(Gmbarcadero

Product Documentation

DB Optimizer™ XE and DB Optimizer™ 2.5

User Guide

Published May 2010

© 2010 Embarcadero Technologies, Inc. Embarcadero, the Embarcadero Technologies logos,
and all other Embarcadero Technologies product or service names are trademarks or registered
trademarks of Embarcadero Technologies, Inc. All other trademarks are property of their
respective owners.

Embarcadero Technologies, Inc. is a leading provider of award-winning tools for application
developers and database professionals so they can design systems right, build them faster and
run them better, regardless of their platform or programming language. Ninety of the Fortune
100 and an active community of more than three million users worldwide rely on Embarcadero
products to increase productivity, reduce costs, simplify change management and compliance
and accelerate innovation. The company's flagship tools include: Embarcadero® Change
Manager™, CodeGear™ RAD Studio, DBArtisan®, Delphi®, ER/Studio®, JBuilder® and Rapid
SQL®. Founded in 1993, Embarcadero is headquartered in San Francisco, with offices located
around the world. Embarcadero is online at www.embarcadero.com.

May 7, 2010

CORPORATE HEADQUARTERS EMEA HEADQUARTERS ASIA-PACIFIC HEADQUARTERS

100 CALIFORNIA STREET YORK HOUSE L7.313 LA TROBE STREET
12TH FLOOR 18 YORK ROAD MELBOURNE VIC 3000
SAN FRANCISCO, CALIFORNIA MAIDENHEAD, BERKSHIRE AUSTRALIA

94111 USA SL6 1SF, UNITED KINGDOM

Contents

Welcome to Embarcadero DB Optimizer 9
New Features in DB Optimizer 2.5, 11
Configuring DB Optimizer™ XE and DB Optimizer™ 2.5. o 13
Initial SEtUD . oo 13
Specify a Workspace 14
License DB Optimizer™ XE and DB Optimizer™ 2.5 14
Customizing DB Optimizer™ XE and DB Optimizer™ 2.5 (Preferences) 14
Set Index Configuration Preferences 15

Set SQL Editor Preferences 18

Set SQL Execution Preferences. 18

Set Code Assist Preferences 18

Set Code Formatter Preferences. 19

Set Results View Preferences. 19

Set Syntax Coloring Preferences. 19

Set SQL Code Template Preferences. 20

Set File Encoding Preferences. 22

Using DB Optimizer. 23
Working with Data SOUICES e 23
Register Data SOUrCeso 24
Browse a Data SoUrce 27

View Database Object Properties. 27
Search for Database Objects. 29

Filter Database Objectst 30
Define Data Source-Specific Object Filters 31

Define Global Database Object Filters. 31

Drop a Database Object 32
Working with SQL Projects 33
Create a New SQL Project. o 33

Open an Existing Project 34
Search a Project ... o 34

Add Filesto a Project.o o o 35
Delete a Projecto 36
Creating and Editing SQL Files (SQL EItor)ottt e 37
Create an SQL File o 39

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 3

CONTENTS

Open an Existing SQL File. ... 39
Working in SQL Editoro 39
Understanding Automatic Error Detection. 41
Understanding Code ASSiStottt 43
Understanding Hyperlinks 46
Understanding Code Formatting 46
Understanding Code Folding o 51
Understanding Code Quality Checks 51
Understanding SQL Templateso 55

View Change History o 56
Reverttoan Old VersionofaFile 57
Delete an SQL File o 57
Executing SQL Fileso o 58
Associate an SQL File witha Data Source 59
Configure @ SQL SesSIONot 60
Execute SOL Code . . .ot 61
View and Save Results 61
Troubleshootingo 62
View Log Details . ..o oo 64
Maintain Logso 65
FIer LOgs « . it 65
Import and Export Error Logsot 68
Find and Fix SQL Code Errors.t e 69
Find and Fix Other Problems. 69
Using Profiling . .. oo oo 71
Understanding Profiling 71
Understanding the Interface 72
Running a Profiling Session 73
Execute a Profiling Session 74
Work with Session Results 75
Opening an Existing Profiling Session 76
Analyze the Load Chart o 76
Analyze the Top Activity Section 78
Analyze Profiling Details. 83
Saving Profiling Sessions 98
Work with the Profiling Repository 99
Import Statements to TUNING 100

4 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

CONTENTS

Other Profiling Commands o 101
Zooming Inand OUt o 101
Filtering Results. o 102

Configuring Profiling 103

Configuring DBMS Properties and Permissions 103
Configuring IBM DB/2 for Windows, Unix, and Linuxo ... 103
Configuring Microsoft SQL Server. 105
Configuring Oracle 106
Configuring Sybase. 106

Building Launch Configurations 107

UsSiNg Load Tester. . . oo oot 110
Using TUNING. . . oo 115
Introduction to Database TuNING o 115

