Blackfish SQL files are needed for distribution. This chapter discusses the Blackfish SQL distribution files.
For information regarding deployment licensing, please contact Customer Support.

» Deploying Blackfish SQL for Windows Applications
» Deploying Blackfish SQL for Java Applications
Deploying Blackfish SQL for Windows Applications

The specific files you will need to distribute depend upon the type of application you have written. The table below provides some
guidelines for determining which files to distribute.

Blackfish SQL for Windows Application Deployment Files

File name Description

DbxClientDriver100.bpl Remote dbExpress driver for Win32 applications that use packages. If you are
DbxCommonDriver100.bpl not using packages, then the driver is linked into the application exe file.
DbxReadOnlyMetaData100.bpl

Borland.Data.DbxClientDriver.dll Remote dbExpress driver for .NET applications that use assemblies. If you are
Borland.Data.DbxCommonDriver.dll not using assemblies, then the driver is linked into the application exe file.

Borland.Data.DbxReadOnlyMetaData.dll

Borland.Data.BlackfishSQL.LocalClient.dll .NET assembly containing the local ADO.NET provider and the database kernel
itself. This is the only file needed for applications that only use the local
ADO.NET provider.

Borland.Data.BlackfishSQL.RemoteClient.dll | .NET assembly containing the remote ADO.NET provider.

BSQLServer.exe BSQLServer.exe.config Launchers required for launching the server at the command line or as a
windows service. You must also deploy
Borland.Data.BlackfishSQL.LocalClient.dll with these files.

133

Blackfish SQL 12

Deploying Licenses for Blackfish SQL for Windows

Blackfish SQL for Windows searches the following locations for licensing SLIP files:

» The bl ackfishsql.licenseDirectory system property

Set this property by calling the Syst em AppDomai n. Cur r ent Domai n. Set Dat a method, or by specifying a setting for this
property in the BSQLSer ver . exe. confi g file.

« The directory of the server if you are using a remote driver

» The directory of the application . exe file that is using a local driver

» The GAC location of the assembly, if the local driver is in use and has been added to the GAC

» The CodeGear subdirectory of the Syst em Envi r onnment . Speci al Fol der . ConmonAppl i cat i onDat a folder

+ $(BDSCOVMMONDI R)\ | i cense

The BDSCOVMONDI R environment variable is set when BDS is installed.

Deploying Blackfish SQL for Java Applications

Blackfish SQL includes a number of different jar files. The specific files you will need to distribute depend upon the type of
application you have written. The table below provides some guidelines for determining which files to distribute.

Blackfish SQL for Java Application Deployment JAR Files

File Name
dx.jar

jds.jar
jdsremote.jar

jdsserver.jar

jdshelp.jar beandt.jar dbtools.jar
jdsserver.jar

beandt.jar
dbswing.jar
jbcl-awt.jar

<BlackfishSQL_home>/bin/JdsServer
Windows: JdsServer.exe

JdsServer.config

<BlackfishSQL_home>/bin/JdsExplorer
Windows: JdsExplorer.exe

JdsExplorer.config
<BlackfishSQL_home>/doc/*

Description

Local DataExpress database connectivity
Local JDBC database connectivity

Remote JDBC thin client database connectivity

Full runtime embedded database server for local and remote JDBC database
connectivity

Required for JdsServer and JdsExplorer Graphical User Interfaces

Required for compiling and for visual design of JavaBean components
Required for Swing-based user interfaces
Required for AWT-based user interfaces

Launcher for the graphical interface to the Blackfish SQL server

Configuration file for the JdsServer launcher

Launcher for the graphical interface to JdsExplorer

Configuration file for the JdsExplorer launcher

Blackfish SQL help, accessible directly or through JdsExplorer and JdsServer

Deploying Licenses for Blackfish SQL for Java

Blackfish SQL for Java searches the following locations for licensing SLIP files:

« The bl ackfishsql .|icenseDirectory system property

You can set this property by calling the j ava. | ang. Syst em set Property method. Specify this property with the - D option
on the command line of the Java Virtual Machine:

