
Blackfish SQL

Copyright(C) 2008 Embarcadero Technologies, Inc. All Rights Reserved.

Table of Contents

Preface 1

Overview 3

System Architecture 7

Establishing Connections 23

Administering Blackfish SQL 31

Using Blackfish SQL Security 35

Using Stored Procedures and User Defined Functions 41

Using Triggers in Blackfish SQL Tables 55

Stored Procedures Reference 59

SQL Reference 75

Optimizing Blackfish SQL Applications 125

Deploying Blackfish SQL Database Applications 133

Troubleshooting 137

Index a

Blackfish SQL

iii

1 Preface

This Preface describes the manual, lists technical resources, and provides CodeGear contact information.

Intended Audience

This document is for:

• Developers implementing Blackfish SQL database applications

• System administrators responsible for installing, deploying, and maintaining Blackfish SQL databases

Blackfish SQL for Windows users should have a working knowledge of:

• Delphi, C++, C#, or VB.NET programming

• Basic dbExpress 4 or ADO.NET 2.0

• Basic SQL

Blackfish SQL for Java users should have a working knowledge of:

• Java programming

• DataExpress

• JDBC

• SQL

Document Conventions

This document uses the following typographic conventions:

Font or Symbol Use

mono space Computer output, files, directories, URL, and code elements such as command lines,
keywords, function names, and code examples

mono space italic Parameter names and variables

Bold GUI elements, emphasis, section subheadings

Italic Book titles, new terms

underlined font Hyperlink

1 Blackfish SQL

1

1

Online Technical Resources

General product information and technical information are available on the Blackfish SQL community page at:
http://www.codegear.com/products/blackfish/.

To discuss issues with other Blackfish SQL users, visit the Blackfish newsgroups at:
http://support.codegear.com/forums/directory/Blackfish.

CodeGear Support

CodeGear offers a variety of support options for Blackfish SQL. For pre-sales support, installation support, and a variety of
technical support options, visit: http://support.codegear.com.

When you are ready to deploy Blackfish SQL, you may need additional deployment licenses. To purchase licenses and
upgrades, visit the CodeGear Online Shop at: http://shop.codegear.com.

Additional Resources

Useful technical resources include:

JDBC

• JDBC™ API Documentation at java.sun.com

• JDBC API Tutorial and Reference, by Seth White, et al; published by Addison Wesley

SQL

• A Guide to The SQL Standard, by C. J. Date and Hugh Darwen; published by Addison Wesley

DataExpress JavaBeans

• DataExpress Component Library Reference in the Blackfish SQL for Java Help

See Also

Overview (see page 3)

System Architecture (see page 7)

Establishing Connections (see page 23)

Administering Blackfish SQL (see page 31)

Using Blackfish SQL Security (see page 35)

Using Stored Procedures and User Defined Functions (see page 41)

Using Triggers in Blackfish SQL Tables (see page 55)

Stored Procedures Reference (see page 59)

SQL Reference (see page 75)

Optimizing Blackfish SQL Applications (see page 125)

Deploying Blackfish SQL Database Applications (see page 133)

Troubleshooting (see page 137)

Blackfish SQL 1

2

1

http://www.codegear.com/products/blackfish
http://support.codegear.com/forums/directory/Blackfish

2 Overview

This chapter describes Blackfish SQL features.

• Blackfish SQL

• Blackfish SQL DataStore

• Compatibility Between Windows and Java

• Blackfish SQL for Java Connectivity

• Blackfish SQL API for Windows

• Administration and Utility Functions Available from SQL

Blackfish SQL

Blackfish™ SQL is a high-performance, small-footprint, transactional database. Blackfish SQL was originally implemented as an
all-Java database called JDataStore. This is now called Blackfish SQL for Java. Blackfish SQL was then ported from Java to C#.
The C# implementation is called Blackfish SQL for Windows.

The design and implementation of Blackfish SQL emphasizes database performance, scalability, ease of use, and a strong
adherence to industry standards. Blackfish SQL capabilities include the following:

• Industry standards compliance:

• Entry level SQL-92

• Unicode storage of character data

• Unicode-based collation key support for sorting and indexing

• dbExpress 4 drivers for Win32 Delphi and C++

• ADO.NET 2.0 providers for .NET

• JDBC for Java

• JavaBean data access components for Java

• XA/JTA Distributed transactions for Java

• High performance and scalability for demanding online transaction processing (OLTP) and decision support system (DSS)
applications

• Delphi, C#, and VB.NET stored procedures and triggers for Windows

• Java-stored procedures and triggers

2 Blackfish SQL

3

2

• Zero-administration, single assembly or single-jar deployment

• Database incremental backup and failover in the Java version

Blackfish SQL DataStore

Blackfish SQL is the name of the product, its tools, and of the file format. Within RAD Studio, there are assemblies that include
classes that start with DataStore.

Compatibility Between Windows and Java

Blackfish SQL for Windows and Blackfish SQL for Java are compatible, though some restrictions apply. The database file format
is binary-compatible between the two. The database clients and servers are interchangeable. Windows clients can connect to
Java servers and Java clients can connect to Windows servers. However, because the Blackfish SQL for Windows
implementation is more recent, some Blackfish SQL for Java features are not yet supported for the Windows version.

For additional information about Blackfish SQL compatibility, see System Architecture.

Blackfish SQL for Windows Connectivity

Blackfish SQL for Windows provides the following database drivers:

• DBXClient: This 100% Object Pascal dbExpress 4 database driver enables C++ and Win32 Delphi applications to connect to
a remote Blackfish SQL for Windows or Blackfish SQL for Java server.

• Local ADO.NET 2.0 Provider: This 100% managed code driver enables .NET applications to connect to a local Blackfish
SQL for Windows server. The local ADO.NET driver executes in the same process as the BlackFish SQL database kernel, for
better performance.

• Remote ADO.NET 2.0 Provider: This 100% managed code driver enables .NET applications to acquire a remote connection
to either a Blackfish SQL for Windows or Blackfish SQL for Java server.

For instructions on using these drivers, see Establishing Connections.

Blackfish SQL API for Windows

The Blackfish SQL API may be used in Delphi and C++ programs with the DBXClient DBX4 driver. .NET applications can use
the API with the ADO.NET Provider. In RAD Studio the API is in the Borland.Data.DataStore and
Borland.Data.MetaData namespaces.

The administrative capabilities listed below are not yet supported in DataExplorer for Blackfish SQL for Windows. Use SQL
commands or Blackfish SQL built-in DB_ADMIN stored procedures to complete these tasks.

• Create/alter autoincrement and max inline properties for columns

• Create secondary indexes

• Create, alter, drop users and roles

• Create, alter, drop database mirrors

• Database encryption

• Database backup

Administration and Utility Functions Available From SQL

Two classes are available, DB_ADMIN and DB_UTIL. These methods can be called from SQL using the CALL statement. They
can be called without creating a METHOD alias, because the Blackfish SQL dialect recognizes methods in DB_ADMIN as built-in
methods.

Blackfish SQL 2

4

2

DB_ADMIN Class

DB_ADMIN is a group of stored procedures for performing a variety of database administration tasks. Some of the capabilities
include:

• Configuring automatic failover and incremental backup

• Viewing and altering database configurations

• Backing up databases (explicit)

• Encrypting databases

• Mirror management

For more information, see the Stored Procedures Reference.

DB_UTIL Class

DB_UTIL is a set of SQL stored procedures for performing numeric, string and date/time operations on data stored in database
tables. These procedures include such functions as:

• Mathematical functions, such as trigonometric, arithmetic, and random

• String manipulation functions

• Date and time functions

For more information, see the Stored Procedures Reference.

ADO.NET

Blackfish SQL includes an ADO.NET implementation. This is similar to the AdoDbx Client, which is also an ADO.NET
implementation.

• DataStoreCommand: Provides execution of SQL statements and execution of stored procedures.

• DataStoreCommandBuilder: Generates single-table commands to reconcile changes made to a DataSet with its underlying
database.

• DataStoreConnection: Provides a connection to a database.

• DataStoreConnectionPool: Provides access to a connection pool.

• DataStoreDataAdapter: Fills a DataSet and updates a database.

• DataStoreDataReader: Gives access to a result table from a database server.

• DataStoreDataSourceEnumerator: Provides enumerator for finding all data sources on local network.

• DataStoreParameter: Specifies parameter for DataStoreCommand.

• DataStoreParameterCollection: Collection of parameters for DataStoreCommand.

• DataStoreProviderFactory: Base class for a provider's implementation of data source classes.

• DataStoreRowUpdatedEventArgs: Holds data for RowUpdated event of DataStoreDataAdapter.

• DataStoreRowUpdatingEventArgs: Holds data for RowUpdating event of DataStoreDataAdapter.

• DataStoreTransaction: Provides a transaction.

See Also

Preface (see page 1)

System Architecture (see page 7)

Establishing Connections (see page 23)

Administering Blackfish SQL (see page 31)

2 Blackfish SQL

5

2

Using Blackfish SQL Security (see page 35)

Using Stored Procedures and User Defined Functions (see page 41)

Using Triggers in Blackfish SQL Tables (see page 55)

Stored Procedures Reference (see page 59)

SQL Reference (see page 75)

Optimizing Blackfish SQL Applications (see page 125)

Deploying Blackfish SQL Database Applications (see page 133)

Troubleshooting (see page 137)

Blackfish SQL 2

6

2

3 System Architecture

This chapter provides an overview of Blackfish SQL system architecture.

• Compatibility

• Windows Connectivity

• Java Connectivity

• Differences Between Local and Remote Drivers

• Database Files

• Database File System

• Transaction Management

• High Availability

• Heterogeneous Replication Using DataExpress

Blackfish SQL Compatibility

Blackfish SQL for Windows and Blackfish SQL for Java are compatible in these ways:

• The database file format is binary-compatible between the two

• The database clients and servers are interchangeable

• Windows clients can connect to Java servers and Java clients can connect to Windows servers

Compatibility is restricted in the following ways:

• The Object type uses platform-specific serialization; therefore the data cannot be shared between two different clients:

• An ADO driver cannot read a Java serialized object.

• A Java driver cannot read a .NET serialized object.

• A DbxClient driver cannot read Java or .NET serialized objects.

• The maximum scale for a decimal is different in Java and .NET.

• For Blackfish SQL for Java, the Timestamp type has two more digits in the fractional portion.

The following Blackfish SQL for Java features are not yet supported in the Windows version:

• ISQL SQL Command Line Interpreter

3 Blackfish SQL

7

3

• High Availability features, including incremental backup and failover

• Graphical tooling for some administrative capabilities

• Access to file and object streams

• Tracking and resolving of row-level insert, update and delete operations

• Access to the Blackfish SQL File System directory

Blackfish SQL for Windows Connectivity

Windows applications can use one or more of the following connectivity solutions to access a Blackfish SQL database
programmatically:

• DBXClient DBXClient is a 100% Object Pascal dbExpress 4 database driver that enables Win32 Delphi and C++
applications to connect to a Blackfish SQL for Windows or Blackfish SQL for Java server.

• ADO.NET ADO.NET is the Microsoft standard for database connectivity on the .NET platform. Blackfish SQL for Windows has
the following ADO.NET providers:

• Local ADO.NET 2.0 Provider: This 100% managed code driver enables .NET applications to connect to a local Blackfish
SQL server. The local ADO.NET driver executes in the same process as the BlackFish SQL database kernel, for better
performance.

• Remote ADO.NET 2.0 Provider: This 100% managed code driver enables .NET applications to acquire a remote
connection to either a Blackfish SQL for Windows or Blackfish SQL for Java server.

See Establishing Connections for instructions and code examples for using these drivers.

Blackfish SQL for Java Connectivity

Java applications can use one or more of the following connectivity solutions to access a Blackfish SQL database
programmatically:

• JDBC Type 4 Drivers JDBC is the industry standard SQL call-level interface for Java applications. Blackfish SQL for Java
provides the following JDBC drivers:

• Local JDBC driver: This 100% managed code driver enables Java applications to connect to a local Blackfish SQL server.
The local JDBC driver executes in the same process as the BlackFish SQL database kernel, for better performance.

• Remote JDBC driver: This 100% managed code driver enables Java applications to acquire a remote connection to either
a Blackfish SQL for Windows or Blackfish SQL for Java server.

• ODBC to JDBC Gateway Provided by EasySoft Limited, this gateway is an industry standard SQL call-level interface. The
EasySoft ODBC to JDBC Gateway enables native applications to access Blackfish SQL databases.

• DataExpress JavaBeans DataExpress JavaBeans provides additional functionality not addressed by the JDBC standard.
See DataExpress JavaBeans for details.

See Establishing Connections for instructions and code examples for using these drivers.

DataExpress JavaBeans

NOTE: This feature is available only with Blackfish SQL for Java.

DataExpress is a set of JavaBean runtime components that provide functionality not addressed by the JDBC standard.
JavaBean is an industry-standard component architecture for Java. The JavaBean standard specifies many important aspects of
components needed for RAD development environments. JavaBean components can be designed in a visual designer and can
be customized with the properties, methods, and events that they expose.

DataExpress is included in the component palette of CodeGear JBuilder Visual Designer. For information on using DataExpress
from within JBuilder, see the JBuilder Help.

Because DataExpress is a set of runtime components, you need not use JBuilder to develop and deploy applications that use
DataExpress.

The majority of DataExpress JavaBean components are those required to build both server-side and client-side database

Blackfish SQL 3

8

3

applications. Client-side applications require high quality data binding to visual components such as grid controls, as well as
support for reading and writing data to a database.

Server-side applications require data access components to help with reading and writing data to a database, but presentation is
typically handled by a web page generation system such as Java Server Pages (JSPs). Even though DataExpress has extensive
support for client-side data binding to visual component libraries such as dbSwing and JBCL, the DataExpress design still
separates the presentation from the data access layer. This allows DataExpress components to be used as a data access layer
for other presentation paradigms such as the JSP/servlet approach employed by JBuilder InternetBeans Express technology.

The DataExpress architecture allows for a pluggable storage interface to cache the data that is read from a data source.
Currently, there are only two implementations of this interface, MemoryStore (the default), and DataStore. By setting just two
properties on a StorageDataSet JavaBean component, a Blackfish SQL table can be directly navigated and edited with a
StorageDataSet JavaBean. By setting the DataSet property of a dbSwing grid control, the entire contents of large tables can
be directly browsed, searched, and edited at high speed. This effectively provides an ISAM-level data access layer for Blackfish
SQL tables.

Automating Administrative Functions with DataExpress JavaBeans

There are many DataExpress components that can be used to automate administrative tasks. Commonly-used components are:

DataExpress Administrative Components

Task Component

Custom server start and shutdown com.borland.datastore.jdbc.DataStoreServer

Database backup, restore, and pack com.borland.datastore.DataStoreConnection.copyStreams()

Security administration com.borland.datastore.DataStoreConnection

Transaction management com.borland.datastore.TxManager com.borland.datastore.DataStore

DataExpress JavaBean Source Code

JBuilder provides a source code .jar file that includes a large portion of the DataExpress JavaBean components. This enables
you to more easily debug your applications and gain a better understanding of the DataExpress JavaBean components.

Differences Between Local and Remote Drivers

The primary difference between using local and remote drivers with Blackfish SQL is:

• Local driver: The Blackfish SQL database engine executes in the same process as the application.

• Remote driver: The Blackfish SQL database engine executes in either the same process or in a different process as the
application.

Advantages of Using a Local Driver to Access a Database

A local Blackfish SQL driver provides the following benefits:

• High-speed interface to the database Driver calls are made directly into the database kernel on the same call stack. There
are no remote procedure calls to a database server running in another process.

• Easy to embed in an application The database server does not need to be configured or started. The executable code for
the database kernel, database driver and application execute in the same process.

3 Blackfish SQL

9

3

Advantages of Using a Remote Driver to Access a Database

You can use a remote Blackfish SQL driver to execute Blackfish SQL in a separate database server process. However, before
the application can use a remote driver, the Blackfish SQL server process must be started. Executing the Blackfish SQL
database kernel in a separate database server process provides the following benefits:

• Multi process access to a database If multiple processes on one or more computers need to access a single Blackfish SQL
database, a Blackfish SQL server must be started and the remote drivers must be used by the application.

• Improved performance using multiple computers If your application or web server is consuming a large portion of the
memory or CPU resources, it is often possible to achieve better performance by running the Blackfish SQL server on a
separate computer.

• Improved fault tolerance Applications that use a remote connection typically run in a separate process. Errant applications
can be terminated without having to shutdown the database server.

Advantages of Using Both Local and Remote Drivers to Access a Database

Using both the local and remote driver to access the same database can give you the best of both worlds. A Blackfish SQL
database file can be held open by only one operating system process. When you connect using the local driver, the process that
uses the local driver holds the database file open. When the remote driver makes the connection, the Blackfish SQL server
process holds the database file open.

Since the local driver causes the database file to be open in the same process, it prevents connections from the remote driver.
However, if the process that uses the local driver also starts a Blackfish SQL server in the same process, then other processes
using the remote driver can access the same database as the local driver.

The Blackfish SQL server can be started inside an application by using a single line of Java code that instantiates a
DataStoreServer component and executes its start method. The DataStoreServer runs on a separate thread and
services connection requests from processes that use the remote driver to access a Blackfish SQL database on the computer
that on which the DataStoreServer was started.

In addition, the local driver can be used by the application that launched the DataStoreServer for faster in-process driver calls
into the Blackfish SQL database engine.

Blackfish SQL Database Files

These files are created and used by Blackfish SQL:

• file-name.jds: a single file storage for all database objects.

• database-name_LOGA_*: transactional log files. If the database file is moved, the log files must be moved with it.

• database-name_LOGA_ANCHOR: redundantly stores log file configuration information.

• database-name_STATUS*: log files created if status logging is enabled for the database.

A Blackfish SQL database can still be used if the anchor or status log files do not exist.

A non-transactional (read only) database only needs the .jds database file.

The specifications for Blackfish SQL database file capacity are:

Blackfish SQL Database File Capacity

Specification Value

Minimum block size: 1 KB

Maximum block size: 32 KB

Default block size 4 KB

Blackfish SQL 3

10

3

Maximum Blackfish SQL database file size 2 billion blocks. For the default block size, that yields a maximum of
8,796,093,022,208 bytes (8TB).

Maximum number of rows per table stream 281,474,976,710,656

Maximum row length 1/3 of the block size. Long Strings, objects, and input streams that are
stored as Blobs instead of occupying space in the row.

Maximum Blob size 2GB each

Maximum file stream size 2GB each

Blackfish SQL Database File System

A Blackfish SQL database file can contain these types of data streams:

• Table streams: These are database tables typically created using SQL. A table stream can have secondary indexes and
Blob storage associated with it.

• File streams: There are two types of file streams:

• Arbitrary files created with DataStoreConnection.createFileStream()

• Serialized Java objects stored as file streams

A single Blackfish SQL database can contain all stream types.

Streams are organized in a file system directory. The ability to store both tables and arbitrary files in the same file system allows
all of the data for an application to be contained in a single portable, transactional file system. A Blackfish SQL database can
also be encrypted and password protected.

The specifications for Blackfish SQL database file systems are:

Blackfish SQL Database File System Specifications

Specification Value

Directory separator
character for streams

/

Maximum stream name
length

192 bytes

• Best case (all single-byte character sets): 192 characters

• Worst case (all double-byte character sets): 95 characters (one byte lost to indicate DBCS)

Reserved names Stream names that begin with SYS are reserved. Blackfish SQL has the following system tables:

• SYS/Connections

• SYS/Queries

• SYS/Users

Blackfish SQL for Java Specific Streams

Some table streams and all file streams are currently only accessible from Java applications.

If the resolvable property for the table is set, all insert, update, and delete operations made against the table are recorded.
This edit tracking feature enables DataExpress components to synchronize changes from a replicated table to the database from
which the table was replicated.

File streams are random-access files. File streams can be further broken down into two different categories:

• Arbitrary files created with DataStoreConnection.createFileStream(): You can write to, seek in, and read from these

3 Blackfish SQL

11

3

streams.

• Serialized Java objects stored as file streams: You can write to, seek in, and read from these streams.

Each stream is identified by a case-sensitive name referred to as a storeName in the API. The name can be up to 192 bytes
long. The name is stored along with other information about the stream in the internal directory of the Blackfish SQL database.
The forward slash (/) is used as a directory separator in the name to provide a hierarchical directory organization. JdsExplorer
uses this structure to display the contents of the directory in a tree.

Advantages of Using the Blackfish SQL File System

For the simple persistent storage of arbitrary files and objects, using the Blackfish SQL file system has a number of advantages
over using the JDK classes in the java.io package:

• It is simpler, because one class is needed instead of four (FileOutputStream, ObjectOutputStream,
FileInputStream, ObjectInputStream).

• You can keep all your application files and objects in a single file and access them easily with a logical name instead of
streaming all of your objects to the same file.

• Your application can use less storage space, due to how disk clusters are allocated by some operating systems. The default
block size in a Blackfish SQL database file is small (4KB).

• Your application is more portable, since you are no longer at the mercy of the host file system. For example, different
operating systems have different allowable characters for names. Some systems are case sensitive, while others are not.
Naming rules inside the Blackfish SQL file system are consistent on all platforms.

• Blackfish SQL provides a transactional file system that can also be encrypted and password protected.

Blackfish SQL Directory Contents

Note: Currently, the directory for the Blackfish SQL database can be accessed only from Java applications. Fortunately, most
applications do not need to access the directory directly.

The JdsExplorer tree provides a hierarchical view of the the Blackfish SQL directory. The Blackfish SQL directory can also be
opened programmatically with a DataExpress StorageDataSet component. This provides a tabular view of all streams stored
in the Blackfish SQL file system. The directory table has the following structure:

Blackfish SQL Directory Table Columns

Name Constant Type Contents

1 State DIR_STATE short Whether the stream is active or deleted

2 DeleteTime DIR_DEL_TIME long If deleted, when; otherwise zero

3 StoreName DIR_STORE_NAME String The store name

4 Type DIR_TYPE short Bit fields that indicate the type of streams

5 Id DIR_ID int A unique ID number

6 Properties DIR_PROPERTIES String Properties and events for a DataSet stream

7 ModTime DIR_MOD_TIME long Last time the stream was modified

8 Length DIR_LENGTH long Length of the stream, in bytes

9 BlobLength DIR_BLOB_LENGTH long Length of the Blobs in a table stream, in bytes

You can reference the columns by name or by number. There are constants defined as DataStore class variables for each of
the column names. The best way to reference these columns is to use these constants. The constants provide compile-time
checking to ensure that you are referencing a valid column. Constants with names ending with the suffix _STATE exist for the
different values for the State column. There are also constants for the different values and bit masks for the Type column, with

Blackfish SQL 3

12

3

names ending with the suffix _STREAM. See the online help for the DataStore class for a listing of these constants.

Stream Details

Time columns in the Blackfish SQL directory are Coordinated Universal Time (UTC).

As with many file systems, when you delete a stream in Blackfish SQL, the space it occupied is marked as available, but the
contents and the directory entry that points to it are not immediately reused for new allocations. This means you can sometimes
restore a deleted stream if it has not been overwritten.

For more information on deleting and restoring streams, see Deleting Streams, How Blackfish SQL Reuses Blocks, and
Restoring Streams.

The Type column indicates whether a stream is a file or table stream, but there are also many internal table stream subtypes (for
example, for indices and aggregates). These internal streams are marked with the HIDDEN_STREAM bit to indicate that they
should not be displayed. Of course, when you are reading the directory, you can decide whether these streams should be hidden
or visible.

These internal streams have the same StoreName as the table stream with which they are associated. This means that the
StoreName alone does not always uniquely identify a stream. Some internal stream types can have multiple instances. The ID
for each stream is always unique; however, the StoreName is sufficiently unique for the storeName parameter used at the API
level. For example, when you delete a table stream, all the streams with that StoreName are deleted.

Directory Sort Order

The directory table is sorted by the first five columns. Because of the values stored in the State column, all active streams are
listed first in alphabetical order by name. These are then followed by all deleted streams ordered by their delete time, oldest to
most recent.

NOTE: You cannot use a DataSetView to create a different sort order.

Blackfish SQL File System Storage Allocation

Database contents are stored in a single file. If the database has transaction support enabled, there are additional files for
transactional logs.

A database file has a block size property that defaults to 4096 bytes. The database block size property is the unit size used for
new allocations in the database. This size also determines the maximum storage size of a Blackfish SQL database. The formula
for computing the maximum database file size is:

<bytes-per-block> * 2^31

For a block size of 4096 bytes, this is about 8.8 terabytes.

A Blackfish SQL database file does not automatically shrink as data is deleted or removed from it. However, new allocations
reuse the space from deleted allocations. Deleted space in the file system is made available to new allocations in two ways:

• Deleted blocks In this case, an entire block is reallocated from the list of deleted blocks.

• Blocks that are partially full In this case, free space can be reused only on a per-stream basis. Specifically, the free space
in a block in Table A can be reused only by a new allocation for a row in Table A. From an allocation perspective, tables,
secondary indices, Blobs, and files are all separate streams.

On average, partially allocated blocks are kept at least 50 percent full. The file system goes to great lengths to ensure this is true
for all stream types in the Blackfish SQL file system. The one exception to this rule occurs when a stream has a small number of
blocks allocated.

A Blackfish SQL database file can be compacted to remove all deleted space and to defragment the file system so that blocks
for each stream are located in contiguous regions. To compact a database using JdsExplorer, choose Tools > Pack. You can
accomplish this programmatically by using the DB_ADMIN.COPY_USERS and DB_ADMIN.COPY_STREAMS methods.

3 Blackfish SQL

13

3

Deleting Streams

Deleting a stream does not actually overwrite or clear the stream contents. As in most file systems, the space used by the
stream is marked as available, and the directory entry that points to that space is marked as deleted. The time at which the
stream was deleted is recorded in the directory. Over time, new stream allocations overwrite the space that was formerly
occupied by the deleted stream, making the content of the deleted streams unrecoverable.

You can use JdsExplorer to delete streams, or you can delete streams programmatically using the
DataStoreConnection.deleteStream() method, which takes as an argument the name of the stream to delete.

How Blackfish SQL Reuses Blocks

Blocks in the Blackfish SQL database file that were formerly occupied by deleted streams are reclaimed according to the
following rules:

• Blackfish SQL always reclaims deleted space before allocating new disk space for its blocks.

• If the database is transactional, the transaction that deleted the stream must commit before the used space can be reclaimed.

• The oldest deleted streams (those with the earliest delete times) are reclaimed first.

• For table streams, the support streams (those for indices and aggregates) are reclaimed first.

• Space is reclaimed from the beginning of the stream to the end of the stream. This means you are more likely to recover the
end of a file or table than the beginning.

• Because of the way table data is stored in blocks, you never lose or recover a partial row in a table stream, only complete
rows.

• When all the space for a stream has been reclaimed, the directory entry for the stream is automatically erased, since there is
nothing left to restore.

Restoring Streams

Blackfish SQL allows deleted streams to be restored if their space has not be consumed by new allocations as described in
above. You can restore a stream either by using JdsExplorer to restore it, or by calling the
DataStoreConnection.undeleteStream() method.

Because table streams have multiple streams with the same name, the stream name alone is not sufficient for attempting to
restore a stream programmatically. You must use a row from the Blackfish SQL directory. The row contains enough information
to uniquely identify a particular stream.

The DataStoreConnection.undeleteStream() method takes such a row as a parameter. You can pass the directory
dataset itself. The current row in the directory dataset is used as the row to restore.

If you create a new stream with the name of a deleted stream, you cannot restore that stream while the same name is being
used by an active stream.

Transaction Management

The lifecycle of a transaction begins with any read or write operation through a connection. Blackfish SQL uses stream locks to
control access to resources. To read a stream or modify any part of a stream (e.g., a byte in a file, a row in a table), a connection
must acquire a lock on that stream. Once a connection acquires a lock on a stream, it holds the lock until the transaction is
committed or rolled back.

In single-connection applications, transactions primarily provide crash recovery and allows an application to undo changes. Or,
you may decide to make a Blackfish SQL database transactional so that it can be accessed through JDBC. If you want to access
that Blackfish SQL database using DataExpress, you must deal with transactions.

Blackfish SQL 3

14

3

Transaction Isolation Levels

Blackfish SQL supports all four isolation levels specified by the ANSI/ISO SQL (SQL/92) standards.

The serializable isolation level provides complete transaction isolation. An application can employ a weaker isolation level to
improve performance or to avoid lock manager deadlocks. Weaker isolation levels are susceptible to one or more of the following
isolation violations:

• Dirty reads One connection is allowed to read uncommitted data written by another connection.

• Nonrepeatable reads A connection reads a committed row, another connection changes and commits that row, and the first
connection rereads that row, getting a different value the second time.

• Phantom reads A connection reads all of the rows that satisfy a WHERE condition, a second connection adds another row that
also satisfies that condition, and the first connection sees the new row that was not there before, when it reads a second time.

SQL-92 defines four levels of isolation in terms of the behavior that a transaction running at a particular isolation level is
permitted to experience, which are:

SQL Isolation Level Definitions

Isolation Level Dirty Read Nonrepeatable Read Phantom Read

Read uncommitted Possible Possible Possible

Read committed Not Possible Possible Possible

Repeatable read Not possible Not possible Possible

Serializable Not possible Not possible Not possible

Choosing an Isolation Level for a Blackfish SQL Connection

Guidelines for choosing an isolation level for a connection include:

Isolation Level Guidelines

Isolation
level

Description

Read
Uncommitted

This isolation level is suitable for single-user applications for reports that allow transactionally inconsistent views
of the data. It is especially useful when browsing Blackfish SQL tables with dbSwing and DataExpress DataSet
components. This isolation level incurs minimal locking overhead.

Read
Committed

This isolation level is commonly used for high-performance applications. It is ideal for data access models that
use Optimistic Concurrency Control. In these data access models, read operations are generally performed first.
In some cases, read operations are actually performed in a separate transaction than write operations.

Repeatable
Read

This isolation level provides more protection for transactionally consistent data access without the reduced
concurrency of TRANSACTION_SERIALIZABLE. However, this isolation level results in increased locking
overhead because row locks must be acquired and held for the duration of the transaction.

Serializable This isolation level provides complete serializability of transactions at the risk of reduced concurrency and
increased potential for deadlocks. Although row locks can still be used for common operations with this isolation
level, some operations cause the Blackfish SQL lock manager to escalate to using table locks.

Blackfish SQL Locking

The locks used by the Blackfish SQL Lock Manager are:

Blackfish SQL Locking

3 Blackfish SQL

15

3

Lock Description

Critical
section
locks

These are internal locks used to protect internal data structures. Critical section locks are usually held for a short
period of time. They are acquired and released independent of when the transaction is committed.

Row
locks

Row locks are used to lock a row in a table. These locks support shared and exclusive lock modes. Row locks are
released when the transaction commits.

Table
locks

Table locks are used to lock an entire table. These locks support shared and exclusive lock modes. Table locks are
released when the transaction commits.

DDL
table
locks

DDL table locks are locks acquired when database metadata is created, altered, or dropped. These support shared
and exclusive lock modes:

• Shared DDL locks are held by transactions that have tables opened. Shared DDL locks are held until the
transaction commits and the connection closes the table and all statements that refer to the table.

• Exclusive DDL locks are used when a table must be dropped or structurally modified and are released when a
transaction commits.

Controlling Blackfish SQL Locking Behavior

You can specify case-insensitive connection properties to control locking behavior. The property names are:

Case-Insensitive Connection Properties for Controlling Locking Behavior

Property Behavior

tableLockTables Specifies the tables for which row locking is to be disabled. This can be a list of tables, defined as a string of
semicolon-separated, case-sensitive table names. Set this property to “*”.

maxRowLocks Specifies the maximum number of row locks per table that a transaction should acquire before escalating to
a table lock. The default value is 50.

lockWaitTime Specifies the maximum number of milliseconds to wait for a lock to be released by another transaction.
When this timeout period expires, an appropriate exception is thrown.

readOnlyTxDelay Specifies the maximum number of milliseconds to wait before starting a new read-only view of the database.
For details, see the discussion on read only transaction, in Tuning Blackfish SQL Concurrency Control
Performance

Blackfish SQL Locking and Isolation Levels

The use of table locks and row locks varies between the different isolation levels. The tableLockTables connection property
disables row locking and affects all isolation levels. Critical section and DDL locks are applied in the same manner for all
isolation levels.

All isolation levels acquire at least an exclusive row lock for row update, delete, and insert operations. In some lock escalation
scenarios, an exclusive table lock occurs instead.