Introduction to DB Optimizer's TUNErt e 116

SQL Tuning Methodologyo 118

SQL TUNEr OVEIVIEW. . o .ottt e e e e e e e e e 119

What's happening on the databases? 120

Tuning Example 123
The Database is Hanging or the Application has Problems 123
The Database Caused the Problem 125
The Machine Caused the Problem 126

Finding and Tuning Problem SQL. 128

Understanding the Tuner Interface 128

Understanding the Input Tab oo 129

Understanding the Overview Tab 131

Understanding the Analysis Tab 133

Tuning SQL Statementsottt 135

Create a New Tuning Job 136

Specify aData SOUICeo 137

Add SQL Statementsot 138

Runa Tuning Job .. oo 140

Analyze Tuning Results. 143
ComPare Cases. . . oot 145
Filter and Delete Casesottt 146
Create an Outlineo 146

Modify Tuning Results o 147
Oracle Query ReWrites ot 149

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 5

CONTENTS

Using the Analysis Tabo o 149
Implementing Index Analysis Recommendations 150

Visual SQL TUNING. « oot 151
Changing Diagram Detail Displayo 152
Interpreting the VST Diagram Graphics e 160

Using Oracle-Specific Features. 165
Using the Table Statistics Tab 166
Using the Column Statistics And Histograms Tab. i 167
Using the Outlines Tab.o 168
Tuning SQL Statements in the System Global Area (SGA). 169
Additional Tuning Commands.ottt 170
View the Source Code of Tuning Candidates i .. 170
View Statement or Case Code in SQL Viewer i 171
Open an Explain Plan for a Statementor Case i 172
Executing a Session from the Command Line....... 173
Configuring TUNING. - . oo oo e 174
Set Roles and Permissions on Data Sources i 175
Set Tuning Job Editor Preferences. 176
Set Generated Case Preferences 177
Examples of Transformations and SQL Query Rewrites e 178
DBM S HiNts . .o 179
Oracle Hints. . ..o 181
SQOL Server Hints. ..o 186
DB HINtS. « .ottt 187
Sybase Hints o 188
TULOrTalS .« o 191
Working with Data Source Explorer 191
Adding Data SOUMCESt 192
Browsing Data SOUICESot 193
Profiling @ Data SOUICE o 194
Starting a Profiling Session 195
Analyzing Session Datattt 195
Load Chart ... 196

TOP ACHIVILY . oot 197
Profiling Details o 198
Saving a Profiling Session 201
Importing Statements to SQL Tuner 202

6 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

CONTENTS

Tuning SQL Statements 203
Creatinga New Tuning Job ... 204
Adding SQL Statementst 206
Runninga Tuning Job 207
Analyzing Tuner Results onthe Overview Tab.o o 209
Finding Missing Indexes and SQL Problems o 211
Finding Missing Indexes 212
Changing Diagram Detail Display. 212

Viewing the VST Diagram in Summary Mode. 213
Viewing the VST Diagram in Detail Mode i, 213
Changing Detail Level for a Specific Table. 214
Viewing All Table Fields o 215
Viewing Diagram Object SOL 216
Expanding Views in the VST Diagramo e 217
Interpreting the VST Diagram Graphics Conventions. 219
LCONS o 220
ColOrS . 220
Connecting Lines/Joins 220
Finding Problematic SQL or Schema 224
Cartesian Join .. oo 225
Implied Cartesian JOin 225
Many-to-Many Relationships 226
Applying Tuner Results to the Data Source i i 227
Implementing Recommendations on the Overview Tab. 227
Implementing Recommendations on the Index Analysis Tab. 228

SQL Code Assist and Execution 229
Code EXTractiono 231
Code Highlightingo 232
Automatic Error Detection 233
Code Complete 234
Hyperlinks . ..o 234
Code FOrmattingottt 235
Code Folding . ..o 236
Code Quality Checks 236
SQOL EXECULION . ..ot 236
Configuring SQL Execution Parameterso 238

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 7

CONTENTS

REfEreNCe . . . 241
Database ObjJects.ottt 241
DBMS Connection Parameters by Platform 250

IBM DB2 LUV . 252
Microsoft SQL Server 252
JDBC Connection Parameters. 254
Oracle Connection Parameters. 254
Sybase Connection Parameters. 255

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

WELCOME TO EMBARCADERO DB OPTIMIZER

Embarcadero DB Optimizer simplifies SQL optimization and development for application
developers with many features for improving productivity and reducing errors. A rich SQL IDE
with statement tuning, data source profiling, code completion, real-time error checking, code
formatting and sophisticated object validation tools helps streamline coding tasks. DB
Optimizer’s user interface helps improve overall productivity with integrated development,
monitoring, and tuning components. DB Optimizer offers native support for IBM® DB2® for
LUW, Oracle®, Microsoft® SQL Server and Sybase® as well as JDBC support for other DBMS.