134

12 Blackfish SQL

- Dbl ackfishSQL. i censebDirectory=/nylicenseDr
Alternatively, you can set this property in the JdsSer ver . conf i g file by adding a vnpar am - D statement:
vnpar am - Dbl ackfi shSQL. | i censeDi rectory=/nylicenseDir
e The Java user . homre system property
» All directories specified in the Java cl asspat h setting
See Also

Preface (@ see page 1)

Overview (@ see page 3)

System Architecture (& see page 7)

Establishing Connections (@ see page 23)
Administering Blackfish SQL (@ see page 31)

Using Blackfish SQL Security (& see page 35)

Using Stored Procedures and User Defined Functions (@ see page 41)
Using Triggers in Blackfish SQL Tables (@ see page 55)
Stored Procedures Reference (@ see page 59)

SQL Reference (@ see page 75)

Optimizing Blackfish SQL Applications (& see page 125)

Troubleshooting (@ see page 137)

135

13

Blackfish SQL

Troubleshooting

This chapter presents some guidelines for troubleshooting and resolving possible error conditions and other issues that may
arise when creating, maintaining, and accessing Blackfish SQL databases.

* Relative Path Database Filenames

« Enabling Blackfish SQL System Logging

» Enabling Blackfish SQL Database Logging

» Debugging Lock Timeouts and Deadlocks

» Verifying the Integrity of a Blackfish SQL Database
» Troubleshooting Blackfish SQL for Java

Relative Path Database Filenames

You can use the DataDirectory macro in the specification of database filenames to provide support for relative pathnames. For
more information on the DataDirectory macro, see Establishing Connections. If you do not use the DataDirectory macro, relative
pathnames are relative to the current directory of the process in which Blackfish SQL is executing. On Java platforms, the
user . dir property dictates how database filenames are resolved when a fully qualified path name is not specified. The Java
Virtual Machine (JVM) defaults this property to the current working directory of the process. You can set this property with a JVM
command line option. For example:

- Duser. dir=/nyapplication

You can also set this property from within a Java application by using the j ava. uti | . Syst em set Property method.

Enabling Blackfish SQL System Logging

System logging is performed for all connections and all databases accessed in the same process.
You can enable Blackfish SQL system logging in the following ways.
For the local Blackfish SQL client:

Set the bl ackfi shsql . | ogFi | e system property to the name of the file to which the log output should be written. If you set
this to con, the log output is displayed to the console. You can specify the types of operations to include in the log file by setting
the bl ackfi shsql . | ogFi | t er s property.

For the remote Blackfish SQL client:

In the Blackfish SQL configuration file set the bl ackfi shsql . | ogFi | e property to the name of the file to which the log output

137

Blackfish SQL 13

should be written. If you set this to con, the log output is displayed to the console. You can specify the types of operations to
include in the log file by setting the bl ackfi shsql . | ogFi | t er s property.

Setting System Properties

All Blackfish SQL system properties are case sensitive and begin with the bl ackfi shsql . prefix. The Syst enPr operti es
class has constant strings for all system properties. For Windows system properties:

If your application uses the Blackfish SQL server, set system properties in the BSQLServer. exe.config file. If your
application does not use the Blackfish SQL server, set system properties by caling the
Syst em AppDonai n. Curr ent Donai n. Set Dat a method.

For Java system properties:

If your application uses the Blackfish SQL server, set system properties in the BSQLSer ver. confi g file by prefixing the
property setting with vnpar am - D. If your application does not use the Blackfish SQL server, set system properties by calling
the Syst em set Pr operty method.

Blackfish SQL for Java JDBC Logging Options

For Blackfish SQL for Java, these are additional logging options:

« If you are using aj avax. sql . Dat aSour ce implementation, call the set LogW i t er method of the Dat aSour ce
implementation. See com bor | and. j avax. sql . JdbcDat aSour ce and
com bor | and. j avax. sql . JdbcConnect i onPool .

» Callthejava. sql . Dri ver Manager . set LogSt r eammethod.
» Callthejava. sql . Dri ver Manager . set LogW it er method.
Enabling Blackfish SQL Database Logging

Database logging output is performed on a per-database basis and is sent to the status log files for that database. The lifetime of
status log files is managed in the same fashion as the transactional log files for the database. When a transactional log file is
dropped, the corresponding status log file is dropped also. When you create a database, status logging is disabled by default.
You can enable database status logging by calling the DB_ADM N. ALTER_DATABASE built-in stored procedure. You can set the
log filtering options for all connections to a database by calling the DB_ADM N. SET_DATABASE_STATUS_LOG FI LTER built-in
stored procedure. You can set the log filtering options for a single connection by setting the | ogFi | t er connection property or
by calling the DB_ADM N. SET_STATUS_LOG_FI LTER built-in stored procedure.