The row locking behavior of the Blackfish SQL connection isolation levels are:

Lock Use and Isolation Levels

Blackfish SQL 3

16

3

Connection
isolation
level

Row locking behavior

Read
Uncommitted

This level does not acquire row locks for read operations. It also ignores exclusive row locks held by other
connections that have inserted or updated a row.

Read
Committed

This level does not acquire row locks for read operations. A transaction using this isolation level blocks when
reading a row that has an exclusive lock held by another transaction for an insert or update operation. This block
terminates when one of the following occurs: the write transaction commits, a deadlock is detected, or the
lockTimeOut time limit has expired.

Repeatable
Read

This level acquires shared row locks for read operations.

Serializable This level acquires shared row locks for queries that select a row based on a unique set of column values such
as a primary key or INTERNALROW column. In SQL, the WHERE clause determines whether or not unique
column values are being selected. Exclusive row locks are also used for insert operations and update/delete
operations on rows that are identified by a unique set of column values. The following operations escalate to a
shared table lock:

• Read operations that are not selected based on a unique set of column values

• Read operations that fail to find any rows

• Insert and update operations performed on a non-uniquely specified row

Note that although lock escalation from row locks to table locks occurs in some situations for Serializable as described
above, it also occurs for all isolation levels if the maxRowLocks property is exceeded.

Concurrency Control Changes

Blackfish SQL database files created with earlier versions of Blackfish SQL continue to use table locking for concurrency control.
There are, however, some minor concurrency control improvements for older database files. These include:

• Support for Read Uncommitted and Serializable connection isolation levels

• Shared table locks for read operations; earlier versions of Blackfish SQL software used exclusive table locks for read and
write operations.

Blackfish SQL for Windows Connection Pooling

In an application that opens and closes many database connections, it is efficient to keep unused Connection objects in a pool
for future reuse. This saves the overhead of having to create a new physical connection each time a connection is needed.

Using the DBXClient dbExpress Driver

Use the TDBXPool delegate driver to provide connection pooling support for DBXClient connections.

Using ADO.NET Providers

By default, the .NET client drivers implement a connection pool that is always in effect. Each ConnectionString has its own
pool. There are connection properties that affect the maximum number of connections in a pool, and other attributes. There is
also a ConnectionPool property that provides access to all active connection pools.

Blackfish SQL for Java Connection Pooling and Distributed Transaction Support

Blackfish SQL provides several components for dealing with JDBC DataSources, connection pooling, and distributed
transaction (XA) support. These features require J2EE. If you are running with a JRE version less than 1.4, download the
J2EE.jar file from java.sun.com, and add it to the classpath.

3 Blackfish SQL

17

3

Blackfish for Java Connection Pooling

The JdbcConnectionPool object supports pooled XA transactions. This feature allows Blackfish SQL to participate in a
distributed transaction as a resource manager. Blackfish SQL provides XA support by implementing these standard interfaces
specified in the Java Transaction API (JTA) specification:

• javax.sql.XAConnection

• javax.sql.XADataSource

• javax.transaction.xa.XAResource

To acquire a distributed connection to a Blackfish SQL database from a JdbcConnectionPool, call
JdbcConnectionPool.getXAConnection(). The connection returned by this method works only with the Blackfish SQL
JDBC driver. XA support is useful only when combined with a distributed transaction manager, such as the one provided by
Borland Enterprise Server.

Under normal operation, all global transactions should be committed or rolled back before the associated XAConnection is
closed. If a connection is participating in a global transaction that is not yet in a prepared state but is in a successful started or
suspended state, the transaction will be rolled back during any crash recovery that may occur.

The Heuristic Completion JDBC Extended Property

Blackfish SQL provides heuristicCompletion, an extended JDBC property that allows you to control the behavior when one
or more databases fail during a two-phase commit. When XA transactions are prepared but not completed (no commit or rollback
has been performed), the behavior is determined by one of these property settings:

• commit causes the transaction to be heuristically committed when Blackfish SQL reopens the database. This is the default.

• rollback causes the transaction to be heuristically rolled back when Blackfish SQL reopens the database.

• none causes Blackfish SQL to keep the transaction state when reopening a database. When this option is used, the locks that
were held when the transaction was prepared are reacquired and held until the transaction is committed or rolled back by a
JTA/JTS-compliant transaction manager.

The heuristic commit and rollback options allow for more efficient execution, because the locks can be released sooner and
less information is written to the transaction log file.

The Blackfish SQL High Availability Server

NOTE: This feature is currently available only for Blackfish SQL for Java. It is not currently available in Blackfish SQL for
Windows.

One of the most important areas of concern for any database application is eliminating single points of failure. The Blackfish SQL
server provides a broad range of capabilities for making a database application fail-safe by avoiding application down time and
loss of critical data. The High Availability server uses database mirroring technologies to ensure data availability in the event of
software or hardware failure, and to provide a method of routine incremental backup. While a more general database replication
scheme could provide similar protection, a mirroring approach provides advantages in terms of simplicity, ease of use, and
performance.

A more general data replication solution could be employed to solve many of the same problems that the Blackfish SQL High
Availability server addresses. Even though a more general solution would solve a broader variety of synchronization needs, it
would do so at a much higher set of costs, including greater complexity and slower performance.

The Blackfish SQL database engine uses its transactional log files to maintain read-only mirror images of a database. The same
TCP/IP database connections used for general database access are also used to synchronize mirrored databases.

Mirror Types

These mirror types can be used by an application:

Blackfish SQL 3

18

3

• Primary

• Read-only

• Directory

The Primary Mirror

The primary mirror is the only mirror type that can accept both read and write operations to the database. Only one primary
mirror is allowed at any time.

Read-only Mirrors

There can be any number of read-only mirrors. Connections to these databases can only perform read operations. Read-only
mirrors provide a transactionally consistent view of the primary mirror database. However, a read-only mirror database might not
reflect the most recent write operations against the primary mirror database. Read-only mirrors can be synchronized with
changes to the primary mirror instantly, on a scheduled basis, or manually. Instant synchronization is required for automatic
failover. Scheduled and manual synchronization can be used for incremental synchronization or backup.

Directory Mirrors

Directory mirror databases mirror only the mirror configuration table and the tables needed for security definition. They do not
mirror the actual application tables in the primary mirror.

There can be any number of directory mirrors. Connections to these databases can perform read operations, only. The storage
requirements for a directory mirror database are very small, since they contain only the mirror table and security tables. Directory
mirrors redirect read-only connection requests to read-only mirrors. Writable connection requests are redirected to the primary
mirror.

The Blackfish SQL Engine and Failover

Blackfish SQL Engine failover handling capabilities include the following:

• Transaction log records

• Automatic failover

• Manual failover

Transaction log records

Blackfish SQL uses transaction log records to incrementally update mirrored databases. It transmits these log records to mirrors
at high speed during synchronization operations. The same mechanism used for crash recovery and rollback is used to apply
these changes. Existing code is used for all synchronization. The existing Blackfish SQL support for read-only transactions
provides a transactionally consistent view of the mirrored data while the mirror is being synchronized with contents of more
recent write transactions from the primary mirror.

Automatic failover

When a primary mirror that is configured with two or more automatic failover mirrors fails, one of the read-only mirrors that is
configured for automatic failover is promoted to be the primary mirror. The application can be affected in one of two ways:

• If an application has already connected to the primary before it failed, all operations attempted against the failed primary will
encounter SQLException or IOException errors. The application can cause itself to be hot swapped over to the new primary
by rolling back the transaction. This is identical to how database deadlock is handled in high-concurrency OLTP applications.

• If an application has never connected to the primary before it failed, its connection attempt fails. Directory mirrors can be used
to automatically redirect new connection requests to the new primary mirror.

3 Blackfish SQL

19

3

Manual failover

Unlike automatic failover, manual failover is performed only on request. Any read-only mirror can become the primary mirror.
This is useful when the computer the primary server is executing on needs to be taken off line for system maintenance.

Advantages of the High Availability Server

The Blackfish SQL High Availability server provides a broad range of benefits, including:

• No single point of failure Since multiple copies of the same database are maintained across several computers, there is no
need for a shared storage device. The High Availability server maintains the highest level of database availability with no
single point of failure and with high speed failover and recovery, guaranteed data consistency, and transaction integrity.

• Complete data and disaster protection By maintaining copies of the database on multiple servers, the High Availability
server guarantees that data remains intact in the event of media failure, a server crash, or any other catastrophic event.

• Single, highly tuned network transport layer The high-performance transport layer used for current database connections
is also used for all synchronization operations.

• Portability The file format and synchronization is portable across all platforms that are capable of executing a Java Virtual
Machine.

• Large cost savings The High Availability server provides a significant savings on today's high availability equipment and
labor costs. It runs on standard low-cost hardware. There is no need for special technology such as shared disks, private
LANs, or fiber channels, and no need for additional software or operating systems such as Linux, Windows, Solaris, or Mac
OSX.

• Easy to set up, administer and deploy The High Availability server provides a high-performance, easy-to-use solution for
some common database problems. There is no need for clustering expertise. All configuration settings and explicit operations
can be performed using the Blackfish SQL Server Console, SQL scripts, or Java code.

• Increased scalability and load balancing Read-only operations can be performed against read-only mirrors, reducing the
transaction work load of the primary mirror, which must be used for all transactions that perform write operations. By
connecting to directory mirrors, new connection requests can be balanced across several read-only mirrors. This can
dramatically reduce the work load of the primary server.

• Synch delegation You can specify the mirror to be used to synchronize another mirror. This allows the primary mirror to
synchronize just one or a small number of read-only mirrors. These read-only mirrors can then synchronize other mirrors. This
reduces the workload of the primary mirror, which must service all write requests.

• Incremental database backup Read-only mirrors can be synchronized with the primary mirror automatically by scheduling
one or more synchronization time periods. Read-only mirrors can also be used for manual backup by making an explicit
synchronization request.

• Distributed directory Since this failover system supports the automatic and manual failover of servers, a distributed directory
mechanism is useful for locating the primary mirror and available read-only mirrors. All mirrors maintain a table of all other
mirrors. An application can make any type of connection request (read/write or read-only) to any existing mirror. The mirror
uses the mirror table to determine where the current mirrors are located.

Heterogeneous Replication Using DataExpress with Blackfish SQL

NOTE: This feature is supported only for Blackfish SQL for Java.

The replication support provided by DataExpress for Blackfish SQL easier to use and deploy than most replication solutions. This
replication solution is also heterogeneous because it uses JDBC for database access.

The replication topology provided is best described as a simple client-server relationship. Blackfish SQL does not require the
server-side software or database triggers required for more complex publish-subscribe solutions. Complex multi-level hierarchies
and network topologies are not directly supported.

There are three distinct phases in the replication cycle when using DataExpress JavaBean components with Blackfish SQL for a
disconnected or mobile computing model:

• Provide Phase: Provides the client database with a snapshot of the server tables being replicated.

Blackfish SQL 3

20

3

• Edit Phase: The client application, which need not be connected to the database, reads/edits the client database.

• Resolve Phase: The client database edits are saved back to the server database.

The Provide Phase

A StorageDataSet provider implementation initially replicates database contents from the server into a client. The client is
always a Blackfish SQL database. The server is typically some server that can be accessed with a JDBC driver. The JDBC
provider uses either a SQL query or stored procedure to provide data that will be replicated in the client-side Blackfish SQL
database. Since there is no server-side software running in this architecture, there is no support for incremental updates from the
server to the client. If the client needs to be refreshed, the same SQL query/stored procedure used to provide that the initial
replication must be re-executed.

A StorageDataSet provider is a pluggable interface. QueryDataSet and ProcedureDataSet are extensions of
StorageDataSet, which preconfigure JdbcProviders that can execute SQL queries and stored procedures to populate a
StorageDataSet. For memory-constrained clients such as PDAs, a DataSetData component can be used to provide data.
The DataSetData component uses Java Serialization to create a data packet that can be easily transmitted between a client
and server.

The provide operation for a collection of database tables can be performed in a single transaction, so that a transactionally
consistent view of a collection of tables can be replicated.

The Edit Phase

Once the provide phase is complete, both DataExpress and JDBC APIs can read and write to the Blackfish SQL tables that are
replicating the database. All insert/update/delete write operations since the last provide operation are automatically tracked by
the Blackfish SQL storage system. Part of the StorageDataSet store interface contract is that all insert/update/delete
operations must be recorded if the StorageDataSet property resolvable is set.

The Resolve Phase

DataExpress provides an automatic mechanism for using SQL DML or stored procedures to save all changes made on the client
back to a server, via a JDBC driver. An optimistic concurrency approach is used to save the changes back to the server. One or
more tables can be resolved in a single transaction. By default, any conflicts, such as two users updating the same row, cause
the transaction to roll back. However, there is a SqlResolutionManager JavaBean component that you can use to customize
the handling of resolution errors. The SqlResolutionManager has event handlers that enable an application to respond to an
error condition with an ignore, retry, abort, log, or other appropriate response.

There are also higher-level DataStorePump and DataStoreSync components that you can use to perform provide and
resolve operations for a collection of tables. For details, see Administering Blackfish SQL.

See Also

Preface (see page 1)

Overview (see page 3)

Establishing Connections (see page 23)

Administering Blackfish SQL (see page 31)

Using Blackfish SQL Security (see page 35)

Using Stored Procedures and User Defined Functions (see page 41)

Using Triggers in Blackfish SQL Tables (see page 55)

Stored Procedures Reference (see page 59)

3 Blackfish SQL

21

3

SQL Reference (see page 75)

Optimizing Blackfish SQL Applications (see page 125)

Deploying Blackfish SQL Database Applications (see page 133)

Troubleshooting (see page 137)

Blackfish SQL 3

22

3

4 Establishing Connections

This chapter explains the basics for establishing a connection to a Blackfish SQL database, using dbExpress, ADO.NET, or
JDBC.

• Types of Connections

• Using dbExpress to Connect to the Server

• Using ADO.NET to Connect to the Server

• Using JDBC to Connect to the Server

• Specifying Connection Properties

• Using Blackfish SQL with JBuilder and Borland Enterprise Server

• DataDirectory Macro Support

Types of Connections

Connections can be local, remote, or a combination of both:

• Local connections Local connections access the Blackfish SQL database engine in-process. This provides improved
performance over a remote driver, but requires that the Blackfish SQL engine be present and running in the same process as
the application. Several simultaneous local connections created in the same process can connect to a database. However,
only one process can have a database file open at a time. Consequently, while a process has a database file open, it
becomes the only process that can connect to that database over a local connection.

• Remote connections To use a remote connection, first launch the Blackfish SQL server. (For instructions, see Administering
Blackfish SQL.) The remote driver communicates with the server over TCP/IP. Remote connections can be slower for
database interactions that involve multiple round trips between the client and the database for small packets of data. Remote
connections allow more than one process running on one or more computers to access the same database. If several
processes require simultaneous access, it is best to use remote connections.

• Combination of local and remote connections A third option is to use a combination of the local and remote connections. If
there is one process that performs the majority of database interactions, this process can launch the Blackfish SQL Server
inside its own process. In this way, the demanding database process can use the local driver while still allowing other
processes to access the same database via the remote driver.

Using dbExpress to Connect to the Server

Native applications can use dbExpress to establish remote connections with a Blackfish SQL server. Local connections are
currently not supported for dbExpress. You must start the Blackfish SQL server before you can use the remote dbExpress driver
to connect. (For instructions, see Administering Blackfish SQL.)

4 Blackfish SQL

23

4

Example

This example shows how to acquire a remote dbExpress connection:

[BlackfishSQL]

 uses DBXCommon;

 uses DBXClient;

 var Connection: TDBXConnection;

 Connection :=
TDBXConnectionFactory.GetConnectionFactory.GetConnection('BLACKFISHSQLCONNECTION');

The dbExpress dbxdriver.ini file contains default driver properties appropriate for most applications. The dbExpress
dbxconnections.ini file has a BLACKFISHSQLCONNECTION section that contains the default connection settings. New
connections can copy most of these properties. This list of properties are typically customized for new connections:

• [BLACKFISHCUSTOMCONNECTION]

• HostName=localhost

• port=2508

• Database=c:/tmp/test

Using ADO.NET to Connect to the Server

The Blackfish SQL assembly Borland.Data.BlackfishSQL.LocalClient.dll contains an ADO.NET 2.0 driver. You can
build an application without directly referencing this assembly by using the DbProviderFactory class. For this approach to
work, the file machine.config must contain references to the Blackfish SQL assemblies in the DbProviderFactory section,
and the Blackfish SQL assemblies must be installed in the Global Assembly Cache (GAC). For easier deployment, use a direct
reference to the Blackfish SQL assembly.

You can use a local ADO connection, a remote ADO connection, or a combination of both to connect with the Blackfish SQL
server.

Local Connections Using ADO.NET

You can establish a local ADO connection in either of the following ways:

• Local ADO.NET Connection Using DbProviderFactory

• Local ADO.NET Connection Using a Direct Class Reference

Local ADO.NET Connection Using DbProviderFactory

Example

This example illustrates how to acquire a local ADO connection using DbProviderFactory:

[References: System.Data.dll]
uses System.Data.Common;
var Factory: DbProviderFactory;
var Connection: DbConnection;
Factory := DbProviderFactories.GetFactory('Borland.Data.BlackfishSQL.LocalClient');

Connection := Factory.CreateConnection();
Connection.ConnectionString := 'database=<filename>;user=<username>;password=<password>';

Connection.Open;

Blackfish SQL 4

24

4

Local ADO.NET Connection Using a Direct Class Reference

Example

This example illustrates how to acquire a local ADO connection by using a direct class reference:

[References: System.Data.dll]
[References: Borland.Data.BlackfishSQL.LocalClient.dll]

uses System.Data.Common;
uses Borland.Data.DataStore;
var Connection: DbConnection;
Connection := DataStoreConnection.Create;
Connection.ConnectionString := 'database=<filename>;user=<username>;password=<password>';

Connection.Open;

Remote Connections Using ADO.NET

Managed applications can use ADO.NET to establish remote connections with the Blackfish SQL server. You must start the
server before you can use the remote ADO driver to connect. (For Instructions, see Administering Blackfish SQL.) Once the
server is running, you can acquire a remote ADO connection in either of the following ways:

• Remote ADO.NET Connection Using DbProviderFactory

• Remote ADO.NET Connection Using a Direct Class Reference

Remote ADO.NET Connection Using DbProviderFactory

Example This example shows how to acquire a remote ADO connection using DbProviderFactory:

[References: System.Data.dll]
uses System.Data.Common;
var Factory: DbProviderFactory;
var Connection: DbConnection;
Factory := DbProviderFactories.GetFactory('Borland.Data.BlackfishSQL.RemoteClient');

Connection := Factory.CreateConnection();
Connection.ConnectionString :=
'database=<filename>;user=<username>;password=<password>;host=<servername>;protocol=TCP';

Connection.Open;

Remote ADO.NET Connection Using a Direct Class Reference

Example This example shows how to acquire a remote ADO connection using a direct class reference:

[References: System.Data.dll]
[References: Borland.Data.BlackfishSQL.RemoteClient.dll]

uses System.Data.Common;
uses Borland.Data.DataStore;
var Connection: DbConnection;
Connection := DataStoreConnection.Create;
Connection.ConnectionString :=
'database=<filename>;user=<username>;password=<password>;host=<servername>;protocol=TCP';

Connection.Open;

4 Blackfish SQL

25

4

Using JDBC to Connect to the Server

You can use a local JDBC connection, a remote JDBC connection, or a combination of both to connect with the Blackfish SQL
server. The following sections provide instructions for each of these procedures.

Local Connections Using JDBC

A Blackfish SQL local JDBC connection allows an application to run in the same process as the Blackfish SQL engine.
Applications that make large numbers of method calls into the JDBC API will see a significant performance advantage using the
local Blackfish SQL driver.

You can establish a local JDBC connection in either of the following ways:

• Local JDBC Connection Using the DriverManager

• Local JDBC Connection Using a JDBC DataSource

Local JDBC Connection Using the DriverManager

Example This example shows how to acquire a local JDBC connection using the DriverManager:

[jdsserver.jar must be in classpath]
java.sql.DriverManager.registerDriver(new com.borland.datastore.jdbc.DataStoreDriver());
connection = java.sql.DriverManager.getConnection("jdbc:borland:dslocal:<filename>",
"<username>", "<password>");

Local JDBC Connection Using a JDBC DataSource

Example This example shows how to acquire a local JDBC connection using a JDBC DataSource:

[jdsserver.jar must be in classpath]
com.borland.javax.sql.JdbcDataSource dataSource = new com.borland.javax.sql.JdbcDataSource();
dataSource.setDatabaseName("<filename>");
connection = dataSource.getConnection("<username>", "<password>");

Remote Connections Using JDBC

Managed applications can use JDBC to establish remote connections with the Blackfish SQL server. You must start the server
before you can use the remote ADO driver to connect. (For instructions, see Administering Blackfish SQL.)

You can establish a remote JDBC connection in either of the following ways:

• Remote JDBC Connection Using the DriverManager

• Remote JDBC Connection Using a JDBC DataSource

Remote JDBC Connection Using the DriverManager

Example

This example shows how to acquire a remote JDBC connection using the DriverManager:

[jdsremote.jar must be in classpath]
java.sql.DriverManager.registerDriver(new com.borland.datastore.jdbc.DataStoreDriver());
connection =
java.sql.DriverManager.getConnection("jdbc:borland:dsremote://<servername>/<filename>",
"<username>", "<password>");

Blackfish SQL 4

26

4

Remote JDBC Connection Using a JDBC DataSource

Example This example shows how to acquire a remote JDBC connection using a JDBC DataSource:

[jdsremote.jar must be in classpath]
com.borland.javax.sql.JdbcDataSource dataSource = new com.borland.javax.sql.JdbcDataSource();
dataSource.setDatabaseName("<filename>");

dataSource.setNetworkProtocol("tcp");
datasource.setServerName("<servername>");

connection = dataSource.getConnection("<username>", "<password>");

Specifying Connection Properties

You can specify connection properties for:

• dbExpress

• ADO

• JDBC

For more information, see the RAD Studio help for Borland.Data.DataStore.ConnectionProperties.

Specifying dbExpress Connection Properties

dbExpress connection properties are documented in the DbxCommon.pas unit and in the Blackfish SQL
ConnectionProperties class. dbExpress connection properties are stored in the dbxconnections.init file.

Example

This example shows a sample Blackfish SQL connection properties section in the dbxconnections.ini file:

[BLACKFISHSQLCONNECTION]
DriverName=BlackfishSQL
HostName=localhost
port=2508
Database=/tmp/test
create=true
User_Name=sysdba
Password=masterkey
BlobSize=-1
TransIsolation=ReadCommitted

The HostName, port, and create properties are documented in ConnectionProperties. The DriverName, User_Name,
BlobSize, and TransIsolation properties are documented in TDBXPropertyNames of the DBXCommon unit.

Specifying ADO Connection Properties

The ConnectionString property in DbConnection or DataStoreConnection can contain settings from
ConnectionProperties.

You can use DataExplorer to set and modify values for ConnectionProperties. For instructions, see the RAD Studio help for
the DataExplorer Connection dialog box.

Specifying JDBC Connection Properties

You can specify JDBC connection properties using either:

• a JDBC URL

• java.util.Properties

4 Blackfish SQL

27

4

Specifying JDBC Connection Properties in a JDBC URL

You can specify connection properties in a JDBC URL, using semicolons to separate the properties:

jdbc:borland:dslocal:c:/mydb.jds;create=true

Specifying JDBC Connection Properties with java.util.Properties

Example

This example shows how to specify JDBC connection properties using a java.util.Properties object:

java.util.Properties props = new java.util.Properties();
props.setProperty("create","true");
props.setProperty("user","SYSDBA");
props.setProperty("password","masterkey");
connection = DriverManager.getConnection("jdbc:borland:dslocal:c:/mydb.jds", props);

Using Blackfish SQL with JBuilder and Borland Enterprise Server

To make the latest version of Blackfish SQL available to JBuilder and the Borland Enterprise Server (BES), copy these files from
the Blackfish SQL lib directory to the lib directory of the target product:

• beandt.jar

• dbtools.jar

• dx.jar

• jds.jar

• jdsremote.jar

• jdsserver.jar

1. For JBuilder or BES, find the listed files in the lib directory of the install tree and copy them to a backup directory.

2. Find the files in the lib directory of the Blackfish SQL installation and copy them to the lib directory of JBuilder or BES.

DataDirectory Macro Support

You can use the DataDirectory macro to specify relative path names for database files. The DataDirectory macro is
supported for both the Blackfish SQL ADO.NET and DBXClient drivers. If a database file name is prepended with the following
string:

|DataDirectory|

for example:

|DataDirectory|employee.jds

the string |DataDirectory| will be replaced with the appropriate string, as follows:

Blackfish SQL for Windows:

• For ASP.NET web based applications, this will be the App_Data folder name.

• For non-web applications, this defaults to the directory of the application executable. You can override the default by setting
the DataDirectory property for AppDomain:

AppDomain.CurrentDomain.SetData("DataDirectory", "CustomAppPath")

Blackfish SQL for Java:

If the System property blackfishsql.datadirectory is set, the setting for this property will be used as the replacement
string. Otherwise the setting for the user.home property will be used.

Blackfish SQL 4

28

4

See Also

Preface (see page 1)

Overview (see page 3)

System Architecture (see page 7)

Administering Blackfish SQL (see page 31)

Using Blackfish SQL Security (see page 35)

Using Stored Procedures and User Defined Functions (see page 41)

Using Triggers in Blackfish SQL Tables (see page 55)

Stored Procedures Reference (see page 59)

SQL Reference (see page 75)

Optimizing Blackfish SQL Applications (see page 125)

Deploying Blackfish SQL Database Applications (see page 133)

Troubleshooting (see page 137)

4 Blackfish SQL

29

4

5 Administering Blackfish SQL

This chapter provides a brief overview of basic Blackfish SQL administrative procedures and tools. For related information see
the SQL Reference.

• Using the Graphical Consoles for Administrative Tasks

• Using SQL for Administrative Tasks

• Starting the Blackfish SQL Server

Using the Graphical Consoles for Administrative Tasks

You can use visual tools to administer Blackfish SQL.

For Blackfish SQL for Windows:

You can use RAD Studio DataExplorer to perform many administrative tasks. DataExplorer has been enhanced with a
connection string editor for Blackfish SQL for Windows, and the ability to create or alter Blackfish SQL databases. DataExplorer
enables you to browse and view stored procedures. Some DataExplorer tasks are not yet supported for Blackfish SQL for
Windows. See the DataExplorer help for more information.

For Blackfish SQL for Java:

You can use one of the JBuilder administrative consoles.

• JdsExplorer

• ServerConsole

Documentation for both JdsExplorer and ServerConsole are provided with JBuilder.

Using SQL for Administrative Tasks

You can perform virtually all Blackfish SQL administrative tasks either by using SQL commands or by using the built-in
administrative stored procedures in the DB_ADMIN class.

Use administrative SQL commands to:

• Create, alter, and drop tables and views

• Create, alter, and drop users and roles

• Create and drop stored procedures and triggers

For details, see the SQL Reference.

5 Blackfish SQL

31

5

Use DB_ADMIN stored procedures to:

• Alter database properties

• Verify database integrity

• Configure Database logging

• View open server connections

• Create, alter, and drop database mirrors

• Miscellaneous mirror administration capabilities

For details, see the Stored Procedures Reference.

Starting the Blackfish SQL Server

A server must be running before you can establish a remote connection. The server may be started as a .NET process or a Java
process.

Starting and Stopping the Server as a .NET Process

To start or stop the server as a .NET process use either:

• The BSQLServer.exe command

• The Windows Management Console

Using BSQLServer.exe

• To start the server: BSQLServer.exe

• To stop the server: BsqlServer.exe -shutdown or Type Ctrl-C in the Console window

• To install the server as a Windows service: BsqlServer.exe -install

• To remove the Windows server: BsqlServer.exe -remove

• To explore other options for server configuration: BsqlServer.exe -?

Using the Windows Management Console

• To start the server: net start BlackfishSQL

• To stop the server: net stop BlackfishSQL

Starting the Server as a Java Process

To start or stop the server as a .NET process use either:

• The JdsServer.exe command

• The Windows Management Console

Using JdsServer.exe

• To start the server: JdsServer.exe

• To stop the server: JdsServer.exe -shutdown or Type Ctrl-C in the Console window

• To install the server as a Windows service: JdsServer.exe -install JDataStore

Blackfish SQL 5

32

5

• To remove the Windows server: JdsServer.exe -remove JDataStore

• To explore other options for the server configuration: JdsServer.exe -?

Using the Windows Management Console

• To start the server: net start JDataStore

• To stop the server: net stop JDataStore

See Also

Preface (see page 1)

Overview (see page 3)

System Architecture (see page 7)

Establishing Connections (see page 23)

Using Blackfish SQL Security (see page 35)

Using Stored Procedures and User Defined Functions (see page 41)

Using Triggers in Blackfish SQL Tables (see page 55)

Stored Procedures Reference (see page 59)

SQL Reference (see page 75)

Optimizing Blackfish SQL Applications (see page 125)

Deploying Blackfish SQL Database Applications (see page 133)

Troubleshooting (see page 137)

5 Blackfish SQL

33

5

6 Using Blackfish SQL Security

This chapter provides a brief overview of basic Blackfish SQL security features and the SQL commands you can use to
implement them. For a complete description of the syntax, use, and examples for a specific command, see the SQL Reference
or the Stored Procedures Reference.

Blackfish SQL provides the following built-in security features:

• User authentication

• User authorization

• Database encryption

User Authentication

User authentication restricts access to a Blackfish SQL database to authorized users only. Users must log into the database
using an authorized user account and password. Permissions can be granted to or revoked from an account to fine tune access.
In general, full access is reserved for the Administrator account(s), and a more restricted account or accounts are provided for
general users.

The Administrator Account

By default, Blackfish SQL has one built-in Administrator account, sysdba/masterkey. You can secure a database by changing
the password for the sysdba account and restricting use of that account to database administrators only. You can then create a
user account with limited access rights to be used for general access. You can also create additional Administrator accounts,
which may or may not be granted database startup privileges.

The following section describes how to create and modify user accounts.

Managing User Accounts

You can use the following SQL statements to add, delete, and modify user accounts:

Adding a User

CREATE <userid> PASSWORD <password>

Where:

<userid> is the account to be added

<password> is the password for this account

6 Blackfish SQL

35

6

Removing a User

DROP <userid> [CASCADE|RESTRICT]

Where:

<userid> is the account to be removed.

CASCADE deletes the user and all objects that the user owns.

RESTRICT causes the statement to fail if the user owns any objects, such as tables, views, or methods.

(no option) causes the statement to fail if the user owns any objects, such as tables, views, or methods.

Changing a User's Password

ALTER USER <userid> SET PASSWORD "<password>";

Where:

<userid> is the account for which the password should be changed.

<password> is the new password.

User Authorization

There are several database access privileges which you can grant to or revoke from an account The following section describes
the set of access privileges, and how to grant and revoke privileges for an account.

Changing User Access Privileges

You can use the GRANT and REVOKE statements to change the access privileges for one or more user accounts. You can
grant or revoke access to specific database resources or specific objects in the database. In addition, you can grant specific
privileges to named roles, and you can then grant or revoke these roles for specific users.

To grant or revoke a privilege for an account, use the following SQL commands:

GRANT <role>|<privilege> TO <userid>

Grants the specified privilege or role to the specified user account.

REVOKE <role>|<privilege> FROM <userid>

Revokes the specified privilege or role from the specified user account.

Where:

<userid> is the account to be modified.

<role> is the user role to be granted or revoked, such as ADMIN. This can be a single role, or a comma-separated list of roles.

<privilege> is the privilege to be granted or revoked. This can be a single privilege or a comma-separated list of privileges,
and can be one or more of the following:

• STARTUP confers the ability to open a database that is shut down. The user's password is required to add STARTUP rights to
a user account. You can also specify STARTUP rights at the time the user account is created.

• ADMINISTRATOR confers the ability to add, remove, and change rights of users, and the ability to encrypt the database. Also
includes the four stream rights: WRITE, CREATE, DROP, RENAME. By default, STARTUP rights are granted to an Administrator
account when the account is created, but you can remove STARTUP rights from the account. You cannot remove WRITE,
CREATE, DROP, or RENAME privileges from an Administrator account; attempts to remove these rights are ignored.

• WRITE confers the ability to write to file or table streams in the Blackfish SQL database.

• CREATE confers the ability to create new file or table streams in the Blackfish SQL database.

• DROP confers the ability to remove file or table streams from the Blackfish SQL database.

Blackfish SQL 6

36

6

• RENAME confers the ability to rename file or table streams in the Blackfish SQL database.