DB Optimizer has four components that when used together can optimize your database
performance.

SQL Editor: A developer can write Java in Eclipse that calls to the database with SQL. The SQL
that calls to the database can be written in the SQL Editor with type ahead, code assist and
quick fixes to show the users syntax and correct mistakes. For more information, see "Creating

and Editing SQL Files (SQL Editor)" on page 25.

Load Tester: The SQL code can be run in the Load Tester to test execution by multiple
concurrent users. User load testing is so often done my one single user and then problems don't
appear until production with multiple concurrent users. Concurrent user testing is a breeze in DB
Optimizer. For more information, see "Using Load Tester" on page 41.

Profiler: You can run the Profiler while the Load Tester is executing to show clearly the impact on
the database. The profiler can also be used by QA on load simulation. Finally the Profiler can be
run on any production database to clearly show load, bottlenecks, and sources of bottlenecks or
resource consumption. For more information, see "Using Profiling" on page 2.

Tuner: Finally if a problem SQL is found on the system the Tuner will show if it's correctly
optimized by the database or not, and if not it will show the best plan and what hints or
optimizer directives can be included in the SQL to force the database to use the optimal plan.
For Oracle these hints can even be stored in the database so that there is no need to even
change the original SQL text. For more information, see "Using Tuning" on page 47.

NOTE: This guide is supplemented by online information in the Embarcadero Documentation
Wiki at
http://docwiki.embarcadero.com/DBOptimizer.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 7

http://docwiki.embarcadero.com/DBOptimizer

NEW FEATURES IN DB OPTIMIZER 2.5

Improvements to Profiling

e New Procedures tab for SQL Server and Sybase platforms enables you to examine
procedures and their effect on database efficiency. For more information, see "Top

Procedures Tab (SQL Server and Sybase Specific)" on page 14.

e Top SQL tab now provides average execution time, Average Elapsed (sec) statistics for SQL
Server, DB2, and Oracle platforms. For more information, see "Top SQL Tab" on page 10.

® Top Events tab now provides average wait time, Avg. Per Wait (sec) statistics for Oracle
events. For more information, see "Top Events Tab" on page 12.

* Improved SQL text collection by querying the database cache more often and more
intelligently thereby reducing the occurrences of UNKNOWN statements.

e Max CPU and Max Engine count can now be specified for cases when the database platform
does not report how many CPUs or engines are available and for when you want to see the
performance gain or hit created by increasing or decreasing the number of CPUs or engines.
For more information, see "Analyze the Load Chart" on page 7.

e New Profiling Repository available for Oracle platforms offers the ability to gather and store
more profiling information that is then readily available for analysis from the Data Source
Explorer. For more information, see "Building Launch Configurations" on page 38,."Saving
Profiling Sessions" on page 29, and "Opening an Existing Profiling Session" on page 7.

e Performance optimization enables the Profiler to better support longer sessions and more
heavily loaded servers.

Improvements to Tuning

e New transformations or query rewrites available for Oracle data sources offer more tuning
alternatives. For more information, see "Oracle Query Rewrites" on page 81.

e Extended support for statements with bind variables on SQL Server and Sybase. For more
information, see "Add SQL Statements" on page 70.

e Filter ratios, and table size and table join size optionally added to Visual SQL Tuning
diagrams. Collecting this data may be time-consuming for large databases. For more
information, see Viewing Table Counts and Ratios on page 84.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 9

CONFIGURING DB OPTIMIZER™ XE AND DB

OPTIMIZER™ 2 5

This section contains information on configuring DB Optimizer. It includes information on setting
up the system directory for project files, as well as licensing information. Additionally, this section
contains information on setting preferences within the application for the customization of
various features and functionality.

e Initial Setup on page 59
e Customizing DB Optimizer™ XE and DB Optimizer™ 2.5 (Preferences) on page 60

INITIAL SETUP

The following topics provide general help for configuring DB Optimizer:

e Specify a Workspace on page 60
e License DB Optimizer™ XE and DB Optimizer™ 2.5 on page 60

Additionally, the following preferences are available to help you customize and tune functions
within the application:

¢ Set Index Configuration Preferences on page 61

e Set SQL Editor Preferences on page 64

e Set SQL Execution Preferences on page 64

e Set Code Assist Preferences on page 64

e Set Code Formatter Preferences on page 65

e Set Results View Preferences on page 65

¢ Set Syntax Coloring Preferences on page 65

e Set SQOL Code Template Preferences on page 66

e Set File Encoding Preferences on page 68

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 59

CONFIGURING DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 > CUSTOMIZING DB OPTIMIZER™ XE AND

SPECIFY A WORKSPACE

When you start Eclipse or the DB Optimizer™ XE and DB Optimizer™ 2.5 standalone
application for the first time, you are prompted to create a workspace.