Debugging Lock Timeouts and Deadlocks

Locks can fail due to lock timeouts or deadlocks. Lock timeouts occur when a connection waits to acquire a lock held by another
transaction and that wait exceeds the milliseconds set in the | ockWai t Ti me connection property. In such cases, an exception is
thrown that identifies which connection encountered the timeout and which connection is currently holding the required lock. The
transaction that encounters the lock timeout is not rolled back.

Blackfish SQL has automatic, high speed deadlock detection that should detect all deadlocks. An appropriate exception is
thrown that identifies which connection encountered the deadlock, and the connection with which it is deadlocked. Unlike lock
timeout exceptions, deadlock exceptions encountered by a j ava. sql . Connect i on cause that connection to automatically roll
back its transaction. This behavior allows other connections to continue their work.

Use the following guidelines to detect timeouts and deadlocks:

* Read the exception message from the timeout or deadlock. The message has information on what tables and what
connections are involved.

» Enable system or database logging. To restrict log output to lock-related issues, set the log filter options to LOCK_ERRORS.
» Use the DB_ADM N. GET_LCOCKS built-in stored procedure to report locks held by all connections.

138

13 Blackfish SQL

Avoiding Blocks and Deadlocks

A connection usually requires a lock when it either reads from or writes to a table stream or row. It can be blocked by another
connection that is reading or writing. You can prevent blocks in two ways:

* Minimize the life span of transactions that write.

» Use read-only transactions, since these do not require locks to read.

Using Short Duration Write Transactions

Connections should use short-duration transactions in high concurrency environments. However, in low- or no-concurrency
environments, a long-duration transaction can provide better throughput, since fewer commit requests are made. There is a
significant overhead to the commit operation because it must guarantee the durability of a transaction.

Using Read-only Transactions

Read-only transactions are not blocked by writers or other readers, and since they do not acquire locks, they never block other
transactions.

Setting the r eadOnl yTx connection property to true causes a connection to use read only connections. Note that there is also a
readOnl y connection property, which is very different from the r eadOnl yTx connection property. The r eadOnl y connection
property causes the database file to be open in read only mode, preventing any other connections from writing to the database.

For Blackfish SQL for Java JDBC connections you can also enable read-only transactions by setting the r eadOnl y property of
the j ava. sql . Connecti on object or the com bor| and. dx. sql . dat aset . Dat abase. get JdbcConnect i on methods to
true. When using Blackfish SQL for Java Dat aSt or eConnect i on objects, set the readOnl yTx property to t rue before
opening the connection.

Read-only transactions work by simulating a snapshot of the Blackfish SQL database. The snapshot sees only data from
transactions that are committed at the point the read-only transaction starts; otherwise, the connection would have to check if
there were pending changes and roll them back whenever it accessed the data. A snapshot begins when the connection opens.
The snapshot is refreshed each time the conmi t method is called.

Verifying the Integrity of a Blackfish SQL Database

If you suspect that cache contents were not properly saved on a non-transactional Blackfish SQL database, you can verify the
integrity of the file by calling the DB_ADM N. VERI FY built-in stored procedure.

Note that transactional Blackfish SQL databases have automatic crash recovery when they are opened. Under normal
circumstances, Blackfish SQL databases do not require verification.

Troubleshooting Blackfish SQL for Java

This section provides more Java-specific troubleshooting guidelines.

Debugging Triggers and Stored Procedures

The approach to debugging triggers and stored procedures depends on whether your application uses the local or remote JDBC
driver.

If your application uses the local JDBC driver, there is nothing special to set up, since the database engine is executing in the
same process as your application.