Database Encryption

Only a user with Administrator privileges can encrypt a database. When a database is encrypted, the STARTUP privilege is
automatically revoked for all users (including Administrators) other than the Administrator issuing the encryption command.
Consequently, after encrypting you must use the same Administrator account to restart the database. You can reassign
STARTUP privileges to other users after the database has been encrypted and restarted.

Encrypting a Blackfish SQL Database

You can use the built-in stored procedure DB_ADMIN.ENCRYPT() to encrypt a new or empty Blackfish SQL database. For
instructions on encrypting a non-empty database, see Encrypting a Database with Existing Content

To encrypt a new database, log in from an Administrator account, and issue the following SQL command:

CALL DB_ADMIN.ENCRYPT(<AdminPassword>,<EncryptionSeed>)

Where:

DB_ADMIN.ENCRYPT() is the built-in stored procedure for encrypting a database.

<AdminPassword> is the password for the user issuing the encryption command.

<EncryptionSeed> is a 16 character seed value.

Encrypting a Database with Existing Content

For Blackfish SQL for Java:

To encrypt a Blackfish SQL for Java database that has existing tables, use the JBuilder utility, JdsExplorer. For instructions, see
the JBuilder online help for JdsExplorer.

For Blackfish SQL for Windows:

To encrypt a database with existing content, do the following:

1. Use RAD Studio DataExplorer to create a new database. For instructions, see the online help for DataExplorer.

2. Copy the existing users to the new database. DB_ADMIN.COPY_USERS(<OtherFilename>, <AdminUser>,
<AdminPass>,<DoCopyEncryption>, <ReplaceExistingUsers>) Where: <OtherFilename> is the filename of the
destination database. <AdminUser> is a user with ADMIN privileges in destination database. <AdminPass> is a password of
the specified adminUser in destination database. If <DoCopyEncryption> is TRUE and the current database is encrypted,
then encrypt the target database with the same key. If <ReplaceExistingUsers> is TRUE, then the existing users in the
target database is replaced with the users in the source database.

3. Encrypt the new database. DB_ADMIN.ENCRYPT(<password>,<EncryptionSeed>)

4. Copy the contents of the old database into the newly encrypted database.
DB_ADMIN.COPY_STREAMS(<OtherFilename>, <AdminUser>, <AdminPass>, <DoOverwrite>,
<DoIgnoreErrors>) Where: <OtherFilename> is the filename of the destination database. <AdminUser> is a user
with ADMIN privileges in destination database. <AdminPass> is a password of the specified adminUser in destination
database. If <DoOverwrite> is TRUE, it allows tables to be overwritten. If FALSE, this would be an error. If
<IgnoreErrors> is TRUE, then this method can be used to repair a corrupted database.

For additional information, see the Stored Procedures Reference.

Deciding How to Apply Blackfish SQL Security

In this discussion, an opponent is someone who is trying to break the Blackfish SQL security system.

The authentication and authorization support is secure for server-side applications where opponents do not have access to the
physical Blackfish SQL database files. The SYS.USERS table stores passwords, user IDs, and rights in encrypted form. The
table also stores the user ID and rights in an unencrypted column, but this is for display purposes only. The encrypted values for
user ID and rights are used for security enforcement.

6 Blackfish SQL

37

6

The stored passwords are encrypted using a strong TwoFish block cipher. A pseudo-random number generator is used to salt
the encryption of the password. This makes traditional password dictionary attacks much more difficult. In a dictionary attack, the
opponent makes guesses until the password is guessed. This process is easier if the the opponent has personal information
about the user, and the user has chosen an obvious password. There is no substitution for a well chosen (obscure) password as
a defense against password dictionary attacks. When an incorrect password is entered, the current thread sleeps for 500
milliseconds.

If a Blackfish SQL database is unencrypted, it is important to restrict physical access to the file, for the following reasons:

• If a Blackfish SQL database file is not password protected, and it is possible for an opponent to write to it with a separate file
editing utility or program, the authentication and authorization support can be disabled.

• If it is possible for an opponent to read a Blackfish SQL database file that is not encrypted with a separate file-editing program,
the opponent might be able to reverse-engineer the file format and view its contents.

For environments where a dangerous opponent may gain access to physical copies of a Blackfish SQL database, the database
and log files should be encrypted, in addition to being password protected. WARNING: The cryptographic techniques that
Blackfish SQL uses to encrypt data blocks are state-of-the-art. The TwoFish block cipher used by Blackfish SQL has never been
defeated. This means that if you forget your password for an encrypted Blackfish SQL database, you will not be able to access
the database. The best chance of recovering the data would be to have someone guess the password.

There are measures that can be used to guard against forgetting a password for an encrypted database. It is important to note
that there is a master password used internally to encrypt data blocks. Any user that has STARTUP rights has the master
password encrypted using their password in the SYS.USERS table. This allows one or more users to open a database that has
been shut down, because their password can be used to decrypt a copy of the master password. This feature can be used to
create a new database that has one secret user who has Administrator privileges (which includes STARTUP rights). If you use
this virgin database whenever a new empty database is needed, you will always have one secret user who can unlock the
encryption.

Encrypting a database has some effect on performance. Data blocks are encrypted when they are written from the Blackfish
SQL cache to the Blackfish SQL database and are decrypted when they are read from the Blackfish SQL database into the
Blackfish SQL cache. So the cost of encryption is only incurred when file I/O is performed.

Blackfish SQL encrypts all but the first 16 bytes of .jds file data blocks. There is no user data in the first 16 bytes of a data
block. Some blocks are not encrypted. This includes allocation bitmap blocks, the header block, log anchor blocks and the
SYS.USERS table blocks. Note that the sensitive fields in the SYS.USERS table are encrypted using the user's password. Log
file blocks are completely encrypted. Log anchor and status log files are not encrypted. The temporary database used by the
query engine is encrypted. Sort files used by large merge sorts are not encrypted, but they are deleted after the sort completes.

NOTE: The remote client for Blackfish SQL currently uses sockets to communicate with a Blackfish SQL Server. This
communication is not secure. Since the local client for Blackfish SQL is in-process, it is secure.

See Also

Preface (see page 1)

Overview (see page 3)

System Architecture (see page 7)

Establishing Connections (see page 23)

Administering Blackfish SQL (see page 31)

Using Stored Procedures and User Defined Functions (see page 41)

Using Triggers in Blackfish SQL Tables (see page 55)

Stored Procedures Reference (see page 59)

SQL Reference (see page 75)

Blackfish SQL 6

38

6

Optimizing Blackfish SQL Applications (see page 125)

Deploying Blackfish SQL Database Applications (see page 133)

Troubleshooting (see page 137)

6 Blackfish SQL

39

6

7 Using Stored Procedures and User
Defined Functions

Blackfish SQL supports stored procedures to encapsulate business logic in the schema of a database. In addition, Blackfish SQL
supports User Defined Functions (UDFs) to extend the built-in SQL support. Where many other database vendors have invented
their own SQL-like language for stored procedures, Blackfish SQL can access stored procedures and UDFs created in any .NET
language such as Delphi, C#, VB and Java.

Stored procedures can also increase the performance of an application, since they are executed in the same Virtual Machine as
the Blackfish SQL database engine itself. This results in execution with minimal overhead. While a stored procedure is executing
SQL statements, no network traffic is generated. The stored procedure uses an in-process ADO.NET connection. This provides
the same performance advantage as using the in-process Blackfish SQL ADO.NET driver rather than the remote driver.

Stored procedures and UDFs provide these additional benefits:

• Business logic, such as integrity constraints, is isolated in the database engine, where the logic is available and reinforced for
all clients.

• Data is retrieved locally, which is faster than sending that data to and from the client.

• Blackfish SQL language can be extended with C#, Delphi, or Visual Basic functions.

• There is no performance penalty, since the stored procedures are executing in the same virtual machine as the database
itself.

• You can debug .NET stored procedures in the same manner as debugging the client application.

This chapter covers:

• About Stored Procedures

• About User Defined Functions (UDFs)

• Creating Stored Procedures for the .NET Platform

• Debugging .NET Stored Procedures

• Using a Stored Procedure to Produce an ADO.NET IDataReader

• Creating Stored Procedures for the Java Platform

About Stored Procedures

Stored procedures are procedures that are stored on the database server and executed on request from an SQL client. Often the

7 Blackfish SQL

41

7

stored procedure executes several SQL queries against the tables of the database to yield the desired result. In Blackfish SQL,
these SQL queries are written in the language of choice, that is available on the .NET or Java platforms. The desired effect may
be to update a set of tables, or to calculate an accumulated value from one or more tables, or to add specialized integrity
constraints. A stored procedure may have several parameters, which can be either input only, output only, or both.

Example

Consider an ADD_ORDER procedure that takes a customerId, an itemId, and a quantity value as input, and adds a record
to the ORDERS table. However, suppose that you also want to verify that this customer has paid for previous orders. To
achieve this, you can cause the procedure to throw an exception if this is not the case.

The stored procedure is executed with an IDbCommand object by setting the properties CommandType and CommandText, and
then adding the appropriate parameters.

CommandText CommandType Parameters

'CALL ADD_ORDER(?,?,?)' CommandType.Text Added in order from left to right

'CALL
ADD_ORDER(:CUSTID,:ITEMID,:QUANTITY)'

CommandType.Text Added by name of marker

'ADD_ORDER' CommandType.StoredProcedure Added by name of parameter

Notice the difference in the interpretation of the parameters, depending on the combination of CommandType and the style of the
parameter markers that are used. If the CommandType is StoredProcedure, the parameter names are taken from the
implementation of the stored procedure, in which case it is possible to omit optional parameters.

About User Defined Functions (UDFs)

A User Defined Function is a code snippet that is written to extend the built-in SQL support. Like stored procedures, they are
executed on the database server and called from an SQL client. UDFs must return a value, and are usually written to be used in
the WHERE clause of SELECT queries. However, a UDF may also be called by itself, similar to a stored procedure.

Example

Consider a MAX_VALUE function that takes two values, <value1> and <value2>, and returns the greater of the two. The UDF
can be executed in an SQL statement:

'SELECT * FROM PEOPLE WHERE MAX_VALUE(HEIGHT,5*WIDTH) < ?'

Or, in an SQL CALL statement:

'?=CALL MAX_VALUE(?,?)'

Creating Stored Procedures for the .NET Platform

This section provides detailed information on how to create Blackfish SQL stored procedures and UDFs for the .NET platform.

Creating a Stored Procedure for a Blackfish SQL Database

There are three steps involved in creating a Blackfish SQL stored procedure:

1. Write the code for the stored procedure as a static public member of a class.

2. Build an assembly with the stored procedures. Blackfish SQL must be able to locate the assembly. When developing in
Delphi, Blackfish SQL is able to find the assembly in BDSCOMMONDIR. That is, it is not necessary to move the assembly to any
special location. For deployment, it is recommended that you copy the assembly to the subdirectory where the executable for
the Blackfish SQL server (BSQLServer.exe) resides, or install it in the Global Assembly Cache (GAC).

3. Create the binding of a SQL identifier to the assembly member.

Example

This example uses the sample ADD_ORDER from the previous example in About Stored Procedures, with this schema:

Blackfish SQL 7

42

7

CUSTOMER TABLE

Field Type Description

CUST_ID INT Customer identifier

CREDIT DECIMAL(10,2) Credit amount available to the customer

NAME VARCHAR(80) Customer name

ORDERS TABLE

Field Type Description

CUST_ID INT Customer identifier

ITEM_ID INT Item identifier

QUANTITY INT How many items

SALE_AMOUNT DECIMAL(10,2) Total sale amount

PAID DECIMAL(10,2) Amount paid

ITEMS TABLE

Field Type Description

ITEM_ID INT Item identifier

NAME VARCHAR(60) Name of the item

PRICE DECIMAL (10,2) Unit price

STOCK INT Stock count

Step 1: Write the code for the stored procedure.

1. Create a Delphi.NET package and name it MyProcs.dll.

2. Add a reference to System.Data.dll.

3. Add a unit:

P1 := Command.Parameters.Add('P1', DbType.Decimal);
P2 := Command.Parameters.Add('P2', DbType.Int32);
P1.Direction := ParameterDirection.Output;
P2.Value := CustId;
Command.ExecuteNonQuery;

if P1.Value = DBNull.Value then

Owed := 0

else

Owed := Decimal(P1.Value);

Owed := Owed + Amount;

Command.Parameters.Clear;

Command.CommandText := 'SELECT CREDIT INTO ? FROM CUSTOMER WHERE CUST_ID=?';
P1 := Command.Parameters.Add('P1', DbType.Decimal);
P2 := Command.Parameters.Add('P2', DbType.Int32);
P1.Direction := ParameterDirection.Output;

7 Blackfish SQL

43

7

P2.Value := CustId;
Command.ExecuteNonQuery;

Credit := Decimal(P1.Value);

if Owed > Credit then

raise Exception.Create('Customer doesn''t have that much credit');

Command.Parameters.Clear;

Command.CommandText := 'UPDATE ITEMS SET STOCK=STOCK-? WHERE ITEM_ID=?';
P1 := Command.Parameters.Add('P1', DbType.Int32);
P2 := Command.Parameters.Add('P2', DbType.Int32);
P1.Value := Quantity;
P2.Value := ItemId;
Command.ExecuteNonQuery;

Command.Parameters.Clear;

Command.CommandText := 'INSERT INTO ORDERS (CUST_ID, ITEM_ID, QUANTITY, SALE_AMOUNT) '+
'VALUES (?, ?, ?, ?)';
P1 := Command.Parameters.Add('P1', DbType.Int32);
P2 := Command.Parameters.Add('P2', DbType.Int32);
P3 := Command.Parameters.Add('P3', DbType.Int32);
P4 := Command.Parameters.Add('P4', DbType.Decimal);

P1.Value := CustId;
P2.Value := ItemId;
P3.Value := Quantity;
P4.Value := Amount;
Command.ExecuteNonQuery;
Command.Free;
end;

end.

Step 2: Build the assembly and make it available to the Blackfish SQL server process.

After completing the code for the stored procedure:

1. Build an assembly DLL (for example, Procs.dll) which contains the class MyClass shown in Step 1.

2. When deploying, copy the assembly to the subdirectory where the executable for the Blackfish SQL server
(BSQLServer.exe) resides.

Step 3: Create the binding of an SQL identifier to the class member.

Now that the code is ready to be executed, the Blackfish SQL database must be made aware of the class member that can be
called from SQL. To do this, start DataExporer and issue a CREATE METHOD statement:

CREATE METHOD ADD_ORDER AS 'MyProcs::SampleStoredProcedures.TMyClass.AddOrder';

MyProcs is the name of the package, and the method name is fully-qualified with unit name and class name.

Execute the stored procedure ADD_ORDER from a Delphi Console application:

unit MyCompany;

interface

implementation
uses

Blackfish SQL 7

44

7

 System.Data;

type
 TSomething = class
 public
 procedure AddOrder(
 Connection: DbConnection;
 CustId: Integer;
 ItemId: Integer;
 Quantity: Integer);
 end;

{ Assume:
 Connection: is a valid Blackfish SQL connection.
 CustId: is a customer in the CUSTOMER table.
 ItemId: is an item from the ITEMS table.
 Quantity: is the quantity of this item ordered.
 }

procedure TSomething.AddOrder(
 Connection: DbConnection;
 CustId: Integer;
 ItemId: Integer;
 Quantity: Integer);
var
 Command: DbCommand;
 P1, P2, P3: DbParameter;
begin
 Command := con.CreateCommand;
 Command.CommandText := 'ADD_ORDER';
 Command.CommandType := CommandType.StoredProcedure;
 P1 := Command.Parameters.Add('custId', DbType.Int32);
 P2 := Command.Parameters.Add('itemId', DbType.Int32);
 P3 := Command.Parameters.Add('quantity', DbType.Int32);
 P1.Value := CustId;
 P2.Value := ItemId;
 P3.Value := Quantity;
 Command.ExecuteNonQuery;
 Command.Free;
 end;

 end.

When TSomeThing.AddOrder is called in the client application, this in turn calls the stored procedure ADD_ORDER, which
causes TMyClass.AddOrder to be executed in the Blackfish SQL server process. By making TMyClass.AddOrder into a
stored procedure, only one statement has to be executed over a remote connection. The five statements executed by
TMyClass.AddOrder are executed in-process of the Blackfish SQL server, using a local connection.

Note that the application is not passing a connection instance to the call of the ADD_ORDER stored procedure. Only the actual
logical parameters are passed.

Blackfish SQL generates an implicit connection object, when it finds a stored procedure or UDF where the first argument is
expected to be a System.Data.IDbConnection instance.

Handling Output Parameters and DBNull Values

The Delphi language supports output parameters and reference parameters. The Blackfish SQL database recognizes these
types of parameters and treats them accordingly.

Database NULL values require special handling. The System.String can be handled by the NULL value. However, for all
other types, the formal parameter type must be changed to TObject, since NULL is not a valid value for a .NET ValueType. If
the formal parameter is a TObject type, then the value of System.DBNull is used for a database NULL value. Blackfish SQL
will also accept nullable types in stored procedures written in C# (for example, int).

7 Blackfish SQL

45

7

Examples:

Example of a stored procedure with an INOUT parameter; NULL values are ignored:

class procedure TMyClass.AddFive(ref Param: Integer);
begin
 Param := Param + 5;
end;

Example of a stored procedure with an INOUT parameter; NULL values are kept as NULL values:

class procedure TMyClass.AddFour(ref Param: TObject);
begin
 if Param <> nil then
 Param := TObject(Integer(Param) + 4);
end;

Use:

procedure TryAdding(Connection: DbConnection);
var
 Command: DbCommand;
begin
 Command := Connection.CreateCommand;
 Command.CommandText := 'ADD_FIVE';
 Command.CommandType := CommandType.StoredProcedure;
 P1 := Command.Parameters.Add('param', DbType.Int32);
 P1.Direction := ParameterDirection.InputOutput;
 P1.Value = 17;
 Command.ExecuteNonQuery;
 if 22 <> Integer(P1.Value) then
 raise Exception.Create('Wrong result');

 Command.Parameters.Clear;
 Command.CommandText := 'ADD_FOUR';
 Command.CommandType := CommandType.StoredProcedure;
 P1 := Command.Parameters.Add('param', DbType.Int32);
 P1.Direction := ParameterDirection.InputOutput;
 P1.Value = 17;
 Command.ExecuteNonQuery;
 if 21 <> Integer(P1.Value) then
 raise Exception.Create('Wrong result');

 P1.Value = DBNull.Value;
 Command.ExecuteNonQuery;
 if DbNull.Value <> P1.Value then
 raise Exception.Create('Wrong result');

 Command.Free;
end;

The above implementation of AddFour uses a TObject wrapper class for integers. This allows the developer of addFour to
recognize NULL values passed by Blackfish SQL, and to set an output parameter to NULL to be recognized by Blackfish SQL.

In contrast, in the implementation for AddFive, it is impossible to know if a parameter was NULL, and it is impossible to set the
result of the output parameter to NULL.

Expanding SQL for the Blackfish SQL Database

If for some reason an operator (for example: a bitwise AND operator) is needed for a where clause, and Blackfish SQL does not
offer that operator, you can create one in Delphi, Visual Basic, C#, or C++ and call it as a UDF. However, use this capability with
caution, since Blackfish SQL will not recognize the purpose of such a function, and will not be able to use any indices to speed
up this part of the query.

Blackfish SQL 7

46

7

Consider the UDF example given earlier, involving the MAX_VALUE UDF:

'SELECT * FROM PEOPLE WHERE MAX_VALUE(HEIGHT,5*WIDTH) < ?'

That query is equivalent to this query:

'SELECT * FROM PEOPLE WHERE HEIGHT < ? AND 5*WIDTH < ?'

where the same value is given for both parameter markers. This SQL statement yields the same result, because the
implementation of MAX_VALUE is known. However, Blackfish SQL will be able to use only indices available for the HEIGHT and
WIDTH column for the second query. If there were no such indices, the performance of the two queries would be about the same.
The advantage of writing a UDF occurs when functionality does not already exist in Blackfish SQL (for example: a bit wise AND
operator).

Debugging .NET Stored Procedures

To debug .NET stored procedures:

• When the protocol is in-process or not set

• When the protocol is TCP

Debugging Stored Procedures When the Protocol Is In-process or Not Set

To debug stored procedures when the protocol is in-process or not set:

1. Create a project to use for debugging. Using your favorite IDE, create a project that includes the client code of the application,
the stored procedures, and a reference to the Borland.Data.BlackfishSQL.LocalClient.dll library.

2. Add breakpoints to the stored procedure(s). The debugger will handle the stored procedures in the same way as with the
client code.

Debugging Stored Procedures When the Protocol Is TCP

To debug stored procedures when the protocol is TCP:

If your IDE supports remote debugging:

Delphi will be able to attach to the Blackfish SQL Server process.

1. Compile the stored procedures with debug information.

2. Copy the assembly to the bin directory of the Blackfish SQL installation.

3. Start the client application in the debugger and attach to the server process.

4. Add breakpoints to the stored procedure(s). The debugger will handle the stored procedures in the same way as with the
client code.

If your IDE does not support remote debugging:

1. Create a project to use for debugging. Set up the project to debug the server directly.

2. Create an executable that calls Borland.Data.DataStore.DataStoreServer.StartDefaultServer.

3. Add a breakpoint to the stored procedure.

4. Run the separate client process.

Using a Stored Procedure to Produce an ADO.NET IDataReader

A stored procedure can produce an ADO.NET DbDataReader simply by returning a DbDataReader.

Example 6

class function GetRiskyCustomers(

7 Blackfish SQL

47

7

 Connection: DbConnection;
 Credit: Decimal credit): DbDataReader;
var
 Command: DbCommand;
 P1: DbParameter;
begin
 Command := Connection.CreateCommand;
 Command.CommandText := 'SELECT NAME FROM CUSTOMER WHERE CREDIT > ? ';
 P1 := Command.Parameters.Add('param', DbType.Decimal);
 P1.Value := Credit;
 Result := Command.ExecuteReader;
end;

Note that the command object is not freed at the end of the method. If the command was freed, it would implicitly close the
DbDataReader, which results in no data being returned from the stored procedure. Instead, Blackfish SQL closes the command
implicitly after the stored procedure has been called.

The GetRiskyCustomers stored procedure can be used as follows, in ADO:

function GetRiskyCustomers(
 Connection: DbConnection): ArrayList;
var
 Command: DbCommand;
 Reader: DbReader;
 List: ArrayList;
begin
 List := ArrayList.Create;
 Command := Connection.CreateCommand;
 Command.CommandText := 'GETRISKYCUST';
 Command.CommandType := CommandType.StoredProcedure;
 P1 := Command.Parameters.Add('Credit', DbType.Decimal);
 P1.Value := 2000;
 Reader := Command.ExecuteReader;
 while Reader.Read do
 List.Add(Reader.GetString(0));
 Command.Free;
 Result := List;
end;

Creating Stored Procedures for the Java Platform

This section provides detailed information on how to create Blackfish SQL stored procedures and UDFs for the Java platform.

Creating a Stored Procedure for a Blackfish SQL Database

Stored procedures and UDFs for Blackfish SQL for Java must be written in Java. The compiled Java classes for stored
procedures and UDFs must be added to the CLASSPATH of the Blackfish SQL server process in order to be available for use.
This should give the database administrator a chance to control which code is added. Only public static methods in
public classes can be made available for use.

You can update the classpath for the Blackfish SQL tools by adding the classes to the <jds_home>/lib/storedproc
directory.

• If the stored procedure consists of a .jar file, then place the jar file in <jds_home>/storedproc/lib/jars.

• If the stored procedure consists of one or more class files, place the class files in <jds_home>/storedproc/classes. For
example, if your stored procedure file is com.acme.MyProc, then you would place it as:
c:<jds_home>/lib/storedproc/classes/com/acme/MyProc.class

Making a Stored Procedure or UDF Available to the SQL Engine

After a stored procedure or a UDF has been written and added to the CLASSPATH of the Blackfish SQL server process, use this
SQL syntax to associate a method name with it:

Blackfish SQL 7

48

7

CREATE JAVA_METHOD <method-name> AS <method-definition-string>

<method-name> is a SQL identifier such as INCREASE_SALARY and <method-definition-string> is a string with a fully
qualified method name. For example:

com.mycompany.util.MyClass.increaseSalary

Stored procedures and UDFs can be dropped from the database by executing:

DROP JAVA_METHOD <method-name>

After a method is created, it is ready for use. The next example shows how to define and call a UDF.

A UDF Example

This example defines a method that locates the first space character after a certain index in a string. The the first SQL snippet
defines the UDF and and the second shows an example of how to use it.

Assume that TABLE1 has two VARCHAR columns: FIRST_NAME and LAST_NAME. The CHAR_LENGTH function is a built-in SQL
function.

package com.mycompany.util;
public class MyClass {
 public static int findNextSpace(String str, int start) {
 return str.indexOf(' ',start);
 }
}

CREATE JAVA_METHOD FIND_NEXT_SPACE AS
 'com.mycompany.util.MyClass.findNextSpace';

SELECT * FROM TABLE1
 WHERE FIND_NEXT_SPACE(FIRST_NAME, CHAR_LENGTH(LAST_NAME)) < 0;

Input Parameters

A final type-checking of parameters is performed when the Java method is called. Numeric types are cast to a higher type if
necessary in order to match the parameter types of a Java method. The numeric type order for Java types is:

1. double or Double

2. float or Float

3. java.math.BigDecimal

4. long or Long

5. int or Integer

6. short or Short

7. byte or Byte

The other recognized Java types are:

• boolean or Boolean

• String

• java.sql.Date

• java.sql.Time

• java.sql.Timestamp

• byte[]

• java.io.InputStream

7 Blackfish SQL

49

7

Note that if you pass NULL values to the Java method, you cannot use the primitive types such as short and double. Use the
equivalent encapsulation classes instead (Short, Double). A SQL NULL value is passed as a Java null value.

If a Java method has a parameter or an array of a type that is not listed in the tables above, it is handled as SQL OBJECT type.

Output Parameters

If a Java method parameter is an array of one of the recognized input types (other than byte[]), the parameter is expected to
be an output parameter. Blackfish SQL passes an array of length 1 (one) into the method call, and the method is expected to
populate the first element in the array with the output value. The recognized Java types for output parameters are:

• double[] or Double[]

• float[] or Float[]

• java.math.BigDecimal[]

• long[] or Long[]

• int[] or Integer[]

• short[] or Short[]

• Byte[] (but not byte[] since that is a recognized input parameter by itself)

• boolean[] or Boolean[]

• String[]

• java.sql.Date[]

• java.sql.Time[]

• java.sql.Timestamp[]

• byte[][]

• java.io.InputStream[]

Output parameters can be bound only to variable markers in SQL. All output parameters are essentially INOUT parameters,
since any value set before the statement is executed is passed to the Java method. If no value is set, the initial value is arbitrary.
If any of the parameters can output a SQL NULL (or have a valid NULL input), use the encapsulated classes instead of the
primitive types.

Example 8

package com.mycompany.util;
public class MyClass {
 public static void max(int i1, int i2, int i3, int result[]) {
 result[0] = Math.max(i1, Math.max(i2,i3));
 }
}

CREATE JAVA_METHOD MAX
 AS 'com.mycompany.util.MyClass.max';

CALL MAX(1,2,3,?);

The CALL statement must be prepared with a CallableStatement in order to get the output value. See the JDBC
documentation for how to use java.sql.CallableStatement. Note the assignment of result[0] in the Java method. The
array passed into the method has exactly one element.

Implicit Connection Parameters

If the first parameter of a Java method is of type java.sql.Connection, Blackfish SQL passes a connection object that
shares the transactional connection context used to call the stored procedure. This connection object can be used to execute
SQL statements using the JDBC API.

Blackfish SQL 7

50

7

Do not pass anything for this parameter. Let Blackfish SQL do it.

Example 9

package com.mycompany.util;
public class MyClass {
 public static void increaseSalary(java.sql.Connection con,
 java.math.BigDecimal amount) {
 java.sql.PreparedStatement stmt
 = con.prepareStatement("UPDATE EMPLOYEE SET SALARY=SALARY+?");
 stmt.setBigDecimal(1,amount);
 stmt.executeUpdate();
 stmt.close();
 }
}

CREATE JAVA_METHOD INCREASE_SALARY
 AS 'com.mycompany.util.MyClass.increaseSalary';

CALL INCREASE_SALARY(20000.00);

Note:

• INCREASE_SALARY requires only one parameter: the amount by which to increase the salaries. The corresponding Java
method has two parameters.

• Do not call commit(), rollback, setAutoCommit(), or close() on the connection object passed to stored procedures.
For performance reasons, it is not recommended to use this feature for a UDF, even though it is possible.

Stored Procedures and JDBC ResultSets

A Java stored procedure can produce a ResultSet on the client by returning either a ResultSet or a DataExpress DataSet
from the Java implementation of the stored procedure. The DataSet is automatically converted to a ResultSet for the user of
the stored procedure.

Example

This example returns a ResultSet:

package com.mycompany.util;

public class MyClass {
 public static void getMarriedEmployees(java.sql.Connection con)
 java.sql.Statement stmt = con.getStatement();
 java.sql.ResultSet rset
 = stmt.executeQuery("SELECT ID, NAME FROM EMPLOYEE
 WHERE SPOUSE IS NOT NULL");
 return rset;
}

Note: Do not close the stmt statement. This statement is closed implicitly.

Example

This example returns a DataSet, which is automatically converted to a ResultSet:

package com.mycompany.util;

public class MyClass {
 public static void getMarriedEmployees()
 com.borland.dx.dataset.DataSet dataSet = getDataSetFromSomeWhere();
 return dataSet;
}

Note: Do not close the stmt statement. This statement is closed implicitly.

7 Blackfish SQL

51

7

Example

Register and call the previous examples like this:

java.sql.Statement stmt = connection.getStatement();
stmt.executeUpdate("CREATE JAVA_METHOD GET_MARRIED_EMPLOYEES AS "+
 "'com.mycompany.util.MyClass.getMarriedEmployees'");
java.sql.ResultSet rset = stmt.executeQuery("CALL GET_MARRIED_EMPLOYEES()");
int id = rset.getInt(1);
String name = rset.getString(2);

Overloaded Method Signatures

Java methods can be overloaded to avoid numeric loss of precision.

Example 10

package com.mycompany.util;
public class MyClass {
 public static int abs(int p) {
 return Math.abs(p);
 }

 public static long abs(long p) {
 return Math.abs(p);
 }

 public static BigDecimal abs(java.math.BigDecimal p) {
 return p.abs();
 }

 public static double abs(double p) {
 return Math.abs(p);
 }
}

CREATE JAVA_METHOD ABS_NUMBER AS 'com.mycompany.util.MyClass.abs';

SELECT * FROM TABLE1 WHERE ABS(NUMBER1) = 2.1434;

The overloaded method abs is registered only once in the SQL engine. Now imagine that the abs method taking a BigDecimal
is not implemented! If NUMBER1 is a NUMERIC with decimals, then the abs method taking a double would be called, which can
potentially lose precision when the number is converted from a BigDecimal to a double.

Return Type Mapping

The return value of the method is mapped into an equivalent SQL type. Here is the type mapping table:

Return type of method Blackfish SQL SQL type

byte or Byte SMALLINT

short or Short SMALLINT

int or Integer INT

long or Long BIGINT

java.math.BigDecimal DECIMAL

float or Float REAL

double or Double DOUBLE

String VARCHAR

Blackfish SQL 7

52

7

boolean or Boolean BOOLEAN

java.io.InputStream (Any type derived from java.io.InputStream is also handled as an
INPUTSTREAM)

INPUTSTREAM

java.sql.Date DATE

java.sql.Time TIME

java.sql.Timestamp TIMESTAMP

All other types: OBJECT

See Also

Preface (see page 1)

Overview (see page 3)

System Architecture (see page 7)

Establishing Connections (see page 23)

Administering Blackfish SQL (see page 31)

Using Blackfish SQL Security (see page 35)

Using Triggers in Blackfish SQL Tables (see page 55)

Stored Procedures Reference (see page 59)

SQL Reference (see page 75)

Optimizing Blackfish SQL Applications (see page 125)

Deploying Blackfish SQL Database Applications (see page 133)

Troubleshooting (see page 137)

7 Blackfish SQL

53

7

8 Using Triggers in Blackfish SQL Tables

This chapter discusses triggers and Blackfish SQL tables.

• About Triggers

• Viewing Triggers

• Creating Triggers in Blackfish SQL for Windows Databases

• Creating Triggers in Blackfish SQL for Java Databases

About Triggers

You can create row level triggers for a Blackfish SQL table. In Blackfish SQL for Java, you can implement them in Java. In
Blackfish SQL for Windows, you can implement them in Delphi, C#, or VB.NET.