-

% Workspace Launcher

Select a workspace

Embarcadero DE Oplimizer stores vour projects in a folder called a workspace.
Choose a waorkspace Folder ko use Faor this session,

Warkspace: | C\Docurnents and Settingsalinacdboptimizeriworkspace| v

[Juse this as the default and do not ask again

[Ok H Cancel]

Click Use this as the default and do not ask again to set the specified folder as the permanent
default workspace. For more information about workspaces, see Help > Help Contents >
Workbench User Guide.

LICENSE DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5

The first time you first launch DB Optimizer™ XE and DB Optimizer™ 2.5, you will be prompted
to activate the product. Choose to activate by Internet and follow the prompts. During the
activation process you will receive an email with an activation key; after you enter that key into
the License Setup dialog, you will receive a free 14-day evaluation license.

If due to firewall or other restrictions you cannot use Internet activation, select the E-mail
alternative. If that does not work either, select the Phone alternative.

To continue using DB Optimizer™ XE and DB Optimizer™ 2.5 after the evaluation period, select
Help > Embarcadero Licensing > License Registration and follow the prompts, or visit the
Embarcadero online store at http://www.embarcadero.com/store.html.

CUSTOMIZING DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5
(PREFERENCES)

To customize various aspects of DB Optimizer™ XE and DB Optimizer™ 2.5, select Window >
Preferences > SQL Development. For information on categories that may not be covered in
this section, see Help > Help Contents > Workbench User Guide or Help > Help Contents >
Debugger, respectively.

60 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

http://www.embarcadero.com/store.html

CONFIGURING DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 > CUSTOMIZING DB OPTIMIZER™ XE AND

SET INDEX CONFIGURATION PREFERENCES

The Data Source Index is a local repository that stores the schema of registered data sources in
DB Optimizer™ XE and DB Optimizer™ 2.5. It is automatically set to index information about
data sources registered in the development environment.

By default, the Data Source Index captures all catalogs, functions, procedures, tables, and views.
Additionally, after the initial index, the index performs incremental captures of information.

However, there is a definitive trade-off when indexing a full database schema. The time it takes
to fully capture a large schema and logical space considerations on local workstations, often
makes it inefficient for DB Optimizer™ XE and DB Optimizer™ 2.5 to perform this task each time
a new data source is registered in DB Optimizer™ XE and DB Optimizer™ 2.5. Thus, the Index
can be configured via the DB Optimizer™ XE and DB Optimizer™ 2.5 Preferences dialog to
accommodate machine processing ability and speed.

By default, when DB Optimizer™ XE and DB Optimizer™ 2.5 connect to a data source, you are
prompted to enable indexing. If the database is big indexing can put a lot of load on the
database.

% Data Source Indexing ﬁl

€ Datasource indexing is currently turned off.
\.“/

The data source index stores information reguired to resolve references to
the tables, table columns, views, functions, procedures, packages and
synonyms for registered data sources, Required to support object
name-based features such as Semantic Validation and Code Complete, the
data source index provides rapid lookup and assists in verification of object

names.

Would you like to start the data source indexing now?

[|pon't show this message again

Index Configuration parameters enable you to indicate how schema caching behaves by
specifying at what level data source objects will be indexed, the specific catalogs, schemas, and
data source objects to index, and other factors that speed up the indexing process at a cost of
slower retrieval for those objects not indexed by the process.

Additionally, over the course of a DB Optimizer™ XE and DB Optimizer™ 2.5 session, index
information is periodically updated by DB Optimizer™ XE and DB Optimizer™ 2.5. The index
refresh process uses the same specified parameters as the initial indexing process and therefore
can cause application slowdown and performance issues if the index behavior has not been
configured in an efficient manner.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 61

CONFIGURING DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 > CUSTOMIZING DB OPTIMIZER™ XE AND

DB Optimizer also provides the ability to index at the individual data source level. In Data Source
Explorer, right-click on a data source and select Properties, then on the Properties dialog,
choose Data Source Indexing to access index options for the specified data source.

& Preferences |:|®
-

| | Data Source Indexing =T
General
Data Sources Enable indexing on connect
Embarcadero Licensing & Prompt () Always () Mever
Help
Install{Update [|Enable indexing
Run/Debug
[=- SQL Development
Data Source Indexing Objects to index:®
SQL Editor . g 3
SQL Execution @ =
SCL Filters ;
Tuning Job Editor [*2. —
Team D
1=
0%
I:l ae
0%
O] o
=
[] &
2 b
Index expiration time (days): Clear Index
[Resture QEfauHs] [Apply]
"
@) [K l [Cancel]

To configure the global index:
1 Select Window > Preferences > SQL Development > Data Source Indexing. Change the
settings as appropriate:

® The tree view displays a list of database objects as they are organized in the Database
Explorer view. Use the check boxes beside each object to specify the data sources that are
to be included in the indexing process.

e Select the Apply SQL Filters tab if you want to apply any pre-defined filters to the index.

e |f you are having performance problems due to a caching issue (such as a configuration
error), the Stop Indexing, Clear Index, and Start Indexing buttons enable you to stop,
clear, and/or restart the index process, respectively.