If your application uses the remote JDBC driver, you can use either of the following procedures.
Using the DataStoreServer JavaBean for debugging:

In your application, instantiate a com bor | and. dat ast or e. j dbc. Dat aSt or eSer ver JavaBean component and execute its

139

Blackfish SQL 13

st art method.
Using the JdsServer for debugging:
Complete the following steps:

1. Add the following lines to your <j ds_home>/ bi n/ JdsSer ver . confi g file: vimpar am - Xdebug vnpar am - Xnoagent
vnpar am - Dj ava. conpi | er =NONE vnpar am
- Xrunj dwp: transport =dt _socket, server =y, addr ess=5000, suspend=y

2. Execute the JdsServer. The server will not come up until a remote debugger (such as the JBuilder debugger) is launched to
attach to the JdsServer process on port 5000.

Accessing and Creating Tables from SQL and DataExpress JavaBeans

Creating an SQL table forces unquoted identifiers to be uppercase. You must quote the identifiers to enable case sensitivity. See
“Identifiers” in the SQL Reference.

When you use DataExpress components to create a table, the table and column names are case sensitive. If you specify these
identifiers in lowercase or mixed case, SQL is not able to access them unless the identifiers are quoted.

When you use DataExpress to access a table, the St or ageDat aSet st or eName property is case sensitive. However, the
column identifiers can be referenced in a case-insensitive fashion. Consequently, for DataExpress, you can access an addr ess
column by using ADDRESS or addr ess.

The simplest way to avoid problems with identifiers for both SQL and DataExpress components is to always use uppercase
identifiers when your application creates or accesses tables.

Debugging Non-transactional Database Applications

Set the saveMbde property to 2 when you are debugging an application that uses a non-transactional Blackfish SQL database.
The debugger stops all threads when you are single-stepping through code or when breakpoints are hit. If you do not set the
saveMode property to 2, the Blackfish SQL daemon thread cannot save modified cache data. For more information, see
“Non-transactional Database Disk Cache Write Options” in Optimizing Blackfish SQL Applications.

Resolving Problems with Locating and Ordering Data

Sun Microsystems makes changes to the j ava. t ext. Col | at i onKey classes from time to time as it corrects problems. The
secondary indices for tables stored inside a Blackfish SQL database use these Col | ati onKey classes to generate sortable
keys for non-US locales. When Sun changes the format of these Col | ati onKeys classes, the secondary indexes created by
an older Sun JDK may not work properly with a new Sun JDK. The problems resulting from such a situation manifest themselves
in the following ways:

» Locate and query operations might not find records that they should find.
» Atable viewed in secondary index order (by setting the St or ageDat aSet . sort property) might not be ordered properly.

Currently, the only way to correct this is to drop the secondary indices and rebuild them with the current JDK. The
St or ageDat aSet . r est ruct ur e() method also drops all the secondary indexes.

See Also

Preface (@ see page 1)

Overview (@ see page 3)

System Architecture (@ see page 7)
Establishing Connections (@ see page 23)

Administering Blackfish SQL (@ see page 31)

140

13 Blackfish SQL

Using Blackfish SQL Security (@ see page 35)

Using Stored Procedures and User Defined Functions (@ see page 41)
Using Triggers in Blackfish SQL Tables (@ see page 55)

Stored Procedures Reference (i@ see page 59)

SQL Reference (@ see page 75)

Optimizing Blackfish SQL Applications (@ see page 125)

Deploying Blackfish SQL Database Applications (@ see page 133)

141

14 Blackfish SQL

Index
A
Administering Blackfish SQL 31
D
DB_ADMIN 59
DB_UTIL 59

Deploying Blackfish SQL Database Applications 133

E

Establishing Connections 23

O

Optimizing Blackfish SQL Applications 125

Overview 3

P

Preface 1

S

SQL Reference 75
Stored Procedures Reference 59

System Architecture 7

T

Troubleshooting 137

U

Using Blackfish SQL Security 35
Using Stored Procedures and User Defined Functions 41
Using Triggers in Blackfish SQL Tables 55

	Blackfish SQL
	Table of Contents
	Preface
	Overview
	System Architecture
	Establishing Connections
	Administering Blackfish SQL
	Using Blackfish SQL Security
	Using Stored Procedures and User Defined Functions
	Using Triggers in Blackfish SQL Tables
	Stored Procedures Reference
	SQL Reference
	Optimizing Blackfish SQL Applications
	Deploying Blackfish SQL Database Applications
	Troubleshooting
	Index