All trigger methods must be declared static and have only one parameter of type TriggerContext. The TriggerContext
class is symantically identical in Blackfish SQL for Java and Blackfish SQL for Windows. However, there are differences in
syntax for the two different platforms. On the Windows platform, the class TriggerContext is in the
Borland.Data.DataStore namespace. On the Java platform, the TriggerContext class is in the
com.borland.datastore package.

The trigger context can be used to obtain access to:

• A connection object

• The new row for insert, and update triggers

• The old row for update and delete triggers

These rules apply:

• New row values are modified in a BEFORE UPDATE or BEFORE INSERT trigger.

• Old row values cannot be modified.

• Foreign key and primary key constraints are applied after BEFORE triggers.

• AFTER triggers are called after the operation has completed, including successful completion of foreign key and primary key
constraints.

• The trigger implementation should avoid DML operations against the same table. This has the potential for infinite recursion.

• If there are multiple triggers of the same type for the same table, the calling order of the triggers is the order in which they
were created.

8 Blackfish SQL

55

8

• Commit and rollback operations are ignored inside the execution of the trigger If an exception is thrown from inside a trigger.
The affects of the statment that caused the trigger to be executed will be rolled back.

The requirements for deploying applications with trigger implementations are the same for both stored procedures and triggers.

Viewing Triggers

To view the triggers created for a table, call the DB_ADMIN.GET_TRIGGERS stored procedure. For a complete description see
the Stored Procedures Reference.

Creating Triggers in Blackfish SQL for Windows Databases

Use the CREATE TRIGGER statement to create a trigger in a Blackfish SQL for Windows database. See the SQL Reference for
syntax and examples of the CREATE TRIGGER statement.

Example

These example statements create triggers for the Customer class:

CREATE TRIGGER BEFORE_INSERT_CUSTOMER BEFORE INSERT ON CUSTOMER AS
 OrderEntryAssembly::OrderEntry.Customer.beforeInsertTrigger
CREATE TRIGGER BEFORE_UPDATE_CUSTOMER BEFORE UPDATE ON CUSTOMER AS
 OrderEntryAssembly::OrderEntry.Customer.beforeUpdateTrigger
CREATE TRIGGER BEFORE_DELETE_CUSTOMER BEFORE DELETE ON CUSTOMER AS
 OrderEntryAssembly::OrderEntry.Customer.beforeDeleteTrigger

CREATE TRIGGER AFTER_INSERT_CUSTOMER AFTER INSERT ON CUSTOMER AS
 OrderEntryAssembly::OrderEntry.Customer.afterInsertTrigger
CREATE TRIGGER AFTER_UPDATE_CUSTOMER AFTER UPDATE ON CUSTOMER AS
 OrderEntryAssembly::OrderEntry.Customer.afterUpdateTrigger
CREATE TRIGGER AFTER_DELETE_CUSTOMER AFTER DELETE ON CUSTOMER AS
OrderEntryAssembly::OrderEntry.Customer.afterDeleteTrigger

This shows the Delphi implementation of the Customer class triggers:

TCustomer = class
 class procedure BeforeInsertTrigger(Context: TriggerContext); static;
 class procedure BeforeUpdateTrigger(Context: TriggerContext); static;
 class procedure BeforeDeleteTrigger(Context: TriggerContext); static;
 class procedure AfterInsertTrigger(Context: TriggerContext); static;
 class procedure AfterUpdateTrigger(Context: TriggerContext); static;
 class procedure AfterDeleteTrigger(Context: TriggerContext); static;
end;

{ TCustomer }
 class procedure TCustomer.AfterDeleteTrigger(Context: TriggerContext);
 begin
 HandleBeforeInsert(Context.GetNewRow());
 end;
 class procedure TCustomer.AfterInsertTrigger(Context: TriggerContext);
 begin
 HandleBeforeUpdate(Context.GetOldRow(), Context.GetNewRow());
 end;
 class procedure TCustomer.AfterUpdateTrigger(Context: TriggerContext);
 begin
 HandleBeforeDelete(Context.GetOldRow(), Context.GetNewRow());
 end;
 class procedure TCustomer.BeforeDeleteTrigger(Context: TriggerContext);
 begin
 HandleAfterInsert(Context.getNewRow());
 end;
 class procedure TCustomer.BeforeInsertTrigger(Context: TriggerContext);
 begin
 HandleAfterUpdate(Context.getNewRow());
 end;
 class procedure TCustomer.BeforeUpdateTrigger(Context: TriggerContext);
 begin

Blackfish SQL 8

56

8

 HandleAfterDelete(Context.getNewRow());
 end;

This shows the C# implementation of the Customer class triggers:

public class Customer {
 public static void BeforeInsertTrigger(TriggerContext Context)
 {
 HandleBeforeInsert(Context.GetNewRow());
 }
 public static void BeforeUpdateTrigger(TriggerContext Context)
 {
 HandleBeforeUpdate(Context.GetOldRow(), Context.GetNewRow());
 }
 public static void beforeDeleteTrigger(TriggerContext Context)
 {
 HandleBeforeDelete(Context.getNewRow());
 }
 public static void afterInsertTrigger(TriggerContext Context)
 {
 HandleAfterInsert(Context.getNewRow());
 }
 public static void afterUpdateTrigger(TriggerContext Context)
 {
 HandleAfterUpdate(Context.getNewRow());
 }
 public static void afterDeleteTrigger(TriggerContext Context)
 {
 HandleAfterDelete(Context.getNewRow());
 }
}

Creating Triggers in Blackfish SQL for Java Databases

Use the CREATE TRIGGER statement to create a trigger in a Blackfish SQL for Java database. See the SQL Reference for
syntax and examples of the CREATE TRIGGER statement.

Examples:

These example statements create triggers for the Customer class:

CREATE TRIGGER BEFORE_INSERT_CUSTOMER BEFORE INSERT ON CUSTOMER AS
 orderentry.Customer.beforeInsertTrigger
CREATE TRIGGER BEFORE_UPDATE_CUSTOMER BEFORE UPDATE ON CUSTOMER AS
 orderentry.Customer.beforeUpdateTrigger
CREATE TRIGGER BEFORE_DELETE_CUSTOMER BEFORE DELETE ON CUSTOMER AS
 orderentry.Customer.beforeDeleteTrigger

CREATE TRIGGER AFTER_INSERT_CUSTOMER AFTER INSERT ON CUSTOMER AS
 orderentry.Customer.afterInsertTrigger
CREATE TRIGGER AFTER_UPDATE_CUSTOMER AFTER UPDATE ON CUSTOMER AS
 orderentry.Customer.afterUpdateTrigger
CREATE TRIGGER AFTER_DELETE_CUSTOMER AFTER DELETE ON CUSTOMER AS
 orderentry.Customer.afterDeleteTrigger

This shows the Java implementation of the Customer class triggers:

public class Customer {
 public static void beforeInsertTrigger(TriggerContext context)
 throws Exception
 {
 handleBeforeInsert(context.getNewRow());
 }
 public static void beforeUpdateTrigger(TriggerContext context)
 throws Exception
 {
 handleBeforeUpdate(context.getOldRow(), context.getNewRow());
 }

8 Blackfish SQL

57

8

 public static void beforeDeleteTrigger(TriggerContext context)
 throws Exception
 {
 handleBeforeDelete(context.getOldRow(), context.getNewRow());
 }
 public static void afterInsertTrigger(TriggerContext context)
 {
 handleAfterInsert(context.getNewRow());
 }
 public static void afterUpdateTrigger(TriggerContext context)
 {
 handleAfterUpdate(context.getNewRow());
 }
 public static void afterDeleteTrigger(TriggerContext context)
 {
 handleAfterDelete(context.getNewRow());
 }
 }

See Also

Preface (see page 1)

Overview (see page 3)

System Architecture (see page 7)

Establishing Connections (see page 23)

Administering Blackfish SQL (see page 31)

Using Blackfish SQL Security (see page 35)

Using Stored Procedures and User Defined Functions (see page 41)

Stored Procedures Reference (see page 59)

SQL Reference (see page 75)

Optimizing Blackfish SQL Applications (see page 125)

Deploying Blackfish SQL Database Applications (see page 133)

Troubleshooting (see page 137)

Blackfish SQL 8

58

8

9 Stored Procedures Reference

Many administrative tasks are supported by stored procedures in the DB_ADMIN class. The DB_UTIL class provides stored
procedures for numeric, string, and date/time operations.

• DB_ADMIN Stored Procedures

• DB_UTIL Numeric, String, and Date/Time Stored Procedures

DB_ADMIN Stored Procedures

DB_ADMIN is a group of stored procedures for performing a variety of database administration tasks. For example:

• Viewing metadata

• Altering automatic failover and incremental backup

• Altering database properties

• Verifying tables

• Database copy for backup purposes

• Database encryption

• Change database password

• Displaying database staus, such as the following:

• locks

• status log IDs

These methods can be called from SQL using the CALL statement. They can be called without creating a METHOD alias because
the Blackfish SQL recognizes the methods in DB_ADMIN as built-in methods.

DB_ADMIN Methods

The following sections provide the syntax and a brief description of each DB_ADMIN method.

ALTER_DATABASE

ALTER_DATABASE(string properties)

Alters specified database properties. properties is a comma-separated list of settings for the columns from the
DatabaseColumns class. Each property is specified as follows: <COLUMN_NAME>=<VALUE>. See the online help for
information on the DatabaseColumns class.

9 Blackfish SQL

59

9

ALTER_MIRROR

ALTER_MIRROR(string mirrorName, string properties)

Alters an existing mirror configuration. mirrorName is a value from the SysMirrors.NAME column. properties is a
comma-separated list of settings for the columns from the SysMirrors class. Each property is specified as follows:
<COLUMN_NAME>=<VALUE>. See the online help for information on the SysMirrors class.

ALTER_MIRROR_SCHEDULE

ALTER_MIRROR_SCHEDULE(INT32 mirrorId, string properties)

Alters an existing mirror schedule item. mirrorName is value from the SysMirrorSchedule.NAME column. properties A
comma separated list of settings for the columns from the SysMirrorSchedule class. Each property is specified as follows:
<COLUMN_NAME>=<VALUE>. See the online help for information on the SysMirrorSchedule class.

CHANGE_PASSWORD

CHANGE_PASSWORD(string oldpassword, string newPassword)

Changes the password for the currently connected user.

CLOSE_CONNECTION

CLOSE_CONNECTION(INT32 connectionId, INT64 birthTimeMilliseconds)

Closes an open connection. Can be used to close unwanted connections. connectionId From the ID column returned by
GET_CONNECTIONS. birthTimeMilliseconds from the BIRTH column returned by GET_CONNECTIONS. Returns true if
successful See GET_CONNECTIONS to obtain a table of connections to close.

CLOSE_OTHER_CONNECTIONS

CLOSE_OTHER_CONNECTIONS()

Closes all other open connections. Administrator rights are required to execute this method.

COPY_STREAMS

COPY_STREAMS(string otherFilename, string adminUser, string adminPass, boolean doOverwrite,
boolean doIgnoreErrors)

Copies all tables and indexes from the current database to another database. COPY_USERS method should be called first if users
have been added to the database. otherFilename is the file name of the destination database. adminUser is the user with
ADMIN privileges in the destination database. adminPass is the password of the ADMIN user in the destination database.
overwrite allows the tables to be overwritten. If false this will cause an error. ignoreErrors causes errors to be ignored
when recovering a corrupt database.

COPY_USERS

COPY_USERS(string otherFilename, string adminUser, string adminPass, boolean doCopyEncryption,

boolean replaceExistingUsers)

Copies all users from the current database to another specified database. otherFilename is the file name of the destination
database. adminUser user with ADMIN privileges in the destination database. adminPass password of the ADMIN user in the
destination database. copyEncryption if the current database is encrypted then encrypt the target database with the same
key. replaceExistingUsers if true replace the existing users in the target database.

CREATE_MIRROR

CREATE_MIRROR(string properties)

Blackfish SQL 9

60

9

Creates a new mirror with the configuration properties provided. properties A comma-separated list of settings for the
columns from the SysMirrors class. Each property is specified as follows: <COLUMN_NAME>=<VALUE>. Returns a unique ID
for new new mirror. See the online help for information on the SysMirrors class.

CREATE_MIRROR_SCHEDULE

CREATE_MIRROR_SCHEDULE(string mirrorName, string properties)

Creates a new mirror synchronization schedule. mirrorName the name of the mirror to add the mirror schedule item for.
properties a comma-separated list of settings for the columns in the SysMirrorSchedule table. Each property is defined by
specified as follows: <COLUMN_NAME>=<VALUE>. Returns a unique INT64 identifier for the new schedule item. See the online
help for information on the SysMirrorSchedule class.

DROP_MIRROR

DROP_MIRROR(string mirrorName)

Drops an existing mirror configuration. mirrorName is a value from the SysMirrors.NAME column. See the online help for
information on the SysMirrors class.

DROP_MIRROR_SCHEDULE

DROP_MIRROR_SCHEDULE(INT32 mirrorID)

Drops an existing mirror schedule item. mirrorID is a value from the SysMirrorSchedule.ID column See the online help for
information on the SysMirrorSchedule class.

ENCRYPT

ENCRYPT(string adminPassword, string masterKeySeed)

Encrypts an empty database. adminPass password of the user performing this command. masterKeySeed a random
sequence of 16 characters that is used internally as the master password. Once provided, it does not needed to be provided for
access to the database. This should be very random sequence of characters.

GET_ALL_LICENCES

GET_ALL_LICENCES()

Returns a result table with zero or more rows of all licenses that could be found. The columns for this result table are defined in
LicenseColumns class. See the online help for information on the LicenseColumns class.

GET_COLUMN_PRIVILEGES

GET_COLUMN_PRIVILEGES(string catalogPattern, string schemaPattern, string tablePattern, string

columnPattern)

catalogPattern specifies the LIKE catalog search pattern. Not used. Reserved for future use. schemaPattern specifies the
LIKE schema search patttern. null means means that the schema name should not be used to narrow the search.
tablePattern specifies the LIKE table search patttern. null means means that the table name should not be used to narrow
the search. columnPattern specifies the LIKE column search patttern. null means means that the column name should not
be used to narrow the search. Returns a result table with column privileges for the specified table(s). The columns for this result
table are defined in the ColumnPrivilegeColumns class. See the online help for information on the
ColumnPrivilegeColumns class.

GET_COLUMNS

GET_COLUMNS(string catalogPattern, string schemaPattern, string tablePattern, string

columnPattern)

9 Blackfish SQL

61

9

catalogPattern specifies the LIKE catalog search pattern. Not used. Reserved for future use. schemaPattern specifies the
LIKE schema search patttern. null means means that the schema name should not be used to narrow the search.
tablePattern specifies the LIKE table search patttern. null means means that the table name should not be used to narrow
the search. columnPattern specifies the LIKE column search patttern. null means means that the column name should not
be used to narrow the search. Returns a result table with metadata for the columns of the specified table(s). The columns for this
result table are defined in the ColumnsColumns class. See the online help for information on the ColumnsColumns class.

GET_CONNECTIONS

GET_CONNECTIONS()

Returns a result table of the open connections for the current server connection. The columns for this result table are defined in
the ConColumns class. See the online help for information on the ConColumns class.

GET_DATABASE_PRIVILEGES

GET_DATABASE_PRIVILEGES(boolean forRoles)

forRoles if true, grantee is a role; if false, grantee is a user.

Returns a result table with database access rights for each user or role using the following columns:

1. GRANTOR String => grantor of access

2. GRANTEE String => grantee of access

3. PRIVILEGE String => name of access (STARTUP, ADMINISTRATOR, WRITE, CREATE, DROP, RENAME, CREATE_ROLES,
CREATE_SCHEMAS)

4. IS_GRANTABLE String => YES if grantee is permitted to grant to others; NO if not

GET_DATABASE_PRODUCT_NAME

GET_DATABASE_PRODUCT_NAME()

Returns the product name of the server as a string.

GET_DATABASE_PRODUCT_VERSION

GET_DATABASE_PRODUCT_VERSION()

Returns the product version of the server as a string

GET_DATABASE_PROPS

GET_DATABASE_PROPS()

Returns a result table with the properties for the current database. The columns for this result table are defined in the
DatabaseColumns class. See the online help for information on the DatabaseColumns class.

GET_DATABASE_STATUS

GET_DATABASE_STATUS()

Returns a result table with one row of status information about the current database. The columns for this result table are defined
in the DatabaseStatusTable class. See the online help for information on the DatabaseStatusTable class.

GET_DATABASE_STATUS_LOG_FILTER

GET_DATABASE_STATUS_LOG_FILTER()

Returns an INT32 filter that controls what kind of logging information is logged to the status log file for all current database

Blackfish SQL 9

62

9

connections. The meaning of the bit masks is found in LogFilterCodes class. See the online help for information on the
LogFilterCodes class.

GET_DATATYPES

GET_DATATYPES()

Returns a result table with a row for each supported data type in the database server. The columns for this result table are
defined in the DataTypesColumns class. See the online help for information on the DataTypesColumns class.

GET_FOREIGN_KEYS

GET_FOREIGN_KEYS(catalogPattern, schemaPattern, tablePattern)

catalogPattern specifies the LIKE catalog search pattern. Not used. Reserved for future use. schemaPattern specifies the
LIKE schema search patttern. null means means that the schema name should not be used to narrow the search.
tablePattern specifies the LIKE table search patttern. null means means that the table name should not be used to narrow
the search. Returns a result table with a row for each foreign key in the specified table(s). The columns for this result table are
defined in the ForeignKeyColumnsColumns class. See the online help for information on the ForeignKeyColumnsColumns
class.

GET_FOREIGN_KEY_COLUMNS

GET_FOREIGN_KEY_COLUMNS(string catalogPattern, string schemaPattern, string tablePattern,
string foreignKeyPattern, string primaryCatalogPattern, string primarySchemaPattern, string

primaryTablePattern, string primaryIndexPattern)

catalogPattern specifies the LIKE catalog search pattern. Not used. Reserved for future use. schemaPattern specifies the
LIKE schema search patttern. null means means that the schema name should not be used to narrow the search.
tablePattern specifies the LIKE table search patttern. null means means that the table name should not be used to narrow
the search. foreignKeyPattern specifies the LIKE foreign key search patttern. null means means that the table name
should not be used to narrow the search. primaryCatalogPattern specifies the LIKE primary catalog search pattern. Not
used. Reserved for future use. primarySchemaPattern specifies the LIKE primary schema search patttern. null means
means that the primary schema name should not be used to narrow the search. primaryTablePattern specifies the LIKE
primary table search patttern. null means means that the table name should not be used to narrow the search.
primaryIndexPattern specifies the LIKE primary table index search patttern. null means means that the table name
should not be used to narrow the search. Returns a result table with a row for each foreign key column pairs in the specified
table(s). The columns for this result table are defined in the ForeignKeyColumns class. See the online help for information on
the ForeignKeyColumns class.

GET_INDEXES

GET_INDEXES(string catalogPattern, string schemaPattern, string tablePattern)

catalogPattern specifies the LIKE catalog search pattern. Not used. Reserved for future use. schemaPattern specifies the
LIKE schema search patttern. null means means that the schema name should not be used to narrow the search.
tablePattern specifies the LIKE table search patttern. null means means that the table name should not be used to narrow
the search. Returns a result table with the indexes of the specified table(s). The columns for this result table are defined in the
IndexesColumns class. See the online help for information on the IndexesColumns class.

GET_INDEX_COLUMNS

GET_INDEX_COLUMNS(string catalogPattern, string schemaPattern, string tablePattern, string

indexPattern)

catalogPattern specifies the LIKE catalog search pattern. Not used. Reserved for future use. schemaPattern specifies the
LIKE schema search patttern. null means means that the schema name should not be used to narrow the search.

9 Blackfish SQL

63

9

tablePattern specifies the LIKE table search patttern. null means means that the table name should not be used to narrow
the search. indexPattern specifies the LIKE index search patttern. null means means that the table name should not be used
to narrow the search. Returns a result table with the column information of the specified table index(es). The columns for this
result table are defined in the IndexColumnsColumns class. See the online help for information on the
IndexColumnsColumns class.

GET_KEYWORDS

GET_KEYWORDS()

Returns a result table with the reserved keywords in this database.

GET_LICENSE

GET_LICENSE()

Returns a result table with one row of license information for the best deployment license found. The columns for this result table
are defined in the LicenseColumns class. See the online help for information on the LicenseColumns class.

GET_LICENSE_SEARCH_DIRS

GET_LICENSE_SEARCH_DIRS()

Returns a result table with a row for each directory that is searched for license files.

GET_LOCKS

GET_LOCKS()

Returns a result table of all the currently held table and row locks for all connections to the current database. The columns for
this result table are defined in the LockColumns class. See the online help for information on the LockColumns class.

GET_MIRROR_ID

GET_MIRROR_ID()

Returns the INT64 mirror id of the current mirror if this is a mirror.

GET_MIRRORS

GET_MIRRORS(mirrorName, checkStatus)

name is the name of the mirror or null to get all mirrors. checkStatus is set to TRUE to provide additional columns on the
status of the mirror. Status checking requires more work to be performed, but provides additional information on a mirror.

Returns a result table with a row for each mirror. The columns for this result table are defined in the MirrorStatusColumns
class. See the online help for information on the MirrorStatusColumns class.

GET_NEWEST_STATUS_LOG_ID

GET_NEWEST_STATUS_LOG_ID()

Returns the INT32 ID of the newest log file that can be retrieved using the GET_STATUS_LOG() method.

GET_OLDEST_STATUS_LOG_ID

GET_OLDEST_STATUS_LOG_ID()

Returns the INT32 ID of the oldest log file that can be retrieved using the GET_STATUS_LOG() method.

Blackfish SQL 9

64

9

GET_PROCEDURES

GET_PROCEDURES(string catalogPattern, string schemaPattern, string procedurePattern, string

type)

catalogPattern specifies the LIKE catalog search pattern. Not used. Reserved for future use. schemaPattern specifies the
LIKE schema search patttern. null means means that the schema name should not be used to narrow the search.
procedurePattern specifies the LIKE procedure search patttern. null means means that the procedure name should not be
used to narrow the search. procedureType a procedure type; must be either PROCEDURE or FUNCTION or null for any
procedure type. Returns a result table with metadata for the known stored procedures. The columns for this result table are
defined in the ProcedureColumns class. See the online help for information on the ProcedureColumns class.

GET_PROCEDURE_COLUMNS

GET_PROCEDURE_COLUMNS(string catalogPattern, string schemaPattern, string procedurePattern,

string parameterPattern)

catalogPattern specifies the LIKE catalog search pattern. Not used. Reserved for future use. schemaPattern specifies the
LIKE schema search patttern. null means that the schema name should not be used to narrow the search.
procedureNamePattern specifies the LIKE procedure search patttern. null means that the procedure name should not be
used to narrow the search. columnNamePattern specifies the LIKE column search patttern. null means that the column
name should not be used to narrow the search. Returns a result table with the parameters of the specified procedure(s). The
columns for this result table are defined in the ProcedureParametersColumns class. See the online help for information on
the ProcedureParametersColumns class.

GET_PROCEDURE_PRIVILEGES

GET_PROCEDURE_PRIVILEGES() Returns a result table with descriptions of the access rights for each procedure. The result
table has the following columns:

1. PROCEDURE_CAT String => procedure catalog (is always null)

2. PROCEDURE_SCHEM String => procedure schema

3. PROCEDURE_NAME String => procedure name

4. GRANTOR String => grantor of access

5. GRANTEE String => grantee of access

6. PRIVILEGE String => name of access (EXECUTE)

7. IS_GRANTABLE String => YES if grantee is permitted to grant to others; NO if not

GET_ROLES

GET_ROLES()

Returns a result table with the roles in the database. The columns for this result table are defined in the RolesColumns class.
See the online help for information on the RolesColumns class.

GET_ROLE_GRANTS

GET_ROLE_GRANTS(boolean forRoles)

forRoles set to true, grantee is a role; set to false, grantee is a user.

The result table has the following columns:

1. ROLE_NAME String => name of the role granted

9 Blackfish SQL

65

9

2. GRANTOR String => grantor of role

3. GRANTEE String => grantee of role

4. IS_GRANTABLE String => YES if grantee is permitted to grant to others; NO if not.

GET_SCHEMAS

GET_SCHEMAS(string catalogPattern)

catalogPattern specifies the LIKE catalog search pattern. Not used. Reserved for future use. Returns a result table with the
schemas in the database.

GET_STATUS_LOG_FILTER

GET_STATUS_LOG_FILTER()

Returns the INT32 filter that controls the type of logging information to be logged to the status log for this connection. The
meaning of the bit masks is found in LogFilterCodes class. See the online help for information on the LogFilterCodes
class.

GET_STATUS_LOG

GET_STATUS_LOG(INT32 log_id, INT64 offset)

id is the ID of the log file being retrieved. offset is the offset into the log file from the start of the file. Returns the status log for
the current databas as a stream.

GET_STATUS_LOGS

GET_STATUS_LOGS()

Returns a result table with id of the existing logs for this database. The columns for this result table are defined in the
StatusLogColumns class. See the online help for information on the StatusLogColumns class.

GET_TABLE_PRIVILEGES

GET_TABLE_PRIVILEGES(string catalogPattern, string schemaPattern, string tablePattern)

catalogPattern specifies the LIKE catalog search pattern. Not used. Reserved for future use. schemaPattern specifies the
LIKE schema search patttern. null means means that the schema name should not be used to narrow the search.
tablePattern specifies the LIKE table search patttern. null means means that the table name should not be used to narrow
the search. Returns a result table privilege descriptions for the selected table(s). The columns for this result table are defined in
the TablePrivilegeColumns class. See the online help for information on the TablePrivilegeColumns class.

GET_TABLES

GET_TABLES(string catalogPattern, string schemaPattern, string tablePattern, string type)

catalogPattern specifies the LIKE catalog search pattern. Not used. Reserved for future use. schemaPattern specifies the
LIKE schema search patttern. null means means that the schema name should not be used to narrow the search.
tablePattern specifies the LIKE table search patttern. null means means that the table name should not be used to narrow
the search. types comma separated list of TABLE, VIEW, SYSTEM_TABLE or null. Returns a result table with metadata for the
specified table(s). The columns for this result table are defined in the TableColumns class. See the online help for information
on the TableColumns class.

GET_THIS_MIRROR

GET_THIS_MIRROR(boolean checkStatus) checkStatus TRUE to provide additional columns on the status of the mirror.

Blackfish SQL 9

66

9

Like GET_MIRRORS except that it returns information for only the mirror this procedure is executed against. Returns a result table
with a row for this mirror. The columns for this result table are defined in the MirrorStatusColumns class. See the online help
for information on the MirrorStatusColumns class.

GET_TRIGGERS

GET_TRIGGERS(string catalogPattern, string schemaPattern, string tablePattern, string trigger)

catalogPattern specifies the LIKE catalog search pattern. Not used. Reserved for future use. schemaPattern specifies the
LIKE schema search patttern. null means means that the schema name should not be used to narrow the search.
tablePattern specifies the LIKE table search patttern. null means means that the table name should not be used to narrow
the search. triggerPattern specifies the LIKE trigger search patttern. null means means that the trigger name should not
be used to narrow the search. Returns a result table of the triggers of the specified table(s).

The result table has the following columns:

1. TRIGGER_CAT String => trigger catalog (is always null)

2. TRIGGER_SCHEM String => trigger schema

3. TRIGGER_TABLE String => trigger table

4. TRIGGER_TYPE String => trigger type

5. TRIGGER_METHOD String => name of the trigger method

GET_USERS

GET_USERS()

Returns a result table with the users in the database.

GET_VIEWS

GET_VIEWS(string catalogPattern, string schemaPattern, string view)

catalogPattern specifies the LIKE catalog search pattern. Not used. Reserved for future use. schemaPattern specifies the
LIKE schema search patttern. null means means that the schema name should not be used to narrow the search.
viewNamePattern specifies the LIKE view search patttern. null means that the view name should not be used to narrow the
search. Returns a result table with the definitions of the specified view(s). The columns for this result table are defined in the
ViewsColumns class. See the online help for information on the ViewsColumns class.

SET_DATABASE_STATUS_LOG_FILTER

SET_DATABASE_STATUS_LOG_FILTER(INT32 filter)

Sets the filter that controls the type of logging information to be entered in the status log file for all current database connections.

SET_PRIMARY_MIRROR

SET_PRIMARY_MIRROR(INT64 txTerminationTimeout, boolean forceTransactionAbort, boolean

forceSwitch)

Sets the current mirror to the primary mirror. txTerminationTimeout is milliseconds to wait for existing transactions to
terminate. forceTxTermination causes existing transactions to abort after txTerminationTimeout milliseconds have
elapsed. forceSwitch causes this mirror to become the primary mirror even if other mirrors could not be synchronized with this
change.

SET_STATUS_LOG_FILTER

SET_STATUS_LOG_FILTER(INT32 filter)

9 Blackfish SQL

67

9

Sets the filter that controls the type of logging information to be logged to the status log file for the current connection.

SYNCH_MIRROR

SYNCH_MIRROR(string mirrorName)

Updates the mirror specified for mirrorName with the most recent log files of its update mirror if necessary.

VALIDATE_PRIMARY_MIRROR

VALIDATE_PRIMARY_MIRROR()

Validates a primary mirror so that write transactions can be performed against it.

VERIFY

VERIFY(string catalogPattern, string schemaPattern, string tablePattern, INT32 displayOptions,

INT32 errorCount, out INT32 errorsEncountered, out String output)

Verifies one or more tables in the database. catalogPattern specifies the LIKE catalog search pattern. Not used. Reserved
for future use. schemaPattern specifies the LIKE schema search patttern. null means means that the schema name should
not be used to narrow the search. tablePattern specifies the LIKE table search patttern. null means means that the table
name should not be used to narrow the search. displayOptions one or more of the StreamVerifierDisplay bit settings
ORed together that instruct the verifier to display progress messages as the stream is verified. errorCount specifies the
number of errors that can be ignored before an exception is thrown. errorsEncountered is an output parameter that returns
the number of errors that were encountered. output is an output parameter that can be used to return a string with diagnostic
output from the verifier.

VERIFY

VERIFY(string tablePattern, INT32 displayOptions, INT32 errorCount, out INT32

errorsEncountered, out String output)

Verifies one or more tables in the database. tablePattern specifies the LIKE table search patttern. null means means that
the table name should not be used to narrow the search. displayOptions one or more of the StreamVerifierDisplay bit
settings ORed together that instruct the verifier to display progress messages as the stream is verified. errorCount specifies
the number of errors that can be ignored before an exception is thrown. errorsEncountered is an output parameter that
returns the number of errors that were encountered. output is an output parameter that can be used to return a string with
diagnostic output from the verifier.

DB_UTIL: Numeric, String, and Date/Time Functions

DB_UTIL is a set of SQL stored procedures for performing numeric, string and date/time operations on data stored in database
tables. These functions are implemented as Java UDFs in DB_UTIL.

Examples

The following statement computes the square root of the column COL1:

SELECT DB_UTIL.SQRT(COL1) FROM TABLE1;

The following statement computes some timestamps that are equal to the timestamp COL2 plus five hours.

SELECT DB_UTIL.TIMESTAMPADD('SQL_TSI_HOUR',5,COL2) FROM TABLE1;

Numeric Functions

Blackfish SQL 9

68

9

ACOS

ACOS(expression)

Returns the arccosine in radians of a number.

ASIN

ASIN(expression)

Returns the arcsine in radians of a number.

ATAN

ATAN(expression)

Returns the arctangent in radians of a number.

ATAN2

ATAN2(y, x)

Returns the arctangent of the quotient of its two arguments. The angle returned is a numeric value in radians between PI and -PI
and represents the counterclockwise angle between the positive X axis and the point (x, y). Note that the y value is passed in
first.

CEILING

CEILING(expression)

Returns the smallest integer that is greater than or equal to the argument. The return is of the same data type as the input.

COS

COS(expression)

Returns the cosine of an angle.

COT

COT(expression)

Returns the cotangent of an angle.

DEGREES

DEGREES(expression)

Converts an angle in radians to degrees.

EXP

EXP(expression)

Returns the exponential value of expression.

FLOOR

FLOOR(expression)

Returns the largest integer that is equal to or less than expression. The return is of the same data type as the input.

9 Blackfish SQL

69

9

LOG

LOG(expression)

Returns the natural logarithm of a number.

LOG10

LOG10(expression)

Returns the base 10 logarithm of a number.