62 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

CONFIGURING DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 > CUSTOMIZING DB OPTIMIZER™ XE AND

* The Objects to include in index pane contains a list of data source objects. Select or clear
the check boxes beside each data source object to indicate the specific data source objects
that are included and excluded, respectively, from the indexing process.

¢ The Index expiration time (days) setting indicates that an index job will not start
automatically until the specified number of hours have passed. The index can also be started
manually via Start Indexing.

2 When you are finished configuring the Index, click Apply to save your changes.

To configure individual data source indexing:

1 In Data Source Explorer, right-click on the data source you want to specify indexing, and
select Properties. The Properties dialog appears.

2 Choose Data Source Indexing and modify the properties, as required:

¢ Choose Enable Data Source Specific Settings to indicate to DB Optimizer that you want to
specify individual indexing properties for this data source. Data sources that do not have this
option selected will index under global indexing parameters.

e The tree view displays a list of database objects as they are organized in the Database
Explorer view. Use the check boxes beside each object to specify the data sources that are
to be included in the indexing process.

Select Clear Index to delete the Object Index each time the application is started.
Select the Apply SQL Filters tab if you want to apply any pre-defined filters to the index.

If you are having performance problems due to a caching issue (such as a configuration
error), the Stop Indexing, Clear Index, and Start Indexing buttons enable you to stop,
clear, and/or restart the index process, respectively.

The Objects to include in index pane contains a list of data source objects. Select or
clear the check boxes beside each data source object to indicate the specific data source
objects that are included and excluded, respectively, from the indexing process.

The Index Expiration Time (hours) setting indicates that an indexing job will not start
automatically until the specified number of hours have passed. The index can also be
started manually via Start Indexing.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 63

CONFIGURING DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 > CUSTOMIZING DB OPTIMIZER™ XE AND

SET SQL EDITOR PREFERENCES

1
2

Select Window > Preferences > SQL Development > SQL Editor.
Change the settings as appropriate in each section and then click Apply.

e Severity Level for Semantic Validation Problems determines how semantic code errors
are flagged in the editor and the Problems view.

e The link to specify hyperlinks takes you to the Text Editors preference page.

NOTE: Clearing Enable SQL Parser will disable many of the “smart” SQL editor features,
including code formatting, auto completion, semantic validation, and hyperlinks. For
better performance, you may disable the parser for files above a specified size.

SET SQL EXECUTION PREFERENCES

Select Window > Preferences > SQL Development > SQL Editor.

NOTE: If you disable auto-commit for a platform, you must use SQL Editor’s transaction
features to execute code on that platform.

SET CODE ASSIST PREFERENCES

The Code Assist panel is used to specify configuration parameters that determine how code
completion features in SQL Editor behave.

64

Select Window > Preferences > SQL Development > Code Assist.

Enable Auto Activation enables or disables code assist functionality with the Ctrl + Space
command. If this option is selected, the code assist window automatically appears when you
stop typing. Specify the amount of time in milliseconds that the window automatically
appears in the Auto Activation Delay field beneath the option.

Insert Single Proposals Automatically specifies if only a single code completion
suggestion is returned, it is inserted automatically.

Fully Qualified Completions Automatically specifies if code completion results are
returned specific (fully qualified), rather than the minimum required to identify the object.

Code Assist Color Options specifies the color formatting of code completion proposals.
Select background or foreground options from the menu and modify them as appropriate.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

CONFIGURING DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 > CUSTOMIZING DB OPTIMIZER™ XE AND

SET CODE FORMATTER PREFERENCES

The Code Formatter pane provides configuration options for code formatting functionality in
SQL Editor.

Select Window > Preferences > SQL Development > Code Formatter.

The panel provides a drop down list of formatting profiles and a preview window that
displays how each profile formats code.

¢ Click New to define additional code formatting profiles.

e Click Edit to modify existing profiles. You can modify how code characters appear in the
interface and how SQL Editor determines line breaks.

¢ Click Rename to change the name of an existing profile. The new name cannot be the
same as another existing profile.

NOTE: If you create a new profile with a name that already exists in the system, a prompt will
appear asking you to change the name of the new code formatting template.

SET RESULTS VIEW PREFERENCES

The Results Viewer pane provides configuration options that specify how the Results view
displays results.

Select Window > Preferences > SQL Development > Results Viewer.

¢ Grid Refresh Interval indicates the speed in milliseconds that the Results view refreshes.

e Stripe the Rows of the Results Table adds intermittent highlighted bars in the Results
view.

¢ Display Results in Separate Tab in SQL Editor opens the Results view in a separate
window on the Workbench.

SET SYNTAX COLORING PREFERENCES
The Syntax Coloring panel provides configuration options that change the look and feel of code
syntax in SQL Editor.