MOD

MOD(expression1, expression2)

Returns the remainder for expression divided by expression, where both expressions evaluate to integers of type SHORT, INTs
or LONGs. The return is of the same data type as the input.

PI

PI()

Returns the constant PI.

POWER

POWER(expression1, expression2)

Returns the value of expression1 raised to the power of expression2.

RADIANS

RADIANS(expression)

Converts an angle in degrees to radians.

RAND

RAND()

Generates a random floating point number.

RAND

RAND(expression)

Generates a random floating point number using expression as a seed integer.

ROUND

ROUND(expression1, expression2)

Rounds expression1 to expression2 number of decimal places.

SIGN

SIGN(expression)

Returns –l if the value of expression is negative, zero if expression is zero, and 1 if expression is positive. The return is of
the same data type as the input.

Blackfish SQL 9

70

9

SIN

SIN(expression)

Returns the sine in radians of an angle.

SQRT

SQRT(expression)

Returns the square root of a number.

TAN

TAN(expression)

Returns the tangent of an angle given in radians.

TRUNCATE

TRUNCATE(expression1, expression2)

Truncates the value of expression1 to expression2 decimal places.

String Functions

ASCII

ASCII(string)

Returns an integer representing the ASCII code value of the leftmost character in string.

TO_CHAR

TO_CHAR(ascii_code)

Returns the char equivalent of the ASCII code argument.

DIFFERENCE

DIFFERENCE(string1, string2)

Returns an integer in the range 0 through 4 indicating how many of the four digits returned by the function SOUNDEX for string1
are the same as those returned for string2. A return value of 4 indicates that the SOUNDEX codes are identical.

INSERT_STRING

INSERT_STRING(string1, start, length, string2)

Returns a character string formed by deleting length characters from string1 beginning at start and then inserting string2 into
string1 at start.

LEFT_STRING

LEFT_STRING(string, count)

Returns the leftmost count characters from string.

REPEAT

REPEAT(string, count)

9 Blackfish SQL

71

9

A character string formed by repeating string string count times.

REPLACE

REPLACE (string1, string2, string3)

Returns a character string formed by replacing all occurrences of string2 in string1 with string3.

RIGHT

RIGHT_STRING(string, count)

Returns a string formed by taking the right-hand count characters from string.

SOUNDEX

SOUNDEX (string)

Returns a string that represents the sound of the words in string; the return is data source-dependent and could be a four-digit
SOUNDEX code, a phonetic representation of each word, or some other form.

SPACE

SPACE(count)

Returns a character string consisting of count spaces.

Date and Time Functions

DAYNAME

DAYNAME(date)

Returns the day of the week as a string from the given date.

DAYOFWEEK

DAYOFWEEK(date)

Returns the day of the week as as a number: 1=Sunday, 7=Saturday.

DAYOFYEAR

DAYOFYEAR(date)

Returns the day of the year as a number: 1=January 1.

MONTHNAME

MONTHNAME(date)

Returns a string representing the month component of the given date.

QUARTER

QUARTER(date)

Returns the quarter as a number from the given date: 1=January through March, 2=April through June.

TIMESTAMPADD

TIMESTAMPADD(interval, count, timestamp)

Blackfish SQL 9

72

9

Returns a timestamp calculated by adding count number of intervals to timestamp.

interval can be any one of the following and must be enclosed in single quotes: SQL_TSI_FRAC_SECOND, SQL_TSI_SECOND,
SQL_TSI_MINUTE, SQL_TSI_HOUR, SQL_TSI_DAY, SQL_TSI_WEEK, SQL_TSI_MONTH, SQL_TSI_QUARTER, or
SQL_TSI_YEAR.

timestamp can be any of the following SQL data types: DATE, TIME, TIMESTAMP.

TIMESTAMPDIFF

TIMESTAMPDIFF(interval, timestamp1, timestamp2)

Returns a number representing the number of intervals by which timestamp2 is greater than timestamp1.

interval can be any one of the following and must be enclosed in single quotes: SQL_TSI_FRAC_SECOND, SQL_TSI_SECOND,
SQL_TSI_MINUTE, SQL_TSI_HOUR, SQL_TSI_DAY, SQL_TSI_WEEK, SQL_TSI_MONTH, SQL_TSI_QUARTER, or
SQL_TSI_YEAR.

timestamp1 and timestamp2 can be any of the following SQL data types: DATE, TIME, TIMESTAMP.

WEEK

WEEK(date)

Returns an integer from 1 to 53 representing the week of the year in date. 1=the first week of the year.

See Also

Preface (see page 1)

Overview (see page 3)

System Architecture (see page 7)

Establishing Connections (see page 23)

Administering Blackfish SQL (see page 31)

Using Blackfish SQL Security (see page 35)

Using Stored Procedures and User Defined Functions (see page 41)

Using Triggers in Blackfish SQL Tables (see page 55)

SQL Reference (see page 75)

Optimizing Blackfish SQL Applications (see page 125)

Deploying Blackfish SQL Database Applications (see page 133)

Troubleshooting (see page 137)

9 Blackfish SQL

73

9

10 SQL Reference

The SQL Reference includes the following topics:

Data Types

Literals Keywords

Identifiers List Syntax

Expressions Predicates

Functions Table Expressions

Statements Data Definition Statements

Transaction Control Statements Data Manipulation Statements

Security Statements Escape Sequences

Escape Functions ISQL

Data Types

In SQL, you can specify data types by using Blackfish SQL names or by using synonyms, which are more portable to other SQL
dialects. The following table lists the Blackfish SQL SQL data types and their Java equivalents. See Administering Blackfish SQL
for a description of each data type.

Strings are stored in UNICODE character format. However, if a string contains no high-bit characters. the high bytes are not
saved and the number of bytes is equal to the number of characters. In double-byte languages such as Japanese, the number of
bytes is double the number of characters.

NOTE: The word “inline” refers to the portion of the field data that is stored in the table row. When the maximum inline value is
surpassed, the remaining data is stored in a separate stream as a Blob.

SQL Data Types Supported by Blackfish SQL

The following table describes the SQL data types supported by Blackfish SQL:

Data Type SQL Equivalents 1

8 bit byte TINYINT BYTE

16 bit integer SMALLINT SHORT

10 Blackfish SQL

75

10

32 bit integer INT INTEGER

64 bit integer BIGINT LONG

Exact decimal number DECIMAL(p,d) BIGDECIMAL(p,d)

64 bit floating point FLOAT(p), p=24 through 52 FLOAT DOUBLE DOUBLE PRECISION

32 bit floating point REAL FLOAT(p), p=1 through 23

Unicode string VARCHAR(p,m) STRING(p,m)

Array of bytes VARBINARY(p,m) BINARY(p,m) INPUTSTREAM(p,m)

Serializable object OBJECT(t,m)

Boolean BOOLEAN BIT

Date DATE

Time TIME

Timestamp TIMESTAMP

1 In the SQL Equivalents column, bold indicates the more portable forms.

Examples

VARCHAR(30,10) A string with a maximum size of 30 characters; the first 10 bytes are stored inline, the
remainder in a Blob (a separate stream for large objects)

VARCHAR(30) A string with a maximum size of 30 characters, all stored inline because the precision is less
than default inline value of 64

VARCHAR A string with no length limit; the first 64 bytes are stored inline, any additional bytes are stored
in a Blob (a separate stream for large objects)

DECIMAL(5,2) A BigDecimal with a precision of at least 5 and exactly 2 decimal places

DECIMAL(4) A BigDecimal with a precision of at least 4 and exactly 0 decimal places

DECIMAL A BigDecimal with space for at least 72 significant digits and exactly 0 decimal places

OBJECT A serializable Java object

OBJECT('java.math.BigInteger') A serializable Java object that must consist of java.math.BigInteger objects

Literals

The following table lists the types of scalar literal values supported:

Blackfish SQL
Data Type

Examples Description

SMALLINT INT
BIGINT

8 Integer data types

DECIMAL(p,d) 2. 15.7 .9233 An exact numeric; can contain a decimal point

REAL DOUBLE
FLOAT(p)

8E0 4E3 0.3E2 6.2E-72 An approximate numeric: a number followed by the letter E, followed by an
optionally signed integer

VARCHAR(p,m) 'Hello' 'don''t do that' A string: must be enclosed in single quotes. The single quote character is
represented by two consecutive single quotes

VARBINARY(p,m) B'1011001' X'F08A'
X'f777'

A binary or hexadecimal sequence enclosed in single quotes and preceded by
the letter B for binary or X for hexadecimal

BOOLEAN TRUE FALSE

Blackfish SQL 10

76

10

DATE DATE '2002-06-17' Displays local time of origin; format is DATE 'yyyy-mm-dd'

TIME TIME '15:46:55' Displays local time of origin; format is TIME 'hh:mm:ss' in 24-hour format

TIMESTAMP TIMESTAMP
'2001-12-31 13:15:45'

Displays local time of display; format is TIMESTAMP 'yyyy-mm-dd hh:mm:ss'

NOTE: There are no object literals in Blackfish SQL.

Keywords

The two lists below show all the current keywords for Blackfish SQL. The words in the first list are reserved and can be used as
SQL identifiers only when enclosed in double quotation marks. The keywords in the second list are not reserved and can be
used either with or without quotation marks.

Note that not all SQL-92 keywords are treated as a keyword by the Blackfish SQL SQL engine. For maximum portability,
don’t use identifiers that are treated as keywords in any SQL dialect.

Reserved Blackfish SQL Keywords

The words in this list are reserved keywords. They can be used as SQL identifiers only if they are enclosed in double quotation
marks. When quoted in this fashion, they are case sensitive.

ABSOLUTE ACTION ADD
ADMIN ADMINISTRATOR ALL
ALTER AND ANY AS ASC
AUTHORIZATION
AUTOINCREMENT AVG
BETWEEN BIT BIT_LENGTH
BOTH BY CALL CASCADE
CASE CAST CHAR
CHAR_LENGTH CHARACTER
CHARACTER_LENGTH
CHECK COALESCE COLUMN
CONSTRAINT COUNT
CREATE CROSS
CURRENT_DATE

CURRENT_ROLE
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_USER DATE
DECIMAL DEFAULT DELETE
DESC DISTINCT DOUBLE
DROP ELSE END ESCAPE
EXCEPT EXECUTE EXISTS
EXTRACT FALSE FLOAT
FOR FOREIGN FROM FULL
GRANT GROUP HAVING IN
INDEX INNER INSERT INT
INTEGER INTERSECT

INTO IS ISOLATION JOIN
KEY LEADING LEFT LEVEL
LIKE LOWER MAX MIN
NATURAL NO NONE NOT
NULL NULLIF NUMERIC
OCTET_LENGTH ON ONLY
OPTION OR ORDER
OUTER POSITION
PRECISION PRIMARY
PRIVILEGES PUBLIC REAL
REFERENCES RENAME
RESOLVABLE

RESTRICT REVOKE RIGHT
SCHEMA SELECT SET
SMALLINT SOME SQRT
STARTUP SUBSTRING
SUM TABLE THEN TIME
TIMESTAMP TO TRAILING
TRANSACTION TRIM
TRUE UNION UNIQUE
UNKNOWN UPDATE
UPPER USER USING
VALUES VARCHAR
VARYING VIEW WHEN
WHERE WITH

Unreserved Blackfish SQL Keywords

The keywords in the following list are not reserved. They can be used as SQL identifiers either with or without quotation marks.
When used without quotation marks, they are case insensitive and are interpreted as all caps by the SQL parser. When enclosed
in double quotation marks, they are case sensitive.

ABS AUTOCOMMIT
BOOLEAN BIGDECIMAL
BIGINT BINARY BYTE
CASEINSENSITIVE CLASS
COMMIT COMMITTED
CONCAT CONVERT
CURDATE CURTIME D DAY

DAYOFMONTH DEC FN
GRANTED HOUR IFNULL
INPUTSTREAM METHOD
LCASE LENGTH LOCATE
LOCK LONG LONGINT
LONGVARBINARY
LONGVARCHAR LTRIM

METHOD MINUTE
MONTH NOW NOWAIT
OBJECT OFF OJ
PASSWORD READ
REPEATABLE ROLE
ROLLBACK RTRIM
SECOND SERIALIZABLE

SHORT STRING T
TIMESTAMPADD
TIMESTAMPDIFF
TIMEZONEHOUR
TIMEZONEMINUTE TINYINT
TS TYPE UCASE
UNCOMMITTED VARBINARY
WORK WRITE YEAR

Identifiers

Unquoted SQL identifiers are case insensitive and are treated as uppercase. An identifier can be enclosed in double quotes, and
is then treated as case sensitive. An unquoted identifier must follow these rules:

10 Blackfish SQL

77

10

• The first character must be a letter recognized by the java.lang.Character class.

• Each following character must be a letter, digit, underscore (_), or dollar sign ($).

• Keywords can't be used as identifiers.

Quoted identifiers can contain any character string including spaces, symbols, and keywords. Examples

Valid identifiers:

Identifier Description

customer Treated as CUSTOMER

Help_me Treated as HELP_ME

"Hansen" Treated as Hansen

" " Treated as a single space

Invalid identifiers:

Identifier Problem

_order Must start with a character

date date is a reserved keyword

borland.com Dots are not allowed

The forms in the following list are all the same identifier and are all treated as LAST_NAME:

• last_name

• Last_Name

• lAsT_nAmE

• "LAST_NAME"

List Syntax

The following section contains element names ending with the words “list” or “commalist” that are not further defined. For
example:

<select item commalist>
<column constraint list>

These definitions are to be read as a lists with at least one element, comma separated in the case of a commalist:

<select item commalist> ::=
 <select item> [, <select item>] *

<column constraint list> ::=
 <column constraint> [<column constraint>] *

Expressions

Expressions are used throughout the SQL language. They contain several infix operators and a few prefix operators. This is the
operator precedence from strongest to weakest:

• prefix + -

• infix * /

• infix + - ||

• infix = <> < > <= >=

• prefix NOT

• infix AND

Blackfish SQL 10

78

10

• infix OR

Syntax

<expression> ::=
 <scalar expression>
 | <conditional expression>
<scalar expression> ::=
 <scalar expression> {+ | - | * | / | <concat> }
 <scalar expression>
 | {+ | -} <scalar expression>
 | (<expression>)
 | (<table expression>)
 | <column reference>
 | <user defined function reference>
 | <literal>
 | <aggregator function>
 | <function>
 | <parameter marker>

For a list of functions supported in Blackfish SQL, see Functions.

<conditional expression> ::=
 <conditional expression> OR <conditional expression>
 | <conditional expression> AND <conditional expression>
 | NOT <conditional expression>
 | <scalar expression> <compare operator> <scalar expression>
 | <scalar expression> <compare operator> { ANY | SOME | ALL }
 (<table expression>)
 | <scalar expression> [NOT] BETWEEN <scalar expression>
 | <scalar expression> [NOT] LIKE <scalar expression>
 [ESCAPE <scalar expression>]
 | <scalar expression> [NOT] IS { NULL | TRUE | FALSE | UNKNOWN }
 | <scalar expression> IN (<scalar expression commalist>)
 | <scalar expression> IN (<table expression>)
 | EXISTS (<table expression>)
<compare operator> ::=
 = | <> | < | > | <= | >=
<concat> ::= ||
<table expression> ::=
 <table expression> UNION [ALL] <table expression>
 | <table expression> EXCEPT [ALL] <table expression>
 | <table expression> INTERSECT [ALL] <table expression>
 | <join expression>
 | <select expression>
 | (<table expression>)
<aggregator function> ::=
 <aggregator name> (<expression>)
 | COUNT (*)

<aggregator name> ::=
 AVG
 | SUM
 | MIN
 | MAX
 | COUNT
<column reference> ::= [<table qualifier> .] <column name>

<user defined function reference> ::=
 <method name> ([<expression commalist>])

<table qualifier> ::=
 <table name> | <correlation name>

<correlation name> ::= <SQL identifier>

Examples

10 Blackfish SQL

79

10

The following statement selects the calculated value of Amount times Price from the Orders table for a to-be-provided
customer for orders in January:

SELECT Amount * Price FROM Orders
 WHERE CustId = ? AND EXTRACT(MONTH FROM Ordered) = 1;

The following statement gets data using a scalar subquery:

SELECT Name, (SELECT JobName FROM Job WHERE Id=Person.JobId)
 FROM Person;

Note that it is an error if the subquery returns more than one row.

Predicates

The following predicates, used in condition expressions, are supported.

BETWEEN

The BETWEEN predicate defines an inclusive range of values. The result of:

expr BETWEEN leftExpr AND rightExpr

is equivalent to the expression:

leftExpr <= expr AND expr <= rightExpr

Syntax

<between expression> ::=
 <scalar expression> [NOT] BETWEEN <scalar expression>
 AND <scalar expression>

Example

The following statement selects all the orders where a customer orders between 3 and 7 items of the same kind:

SELECT * from Orders WHERE Amount BETWEEN 3 AND 7;

EXISTS

An EXISTS expression evaluates to either TRUE or FALSE depending on whether there are any elements in a result table.

Syntax

<exists predicate> ::= EXISTS (<table expression>)

Example

The following statement finds all diving equipment where the beginning of the name is the same as the beginning of a name of a
different piece of equipment.

SELECT * FROM zodiac z
 WHERE EXISTS
 (SELECT * FROM zodiac z2 WHERE POSITION(z.name IN z2.name) = 1
 AND z.name < > z2.name);

IN

The IN clause indicates a list of values to be matched. Any one of the values in the list is considered a match for the SELECT
statement containing the IN clause.

Syntax

<in expression> ::=

Blackfish SQL 10

80

10

 <scalar expression> IN (<scalar expression commalist>)

Example

The following statement returns all records where the name column matches either "leo" or "aquarius":

SELECT * FROM zodiac WHERE name IN ('leo', 'aquarius');

The IN clause also has a variant where a subquery is used instead of an expression list.

Syntax

<in expression> ::= <scalar expression>
 IN (<table expression>)

Example 8

SELECT * FROM zodiac WHERE name IN (SELECT name FROM people);

IS

The IS predicate tests expressions. Any expression can evaluate to the value NULL, but conditional expressions can evaluate to
one of the three values: TRUE, FALSE, or UNKNOWN. UNKNOWN is equivalent to NULL for conditional expressions. Note that for a
SELECT query with a WHERE clause, only rows that evaluate to TRUE are included. If the expression evaluates to FALSE or
UNKNOWN, the row isn't included. The output of the IS predicate can have two results: TRUE or FALSE.

Syntax

<is expression> ::=
 <scalar expression> IS [NOT] { NULL | TRUE | FALSE | UNKNOWN }

Examples

TRUE IS TRUE evaluates to TRUE.

FALSE IS NULL evaluates to FALSE.

LIKE

The LIKE predicate provides SQL with simple string pattern matching. The search item, pattern, and escape character (if given)
must all evaluate to strings. The pattern can include the special wildcard characters _ and % where:

• An underscore (_) matches any single character

• A percent character (%) matches any sequence of n characters where n >= 0

The escape character, if given, allows the two special wildcard characters to be included in the search pattern. The pattern
match is case-sensitive. Use the LOWER or UPPER functions on the search item for a case-insensitive match. Syntax

<like expression> ::=
 <search item> [NOT] LIKE <pattern> [ESCAPE <escape char>]

<search item> ::= <scalar expression>

<pattern> ::= <scalar expression>

<escape char> ::= <scalar expression>

Examples

1. The following expression evaluates to TRUE if Item contains the string "shoe" anywhere inside it:

Item LIKE '%shoe%'

2. The following expression evaluates to TRUE if Item is exactly three characters long and starts with the letter "S":

Item LIKE 'S__'

10 Blackfish SQL

81

10

3. The following expression evaluates to TRUE if Item ends with the percent character. The * is defined to escape the two
special characters. If it precedes a special character, it is treated as a normal character in the pattern:

Item Like '%*%' ESCAPE '*'

Quantified Comparisons

An expression can be compared to some or all elements of a result table.

Syntax

<quantified comparison> ::=
 <scalar expression> <compare operator>
 { ANY | SOME | ALL } (<table expression>)

Example 9

SELECT * FROM zodiac
 WHERE quantify <= ALL (SELECT quantify FROM zodiac);

Functions

Functions that act on strings work for strings of any length. Large strings are stored as Blobs, so you might want to define large
text fields as VARCHAR to enable searches.

ABSOLUTE

The ABSOLUTE function works on numeric expressions only, and yields the absolute value of the number passed.

Syntax

<absolute function> ::= ABSOLUTE(<expression>)

Example 11

SELECT * FROM Scapes WHERE ABSOLUTE(Height - Width) < 50;

BIT_LENGTH

The BIT_LENGTH function gives the length in bits of a STRING, INPUTSTREAM, or OBJECT value.

Syntax

<bit length function> ::=
 BIT_LENGTH(<expression>)

Example 12

SELECT * FROM TABLE1 WHERE BIT_LENGTH(binary_column) > 8192;

CASE

The CASE function returns a conditional value.

Syntax

<case function> ::=
 CASE [<expression>]
 <when clause commalist>
 ELSE <expression>
 END

<when clause> ::=
 WHEN <expression> THEN <expression>

Blackfish SQL 10

82

10

Examples

CASE
 WHEN COL1 > 50 THEN 'Heavy Item'
 WHEN COL1 > 25 THEN 'Middle weight Item'
 WHEN COL1 > 0 THEN 'Light Item'
 ELSE 'No weight specified'
END

CASE COL2
 WHEN 4 THEN 'A'
 WHEN 3 THEN 'B'
 WHEN 2 THEN 'C'
 WHEN 1 THEN 'D'
 ELSE 'Invalid Grade'
END

CAST

The CAST function casts one data type to another data type.

Syntax

<cast function> ::=
 CAST (<column name> AS <data type>)

Example

The following example yields a row where a string column ID equals '001234'

SELECT * FROM employee WHERE CAST (id AS long) = 1234;

CHAR_LENGTH and CHARACTER_LENGTH

The SQL CHAR_LENGTH and CHARACTER_LENGTH functions yield the length of the given string.

Syntax

<char length function> ::=
 CHAR_LENGTH (<scalar expression>)
 CHARACTER_LENGTH (<scalar expression>)

COALESCE

The COALESCE function returns the first non-NULL value from the expression list.

Syntax

<coalesce function> ::=
 COALESCE(expression commalist)

Example

The following statement yields a list of names. The name is the last_name if this column is not NULL, otherwise it is the
first_name.

SELECT COALESCE(last_name, first_name) AS name FROM table1;

10 Blackfish SQL

83

10

CURRENT_DATE, CURRENT_TIME, and CURRENT_TIMESTAMP

These SQL functions yield the current date and/or time. If one of these functions occurs more than once in a statement, it yields
the same result each time when the statement is executed.

Example 13

SELECT * from Returns where ReturnDate <= CURRENT_DATE;

CURRENT_ROLE

The CURRENT_ROLE function returns the current role, or NULL if no role has been set using the SET ROLE statement.

Syntax

<current_role_function> ::= CURRENT_ROLE

Example

The following statement returns all notes from the CUSTOMERS table that were placed there by anyone using the MANAGER role.
The SOURCE column has a data type of VARCHAR.

SET ROLE MANAGER;

SELECT * FROM CUSTOMERS
 WHERE SOURCE = CURRENT_ROLE;

CURRENT_USER

The CURRENT_USER function returns the name of the current user.

Syntax

<current_user function> ::= CURRENT_USER

Example

The following statement returns returns all notes from the INVOICES table that were placed there by the current user. The
SOURCE column has a data type of VARCHAR.

SELECT * FROM INVOICES
 WHERE SOURCE = CURRENT_USER;

EXTRACT

The SQL EXTRACT function extracts parts of date and time values. The expression can be a DATE, TIME, or TIMESTAMP value.

Syntax

<extract function> ::=
 EXTRACT (<extract field> FROM <scalar expression>)

<extract field> ::=
 YEAR
 | MONTH
 | DAY
 | HOUR
 | MINUTE
 | SECOND

Examples

Blackfish SQL 10

84

10

EXTRACT(MONTH FROM DATE '1999-05-17') yields 5.
EXTRACT(HOUR FROM TIME '18:00:00') yields 18.
EXTRACT(HOUR FROM DATE '1999-05-17') yields an
exception.

LOWER and UPPER

The SQL LOWER and UPPER functions convert the given string to the requested case, either all lowercase or all uppercase.

Syntax

<lower function> ::=
 LOWER (<scalar expression>)

<upper function> ::=
 UPPER (<scalar expression>)

NULLIF

The NULLIF function compares two expressions. It returns NULL if the expressions are equal. Otherwise, it returns the first
expression. It is logically equivalent to the following CASE expression: CASE WHEN expr1 = expr2 THEN NULL ELSE
expr1 END.

Syntax

<NULLIF> ::=
 (<scalar expression>, <scalar expression>)

Example

The following statement returns a row with the last_name value for each row in TABLE1 where the first name is not the same
as the last name. If the first_name value is the same as the last_name value, it returns NULL.

SELECT NULLIF(last_name,first_name) FROM TABLE1;

OCTET_LENGTH

The OCTET_LENGTH function gives the length in bytes of a STRING, INPUTSTREAM, or OBJECT value.

Syntax

<octet_length> ::= OCTET_LENGTH(<expression>)

Example 14

SELECT * FROM TABLE1 WHERE OCTET_LENGTH(binary_column)>1024;

POSITION

The SQL POSITION function returns the position of a string within another string. If any of the arguments evaluate to NULL, the
result is NULL.

Syntax

<position function> ::=
 POSITION (<string> IN <another>)

Examples

POSITION('BCD' IN 'ABCDEFG') yields 2.

10 Blackfish SQL

85

10

POSITION('' IN 'ABCDEFG') yields 1.
POSITION('TAG' IN 'ABCDEFG') yields 0.

SQRT

The SQRT function works on numeric expressions only, and yields the square root of the number passed.

Syntax

<sqrt function> ::= SQRT(<expression>)

Example 15

SELECT * FROM Scapes WHERE SQRT(HEIGHT*WIDTH - ?) > ?;

SUBSTRING

The SQL SUBSTRING function extracts a substring from a given string. If any of the operands are NULL, the result is NULL. The
start position indicates the first character position of the substring, where 1 indicates the first character. If FOR is used, it
indicates the length of the resulting string.

Syntax

<substring function> ::=
 SUBSTRING (<string expression>
 FROM <start pos> [FOR <length>])

Examples

SUBSTRING('ABCDEFG' FROM 2 FOR 3)

yields 'BCD'.

SUBSTRING('ABCDEFG' FROM 4)

yields 'DEFG'.

SUBSTRING('ABCDEFG' FROM 10)

yields ''.

SUBSTRING('ABCDEFG' FROM -6 FOR 3)

yields 'ABC'.

SUBSTRING('ABCEDFG' FROM 2 FOR -1)

raises an exception.

TRIM

The SQL TRIM function removes leading and/or trailing padding characters from a given string. The <padding> must be a
string of length 1, which is the character that is removed from the string.

• If <padding> is omitted, space characters are removed.

• If the <trim spec> is omitted, BOTH is assumed.

• If both <padding> and <trim spec> are omitted, the FROM keyword must be omitted.

Syntax

<trim function> ::=
 TRIM ([<trim spec>] [<padding>] [FROM] <scalar expression>)

<trim spec> ::=

Blackfish SQL 10

86

10

 LEADING
 | TRAILING
 | BOTH
<padding> ::=
 <scalar expression>

Examples

TRIM(' Hello world ')

yields 'Hello world'.

TRIM(LEADING '0' FROM '00000789.75')

yields '789.75'.

USER

The USER function returns the name of the current user; this function is the same as CURRENT_USER.

Syntax

<user function> ::= USER

Example

The following statement returns all notes from the INVOICES table that were placed there by the current user.

SELECT * FROM INVOICES
 WHERE SOURCE = USER;

Table Expressions

This section describes a number of conventions that are used in the following statements reference. Specifically:

• Select expressions

• Unions, intersections, and differences

• Join expressions

<table expression> ::= <table expression> UNION
[ALL] <table expression> |
<table expression> EXCEPT [ALL] <table expression> |

<table expression> INTERSECT [ALL] <table expression> |
<join expression> | <select expression> | (<table
expression>)

Select Expressions

A select expression is the table expression most often used in a SELECT statement.

• Specify DISTINCT to remove any duplicates in the result.

• Specify GROUP BY and HAVING in connection with aggregate functions to calculate summary values from the data in a table.
The WHERE clause (if present) limits the number of rows included in the summary. If an aggregate function is used without a
GROUP BY clause, a summary for the whole table is calculated. If a GROUP BY clause is present, a summary is computed for
each unique set of values for the columns listed in the GROUP BY. Then, if the HAVING clause is present, it filters out
complete groups given the conditional expression in the HAVING clause.

Summary queries have additional rules about where columns can appear in expressions:

• There can be no aggregate functions in the WHERE clause.

• Column references appearing outside an aggregator must be in the GROUP BY clause.

• You cannot nest aggregator functions.

10 Blackfish SQL

87

10

Syntax

<select expression> ::=
 SELECT [ALL | DISTINCT] <select item commalist>
 FROM <table reference commalist>
 [WHERE <conditional expression>]
 [GROUP BY <column reference commalist>]
 [HAVING <conditional expression>]
<select item> ::=
 <scalar expression> [[AS] <output column name>]
 | [<range variable> .] *
<table reference> ::=
 <join expression>
 | <table name> [<output table rename>]
 | (<table expression>) [<output table rename>]

<output table rename> ::=
 [AS] <range variable> [(<column name commalist>)]

<conditional expression> ::=

 <conditional expression> OR <conditional expression>
 | <conditional expression> AND <conditional expression>
 | NOT <conditional expression>
 | <scalar expression> <compare operator> <scalar expression>
 | <scalar expression> <compare operator> { ANY | SOME | ALL }
 (<table expression>)
 | <scalar expression> [NOT] BETWEEN <scalar expression>
 | <scalar expression> [NOT] LIKE <scalar expression>
 [ESCAPE <scalar expression>]
 | <scalar expression> [NOT] IS { NULL | TRUE | FALSE | UNKNOWN }
 | <scalar expression> IN (<scalar expression commalist>)
 | <scalar expression> IN (<table expression>)
 | EXISTS (<table expression>)

<column reference> ::=
 [<table qualifier> .] <column name>

<scalar expression> ::=
 <scalar expression> {+ | - | * | / | <concat> } <scalar expression>
 | {+ | -} <scalar expression>
 | (<expression>)
 | (<table expression>)
 | <column reference>
 | <user defined function reference>
 | <literal>
 | <aggregator function>
 | <function>
 | <parameter marker>

<table name> ::=
 [<schema name> .] <SQL identifier>

<schema name> ::=
 <SQL identifier>

<user defined function reference> ::=
 <method name> ([<expression commalist>])

Example 1

The following statement yields a single row with the total value of all orders.

SELECT SUM(Amount * Price) FROM Orders;

Example 2

Blackfish SQL 10

88

10

The following statement returns a single row with the number of orders where Amount is non-null for the customer 123.

SELECT COUNT(Amount) FROM Orders WHERE CustId = 123;

Example 3

The following statement returns a set of rows where the total value of all orders grouped by customers for the customers with an
ID number less than 200.

SELECT CustId, SUM(Amount * Price), COUNT(Amount)
 WHERE CustId < 200 GROUP BY CustId;

Example 4

The following example yields a set of big customers with the value of all their orders.

SELECT CustId, SUM(Amount * Price), COUNT(Amount)
 GROUP BY CustId HAVING SUM(Amount * Price) > 500000;

Example 5

The following statement is illegal because it has nested aggregators.

SELECT CustId, COUNT(23 + SUM(Amount)) GROUP BY CustId;

Example 6

The following statement is illegal because the CustId column is referenced in the select item list, but it is not present in the
GROUP BY reference list.

SELECT CustId, SUM(Amount* Price) GROUP BY Amount;

For the syntax of table expressions see "Table expressions".

Unions, Intersections, and Differences

A table expression is an expression that evaluates to an unnamed table. Of the following operators, INTERSECT binds the
strongest and UNION and EXCEPT are equal.

UNION ALL Creates the union of two tables including all duplicates.

UNION Creates the union of two tables. If a row occurs multiple times in both tables, the result has this row exactly
twice. Other rows in the result have no duplicates.

INTERSECTION
ALL

Creates the intersection of two tables including all duplicates.

INTERSECTION Creates the intersection of two tables. If a row has duplicates in both tables, the result has this row exactly
twice. Other rows in the result has no duplicates.

EXCEPT ALL Creates a table that has all rows that occur only in the first table. If a row occurs m times in the first table and
n times in the second, the result holds that row the larger of zero and m-n times.