Select Window > Preferences > SQL Development > Syntax Coloring.

Use the tree view provided in the Element window to select the comment type or code
element you want to modify. Select the options to the right-hand side of the window to
modify it. The Preview window shows a piece of sample code that updates according to the
changes you made.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 65

CONFIGURING DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 > CUSTOMIZING DB OPTIMIZER™ XE AND

SET SQL CODE TEMPLATE PREFERENCES
The SQL Templates panel provides customization options for creating and modifying SQL code

templates.
¢ Select Window > Preferences > SQL Development >SQL Editor > SQL Templates.

The SQL Templates panel displays a list of all SQL code templates currently available.
Additionally, when you select a template from the list, the Preview section displays the code
block as it will appear when the template is selected in SQL Editor.

& Preferences

Templates = -
T g::?l Creabe, edb or ramove bemplabes:
Embarcadero Licensing Mame Conbext Descriphion Ak In, #
* Help BLLOCATE.., DB208, 9 alocates a cursor For th.., an
[InstallUpdate PATER_Té... DBZ(3, %) akers a table an Edt.
& RunjDebug ALTER_TA... DB20(5, %) akers atablespace an Fip—
(= S0L Development ALTER_VIEW DBZ (G, 9) akers a view an
Diata Souce Indesdng ALTER_FL).., DB2(E, 90 akers 4 function an
=1 500 Editor ALTER_ME.., DB20(5, @) akers s method an Restare Rer
Code Assst ALTER FR.., DB2(E, 91 ghers & procedure an
code Foemather ALTER SE.., DBZ(H, 9] skers 5 sequence on wanert b Darauk
Code Qualty [+] caLL DE2 (S, 9 cals s procedure on
Resulks Viswer [#] commiT 0B2 (5, 5) commits the detebase c... an
SCL Templates [¥] DECLARE ... DB20(8,9) defines s temporary La... an
e L Sl [#] DIscomn.., DBZ (5, 9) destrovs one of mere ..., CI— park
Synbax Coloring = P - B
SO Exvscution |
SiL Filters Prendave:
Tuning Job Editcr [
[Team
[C]Use code Formatter
[Rnsburc DcFuul:s] [Apphy]
@ | ||

Click on the check box beside each template to specify if it is included in the code assist check
or not, within SQL Editor. Use the buttons on the right-hand side of the panel to create, edit, or
delete SQL templates, as needed.

66 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

CONFIGURING DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 > CUSTOMIZING DB OPTIMIZER™ XE AND

When you create or edit a template, the Edit SQL Template dialog appears.

*¥ Edit SOL Template

Iarrie: ALTER_TABLESPACE Eclit contmst [+ Automatically insert
Description: .qddu:adatafhmtaﬁem Ovade (3.9, 109, 119)
Pattern: Al TER TABLESPACE

ADD DATAFILE ‘§{FileMama}’

AUTOEATEND ON NEXT ${auto€xtendvaloe) MAXSIZE ${maxSizevalue);

ok][concel]

=)

Enter a Name, Description, and Pattern in the fields provided, and click OK. If the template
name doesn't match an existing SQL code template, your new template is added to the list, and
will automatically be considered when the code assist function is executed in SQL Editor.

Select the Use Code Formatter check box to apply code formatting preferences to the specified
template. See "Set Code Formatter Preferences" on page 65 for more information about setting
code formatter preferences.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 67

CONFIGURING DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 > CUSTOMIZING DB OPTIMIZER™ XE AND

SET FILE ENCODING PREFERENCES
The Workspace panel provides options for unicode support in SQL files.

Select Window > Preferences > General > Workspace.

*F Preferences

type filter text | Workspace e
= General See "Startup and Shistdown' For workspace startup and shubdowan preferences.
[+ Appesrsnce
Compare/Patch))
Content, Types R
& Ediors [Refresh automatically
Ayl [Csave automaticaly before build
B Metwork Connections
Perspactives
Search Workspace save interval (in minutes): | 5
Startup and Shutdown
::b] Open referenced projects when a project is opened
CDMme
B Workspace O tways ONever (&) Prompt
Data Sources - .
[+ Help Text file encoding Wew bt fils ine delimter
- InstallfUpdate () Default (Cpl252) (%) Defauikt
Model Yalidation ‘ :
(& Other: | BYEH v () other:
[Pun/Debug =
[* SOL Development Hf:lﬁﬁc“ £
[S0L isualization UTE-168E
Team UTF-16LE [Reﬂue Deefaults] [Apply]
UTF-3 s
N, I
@ ok [concel |

The default encoding for text files on Windows platforms is Cp1252. You can change unicode
support in from file to file using the Text File Encoding options available on the Workspace
panel.

To change text file encoding in the development environment:

1 Select Window > Preferences > General > Workspace and click the Other option under
Text File Encoding.

2 Use the drop down menu and select an encoding mode from the list provided. Click Apply
to keep your changes.

To change text file encoding on a specific, folder, or project in:

1 Right-click on the file, folder or project that you want to modify and choose Properties.

2 Modify the encoding selection on the Resource properties page that appears.

68 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING DB OPTIMIZER

This section describes how to use the features of DB Optimizer to optimize your database
operations. This section contains an overview of DB Optimizer functionality and also contains
detailed instructions for

* Working with Data Sources on page 11

Working with SQL Projects on page 21
Creating and Editing SQL Files (SQL Editor) on page 25

Troubleshooting on page 50.

WORKING WITH DATA SOURCES

The Data Source Explorer provides a tree view of all registered data sources and associated
database objects. When you first start DB Optimizer, a prompt appears and offers to populate
Data Source Explorer from multiple sources on the system. This includes previously-registered
data sources on other Embarcadero products, and third-party DBMS clients such as TOAD. If DB
Optimizer cannot detect a data source, you can register it manually.

Additionally, you can initiate this feature by clicking the Auto-Discovery button on the Toolbar or
via the File > Import > Embarcadero > Data Sources > Previously Registered Embarcadero
Data Sources (Registry) command from the Main Menu.

E'El Data Source Explor &2 % S0L Project Explore =0
TN

=l 1=F Managed Diata Sources (&) -
=I-l=F Daka Source Group (5
=I-Tl=F Microsaft S0L Server (2]
+-l=F Microsoft S0L Server (1)
+- i TORLABSQLOO_1_#2 (501 Server 8.0,20:
=I-T=F Oracle (5]
+ i Mew data source (Cracle 5.1.7.4)
+- Sl ROMLABORCLEI 1 (Oracle 5,1.7.4)
+- i ROMLABORCLYI_Z (Oracle 2,2.0,1)
= jﬂi sfvpclbil, embarcadero,com (Oracls 10,7
+ [__I;:;I Database Ohjecks
= |l[_l:| Prafiling Repositary
= i romlabsglds_1-sa
g 2010-01-08 00:46:23 (34m)

+-Ha TORLABORCLSI 2 (Oracle 5.1.7.4) v
< >

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 11

USING DB OPTIMIZER > WORKING WITH DATA SOURCES

The Profiling Repository entries in the Data Source Explorer are available only when configured
in the Profile Configuration Dialog for Oracle data sources only. These are saved profiling
sessions that you can share with other DB Optimizer users. For information on configuring the

datasource profiles, see "Building Launch Configurations" on page 38.

The first time you connect to a datasource you will see a dialog prompting you to index the
datasource. |

& Data Source Indexing

o Data source Indexing s currently burmed off,

The data source index stores infarmation required to resabve references to
the kables, table columns, wiews, functions, procedures, packages and
synoryms for registered data sources. Reguired ko support chjeck
name-based Features such as Semantic Yaldzton and Code Complete, the
data source indsy provides rapid lockup and as5ists in verfication of abject
nanes,

Woukd vou like to stark the data source indsxing now?

[] Dar't: show this message agan

Data source indexing is important for the SQL editor for code completion and semantic
validation, however, it is not necessary for profiling and tuning. For more information, see "Set
Index Configuration Preferences” on page 61.

TIP: Ifyou select Don’t show this message again, and later want to be prompted to enable
indexing on connect you can change the setting on the Preferences page, Window >
Preferences > SQL Development > Data Source Indexing.

REGISTER DATA SOURCES

When DB Optimizer is started, it prompts you to discover data source catalogs that have been
created by any previously installed Embarcadero products (DBArtisan, Rapid SQL, DB
Optimizer), or other instances of DB Optimizer.

Additionally, the system scans your machine for the client software of all supported third-party
DBMS platforms (TOAD, Eclipse Data Tools Platform, etc.). These data sources are automatically
added to the data source catalog.

ﬁ';l Embarcadero DB Optimizer Notifications 4

& Welcome to Embarcadero DB Optimizer =

Embarcadero DB Optimizer can discover data sources residing on ywour
syskem or available on wour network, You can search For data sources
right niow,

12 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING DB OPTIMIZER > WORKING WITH DATA SOURCES

To manually initiate the scan later, click the Discover Data Sources icon at the top of Data Source
Explorer. The Discover Data Sources dialog appears.

(N) - .
T Discover Data Sources

Discover Data Sources
Select the locations to search for daka sources.