EXCEPT Creates a table that has all rows that occur only in the first table. If a row occurs m times in the first table and
n times in the second, the result holds the row exactly twice if m > 1 and n = 0. Other rows in the result has
no duplicates.

Example 1

SELECT * FROM T1 UNION SELECT * FROM T2 UNION SELECT * FROM T3;

is executed as:

(SELECT * FROM T1 UNION SELECT * FROM T2) UNION SELECT * FROM T3;

Example 2

SELECT * FROM T1 UNION SELECT * FROM T2 INTERSECT SELECT * FROM T3;

10 Blackfish SQL

89

10

is executed as:

SELECT * FROM T1 UNION (SELECT * FROM T2 INTERSECT SELECT * FROM T3);

Join Expressions

In Blackfish SQL, join expressions give access to a wide variety of join mechanisms. The two most commonly used, inner joins
and cross joins, can be expressed with a SELECT expression alone, but any kind of outer join must be expressed with a JOIN
expression.

CROSS
JOIN

A CROSS JOIN B produces the same result set as SELECT A.*, B.* FROM A,B

INNER
JOIN

A INNER JOIN B ON A.X=B.X produces the same result as SELECT A.*, B.* FROM A,B WHERE A.X=B.X

LEFT
OUTER

A LEFT OUTER JOIN B ON A.X=B.X produces the rows from the corresponding inner join plus the rows from A
that didn't contribute, filling in the spaces corresponding to columns in B with NULLs.

RIGHT
OUTER

A RIGHT OUTER JOIN B ON A.X=B.X produces the rows from the corresponding inner join plus the rows from B
that didn't contribute, filling in the spaces corresponding to columns in A with NULLs.

FULL
OUTER

A FULL OUTER JOIN B ON A.X=B.X produces the rows from the corresponding inner join plus the rows from A
and B that didn't contribute, filling in the spaces corresponding to columns in B and A with NULLs.

UNION A UNION JOIN B produces a result similar to the following: A LEFT OUTER JOIN B ON FALSE UNION ALL A
RIGHT OUTER JOIN B ON FALSE a table with columns for all columns in A and B, with all the rows from A having
NULL values for columns from B appended with all the rows from B having NULL values for columns from A.

The
following
are
mutually
exclusive:

ON ON is an expression that needs to be fulfilled for a JOIN expression.

USING USING(C1, C2, C3) is equivalent to the ON expression above A.C1=B.C1 AND A.C2=B.C2 AND A.C3=B.C3,
except that the resulting table has columns C1, C2, and C3 occurring once each as the first three columns.

NATURAL NATURAL is the same as a USING clause with all the column names that appear in both tables A and B.

Syntax

<join expression> ::=
 <table reference> CROSS JOIN <table reference>
 | <table reference> [NATURAL] [INNER] JOIN <table reference>
 [<join kind>]
 | <table reference> [NATURAL] LEFT [OUTER] JOIN <table reference>
 [<join kind>]
 | <table reference> [NATURAL] RIGHT [OUTER] JOIN <table reference>
 [<join kind>]
 | <table reference> [NATURAL] FULL [OUTER] JOIN <table reference>
 [<join kind>]
 | <table reference> UNION JOIN <table reference>

<table reference> ::=
 <join expression>
 | <table name> [<output table rename>]
 <table reference> CROSS JOIN <table reference>
 | <table reference> [NATURAL] [INNER] JOIN <table reference>
 [<join kind>]
 | <table reference> [NATURAL] LEFT [OUTER] JOIN <table reference>
 [<join kind>]
 | <table reference> [NATURAL] RIGHT [OUTER] JOIN <table reference>

Blackfish SQL 10

90

10

 [<join kind>]
 | <table reference> [NATURAL] FULL [OUTER] JOIN <table reference>
 [<join kind>]
 | <table reference> UNION JOIN <table reference>

<table reference> ::=
 <join expression>
 | <table name> [<output table rename>]| (<table expression>) [<output table rename>]
<output table rename> ::=
 [AS] <range variable> [(<column name commalist>)]

<range variable> ::=
 <SQL identifier>

<join kind> ::=
 ON <conditional expression>
 | USING (<column name commalist>)

Examples

SELECT * FROM Tinvoice FULL OUTER JOIN Titem USING ("InvoiceNumber");

SELECT * FROM Tinvoice LEFT JOIN Titem ON Tinvoice."InvoiceNumber"
 = Titem."InvoiceNumber";

SELECT * FROM Tinvoice NATURAL RIGHT OUTER JOIN Titem;

SELECT * FROM Tinvoice INNER JOIN Titem USING ("InvoiceNumber");

SELECT * FROM Tinvoice JOIN Titem ON Tinvoice."InvoiceNumber"
 = Titem."InvoiceNumber";

Statements

The Blackfish SQL JDBC driver supports a subset of the ANSI/ISO SQL-92 standard. In general, it provides:

• Data definition language for managing tables and indexes, schemas, views, and security elements.

• Data manipulation and selection with INSERT, UPDATE, DELETE, and SELECT; but no cursors.

• Support for general table expressions including JOIN, UNION, and INTERSECT.

For Blackfish SQL for Java, cursor operations are supported through the JDBC version 3.0 ResultSet API.

Syntax

<SQL statement> ::=
 <data definition statement>
 | <transaction control statement>
 | <data manipulation statement>
<data definition statement> ::=
 <create schema statement>
 | <drop schema statement>
 | <create table statement>
 | <alter table statement>
 | <drop table statement>
 | <create view statement>
 | <alter view statement>
 | <drop view statement>
 | <create index statement>
 | <drop index statement>
 | <create method statement>
 | <drop method statement>
 | <create class statement>
 | <drop class statement>
 | <create user statement>
 | <alter user statement>
 | <drop user statement>
 | <create role statement>

10 Blackfish SQL

91

10

 | <drop role statement>
 | <grant statement>
 | <revoke statement>
 | <set role statement>
<transaction control statement> ::=
 <commit statement>
 | <rollback statement>
 | <set autocommit statement>
 | <set transaction statement>

<data manipulation statement> ::=
 <select statement>
 | <single row select statement>
 | <delete statement>
 | <insert statement>
 | <update statement>
 | <call statement>
 | <lock statement>

Data Definition Statements

CREATE SCHEMA

The CREATE SCHEMA statement creates a name space for tables, views, and methods. You can use it to create multiple objects
in one SQL statement.

• You can create a table, view, or method in an existing schema in two ways:

• You can create it as part of a CREATE SCHEMA statement.

• You can specify a schema name as part of the object name when you issue a standalone CREATE TABLE, CREATE VIEW,
or CREATE METHOD statement. If you use the latter method (using CREATE TABLE, for example), you must specify a
schema name that already exists.

• To create an object in a new schema, specify a new schema name in the CREATE SCHEMA statement and then create the
table, view, or method as part of the CREATE SCHEMA statement.

• The AUTHORIZATION clause names the owner of the schema. If you do not specify an owner, the owner is the user of the
SQL session. Only an administrator can specify a user name other than their own user name in the AUTHORIZATION clause.

• If you issue a standalone CREATE TABLE, CREATE VIEW, or CREATE METHOD statement (meaning that it s not embedded in
a CREATE SCHEMA statement) and you do not specify a schema name as part of the CREATE statement, Blackfish SQL uses
the following algorithm to assign the new object to a schema:

• If you have explicitly created a schema that has the same name as your current user name, then you have created a
personal default schema. The table, view, or method belongs to your default schema.

• If you have not created a personal default schema, the table, view, or method belongs to the DEFAULT_SCHEMA schema.

• You can create schemas with names other than your user name, but you cannot create schemas that have other users'
names unless you have administrative privileges.

• All objects created in early versions of Blackfish SQL that did not support schemas belong to the DEFAULT_SCHEMA schema
when migrated to version 7 or later.

• A semicolon marks the end of the CREATE SCHEMA statement. There cannot be any semicolons between the schema
elements.

• All the statements in the schema element list are executed as one statement in the same transaction.

Default Schemas

Initially your default schema is DEFAULT_SCHEMA. When you create a schema with the same name as your current user name,
that schema becomes your default schema. You can create objects without specifying a schema name and those objects

Blackfish SQL 10

92

10

automatically belongs to your default schema. Assume, for example, that user PETER created a schema PETER. At a later time,
PETER creates a table without specifying a schema. The table belongs to the PETER schema.

In the following example, the created table would actually be named PETER.FOO.

[USER: PETER]
CREATE TABLE FOO (COL1 INT, COL2 VARCHAR);

You are permitted to create schemas with names other than your user name, but they can never be your default schema. You
cannot create a schema that has another user's name unless you are an administrator.

Syntax

<create schema statement> ::=
 CREATE SCHEMA [<schema name>]
 [AUTHORIZATION <user name>]
 <schema element list>

<schema name> ::=
 <SQL identifier>

<schema element commalist> ::=
 <create table statement>
 | <create view statement>
 | <create method statement>
 | <grant statement>

See GRANT for more information about GRANT statements.

Example

The following statement creates the schema BORIS with a table T1 and a view V1. In this schema, the user BJORN is granted
SELECT privileges on view V1. After this statement executes, BORIS is the default schema for user BORIS.

 [USER: BORIS]
 CREATE SCHEMA BORIS
 CREATE TABLE T1 (C1 INT, C2 VARCHAR)
 CREATE VIEW V1 AS SELECT C2 FROM T1
 GRANT SELECT ON V1 TO BJORN;

DROP SCHEMA

The DROP SCHEMA statement deletes the specified schema. If the command is used without options, it is the same as specifying
the RESTRICT option: the schema to be dropped must be empty. The command fails if the schema contains any objects.

• The RESTRICT option causes the statement to fail if there are any objects in the schema. RESTRICT is the default option.

• Used with the CASCADE option, DROP SCHEMA deletes the named schema including all of its tables, views, foreign key
dependencies, and methods.

WARNING: The DROP SCHEMA command used with the CASCADE option is extremely powerful and should be used with caution.
When this command is issued, it drops the schema and all of its objects and dependencies without any chance to change your
mind. There is no undo.

TIP: If you want to drop a schema but wish to preserve some of its tables, use the ALTER TABLE command to assign the tables
to another schema. For example:

ALTER TABLE OLDSCHEMA.JOBS
RENAME TO NEWSCHEMA.JOBS;

Syntax

<drop schema statement> ::=
 DROP SCHEMA <schema name> [CASCADE | RESTRICT]

10 Blackfish SQL

93

10

Examples

1. The following two statements are the same: they drop the schema BORIS; they both fail if the schema contains any objects.

DROP SCHEMA BORIS;

DROP SCHEMA BORIS RESTRICT;

2. The following statement drops the schema BORIS and all of its tables, views, and methods. It also drops any dependent views
and foreign keys.

DROP SCHEMA BORIS CASCADE;

CREATE TABLE

The CREATE TABLE statement creates a Blackfish SQL table. Each column definition must include at least a column name and
data type. Optionally, you can specify a default value for each column, along with uniqueness constraints.

You can also optionally specify a foreign key and primary key. Blackfish SQL supports the use of one or more columns as a
primary key or foreign key.

Specifying Schemas

To create a table in a particular schema, specify the schema name as part of the table name:

CREATE TABLE SOMESCHEMA.MYTABLE(. . .);

If you do not specify a schema name, the table is created in your default schema. See CREATE SCHEMA for more information
about schemas.

Tracking Data Changes for DataExpress

Note: This feature is supported for Blackfish SQL for Java, only.

If you specify RESOLVABLE as part of the table definition, Blackfish SQL keeps track of changes made to the data. The recorded
changes are available to the DataExpress application, but not to SQL. The default is NOT RESOLVABLE.

Overriding Consistency Checks

The NO CHECK option creates the foreign key without checking the consistency at creation time. Use this option with caution.

Using AutoIncrement Columns with SQL

To create or alter a column to have the Autoincrement property using SQL, add the AUTOINCREMENT keyword to your <table
element> definition.

The following statement creates table T1 with an integer autoincrement column called C1:

CREATE TABLE T1 (C1 INT AUTOINCREMENT, C2 DATE, C3 CHAR(32));

To obtain the Autoincrement value of a newly inserted row using the JDS JDBC driver (JVM version 1.3 or earlier), call the
JdsStatement.getGeneratedKeys method. This method is also available in the statement interface of JDBC 3 in JVM 1.4.)

Specifying Column Position

In the columns definition, use the POSITION option to force a column to be in a particular position in the table (second column,
for example). The following code snippet forces column COLD to be the second column:

CREATE TABLE(COLA INT, COLB STRING, COLC INT, COLD STRING POSITION 2);

Syntax

<create table statement> ::=
 CREATE TABLE <table name> (<table element commalist>)

Blackfish SQL 10

94

10

<table name> ::=
 [<schema name> .] <SQL identifier>

<schema name> ::=
 <SQL identifier>
<table element> ::=
 <column definition>
 | <primary key>
 | <unique key>
 | <foreign key>
 | [NOT] RESOLVABLE
<column definition> ::=
 <column name> <data type>
 [DEFAULT <default value>]
 [[NOT] NULL]
 [AUTOINCREMENT]
 [POSITION <integer literal>]
 [[CONSTRAINT <constraint name>] PRIMARY KEY]
 [[CONSTRAINT <constraint name>] UNIQUE]
 [[CONSTRAINT <constraint name>] <references definition>]
<column name> ::=
 <SQL identifier>

<default value> ::=
 <literal>
 | <current date function>
<current date function> ::=
 CURRENT_DATE
 | CURRENT_TIME
 | CURRENT_TIMESTAMP
<primary key> ::=
 [CONSTRAINT <constraint name>] PRIMARY KEY <column name commalist>)

<unique key> ::=
 [CONSTRAINT <constraint name>] UNIQUE (<column name commalist>
)

<foreign key> ::=
 [CONSTRAINT <constraint name>] FOREIGN KEY (<column name commalist>)
 <references definition>

<references definition> ::=
 REFERENCES <table name> [(<column name commalist>)]
 [ON DELETE <action>]
 [ON UPDATE <action>]
 [NO CHECK]

<action> ::=
 NO ACTION
 | CASCADE
 | SET DEFAULT
 | SET NULL

<constraint name> ::=
 <SQL identifier>

Example 1

The following statement creates a table with four columns. The CustId column is the primary key and the OrderDate column
has the current time as the default value.

CREATE TABLE Orders (CustId INTEGER PRIMARY KEY, Item VARCHAR(30),
 Amount INT, OrderDate DATE DEFAULT CURRENT_DATE);

Example 2

The following statement creates a table that uses two columns for the primary key constraint:

10 Blackfish SQL

95

10

CREATE TABLE T1 (C1 INT, C2 STRING, C3 STRING, PRIMARY KEY (C1, C2));

Example 3

The following statement creates a table T1 in the BORIS schema:

CREATE TABLE BORIS.T1 (C1 INT, C2 STRING, C3 STRING);

ALTER TABLE

The ALTER TABLE statement performs the following operations:

• Adds or removes columns in a Blackfish SQL table

• Sets or drops column defaults and NULLability

• Changes column data types

• Adds or drops primary key, unique key, and foreign key column constraints and table constraints; changes the referenced
table and type of action for these constraints

• Renames columns

• Renames tables; this also allows you to move tables from one schema to another

• Adds or drops the RESOLVABLE table property

• Repositions columns within the table

Syntax

<alter table statement> ::=
 ALTER TABLE <table name> <change definition commalist>

<table name> ::= [<schema name> .]<SQL identifier>
<change definition> ::=
 <add column element>
 | <drop column element>
 | <alter column element>
 | <add constraint>
 | <drop constraint>
 | [RENAME] TO <table name>
 | [NOT] RESOLVABLE

<add column element> ::= ADD [COLUMN] <column definition>

<column definition> ::=
 <column name> <data type> [DEFAULT <default value>]
 [[NOT] NULL]
 [AUTOINCREMENT]
 [POSITION <integer literal>]
 [[CONSTRAINT <constraint name>] PRIMARY KEY]
 [[CONSTRAINT <constraint name>] UNIQUE]
 [[CONSTRAINT <constraint name>] <references definition>]

<drop column element> ::= DROP [COLUMN] <column name>
<alter column element> ::=
 ALTER [COLUMN] <column name> [TYPE] <data type>
 | ALTER [COLUMN] <column name> SET DEFAULT <default-value>
 | ALTER [COLUMN] <column name> DROP DEFAULT
 | ALTER [COLUMN] <column name> [NOT] NULL
 | ALTER [COLUMN] <column name> [RENAME] TO <column name>
 | ALTER [COLUMN] <column name> [POSITION] <integer literal>
 | ALTER [COLUMN] <column name> AUTOINCREMENT
 | ALTER [COLUMN] <column name> DROP AUTOINCREMENT

<add constraint> ::= ADD <base table constraint>

Blackfish SQL 10

96

10

<base table constraint> ::=
 <primary key> | <unique key> | <foreign key>

<drop constraint> ::= DROP CONSTRAINT <constraint name>

<primary key> ::=
 [CONSTRAINT <constraint name>]
 PRIMARY KEY <column name commalist>)

<unique key> ::=
 [CONSTRAINT <constraint name>]
 UNIQUE (<column name commalist>)

<foreign key> ::=
 [CONSTRAINT <constraint name>]
 FOREIGN KEY (<column name commalist>)
 <references definition>

<references definition> ::=
 REFERENCES <table name> [(<column name commalist>)]
 [ON DELETE <action>]
 [ON UPDATE <action>]
 [NO CHECK]

<action> ::=
 NO ACTION
 | CASCADE
 | SET DEFAULT
 | SET NULL

<constraint name> ::= <SQL identifier>

In ALTER [COLUMN], the optional COLUMN keyword is included for SQL compatibility. It has no effect.

Example

The following example adds a column named ShipDate to the Orders table and drops the Amount column from the table.

ALTER TABLE Orders
 ADD ShipDate DATE,
 DROP Amount;

The following example moves the Jobs table from the OldSchema schema to the NewSchema schema.

ALTER TABLE OldSchema.Jobs
 RENAME TO NewSchema.Jobs;

DROP TABLE

The DROP TABLE statement deletes a table and its indexes from a Blackfish SQL database.

• The RESTRICT option guarantees that the statement will fail if there are foreign key or view dependencies on the table.

• The CASCADE option causes all dependent views and foreign keys to be dropped when the table is dropped.

• Specifying neither RESTRICT nor CASCADE drops the table and any foreign keys that reference it. The statement fails if there
are dependent views.

Syntax

<drop table statement> ::=
 DROP TABLE [<schema name> .]<table name> [CASCADE|RESTRICT]

<schema name> ::= <SQL identifier>

Examples

10 Blackfish SQL

97

10

1. The following statement drops the Orders table only if there are no dependent views. If there are dependent foreign keys, the
statement succeeds and the foreign keys are dropped.

DROP TABLE Orders;

2. The following statement drops the Orders table only if there are no dependent views or foreign keys.

DROP TABLE Orders RESTRICT;

3. The following statement drops the Orders table. All dependent views and dependent foreign keys are also dropped.

DROP TABLE Orders CASCADE;

CREATE VIEW

The CREATE VIEW statement creates a derived table by selecting specified columns from existing tables. Views provide a way
of accessing a consistent subcollection of the data stored in one or more tables. When the data in the underlying tables changes,
the view reflects this change.

Views look just like ordinary database tables, but they are not physically stored in the database. The database stores only the
view definition, and uses this definition to filter the data when a query referencing the view occurs.

When you create a view, you can specify names for the columns in the view using the optional <column name commalist>
portion of the syntax. If you do not specify column names, the names of the table columns from which the view columns are
derived are used. If you do specify column names, you must specify exactly the number of columns that will be returned from the
SELECT query.

The WITH CHECK OPTION clause causes a runtime check to be performed to ensure that an inserted or updated row will not be
filtered out by the WHERE clause of the view definition.

Views are updatable only under limited conditions. If you want to execute INSERT, UPDATE, or DELETE on a view, it must meet
all of the following conditions:

• It is derived from a single table.

• None of the columns are calculated.

• The SELECT clause that defines the view does not contain the DISTINCT keyword.

• The SELECT expression that defines the view does not contain any of the following:

• Subqueries

• A HAVING clause

• A GROUP BY clause

• An ORDER BY clause

• Aggregate functions

• methods

Syntax

<create view statement> ::=
 CREATE VIEW <view name> [(<column name commalist>)]
 AS <select expression> [WITH CHECK OPTION]

<view name> ::=
 [<schema name> .] <SQL identifier>

Example

The following statement creates a view V1 from table T1. The columns in the view are named C1 and C2.

CREATE VIEW V1(C1,C2)
 AS SELECT C8+C9, C6 FROM T1 WHERE C8 < C9;

Blackfish SQL 10

98

10

ALTER VIEW

The ALTER VIEW statement modifies a view without losing dependent views and existing GRANTs. This statement can be used
to change the name of a view, the columns that comprise the view, and whether the view has the WITH CHECK OPTION
constraint.

Note that after ALTER VIEW executes, it is possible that there are dependent views that are no longer valid.

Syntax

<alter view statement> ::=
 ALTER VIEW <view name> [(<column name commalist>)]

 AS <select expression> [WITH CHECK OPTION]

Example

The following statements show how the ALTER VIEW statement can be used to validate an invalid view. The first two statements
create a table and then create a view based on that table. The third statement, SELECT, succeeds.

CREATE TABLE T1 (C1 INT, C2 VARCHAR);
CREATE VIEW V1 AS SELECT C1, C2 FROM T1;
SELECT * FROM V1;

The following statement changes a column name in the table.

ALTER TABLE T1 ALTER COLUMN C1 RENAME TO ID;

The next SELECT statement therefore fails because there is no longer a C1 column in the table T1, which is accessed by view
V1.

SELECT * FROM V1;

The following ALTER VIEW statement changes the definition of the view, so that the next SELECT statement succeeds.

ALTER VIEW V1 (C1, C2) AS SELECT ID, C2 FROM T1;
SELECT * FROM V1;

DROP VIEW

The DROP VIEW statement drops the named view. It fails if there are dependencies on the view.

• The RESTRICT option is the same as specifying no options: the statement fails if there are dependencies on the view.

• The CASCADE option drops the view and any dependent views.

Syntax

<drop view statement> ::=
 DROP VIEW <view name> [CASCADE | RESTRICT]

Example

The following code creates a table and two views:

CREATE TABLE T1 (C1 INT, C2 VARCHAR);
CREATE VIEW V1 AS SELECT C1, C2 FROM T1;
CREATE VIEW V2 AS SELECT C1, C2 FROM V1;

The following statement fails because view V1 has a dependent view (V2).

DROP VIEW V1 RESTRICT;

The following statement succeeds and both V1 and V2 are dropped.

DROP VIEW V1 CASCADE;

10 Blackfish SQL

99

10

CREATE INDEX

The CREATE INDEX statement creates an index for a Blackfish SQL table. Each column can be ordered in ascending or
descending order. The default value is ascending order.

Syntax

<create index statement> ::=

 CREATE [UNIQUE] [CASEINSENSITIVE] INDEX <index name>
 ON <table name> (<index element commalist>)
<table name> ::=
 [<schema name> .]<SQL identifier>

<index name> ::=
 <SQL Identifier>

<index element> ::=
 <column name> [DESC|ASC]

Example

The following statement generates a non-unique, case-sensitive, ascending index on the Item column of the Orders table:

CREATE INDEX OrderIndex ON Orders (Item ASC);

DROP INDEX

The DROP INDEX statement deletes an index from a Blackfish SQL table.

Syntax

<drop index statement> ::=
 DROP INDEX <index name> ON <table name>

Example

The following statement deletes the OrderIndex index from the Orders table:

DROP INDEX OrderIndex ON Orders;

CREATE METHOD

The CREATE METHOD statement makes a stored procedure or a UDF implemented in Java or a .NET language (e.g., Delphi, C#,
or VB.NET) available for use in Blackfish SQL. The class files for the code must be added to the classpath of the Blackfish SQL
server process before use. See Stored Procedures and UDFs for details about how to implement stored procedures and UDFs
for Blackfish SQL.

To create a method in a particular schema, specify the schema name as part of the table name:

CREATE METHOD SOMESCHEMA.MYMETHOD AS . . .

If you do not specify a schema name, the method is assigned to a schema as follows:

• If you have created a personal default schema (a schema that has the same name as your user name), the method is created
in that schema.

• If you have have not created a personal default schema, the method is created in the DEFAULT_SCHEMA schema.

See CREATE SCHEMA for more information about schemas. The AUTHORIZATION clause causes the called stored procedure
to be run as if the username in the AUTHORIZATION clause were the actual user. If this clause is omitted, the current_user is

Blackfish SQL 10

100

10

used as the actual user during method calls. This feature allows the current user controlled access to tables and views that
would not otherwise be accessible. Syntax

<create method statement> ::=
 CREATE METHOD <method name> [AUTHORIZATION <username>]
 AS <method definition>

<method name> ::=
 [<schema name> .] <SQL identifier>

<schema name> ::= <SQL identifier>

<method definition> ::= <string literal>

Example 19

CREATE METHOD ABS AS 'MathClass.abs';

DROP METHOD

The DROP METHOD statement drops a stored procedure or a UDF, making it unavailable for use in Blackfish SQL SQL.

Syntax

<drop method statement> ::=
 DROP METHOD <method_name>

Example 20

DROP METHOD ABS;

CREATE CLASS

The CREATE CLASS statement makes all public static methods of a class available to Blackfish SQL SQL as stored procedures
or UDFs. You must ensure that the class files for the code are on the classpath of the Blackfish SQL server process before use.
See the Stored Procedures and UDFs chapter for details.

The AUTHORIZATION clause causes the called stored procedure to be run as if the username in the AUTHORIZATION clause
were the actual user. If this clause is omitted, the current_user is used as the actual user during method calls. This feature allows
the current user controlled access to tables and views that would not otherwise be accessible.

Syntax

<create class statement> ::=
 CREATE CLASS <class name> [AUTHORIZATION <username>]
 AS <class definition>

<class name> ::=
 [<schema name> .] <SQL identifier>

<schema name> ::= <SQL identifier>

<class definition> ::= <string literal>

Examples

CREATE CLASS MATH AS 'mscorlib::System.Math';

After the above statement executes, all public static methods in System.Math can be called from SQL. Note that the method
names are case sensitive.

Usage

The following statement calls the Abs() method in System.Math:

10 Blackfish SQL

101

10

SELECT * FROM CUSTOMER WHERE MATH."Abs"(AGE - 50) < 5;

DROP CLASS

The DROP CLASS statement drops a stored class, making it unavailable for use in Blackfish SQL.

Syntax

<drop class statement> ::=
 DROP CLASS <method_name>

Example 21

DROP CLASS MATH;

CREATE TRIGGER

The CREATE TRIGGER statement creates a row level trigger for a table. You must ensure that the classes can be loaded by the
Blackfish SQL server process. See Triggers for Blackfish SQL for details on implementing trigger methods and ensuring that the
method classes can be loaded.

Syntax

create trigger statement> ::= CREATE TRIGGER <trigger name>

 <trigger action time> <trigger action name>

 ON <table name> AS <trigger spec>

 <trigger name> ::= <SQL identifier>

 <tablename> ::= <SQL identifier>

 <triggeraction time> ::= <BEFORE | AFTER>

 <trigger action name> ::= <INSERT | UPDATE | DELETE >

 Blackfish SQL for Java:
 <trigger spec> ::= "[<package>.]<class-name>.<method-name>"
 Blackfish SQL for windows:
 <trigger spec> ::="<assembly-name>::[<name-space>.]<class-name>.<method-name>"

Examples

Blackfish SQL for Windows:

 CREATE
TRIGGER VALIDATE_CUSTOMER BEFORE INSERT ON CUSTOMER AS

 OrderEntryAssembly::OrderEntry.Customers.ValidateCustomer

Blackfish SQL for Java:

CREATE TRIGGER VALIDATE_CUSTOMER BEFORE INSERT ON CUSTOMER AS

OrderEntry.Customers.validateCustomer

Blackfish SQL 10

102

10

DROP TRIGGER

The DROP TRIGGER statement drops a trigger, making it unavailable for use in Blackfish SQL.

Syntax

<drop trigger statement> ::= DROP TRIGGER
<trigger
name>

 ON <table name>

 <trigger name> ::= <SQL identifier>

 <table name> ::= <SQL identifie

Example 22

DROP TRIGGER VALIDATE_CUSTOMER on CUSTOMER

Transaction Control Statements

COMMIT

The COMMIT statement commits the current transaction. It has an effect only if AUTOCOMMIT is turned off.

Syntax

<commit statement> ::=
 COMMIT [WORK]

ROLLBACK

The ROLLBACK statement rolls back the current transaction. This statement does not have any effect when AUTOCOMMIT is
turned on.

Syntax

<rollback statement> ::=
 ROLLBACK [WORK]

SET AUTOCOMMIT

The SET AUTOCOMMIT statement changes the autocommit mode. Autocommit is initially ON when a JDBC connection is created.

The autocommit mode is also controllable using the JDBC Connection instance.

Syntax

<set autocommit statement> ::=
 SET AUTOCOMMIT { ON | OFF };

SET TRANSACTION

The SET TRANSACTION statement sets the properties for the following transaction. You can use it to specify the isolation level
and whether the transaction is read-write or read-only. See System Architecture for a discussion of Blackfish SQL transaction

10 Blackfish SQL

103

10

management.

This command must be issued when there is no open transaction. It affects only the next transaction and does not itself start a
transaction.

To understand isolation levels, you should understand the following terms:

• A dirty read occurs when a row changed by one transaction is read by another transaction before any changes in that row
have been committed.

• A non-repeatable read occurs when one transaction reads a row, a second transaction alters the row, and the first
transaction rereads the row, getting different values the second time.

• A phantom read occurs when one transaction reads all rows that satisfy a WHERE condition, a second transaction inserts a
row that satisfies that WHERE condition, and the first transaction rereads for the same condition, retrieving the additional
"phantom" row in the second read.

Blackfish SQL offers the following transaction isolation levels: TRANSACTION_READ_UNCOMMITTED permits dirty reads,
non-repeatable reads, and phantom reads. If any of the changes are rolled back, the row retrieved by the second transaction is
invalid. This isolation level does not acquire row locks for read operations. It also ignores exclusive row locks held by other
connections that have inserted or updated a row.

TRANSACTION_READ_COMMITTED prevents dirty reads; non-repeatable reads and phantom reads are permitted. This level
only prohibits a transaction from reading a row with uncommitted changes in it. This level does not acquire row locks for read
operations, but blocks when reading a row that has an exclusive lock held by another transaction.

TRANSACTION_REPEATABLE_READ prevents dirty reads and non-repeatable reads but prevents phantom reads. It acquires
shared row locks for read operations. This level provides protection for transactionally consistent data access without the
reduced concurrency of TRANSACTION_SERIALIZABLE, but results in increased locking overhead.

TRANSACTION_SERIALIZABLE provides complete serializability of transactions at the risk of reduced concurrency and
increased potential for deadlocks.

Syntax

<set transaction statement> ::=
 SET TRANSACTION <transaction option commalist>

<transaction option> ::=
 READ ONLY
 | READ WRITE
 | ISOLATION LEVEL <isolation level>

<isolation level> ::=
 READ UNCOMMITTED
 | READ COMMITTED
 | REPEATABLE READ
 | SERIALIZABLE

Example

In the following example the select from T1 will be a dirty read, meaning that the data cannot yet be committed by another user.
After the second COMMIT, the isolation level returns to whatever was specified for the session.

COMMIT;
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;
SELECT * FROM T1;
COMMIT;

Data Manipulation Statements

Blackfish SQL 10

104

10

SELECT

A SELECT statement retrieves data from one or more tables. The optional keyword DISTINCT eliminates duplicate rows from the
result set. The keyword ALL, which is the default, returns all rows including duplicates. The data can optionally be sorted using
ORDER BY. The retrieved rows can optionally be locked for an upcoming UPDATE by specifying FOR UPDATE.

Syntax

<select statement> ::=
 <table expression> [ORDER BY <order item list>]
 [FOR UPDATE|FOR READ ONLY]

<table expression> ::=
 <table expression> UNION [ALL] <table expression>
 | <table expression> EXCEPT [ALL] <table expression>
 | <table expression> INTERSECT [ALL] <table expression>
 | <join expression>
 | <select expression>
 | (<table expression>)

<order item> ::= <order part> [ASC|DESC]

<order part> ::=
 <integer literal> | <column name> | <expression>

<select expression> ::=
 SELECT [ALL|DISTINCT] <select item commalist>
 FROM <table reference commalist>
 [WHERE <conditional expression>]
 [GROUP BY <column reference commalist>]
 [HAVING <conditional expression>]

Examples

The following statement orders the output by the first column in descending order.

SELECT Item FROM Orders ORDER BY 1 DESC;

The next statement orders by the calculated column CALC:

SELECT CustId, Amount*Price+500.00
 AS CALC FROM Orders
 ORDER BY CALC;

The next statement orders the output by the given expression, Amount*Price:

SELECT CustId, Amount
 FROM Orders
 ORDER BY Amount*Price;

SELECT INTO

A SELECT INTO statement is a SELECT statement that evaluates into exactly one row, whose values are retrieved in output
parameters. It is an error if the SELECT evaluates into more than one row or to the empty set.

Syntax

<single row select statement> ::=
 SELECT [ALL|DISTINCT] <select item commalist>
 INTO <parameter commalist>
 FROM <table reference commalist>
 [WHERE <conditional expression>]
 [GROUP BY <column reference commalist>]
 [HAVING <conditional expression>]

10 Blackfish SQL

105

10

Example

In the following statement, the first two parameter markers indicate output parameters from which the result of the query can be
retrieved:

SELECT CustId, Amount
 INTO ?, ?
 FROM Orders
 WHERE CustId=? ;

INSERT

The INSERT statement inserts rows into a table in a Blackfish SQL database. The INSERT statement lists columns and their
associated values. Columns that aren't listed in the statement are set to their default values.

Syntax

<insert statement> ::=
 [SELECT AUTOINCREMENT FROM]
 INSERT INTO <table name> [(<column name commalist>)]
 [<insert table expression>|DEFAULT VALUES]

<table name> ::=
 [<schema name> .]<SQL identifier>

<insert table expression> ::=
 <select expression> | VALUES (<expression commalist>)

Example 1

The following statement inserts one row each time it is executed. It inserts one row each time it is executed. The columns not
mentioned are set to their default values. If a column doesn't have a default value, it is set to NULL.

INSERT INTO Orders (CustId, Item) VALUES (?,?);

Example 2

The following statement finds all the orders from the customer with CustId of 123 and inserts the Item of these orders into the
ResTable table.

INSERT INTO ResTable
 SELECT Item FROM Orders
 WHERE CustId = 123;

Example 3

The following statement inserts one row each time it is executed. In this case, the CustId column of the Orders table is not
specified. It is assumed that the CustId is an AUTOINCREMENT column, for which the SQL engine automatically generates an
incremented value. In this example, SELECT AUTOINCREMENT FROM is specified, causing the generated value to be returned
as a result set. If the Orders table does not have an AUTOINCREMENT column, and the result set will be the INTERNALROW
values for the inserted rows.

SELECT AUTOINCREMENT FROM INSERT INTO Orders (Item) VALUES (?)

UPDATE

The UPDATE statement is used to modify existing data. The columns to be changed are listed explicitly. All the rows for which the
WHERE clause evaluates to TRUE are changed. If no WHERE clause is specified, all rows in the table are changed.

Syntax

<update statement> ::=

Blackfish SQL 10

106

10

 UPDATE <table name>
 SET <update assignment commalist>
 [WHERE <conditional expression>]

<table name> ::=
 [<schema name> .] <SQL identifier>

<update assignment> ::=
 <column reference> = <update expression>

<update expression> ::=
 <scalar expression>
 | DEFAULT
 | NULL

Example 1

The following statement changes all orders from customer 123 to orders from customer 500:

UPDATE Orders SET CustId = 500 WHERE CustId = 123;

Example 2

The following statement increases the amount of all orders in the table by 1:

UPDATE Orders SET Amount = Amount + 1;

Example 3

The following statement reprices all disposable underwater cameras to $7.25:

UPDATE Orders SET Price = 7.25
 WHERE Price > 7.25 AND Item = 'UWCamaras';

DELETE

A DELETE statement deletes rows from a table in a Blackfish SQL database. If no WHERE clause is specified, all the rows are
deleted. Otherwise only the rows that match the WHERE expression are deleted.

Syntax

<delete statement> ::=
 DELETE FROM <table name>
 [WHERE <conditional expression>]
<table name> ::=
 [<schema name> .] <SQL
identifier>

Example

The following statement deletes all orders for shorts from the Orders table.

DELETE FROM Orders WHERE Item = 'Shorts';

CALL

A CALL statement calls a stored procedure.

Syntax

<call statement> ::=
 [? =] CALL <method name> (<expression commalist>)

Example 1

10 Blackfish SQL

107

10

The parameter marker indicates an output parameter position from which the result of the stored procedure can be retrieved.

?=CALL ABS(-765);

Example 2

The method implementing IncreaseSalaries updates the salaries table with an increase of some percentage for all
employees. A connection object will be passed implicitly to the method. An updateCount of all the rows affected by
IncreaseSalaries will be returned from Statement.executeUpdate.

CALL IncreaseSalaries(10);

LOCK TABLE

The LOCK TABLE statement explicitly locks a table. The lock ceases to exist when the transaction is committed or rolled back.

Syntax

<lock statement> ::=
 `LOCK <table name commalist>
<table name> ::=
 [<schema name> .] <SQL identifier>

Example

The following statement locks the Orders and LineItems tables.

LOCK Orders, LineItems;

Security Statements

CREATE USER

The CREATE USER statement adds the named user and associated password to the database. Only an administrator can create
users.

Note: The password that you enter is always case sensitive. The user name is not case-sensitive.

A newly created user has all database privileges except ADMINISTRATOR by default. That is, they have STARTUP, WRITE,
CREATE, DROP, CREATE ROLE, and CREATE SCHEMA privileges. If you wish to remove certain privileges from a user, use
REVOKE to remove them.

Syntax

<create user statement> ::=
 CREATE USER <user name> PASSWORD <SQL identifier>

Example 26

CREATE USER jmatthews PASSWORD "@nyG00dPas2d";

ALTER USER

The ALTER USER statement sets a new password for an existing user. Only an administrator or the named user can change a
password.

Note: The password that you enter is stored in all caps unless you enclose the password string in double quotation marks. It is
recommended that you always use the double quotes when specifying the password.

Syntax

Blackfish SQL 10

108

10

<alter user statement> ::=
 ALTER USER <user name> SET PASSWORD <SQL identifier>

Example 27

ALTER USER GSMITH SET PASSWORD "usethisOnen0w";

DROP USER

The DROP USER statement drops a user and all objects that the user owns.

• Used with RESTRICT or with no option, the statement fails if the user owns any objects, such as tables, views, or methods.

• Used with CASCADE, it deletes the user and all objects that the user owns.

Syntax

<drop user statement> ::=
 DROP USER <user name> [CASCADE|RESTRICT]

Example

The following statement drops the user gsmith and all tables, views, and methods that he owns.

DROP USER gsmith CASCADE;

CREATE ROLE

The CREATE ROLE statement creates a named role.

Using roles is a four-step process:

• Create a role using the CREATE ROLE statement.

• Grant privileges to the role using the GRANT statement.

• Grant the role to one or more users using the GRANT statement, thus authorizing that user to use that role.

• An authorized user accesses the privileges granted to a role by using the SET ROLE statement.

To create a role, the user must have the CREATE ROLE system privilege. All users have this by default, but this privilege can be
explicitly revoked. Syntax

<create role statement> ::=
 CREATE ROLE <role name>

Example 28

CREATE ROLE salesperson;

SET ROLE

The SET ROLE statement makes the named role active. The current user acquires all privileges assigned to that role. Use SET
ROLE NONE to deactivate the current role without setting another role.

Note: This command must be issued when there is no active transaction. The role remains active until the end of the session or
until another SET ROLE command is issued.

Syntax

<set role statement> ::=
 SET ROLE <role specification>

<role specification> ::=

10 Blackfish SQL

109

10

 NONE
 | <role name>

Example

The following statement makes the Manager role active:

SET ROLE Manager;

The following statement removes the active role and makes no roles active:

SET ROLE NONE;

DROP ROLE

The DROP ROLE statement drops the specified role.

• When DROP ROLE is used with CASCADE, all privileges that were granted through this role are revoked.

• When DROP ROLE is used with RESTRICT, the statement fails if the role is currently granted to any users or roles.

• Issuing DROP ROLE with neither option is the same as DROP ROLE with RESTRICT.

Syntax

<drop role statement> ::=
 DROP ROLE <role name> [CASCADE|RESTRICT]

Example

The following statement drops the Sales role. All privileges that were granted to users or other roles through the Sales role are
revoked.

DROP ROLE Sales CASCADE;

GRANT

The GRANT statement performs the following three actions:

• It grants object privileges, such as INSERT or SELECT, on tables or methods to PUBLIC, users, or roles.

• It grants database privileges (for example, STARTUP or RENAME) to users or roles.

• It grants roles to users or roles.

GRANT options:

• When object privileges are granted with the GRANT option, the grantee has the power to pass on the granted object privileges
to other users.

• When database privileges or roles are granted with the ADMINISTRATOR option, the grantee has the power to pass on the
granted database privileges or roles to other users.

• The ADMINISTRATOR database privilege grants STARTUP, WRITE, CREATE, DROP, RENAME, CREATE ROLE, and CREATE
SCHEMA privileges. When these privileges are acquired through the ADMINISTRATOR privilege, they can be revoked only by
revoking the ADMINISTRATOR privilege. In other words, if you grant ADMINISTRATOR to a user and then revoke CREATE, that
user still has CREATE privileges.

Note that when specifying the privilege object, you can use the optional TABLE keyword to grant privileges on either tables or
views. You do not use the VIEW keyword in this context. You can also revoke privileges on a method, using the required METHOD
keyword. It is possible to grant the following database privileges:

Privilege Description

ADMINISTRATOR Grants startup, write, create, drop, rename, create role, and create schema privileges

Blackfish SQL 10

110

10

STARTUP User can start the database

WRITE User can write to the database

CREATE User can create tables

DROP User can drop tables

RENAME User can rename tables

CREATE ROLE User can create roles

CREATE SCHEMA User can create schemas

CREATE ROLE and CREATE SCHEMA are granted by default when a user is created.

Syntax

<grant statement> ::=
 <grant database privileges statement>
 | <grant object privileges statement>
 | <grant role statement>

<grant database privileges statement> ::=
 GRANT <database privilege commalist>
 TO <grantee commalist>
 [WITH ADMIN OPTION]

<grant object privileges statement> ::=
 GRANT < object privileges>
 ON <privilege object>
 TO <grantee commalist>
 [WITH GRANT OPTION]
 [GRANTED BY <grantor>]

<grant role statement> ::=
 GRANT <role name commalist>
 TO <grantee commalist>
 [WITH ADMIN OPTION]
 [GRANTED BY <grantor>]

<database privilege> ::=
 STARTUP
 | ADMINISTRATOR
 | WRITE
 | CREATE
 | DROP
 | RENAME
 | CREATE ROLE
 | CREATE SCHEMA

<grantee> ::=
 PUBLIC
 | <user name>
 | <role name>

<object privileges> ::=
 ALL PRIVILEGES
 | <privilege commalist>

<privilege>::=
 SELECT
 | INSERT [(<column name commalist>)]
 | UPDATE [(<column name commalist>)]
 | REFERENCES [(<column name commalist>)]
 | DELETE
 | EXECUTE

10 Blackfish SQL

111

10

<privilege object> ::=
 [TABLE] <table name or view name>
 | METHOD <method name> <grantor> ::=
 CURRENT_USER
 | CURRENT_ROLE

Examples

In the following example, USER_1 receives SELECT and INSERT privileges on table T1. USER_2 receives SELECT privileges on
table T1 because the SELECT privilege was granted to ROLE_B and ROLE_B was granted to USER_2. However, USER_2 can use
this SELECT privilege only after enabling ROLE_B with a SET ROLE statement.

GRANT SELECT ON TABLE T1 TO USER_1, ROLE_B;
GRANT INSERT ON T1 TO USER_1;

GRANT ROLE_B TO USER_2;

REVOKE

The REVOKE statement can perform the following operations:

• It revokes object privileges, such as INSERT or SELECT, on tables or methods from PUBLIC, users, or roles.

• If the user or role has granted the now-revoked privilege to others, CASCADE revokes the privileges from those others as
well. If any views depend on the revoked privileges, they are dropped.

• When the REVOKE statement includes RESTRICT, the statement fails if the grantee has granted the acquired privileges to
others.

• It revokes database privileges—such as STARTUP or RENAME—from users or roles.

• It revokes roles from users or roles.

• It revokes the ADMIN option from a role without revoking the role itself.

• REVOKE GRANT OPTION FOR privilege revokes the power to grant the privilege to others without revoking the privilege
itself. REVOKE ADMIN OPTION FOR role similarly revokes the power to grant the named role without revoking the role
itself.

Note that when specifying the privilege object, you can use the optional TABLE keyword to revoke privileges on either tables or
views. You do not use the VIEW keyword in this context. You can also revoke privileges on a method, using the required METHOD
keyword. Syntax

<revoke statement> ::=
 <revoke database privileges statement>
 | <revoke object privileges statement>
 | <revoke role statement>

<revoke database privileges statement> ::=
 REVOKE <database privilege commalist>
 FROM <grantee commalist>

<revoke object privileges statement> ::=
 REVOKE [GRANT OPTION FOR] < object privileges>
 ON <privilege object>
 FROM <grantee commalist>
 [GRANTED BY <grantor>]
 [CASCADE|RESTRICT]

<revoke role statement> ::=
 REVOKE [ADMIN OPTION FOR] <role name commalist>
 FROM <grantee commalist>
 [GRANTED BY <grantor>]
 [CASCADE|RESTRICT]

Blackfish SQL 10

112

10

<database privilege> ::=
 STARTUP
 | ADMINISTRATOR
 | WRITE
 | CREATE
 | DROP
 | RENAME
 | CREATE ROLE
 | CREATE SCHEMA

<grantee> ::=
 PUBLIC
 | <user name>
 | <role name>

<object privileges> ::=
 ALL PRIVILEGES
 | <privilege commalist>

<privilege>::=
 SELECT
 | INSERT [(<column name commalist>)]
 | UPDATE [(<column name commalist>)]
 | REFERENCES [(<column name commalist>)]
 | DELETE
 | EXECUTE

<privilege object> ::=
 [TABLE] <table name or view name>
 | METHOD <method name> <grantor> ::=
 CURRENT_USER
 | CURRENT_ROLE

Example 1

In all of the following examples, the name before the colon is the nameof the user executing the statement.

The following GRANT statements are issued by users U1, U2, and U3 and are the context for the examples that follow:

Statement 1:

U1: GRANT SELECT ON TABLE T1 TO U2 WITH GRANT OPTION;

Statement 2:

U2: GRANT SELECT ON TABLE T1 TO U3 WITH GRANT OPTION;

Statement 3:

U3: GRANT SELECT ON TABLE T1 TO U4 WITH GRANT OPTION;

Example 1a:

The RESTRICT option causes the following REVOKE statement to fail because in Statement 2, user U2 exercised the privilege he
acquired in Statement 1.

U1: REVOKE SELECT ON TABLE T1 FROM U2 RESTRICT;

Example 1b:

The following example succeeds and Statements 1, 2, and 3 are negated.

U1: REVOKE SELECT ON TABLE T1 FROM U2 CASCADE;

Example 1c:

The RESTRICT option causes the following statement to fail because in Statement 2, user U2 exercised the GRANT OPTION
privilege he acquired in Statement 1.

10 Blackfish SQL

113

10

U1: REVOKE GRANT OPTION FOR SELECT ON TABLE T1 FROM U2 RESTRICT;

Example 1d:

The following statement succeeds and negates Statements 2 and 3. U2 retains SELECT privilege on T1, but cannot grant this
privilege to others.

U1: REVOKE GRANT OPTION FOR SELECT ON TABLE T1 FROM U2 CASCADE;

Example 2

The following GRANT and CREATE statements are issued by users U1, U2, and U3 and are the context for the examples that
follow. The name before the colon is the name of the user who issued the statement.

Statement 1:

U1: GRANT SELECT ON TABLE T1 TO U2 WITH GRANT OPTION;

Statement 2:

U2: GRANT SELECT ON TABLE T1 TO U3 WITH GRANT OPTION;

Statement 3:

U3: GRANT SELECT ON TABLE T1 TO U4 WITH GRANT OPTION;

Statement 4:

U2: CREATE VIEW V2 AS SELECT A, B FROM T1;

Statement 5:

U3: CREATE VIEW V3 AS SELECT A, B FROM T1;

Example 2a:

The following statement succeeds and negates Statements 1, 2, and 3. In addition, views V2 and V3 are dropped because U2
and U3 no longer have the SELECT privileges on T1 that are required by the views.

U1: REVOKE SELECT ON TABLE T1 FROM U2 CASCADE

Example 2b:

The following statement succeeds and negates Statements 2 and 3. User U2 retains the SELECT privilege on T1, but cannot
grant this privilege to others. In addition, the view V3 is dropped because U3 no longer has the SELECT privilege on T1. View V2
is not dropped because U2 still holds SELECT privileges on T1.

U1: REVOKE GRANT OPTION FOR SELECT ON TABLE T1 FROM U2 CASCADE

Example 3

The following GRANT and CREATE statements are issued by users U1, U2, and U3 and are the context for the examples that
follow. The name before the colon is the name of the user who issued the statement.

Statement 1:

U1: CREATE ROLE R1;

Statement 2:

U1: GRANT SELECT ON TABLE T1 TO R1;

Statement 3:

U1: GRANT R1 TO U2 WITH ADMIN OPTION;

Statement 4:

U2: GRANT R1 TO U3 WITH ADMIN OPTION;

Statement 5:

Blackfish SQL 10

114

10

 U3: GRANT R1 TO U4 WITH ADMIN OPTION;

Example 3a:

The following statement fails because user U2 has exercised the privileges acquired as a result of being granted role R1.

 U1: REVOKE R1 FROM U2 RESTRICT;

Example 3b:

The following statement succeeds. Statements 3, 4, and 5 above are negated.

 U1: REVOKE R1 FROM U2 CASCADE;

Example 3c:

The following statement fails because in Statement 3, user U2 exercised the ADMIN OPTION.

 U1: REVOKE ADMIN OPTION FOR R1 FROM U2 RESTRICT;

Example 3d:

The following statement succeeds. Statements 4 and 5 are negated. U2 retains the privileges granted by role R1, but cannot
grant this role to others.

 U1: REVOKE ADMIN OPTION FOR R1 FROM U2 CASCADE;

Escape Syntax

Blackfish SQL supports escape sequences for the following:

• Date and time literals

• OUTER JOIN

• The escape character for a LIKE clause

• Calling stored procedures

Escapes must always be enclosed in braces {}. They are used to extend the functionality of SQL.

Date and Time Literals

{T 'hh:mm:ss'} Specifies a time, which must be entered in the sequence: hours, followed by minutes, followed by seconds.

{D 'yyyy-mm-dd} Specifies a date, which must be entered in the sequence; year, followed by month, followed by day.

{TS 'yyyy-mm-dd
hh:mm:ss'}

Specifies a timestamp, which must be entered in the format indicated; year, month, day, hour, minute,
second.

Examples

INSERT INTO tablename VALUES({D '2004-2-3'}, {T '2:55:11'});
SELECT {T '10:24'} FROM tablename;
SELECT {D '2000-02-01'} FROM tablename;
SELECT {TS '2000-02-01 10:24:32'} FROM tablename;

Outer Joins

{OJ <join_table_expression>} An outer join is performed on the specified table expression.

10 Blackfish SQL

115

10

Example 30

SELECT * FROM {OJ a LEFT JOIN b USING(id)};

Escape Character for LIKE

{ESCAPE <char>} The specified character becomes the escape character in the preceding LIKE clause.

Example 31

SELECT * FROM a WHERE name LIKE '%*%' {ESCAPE '*'}

Calling Stored Procedures

{call <procedure_name> (<argument_list>)}

Or, if the procedure returns a result parameter:

{? = call <procedure_name> (<argument_list>)}

Example 1

The method implementing IncreaseSalaries updates the salaries table with an increase of some percentage for all employees. A
connection object is passed implicitly to the method. An updateCount of all the rows affected by IncreaseSalaries is
returned from Statement.executeUpdate.

{CALL IncreaseSalaries(10)};

Example 2

The parameter marker indicates an output parameter position from which the result of the stored procedure can be retrieved.

{?=CALL ABS(-765)};

Escape Functions

Functions are written in the following format, where FN indicates that the function following it should be performed:

{fn <function_name>(<argument_list>) }

Numeric functions

Function name Function returns

ABS(number) Absolute value of number

ACOS(float) Arccosine, in radians, of float

ASIN(float) Arcsine, in radians, of float

ATAN(float) Arctangent, in radians, of float

ATAN2(float1, float2) Arctangent, in radians, of float2 divided by float1

CEILING(number) Smallest integer >= number

COS(float) Cosine of float radians

COT(float) Cotangent of float radians

Blackfish SQL 10

116

10

DEGREES(number) Degrees in number radians

EXP(float) Exponential function of float

FLOOR(number) Largest integer <= number

LOG(float) Base e logarithm of float

LOG10(float) Base 10 logarithm of float

MOD(integer1, integer2) Remainder for integer1 divided by integer2

PI() The constant pi

POWER(number, power) number raised to (integer) power

RADIANS(number) Radians in number degrees

RAND(integer) Random floating point for seed integer

ROUND(number, places) number rounded to places places

SIGN(number) –1 to indicate number is < 0; 0 to indicate number is = 0; 1 to indicate number is
> 0

SIN(float) Sine of float radians

SQRT(float) Square root of float

TAN(float) Tangent of float radians

TRUNCATE(number, places) number truncated to places places

String Functions

Function name Function returns

ASCII(string) Integer representing the ASCII code value of the leftmost character in string

CHAR(code) Character with ASCII code value code, where code is between 0 and 255

CONCAT(string1,
string2)

Character string formed by appending string2 to string1; if a string is null, the result is
DBMS-dependent

DIFFERENCE(string1,
string2)

Integer indicating the difference between the values returned by the function SOUNDEX for string1
and string2

INSERT(string1, start,
length, string2)

A character string formed by deleting length characters from string1 beginning at start, and inserting
string2 into string1 at start

LCASE(string) Converts all uppercase characters in string to lowercase

LEFT(string, count) The count leftmost characters from string

LENGTH(string) Number of characters in string, excluding trailing blanks

LOCATE(string1,
string2[, start])

Position in string2 of the first occurrence of string1, searching from the beginning of string2; if start is
specified, the search begins from position start. Returns zero if string2 does not contain string1.
Position 1 is the first character in string2.

LTRIM(string) Characters of string with leading blank spaces removed

REPEAT(string, count) A character string formed by repeating stringcount times

REPLACE(string1,
string2, string3)

Replaces all occurrences of string2 in string1 with string3

RIGHT(string, count) The count rightmost characters in string

10 Blackfish SQL

117

10

RTRIM(string) The characters of string with no trailing blanks

SOUNDEX(string) A data source-dependent character string representing the sound of the words in string; this can be,
for example, a four-digit SOUNDEX code or a phonetic representation of each word.

SPACE(count) A character string consisting of count spaces

SUBSTRING(string,
start, length)

A character string formed by extracting length characters from string beginning at start

UCASE(string) Converts all lowercase characters in string to uppercase

Examples

SELECT {FN LCASE('Hello')} FROM tablename;

SELECT {FN UCASE('Hello')} FROM tablename;

SELECT {FN LOCATE('xx', '1xx2')} FROM tablename;

SELECT {FN LTRIM('Hello')} FROM tablename;

SELECT {FN RTRIM('Hello')} FROM tablename;

SELECT {FN SUBSTRING('Hello', 3, 2)} FROM tablename;

SELECT {FN CONCAT('Hello ', 'there.')} FROM tablename;

Date and Time Functions

Function name Function returns

CURDATE() The current date as a date value

CURTIME() The current local time as a time value

DAYNAME(date) A character string representing the day component of date; the name for the day is specific to the
data source

DAYOFMONTH(date) An integer from 1 to 31 representing the day of the month in date

DAYOFWEEK(date) An integer from 1 to 7 representing the day of the week in date; Sunday = 1

DAYOFYEAR(date) An integer from 1 to 366 representing the day of the year in date

HOUR(time) An integer from 0 to 23 representing the hour component of time

MINUTE(time) An integer from 0 to 59 representing the minute component of time

MONTH(date) An integer from 1 to 12 representing the month component of date

MONTHNAME(date) A character string representing the month component of date; the name for the month is specific to
the data source

NOW() A timestamp value representing the current date and time

QUARTER(date) An integer from 1 to 4 representing the quarter in date; January 1 through March 31 = 1

SECOND(time) An integer from 0 to 59 representing the second component of time

TIMESTAMPADD(interval,
count, timestamp)

A timestamp calculated by adding count number of intervals to timestamp; interval can be any one
of the following: SQL_TSI_FRAC_SECOND, SQL_TSI_SECOND, SQL_TSI_MINUTE,
SQL_TSI_HOUR, SQL_TSI_DAY, SQL_TSI_WEEK, SQL_TSI_MONTH, SQL_TSI_QUARTER, or
SQL_TSI_YEAR

Blackfish SQL 10

118

10

TIMESTAMPDIFF(interval,
timestamp1, timestamp2)

An integer representing the number of intervals by which timestamp2 is greater than timestamp1;
interval can be any one of the following: SQL_TSI_FRAC_SECOND, SQL_TSI_SECOND,
SQL_TSI_MINUTE, SQL_TSI_HOUR, SQL_TSI_DAY, SQL_TSI_WEEK, SQL_TSI_MONTH,
SQL_TSI_QUARTER, or SQL_TSI_YEAR

WEEK(date) An integer from 1 to 53 representing the week of the year in date

YEAR(date) An integer representing the year component of date

Examples

SELECT {FN NOW()} FROM tablename;

SELECT {FN CURDATE() } FROM tablename;

SELECT {FN CURTIME() } FROM tablename;

SELECT {FN DAYOFMONTH(datecol) } FROM tablename;

SELECT {FN YEAR(datecol)} FROM tablename;

SELECT {FN MONTH(datecol)} FROM tablename;

SELECT {FN HOUR(timecol) } FROM tablename;

SELECT {FN MINUTE(timecol) } FROM tablename;

SELECT {FN SECOND(timecol) } FROM tablename;

System Functions

Function name Function returns

DATABASE() Name of the database

IFNULL(expression, value) value if expression is null; expression if expression is not null

USER() User name in the DBMS

Conversion Functions

Function name Function returns

CONVERT(value,
SQLtype)

value converted to SQLtype where SQLtype can be one of the following SQL types: BIGINT, BINARY, BIT,
CHAR, DATE, DECIMAL, DOUBLE, FLOAT, INTEGER, LONGVARBINARY, LONGVARCHAR, REAL,
SMALLINT, TIME, TIMESTAMP, TINYINT, VARBINARY, or VARCHAR

Example 33

SELECT {FN CONVERT('34.5',DECIMAL(4,2))} FROM tablename;

ISQL

ISQL is a SQL command interpreter that can be used to execute SQL statements interactively. This feature is currently available
for Blackfish SQL for Java only.

10 Blackfish SQL

119

10

Getting Help

To see a help display for Blackfish SQL ISQL, issue one of the following help commands: From the system prompt:

• isql -? displays ISQL startup options.

• isql -help displays ISQL options.

From the SQL prompt:

• HELP CREATE displays help on creating datasources.HELP SHOW displays a list of SHOW commands with briefdescriptions.

• HELP SET displays a list of SET commands with brief descriptions of each.

Starting ISQL

To start Blackfish SQL ISQL, either ensure that <BlackfishSQL_install_dir>\bin is in your system path, or go to that
directory to issue the ISQL command. These options are available:

Startup Options for ISQL

Option and arguments Description

-user userName Specifies the userName for this connection

-password password Specifies the password associated with userName

-role roleName Activates the named role for the user

-input filename Executes all commands in the specified file and then quits

-output filename Redirects all output to the named file

-datasource filename Specifies an alternative datasource file

-echo Prints all commands before executing them

-stacktrace Prints a stacktrace for each error encountered

-pagelength length Prints column headers every length number of rows

-x Prints all the data definition statements from the current connection and exits

-z Shows version information and exits

Datasource and File Management

Once you have started ISQL, the following commands are available for managing datasource connections, file management and
session management. You can see a list of these commands during an ISQL session by issuing the following:

SHOW CREATE;

There are two additional groups of commands that are discussed later in this section: SHOW commands and SET commands.
The SQL commands that are available for data definition, data manipulation, security, and transaction management are
discussed throughout this chapter.

ISQL Datasource and File Management Commands

Blackfish SQL 10

120

10

Command Description

CREATE
DATASOURCE
dataSourceName
[dataSourceClassName]
properties

Associates a datasource with the dataSourceName. You pass this dataSourceName to CONNECT
in order to connect to a database. See "Creating datasources with ISQL" below, for information on
creating datasources in ISQL.

CONNECT
dataSourceName
[userpassword]

Connects to the datasource specified by dataSourceName. Before you can use CONNECT, you
must use CREATE DATASOURCE to associate a database with the dataSourceName that you pass
to CONNECT. You do not need to specify user name or password if it was specified as part of the
CREATE DATASOURCE statement.

INPUT filename Takes the contents of the named SQL file as input.

OUTPUT filename Writes the output to the specified file.

OUTPUT Writes the output to stdout.

EXPORT Exports the data definition statements and data of the current database to SQL.

EXPORT
[userpassword]

Exports the data definition statements and data of the current database to the specified datasource.
To export to a file, use EXPORT in conjunction with OUTPUT: OUTPUT sqlfile.txt; EXPORT;

IMPORT [userpassword] Imports the data definition statements and data from the specified datasource.

VERSION Shows the version of ISQL and the version of any connected database.

EXIT Commits changes and exits.

QUIT Rolls back changes and exits.

Creating Datasources with ISQL

This section provides more detail about creating datasources in ISQL using the CREATE DATASOURCE command listed above.
The CREATE DATASOURCE syntax is as follows:

CREATE DATASOURCE dataSourceName [dataSourceClassName] properties

The arguments for the CREATE DATASOURCE command are:

dataSourceName identifies the new datasource; it can be any SQL identifier assigned by you.

dataSourceClassName is the class that specifies the properties needed to connect to a JDBC database. It must be an
implementation of the standard JDBC javax.sql.DataSource interface. If this argument is not provided,
com.borland.javax.sql.JdbcDataSource is used. To access InterBase databases, you can use
interbase.interclient.DataSource.

properties can include any properties in the class supplied as the dataSourceClassName. Properties are separated by commas
and commonly include the following:

• user='username' If you do not supply a user name here, you can supply it as part of the CONNECT statement.

• password='password' If you do not supply a password here, you can supply it as part of the CONNECT statement.

• databaseName='database_name_to_connect_to'

Example

You can supply values for any properties in the datasource class. For example, to create a new database, add the following:

 CREATE=true: CREATE DATASOURCE

JDS user=SYSDBA, password=masterkey,

databaseName='c:/databases/test.jds',CREATE=true';

10 Blackfish SQL

121

10

Examples

These examples both use the Blackfish SQL default class com.borland.javax.sql.JdbcDataSource, since no
className is specified.

The example below creates a local datasource, JDS_LOCAL:

CREATE DATASOURCE JDS_LOCAL
 user=SYSDBA,
 password=masterkey,
 create=true,
 databaseName='c:/test.jds';

The next example creates a remote datasource, JDS_REMOTE. It also creates the test.jds database.

CREATE DATASOURCE JDS_REMOTE
 user=SYSDBA,
 password=masterkey,
 networkProtocol=tcp,
 serverName=localhost,
 portNumber=2508,
 create=true,
 databaseName='c:/test.jds';

ISQL SHOW Commands

Command Description

SHOW DATASOURCE [name] Displays all datasources or the specified datasource.

SHOW DATABASE Displays settings for the current database.

SHOW VERSION Displays the ISQL version and the version of any connected database.

SHOW DDL Displays the data definition statements for the current database.

SHOW SYSTEM Displays the system tables.

SHOW TABLE [[schema.]table] Displays all tables or the specified table.

SHOW VIEW [[schema.]view] Displays all views or the specified view.

SHOW PROCEDURE
[[schema.]name]

Displays all procedures or the specified pprocedures

SHOW FUNCTION [[schema.]name] Displays all functions or the specified function.

SHOW INDEX [index [ON
[schema.]table]]

Displays all indexes or the specified index.

SHOW ROLES Lists all roles defined in the database.

SHOW USERS Lists all users defined in the database.

SHOW GRANT TABLE
[[schema.]table]

Lists all privileges on tables that have been granted WITH GRANT OPTION.

SHOW GRANT VIEW
[[schema.]view]

Lists all privileges on views that have been granted WITH GRANT OPTION.

SHOW GRANT PROCEDURE
[[schema.]name]

Lists all privileges on procedures that have been granted WITH GRANT OPTION.

SHOW GRANT FUNCTION
[[schema.]name]

Lists all privileges on functions that have been granted WITH GRANT OPTION.

SHOW GRANT ROLE [role] Lists all users who have been granted the specified role.

Blackfish SQL 10

122

10

SHOW GRANT DATABASE
[user|role]

Lists all database privileges that have been granted to the specified user or role.

ISQL SET Commands

Command Description

SET Displays the current value of ECHO, STACKTRACE, and PAGELENGTH.

SET ECHO {ON|OFF} Toggles echoing of all commands to standard out.

SET STACKTRACE
{ON|OFF}

Toggles display of error traces.

SET PAGELENGTH
number

Sets the page length in lines; default is 0, meaning that the column headings print out only once.

See Also

Preface (see page 1)

Overview (see page 3)

System Architecture (see page 7)

Establishing Connections (see page 23)

Administering Blackfish SQL (see page 31)

Using Blackfish SQL Security (see page 35)

Using Stored Procedures and User Defined Functions (see page 41)

Using Triggers in Blackfish SQL Tables (see page 55)

Stored Procedures Reference (see page 59)

Optimizing Blackfish SQL Applications (see page 125)

Deploying Blackfish SQL Database Applications (see page 133)

Troubleshooting (see page 137)

10 Blackfish SQL

123

10

11 Optimizing Blackfish SQL Applications

This section discusses ways to improve the performance, reliability, and size of Blackfish SQL applications. Unless otherwise
specified, DataStoreConnection refers to either a DataStoreConnection or DataStore object used to open a connection
to a Blackfish SQL database file.

• Loading Databases Quickly

• General Recommendations

• Optimizing Transactional Applications

• Pruning Deployed Resources for Blackfish SQL for Java Applications

• AutoIncrement Columns

• Blackfish SQL Companion Components

• Using Data Modules for DataExpress Components

Loading Databases Quickly

Here are some tips that can improve the performance of your application when loading databases:

• Use prepared statements or commands whenever possible. If the number of parameters changes from one insert to the next,
clear the parameters before setting the new parameters.

• Create the table without primary keys, foreign keys, or secondary indexes. Load the table and then create any needed primary
keys, foreign keys, or secondary indexes.

Java-specific Database Loading Optimizations

Use the DataExpress TextDataFile class to import text files. It has a fast parser and can load data quickly. You must set the
StorageDataSet store to a DataStoreConnection, and set the StoreName property to the name of your table in the
Blackfish SQL database. When loading a new database:

1. First create the database as non-transactional.

2. While the database is non-transactional, use a DataExpress StorageDataSet.addRow or TextDataFile component to
load the database.

3. After the database has loaded, use the DataStore.TxManager property to make the database transactional.

This technique should enable the database to load two to three times faster.

11 Blackfish SQL

125

11

General Recommendations

This section provides some general guidelines for improving performance for Blackfish SQL applications.

Proper Database Shutdown

If a database is not properly shut down, the next time a process opens the database, there will be a delay. This is because
Blackfish SQL needs about 8 to 10 seconds to ensure that no other process has the database open. To ensure that a database
is shut down properly, make sure all connections are closed when they are no longer needed. If it is difficult to ensure that all
connections are closed, a connection with Administrator rights can call the DB_ADMIN.CLOSE_OTHER_CONNECTIONS built-in
stored procedure to ensure that all other connections are closed.

Another benefit to closing connections is that when they are all closed, the memory allocated to the Blackfish SQL cache is
released.

Currently, non-transactional databases can be accessed from SQL only if the database read-only property is true. However,
DataExpress JavaBeans can perform write operations on a non-transactional database.

Closing a non-transactional Blackfish SQL database ensures that all modifications are saved to disk. There is a daemon thread
for all open DataStoreConnection instances that is constantly saving modified cache data. (By default modified data is saved
every 500 milliseconds.) If you directly exit the Java Virtual Machine without closing the database, the daemon thread might not
have the opportunity to save the last set of changes. There is a small chance that a non-transactional Blackfish SQL could
become corrupted.

A transactional Blackfish SQL database is guaranteed not to lose data, but the transaction manager rolls back any uncommitted
changes.

Java-specific Database Shutdown

If your application is using DataExpress JavaBean components, close all StorageDataSets that have the store property set
to a DataStoreConnection when you are finished with them. This frees up Blackfish SQL resources associated with the
StorageDataSet and allows the StorageDataSet to be garbage collected.

You can use the DataStore.shutdown() method to make sure all database connections are closed before an application
terminates.

Optimizing the Blackfish SQL Disk Cache

The default maximum cache size for a Blackfish SQL database is 512 cache blocks. The default block size is 4096 bytes.
Therefore, the cache memory reaches its maximum capacity at approximately 512*4096 (2MB). Note that this memory is
allocated as needed. In some rare situations when all blocks are in use, the cache may grow beyond 512 cache blocks. You can
use the DataStore.MinCacheSize property to specify the minimum cache size.

NOTE: Do not arbitrarily change the database cache size. Be sure first to verify that doing so will improve the performance of
your application.

Keep in mind the following considerations when changing the Blackfish SQL cache size:

• Modern OS caches are typically high performance. In many cases, increasing the Blackfish SQL cache size does not
significantly improve performance, and simply uses more memory.

• There is only one Blackfish SQL disk cache for all Blackfish SQL databases open in the same process. When all Blackfish
SQL databases are shut down, the memory for this global disk cache is released.

• For handheld devices with small amounts of memory, set the DataStore.MinCacheSize property to a smaller number,
such as 96.

Blackfish SQL 11

126

11

Optimizing File Access

Blackfish SQL databases perform the majority of read/write operations against the following four file types:

• The Blackfish SQL database file itself (filename extension is .jds) as specified by the DataStore.FileName property

• Blackfish SQL transactional log files (filename extension is LOGAnnnnnnnnnn, where n is a numeric digit) as specified by the
TxManager.ALogDir property

• Temporary files used for large sort operations as specified by the DataStore.TempDirName property

• Temporary .jds files used for SQL query results as specified by the DataStore.TempDirName property

You can potentially improve performance by instructing Blackfish SQL to place the files mentioned above on different disk drives.

File Storage

The following are some guidelines for file storage handling that can improve performance of your applications:

• It is especially important to place the log files on a separate disk drive. Note that log files are generally appended in sequential
order, and their contents must be forced to disk in order to complete commit operations. Consequently, it is advantageous to
have a disk drive that can complete write operations quickly.

• On Win32 platforms, performance can be improved by placing Blackfish SQL log files in a separate directory. Storing
numerous files other than the log files in the log file directory can slow down the performance of commit operations. This
performance tip may also apply to platforms other than Windows NT/2000/XP.

• Remember to defragment your disk drive file systems on a regular basis. This practice is especially important for the disk
drive that stores the log files, because Blackfish SQL performs many sequential read/write operations to this file.

• For Win32 platforms, consider using a FAT32 file system with a large cluster size such as 64KB for the disk drive to which
your log files are written.

Non-transactional Database Disk Cache Write Options for Java

Note: This section applies only to Blackfish SQL for Java, which uses the DataExpress JavaBean components.

Use the saveMode property of the DataStore component to control how often cache blocks are written to disk. This property
applies only to non-transactional Blackfish SQL databases. The following are valid values for the method:

0 Let the daemon thread handle all cache writes. This setting gives the highest performance but the greatest risk of corruption.

1 Save immediately when blocks are added or deleted; let the daemon thread handle all other changes. This is the default
mode. Performance is almost as good as with saveMode(0).

2 Save all changes immediately. Use this setting whenever you debug an application that uses a DataStore component.

Unlike other properties of DataStore, saveMode can be changed when the connection is open. For example, if you are using a
DataStoreConnection, you can access the value through the dataStore property:

DataStoreConnection store = new DataStoreConnection();
...
store.getDataStore().setSaveMode(2);

Note that this changes the behavior for all DataStoreConnection objects that access that particular Blackfish SQL database
file.

Tuning Memory

You can tune the use of memory in a number of ways. Be aware that asking for too much memory can be as bad as having too
little.

• Try increasing the ConnectionProperties.MinCacheBlocks property, which controls the minimum number of blocks
that are cached.

11 Blackfish SQL

127

11

• The ConnectionProperties.MaxSortBuffer property controls the maximum size of the buffer used for in-memory sorts.
Sorts that exceed this buffer size use a slower disk-based sort.

Java-specific Memory Tuning

The Java heap tends to resist growing beyond its initial size, forcing frequent garbage collection with an ever-smaller amount of
free heap. Use the JVM -Xms option to specify a larger initial heap size. It is often beneficial to make the JVM -Xms and -Xmx
settings equal.

Miscellaneous Performance Tips

Here are some tips that can help performance:

• Setting the ConnectionProperties.TempDirName property, used by the query engine, to a directory on another (fast)
disk drive can often help.

• Try changing the check point frequency for the Transaction Manager. A higher value can improve performance, but might
result in slower crash recovery. This can be updated from SQL by using the DB_ADMIN.ALTER_DATABASE built-in stored
procedure. In Blackfish SQL for Java, you can use JdsExplorer to set this property by choosing TxManager > Modify.

Optimizing Transactional Applications

The increased reliability and flexibility you gain from using transactional Blackfish SQL databases comes at the price of some
performance. You can reduce this cost in several ways, as described in the following sections.

Using Read-only Transactions

For transactions that are reading but not writing, significant performance improvements can be realized by using a read-only
transaction. The connection readOnly property controls whether a transaction is read-only. The Blackfish SQL for Java
DataStoreConnection JavaBean has a readOnlyTx property to enable read-only transactions.

Read-only transactions work by simulating a snapshot of the Blackfish SQL database. This snapshot sees only data from
transactions that were committed at the point the read-only transaction starts. This snapshot is created when the
DataStoreConnection opens, and it refreshes every time a commit method is called.

Another benefit of read-only transactions is that they are not blocked by writers or other readers. Both reading and writing usually
require a lock. But because a read-only transaction uses a snapshot, it does not require any locks.

You can further optimize the application by specifying a value for the property readOnlyTxDelay. The readOnlyTxDelay
property specifies the maximum age (in milliseconds) for an existing snapshot that the connection can share. When the property
is non-zero, existing snapshots are searched from most recent to oldest. If there is one that is under readOnlyTxDelay in age,
it is used and no new snapshot is taken. By default, this property is set to 5000 milliseconds.

Using Soft Commit Mode

If you enable soft commit mode through the SoftCommit property, the transaction manager still writes log records for committed
transactions, but does not use a synchronous write mechanism for commit operations. With soft commit enabled, the operating
system cache can buffer file writes from committed transactions. Typically the operating system ends up writing dirty cache
blocks to disk within seconds. Soft commit improves performance, but cannot guarantee the durability of the most recently
committed transactions. You can set the SoftCommit property by calling the DB_ADMIN.ALTER_DATABASE built-in stored
procedure.

Disabling Status Logging for Transaction Log Files

You can improve performance by disabling the logging of status messages. To do this, set the RecordStatus property to
false. You can set the RecordStatus property by calling the DB_ADMIN.ALTER_DATABASE built-in stored procedure.

Blackfish SQL 11

128

11

Tuning Blackfish SQL Concurrency Control Performance

The following are guidelines for optimizing the performance of Blackfish SQL concurrency control operations:

• Choose the weakest isolation level with which your application can function properly. Lower isolations tend to acquire fewer
and weaker locks.

• Batch multiple statements into a single transaction. Connections default to autocommit mode commit after every statement
execution.

• Commit transactions as soon as possible. Most locks are not released until a transaction is committed or rolled back.

• Reuse statement or command objects whenever possible, or better yet, use prepared statements or commands when
possible.

• Close all statements or commands, all result sets or readers, and all connection objects when they are no longer needed.
Single-directional result set or reader objects automatically close when the last row is read.

• Use read-only transactions for long-running reports or online backup operations. Use the DB_ADMIN.COPYDATABASE method
for online backups. Read-only transactions provide a transactionally consistent (serializable), read-only view of the tables they
access. They do not acquire locks, so lock timeouts and deadlocks are not possible. See the section Using Read-only
Transactions.

• There is some overhead for maintaining a read-only view. Consequently, multiple transactions can share the same read-only
view. The ConnectionProperties.ReadOnlyTxDelay property specifies how old the read-only view can be when a
read-only transaction is started. Committing the transaction for a read-only connection refreshes the view of the database.
Note that a read-only transaction uses the transactional log files to maintain views. Therefore, read-only connections should
be closed as soon as they are no longer needed.

Using Multithreaded Operations

Write transaction throughput can increase as more threads are used to perform operations, because each thread can share in
the overhead of commit operations through the “group commit” support provided by Blackfish SQL.

Pruning Deployed Resources for Blackfish SQL for Java Applications

When deploying a Blackfish SQL application, you can exclude certain classes and graphics files that are not used.

• If Blackfish SQL is used without the JDBC driver, exclude the following classes:

• com.borland.datastore.Sql*.class

• com.borland.datastore.jdbc.*

• com.borland.datastore.q2.*

• If you are using DataExpress, and the StorageDataSet.store property is always set to an instance of DataStore or
DataStoreConnection, exclude the following classes:

• com.borland.dx.memorystore.*

• If StorageDataSet is used, but not QueryDataSet, QueryProvider, StoredProcedureDataSet or
StoredProcedureProvider, exclude the following classes:

• com.borland.dx.sql.*

• If DataExpress isn't using any visual components from the JBCL or dbSwing libraries, exclude the following classes:

• com.borland.dx.text.*

• If com.borland.dx.dataset.TextDataFile is not used, exclude the following classes:

• com.borland.jb.io.*

• com.borland.dx.dataset.TextDataFile.class

• com.borland.dx.dataset.SchemaFile.class

11 Blackfish SQL

129

11

AutoIncrement Columns

You can specify columns of type int and long as having AutoIncrement values.

The following attributes apply to all AutoIncrement column values:

• They are always unique

• They can never be null

• Values from deleted rows can never be reused

These attributes make AutoIncrement columns ideal for single column integer/long primary keys.

An AutoIncrement column is the internal row identifier for a row, and so provides the fastest random access path to a
particular row in a Blackfish SQL table.

Each table can have only one AutoIncrement column. Using an AutoIncrement column saves the space of one integer
column and one secondary index in your table if you use it as a replacement for your primary key. The Blackfish SQL Query
Optimizer optimizes queries that reference an AutoIncrement column in a WHERE clause. For instructions on using
AutoIncrement columns with SQL, see “Using AutoIncrement Columns with SQL” in the SQL Reference.

AutoIncrement Columns Using Blackfish SQL for Java DataExpress JavaBeans

To create a table with an AutoIncrement column using DataExpress, set the Column.AutoIncrement property to true
before opening a table. If you are modifying an existing table, you need to call the StorageDataSet.restructure() method.

Blackfish SQL Companion Components

The dbSwing component library provides two components (on the More dbSwing page of the Component Palette) that make it
easier to produce robust Blackfish SQL applications.

• DBDisposeMonitor automatically disposes of data-aware component resources when a container is closed. It has a
closeDataStores property. When true (the default), it automatically closes any Blackfish SQL databases that are
attached to components it cleans. For example, if you drop a DBDisposeMonitor into a JFrame that contains dbSwing
components attached to a Blackfish SQL database, when you close the JFrame, DBDisposeMonitor automatically closes
the Blackfish SQL database for you. This component is particularly handy when building simple applications to experiment
using Blackfish SQL.

• DBExceptionHandler has an Exit button. You can hide it with a property setting, but it is visible by default. Clicking this
button automatically closes any open Blackfish SQL database files it can find. DBExceptionHandler is the default dialog
box displayed by dbSwing components when an exception occurs.

Using Data Modules for Blackfish SQL for Java DataExpress JavaBean Components

When using a Blackfish SQL table with a StorageDataSet, you should consider grouping them all inside data modules. Make
any references to these StorageDataSets through DataModule accessor methods, such as
businessModule.getCustomer. You should do this because much of the functionality surfaced through StorageDataSets
is driven by property and event settings.

Although most of the important structural StorageDataSet properties are persisted in the Blackfish SQL table itself, the
classes that implement the event listener interfaces are not. Instantiating the StorageDataSet with all event listener settings,
constraints, calculated fields, and filters implemented with events, ensures that they are properly maintained at both run time and
design time.

See Also

Preface (see page 1)

Overview (see page 3)

System Architecture (see page 7)

Establishing Connections (see page 23)

Blackfish SQL 11

130

11

Administering Blackfish SQL (see page 31)

Using Blackfish SQL Security (see page 35)

Using Stored Procedures and User Defined Functions (see page 41)

Using Triggers in Blackfish SQL Tables (see page 55)

Stored Procedures Reference (see page 59)

SQL Reference (see page 75)

Deploying Blackfish SQL Database Applications (see page 133)

Troubleshooting (see page 137)

11 Blackfish SQL

131

11

12 Deploying Blackfish SQL Database
Applications

When you have finished developing your application, the next step is to deploy it. Deployment involves licensing considerations
and determining which Blackfish SQL files are needed for distribution. This chapter discusses the Blackfish SQL distribution files.
For information regarding deployment licensing, please contact Customer Support.

• Deploying Blackfish SQL for Windows Applications

• Deploying Blackfish SQL for Java Applications

Deploying Blackfish SQL for Windows Applications

The specific files you will need to distribute depend upon the type of application you have written. The table below provides some
guidelines for determining which files to distribute.

Blackfish SQL for Windows Application Deployment Files

File name Description

DbxClientDriver100.bpl
DbxCommonDriver100.bpl
DbxReadOnlyMetaData100.bpl

Remote dbExpress driver for Win32 applications that use packages. If you are
not using packages, then the driver is linked into the application exe file.

Borland.Data.DbxClientDriver.dll
Borland.Data.DbxCommonDriver.dll
Borland.Data.DbxReadOnlyMetaData.dll

Remote dbExpress driver for .NET applications that use assemblies. If you are
not using assemblies, then the driver is linked into the application exe file.

Borland.Data.BlackfishSQL.LocalClient.dll .NET assembly containing the local ADO.NET provider and the database kernel
itself. This is the only file needed for applications that only use the local
ADO.NET provider.

Borland.Data.BlackfishSQL.RemoteClient.dll .NET assembly containing the remote ADO.NET provider.

BSQLServer.exe BSQLServer.exe.config Launchers required for launching the server at the command line or as a
windows service. You must also deploy
Borland.Data.BlackfishSQL.LocalClient.dll with these files.

12 Blackfish SQL

133

12

Deploying Licenses for Blackfish SQL for Windows

Blackfish SQL for Windows searches the following locations for licensing SLIP files:

• The blackfishsql.licenseDirectory system property

Set this property by calling the System.AppDomain.CurrentDomain.SetData method, or by specifying a setting for this
property in the BSQLServer.exe.config file.

• The directory of the server if you are using a remote driver

• The directory of the application .exe file that is using a local driver

• The GAC location of the assembly, if the local driver is in use and has been added to the GAC

• The CodeGear subdirectory of the System.Environment.SpecialFolder.CommonApplicationData folder

• $(BDSCOMMONDIR)\license

The BDSCOMMONDIR environment variable is set when BDS is installed.

Deploying Blackfish SQL for Java Applications

Blackfish SQL includes a number of different jar files. The specific files you will need to distribute depend upon the type of
application you have written. The table below provides some guidelines for determining which files to distribute.

Blackfish SQL for Java Application Deployment JAR Files

File Name Description

dx.jar Local DataExpress database connectivity

jds.jar Local JDBC database connectivity

jdsremote.jar Remote JDBC thin client database connectivity

jdsserver.jar Full runtime embedded database server for local and remote JDBC database
connectivity

jdshelp.jar beandt.jar dbtools.jar
jdsserver.jar

Required for JdsServer and JdsExplorer Graphical User Interfaces

beandt.jar Required for compiling and for visual design of JavaBean components

dbswing.jar Required for Swing-based user interfaces

jbcl-awt.jar Required for AWT-based user interfaces

<BlackfishSQL_home>/bin/JdsServer
Windows: JdsServer.exe

Launcher for the graphical interface to the Blackfish SQL server

JdsServer.config Configuration file for the JdsServer launcher

<BlackfishSQL_home>/bin/JdsExplorer
Windows: JdsExplorer.exe

Launcher for the graphical interface to JdsExplorer

JdsExplorer.config Configuration file for the JdsExplorer launcher

<BlackfishSQL_home>/doc/* Blackfish SQL help, accessible directly or through JdsExplorer and JdsServer

Deploying Licenses for Blackfish SQL for Java

Blackfish SQL for Java searches the following locations for licensing SLIP files:

• The blackfishsql.licenseDirectory system property

You can set this property by calling the java.lang.System.setProperty method. Specify this property with the -D option
on the command line of the Java Virtual Machine:

Blackfish SQL 12

134

12

-DblackfishSQL.licenseDirectory=/mylicenseDir

Alternatively, you can set this property in the JdsServer.config file by adding a vmparam -D statement:

vmparam -DblackfishSQL.licenseDirectory=/mylicenseDir

• The Java user.home system property

• All directories specified in the Java classpath setting

See Also

Preface (see page 1)

Overview (see page 3)

System Architecture (see page 7)

Establishing Connections (see page 23)

Administering Blackfish SQL (see page 31)

Using Blackfish SQL Security (see page 35)

Using Stored Procedures and User Defined Functions (see page 41)

Using Triggers in Blackfish SQL Tables (see page 55)

Stored Procedures Reference (see page 59)

SQL Reference (see page 75)

Optimizing Blackfish SQL Applications (see page 125)

Troubleshooting (see page 137)

12 Blackfish SQL

135

12

13 Troubleshooting

This chapter presents some guidelines for troubleshooting and resolving possible error conditions and other issues that may
arise when creating, maintaining, and accessing Blackfish SQL databases.

• Relative Path Database Filenames

• Enabling Blackfish SQL System Logging

• Enabling Blackfish SQL Database Logging

• Debugging Lock Timeouts and Deadlocks

• Verifying the Integrity of a Blackfish SQL Database

• Troubleshooting Blackfish SQL for Java

Relative Path Database Filenames

You can use the DataDirectory macro in the specification of database filenames to provide support for relative pathnames. For
more information on the DataDirectory macro, see Establishing Connections. If you do not use the DataDirectory macro, relative
pathnames are relative to the current directory of the process in which Blackfish SQL is executing. On Java platforms, the
user.dir property dictates how database filenames are resolved when a fully qualified path name is not specified. The Java
Virtual Machine (JVM) defaults this property to the current working directory of the process. You can set this property with a JVM
command line option. For example:

-Duser.dir=/myapplication

You can also set this property from within a Java application by using the java.util.System.setProperty method.

Enabling Blackfish SQL System Logging

System logging is performed for all connections and all databases accessed in the same process.

You can enable Blackfish SQL system logging in the following ways.

For the local Blackfish SQL client:

Set the blackfishsql.logFile system property to the name of the file to which the log output should be written. If you set
this to con, the log output is displayed to the console. You can specify the types of operations to include in the log file by setting
the blackfishsql.logFilters property.

For the remote Blackfish SQL client:

In the Blackfish SQL configuration file set the blackfishsql.logFile property to the name of the file to which the log output

13 Blackfish SQL

137

13

should be written. If you set this to con, the log output is displayed to the console. You can specify the types of operations to
include in the log file by setting the blackfishsql.logFilters property.

Setting System Properties

All Blackfish SQL system properties are case sensitive and begin with the blackfishsql. prefix. The SystemProperties

class has constant strings for all system properties. For Windows system properties:

If your application uses the Blackfish SQL server, set system properties in the BSQLServer.exe.config file. If your
application does not use the Blackfish SQL server, set system properties by calling the
System.AppDomain.CurrentDomain.SetData method.

For Java system properties:

If your application uses the Blackfish SQL server, set system properties in the BSQLServer.config file by prefixing the
property setting with vmparam -D. If your application does not use the Blackfish SQL server, set system properties by calling
the System.setProperty method.

Blackfish SQL for Java JDBC Logging Options

For Blackfish SQL for Java, these are additional logging options:

• If you are using a javax.sql.DataSource implementation, call the setLogWriter method of the DataSource
implementation. See com.borland.javax.sql.JdbcDataSource and
com.borland.javax.sql.JdbcConnectionPool.

• Call the java.sql.DriverManager.setLogStream method.

• Call the java.sql.DriverManager.setLogWriter method.

Enabling Blackfish SQL Database Logging

Database logging output is performed on a per-database basis and is sent to the status log files for that database. The lifetime of
status log files is managed in the same fashion as the transactional log files for the database. When a transactional log file is
dropped, the corresponding status log file is dropped also. When you create a database, status logging is disabled by default.
You can enable database status logging by calling the DB_ADMIN.ALTER_DATABASE built-in stored procedure. You can set the
log filtering options for all connections to a database by calling the DB_ADMIN.SET_DATABASE_STATUS_LOG_FILTER built-in
stored procedure. You can set the log filtering options for a single connection by setting the logFilter connection property or
by calling the DB_ADMIN.SET_STATUS_LOG_FILTER built-in stored procedure.

Debugging Lock Timeouts and Deadlocks

Locks can fail due to lock timeouts or deadlocks. Lock timeouts occur when a connection waits to acquire a lock held by another
transaction and that wait exceeds the milliseconds set in the lockWaitTime connection property. In such cases, an exception is
thrown that identifies which connection encountered the timeout and which connection is currently holding the required lock. The
transaction that encounters the lock timeout is not rolled back.

Blackfish SQL has automatic, high speed deadlock detection that should detect all deadlocks. An appropriate exception is
thrown that identifies which connection encountered the deadlock, and the connection with which it is deadlocked. Unlike lock
timeout exceptions, deadlock exceptions encountered by a java.sql.Connection cause that connection to automatically roll
back its transaction. This behavior allows other connections to continue their work.

Use the following guidelines to detect timeouts and deadlocks:

• Read the exception message from the timeout or deadlock. The message has information on what tables and what
connections are involved.

• Enable system or database logging. To restrict log output to lock-related issues, set the log filter options to LOCK_ERRORS.

• Use the DB_ADMIN.GET_LOCKS built-in stored procedure to report locks held by all connections.

Blackfish SQL 13

138

13

Avoiding Blocks and Deadlocks

A connection usually requires a lock when it either reads from or writes to a table stream or row. It can be blocked by another
connection that is reading or writing. You can prevent blocks in two ways:

• Minimize the life span of transactions that write.

• Use read-only transactions, since these do not require locks to read.

Using Short Duration Write Transactions

Connections should use short-duration transactions in high concurrency environments. However, in low- or no-concurrency
environments, a long-duration transaction can provide better throughput, since fewer commit requests are made. There is a
significant overhead to the commit operation because it must guarantee the durability of a transaction.

Using Read-only Transactions

Read-only transactions are not blocked by writers or other readers, and since they do not acquire locks, they never block other
transactions.

Setting the readOnlyTx connection property to true causes a connection to use read only connections. Note that there is also a
readOnly connection property, which is very different from the readOnlyTx connection property. The readOnly connection
property causes the database file to be open in read only mode, preventing any other connections from writing to the database.

For Blackfish SQL for Java JDBC connections you can also enable read-only transactions by setting the readOnly property of
the java.sql.Connection object or the com.borland.dx.sql.dataset.Database.getJdbcConnection methods to
true. When using Blackfish SQL for Java DataStoreConnection objects, set the readOnlyTx property to true before
opening the connection.

Read-only transactions work by simulating a snapshot of the Blackfish SQL database. The snapshot sees only data from
transactions that are committed at the point the read-only transaction starts; otherwise, the connection would have to check if
there were pending changes and roll them back whenever it accessed the data. A snapshot begins when the connection opens.
The snapshot is refreshed each time the commit method is called.

Verifying the Integrity of a Blackfish SQL Database

If you suspect that cache contents were not properly saved on a non-transactional Blackfish SQL database, you can verify the
integrity of the file by calling the DB_ADMIN.VERIFY built-in stored procedure.

Note that transactional Blackfish SQL databases have automatic crash recovery when they are opened. Under normal
circumstances, Blackfish SQL databases do not require verification.

Troubleshooting Blackfish SQL for Java

This section provides more Java-specific troubleshooting guidelines.

Debugging Triggers and Stored Procedures

The approach to debugging triggers and stored procedures depends on whether your application uses the local or remote JDBC
driver.

If your application uses the local JDBC driver, there is nothing special to set up, since the database engine is executing in the
same process as your application.

If your application uses the remote JDBC driver, you can use either of the following procedures.

Using the DataStoreServer JavaBean for debugging:

In your application, instantiate a com.borland.datastore.jdbc.DataStoreServer JavaBean component and execute its

13 Blackfish SQL

139

13

start method.

Using the JdsServer for debugging:

Complete the following steps:

1. Add the following lines to your <jds_home>/bin/JdsServer.config file: vmparam -Xdebug vmparam -Xnoagent
vmparam -Djava.compiler=NONE vmparam
-Xrunjdwp:transport=dt_socket,server=y,address=5000,suspend=y

2. Execute the JdsServer. The server will not come up until a remote debugger (such as the JBuilder debugger) is launched to
attach to the JdsServer process on port 5000.

Accessing and Creating Tables from SQL and DataExpress JavaBeans

Creating an SQL table forces unquoted identifiers to be uppercase. You must quote the identifiers to enable case sensitivity. See
“Identifiers” in the SQL Reference.

When you use DataExpress components to create a table, the table and column names are case sensitive. If you specify these
identifiers in lowercase or mixed case, SQL is not able to access them unless the identifiers are quoted.

When you use DataExpress to access a table, the StorageDataSet storeName property is case sensitive. However, the
column identifiers can be referenced in a case-insensitive fashion. Consequently, for DataExpress, you can access an address
column by using ADDRESS or address.

The simplest way to avoid problems with identifiers for both SQL and DataExpress components is to always use uppercase
identifiers when your application creates or accesses tables.

Debugging Non-transactional Database Applications

Set the saveMode property to 2 when you are debugging an application that uses a non-transactional Blackfish SQL database.
The debugger stops all threads when you are single-stepping through code or when breakpoints are hit. If you do not set the
saveMode property to 2, the Blackfish SQL daemon thread cannot save modified cache data. For more information, see
“Non-transactional Database Disk Cache Write Options” in Optimizing Blackfish SQL Applications.

Resolving Problems with Locating and Ordering Data

Sun Microsystems makes changes to the java.text.CollationKey classes from time to time as it corrects problems. The
secondary indices for tables stored inside a Blackfish SQL database use these CollationKey classes to generate sortable
keys for non-US locales. When Sun changes the format of these CollationKeys classes, the secondary indexes created by
an older Sun JDK may not work properly with a new Sun JDK. The problems resulting from such a situation manifest themselves
in the following ways:

• Locate and query operations might not find records that they should find.

• A table viewed in secondary index order (by setting the StorageDataSet.sort property) might not be ordered properly.

Currently, the only way to correct this is to drop the secondary indices and rebuild them with the current JDK. The
StorageDataSet.restructure() method also drops all the secondary indexes.

See Also

Preface (see page 1)

Overview (see page 3)

System Architecture (see page 7)

Establishing Connections (see page 23)

Administering Blackfish SQL (see page 31)

Blackfish SQL 13

140

13

Using Blackfish SQL Security (see page 35)

Using Stored Procedures and User Defined Functions (see page 41)

Using Triggers in Blackfish SQL Tables (see page 55)

Stored Procedures Reference (see page 59)

SQL Reference (see page 75)

Optimizing Blackfish SQL Applications (see page 125)

Deploying Blackfish SQL Database Applications (see page 133)

13 Blackfish SQL

141

13

Index

A
Administering Blackfish SQL 31

D
DB_ADMIN 59

DB_UTIL 59

Deploying Blackfish SQL Database Applications 133

E
Establishing Connections 23

O
Optimizing Blackfish SQL Applications 125

Overview 3

P
Preface 1

S
SQL Reference 75

Stored Procedures Reference 59

System Architecture 7

T
Troubleshooting 137

U
Using Blackfish SQL Security 35

Using Stored Procedures and User Defined Functions 41

Using Triggers in Blackfish SQL Tables 55

14 Blackfish SQL

a

	Blackfish SQL
	Table of Contents
	Preface
	Overview
	System Architecture
	Establishing Connections
	Administering Blackfish SQL
	Using Blackfish SQL Security
	Using Stored Procedures and User Defined Functions
	Using Triggers in Blackfish SQL Tables
	Stored Procedures Reference
	SQL Reference
	Optimizing Blackfish SQL Applications
	Deploying Blackfish SQL Database Applications
	Troubleshooting
	Index