Previously registered Embarcadero data sources (Registry)
File system and network
Eclipse Data Tools Flatfarm (DTR)
O File system: |] (e
[quest Software (TOAD)

(7 Blac) Mext > ’ Cancel

1 Choose the type of data sources you want to scan for and click Next. The wizard

automatically returns all data sources it finds on your machine based on the criteria you
specified

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 13

USING DB OPTIMIZER > WORKING WITH DATA SOURCES

T
*F Discover Data Sources

Discovered Data Sources
Select From the data sources discovered in the specified locations.,

I L
= M
E [#]= 18M DE2 For LW
- [V]= Orade
= [¥]= Microsoft SQL Server
[#]54 Datotbzo
] ROMLABSGLOO_1
[#] 8 ROMLABSQLOS 1
[#] 5% TORLAESQLOS 1
& [l Generic J0BC
[File system and netvaork
#-[J= b1P

[Selectatl | [peselectat |

<gack || met> || Ensh || cancel

2 Choose the data sources you want to add to the DB Optimizer environment and click Finish.

14

Data Source Explorer automatically populates with the new data source selections.

TIP: To add data sources manually, right-click Managed Data Sources in the Data Source
Explorer tree, select New > Data Source, and enter the connectivity parameters as
prompted.

For additional information on data source connection parameters, see "DBMS Connection
Parameters by Platform" on page 128.

Once registered, the data source appears in the Data Source Explorer view. If you have
created more than one workspace, they all share the same data source catalog.

Once a data source has been registered, the connection parameters are stored locally. In
some cases, a user ID and password are required to connect to a registered data source. DB
Optimizer™ XE and DB Optimizer™ 2.5 can encrypt and save user IDs and passwords to
connect automatically.

NOTE: In some cases, older versions of DB Optimizer and DB Artisan/Rapid SQL are not
compatible with this version of DB Optimizer, and the methods listed above will not
import these older data source catalogs. If you are experiencing difficulties, you can
import the old data sources via the Windows registry by selecting File > Import... >
Embarcadero > Data Sources > Previously Registered Embarcadero Data Sources
(Windows Registry).

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING DB OPTIMIZER > WORKING WITH DATA SOURCES

BROWSE A DATA SOURCE

You can drill down in the Data Source Explorer tree to view registered databases on a server, and
view tables, and other objects in a database. Additionally, you can view the structure of
individual objects such as the columns and indexes of a table. Right-click the object for a menu
of available commands, such as Extract to Project, which creates a new SQL file containing the
object’s DDL.

In most cases, whenever you browse a data source, DB Optimizer requires login information in
order to connect with the data source. Enter a valid user name and password in the fields
provided. The Auto Connect option retains your login credentials for future connections to the
same data source.

You can turn off the Auto Connect feature by right-clicking on a specified data source and
toggling the Connect on Expand option. By default, when Connect on Expand is active, DB
Optimizer automatically attempts to connect to the server each time you browse a data source.

VIEwW DATABASE OBJECT PROPERTIES

All objects in Data Source Explorer contain properties as they relate to the DB Optimizer
application.

95 Data Source Expl 52 . £ SQL ProjectExpl | — O
% MEEE

=l l=F Managed Data Sources

#I-l=F DB2 Servers

+-l=F M3 S0L Servers

+ i datoearl1 (SQL Server)

+ i| datoedwinal (5QL Server 7.0,1094.0)

= ﬁg datotb19 (SQL Server 8.0.813.0)

=y Databases (41)
=] Applabs
+ "I" Check Constraints

H Defaults
4 Foreign Keys
fx Functions
Indexes
1:;53 Primary Keys
_;'ﬁ Procedures
“4 Roles
O Rules
Tables
@ Triggers
US Unigue Keys
"ﬁ User Datatypes
ﬁ sers
&3 Views

AR o T R R

|-+

T o o s B B

+

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 15

USING DB OPTIMIZER > WORKING WITH DATA SOURCES

DB Optimizer Object Properties are viewed via the Properties dialog. The dialog is accessed by
right-clicking the object in Data Source Explorer.

¥ properties for romlabartoreli (Oracle) [= rn”r .

o fiter te | Data Source Configuration

- Configuration
Data Source Indexing
S0 Filters

.Cuﬁi‘ié.lraﬁ:m.] Advanced

Diata source name: | ramlabartondai

Oracle
(iUge a TNS name alas

e --

(%) Use a direct connection

Host/Instance: romlzbartordai |

Port: [1521 |

Type: (%) Sarvice name CsIn

Service/SID name: | ORASID |

Security cradentals

User name: | |
Pasmwond: | |
Connect as: |nurn'-al s

[[] Auto-conmect (Saves and encrypts passward)

[] Alaw trusted connections

[Test Connection | [apply |

@ [ok || concel |

To view Data Source Explorer object properties:

The Info properties node is accessed by right-clicking a data source in Data Source Explorer.

The dialog displays properties with regards to Configuration, Data Source Indexing, and SQL
Filters.

As well, each node representing the actual data source connection (the uppermost parent in a
list of data source objects), contains additional properties in addition to the Info node and its
respective properties. With the exception of the Configuration node, these values can be
modified in the Properties dialog.

The Configuration node is composed of:
e Data Source Name

¢ Data Source Type

16 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING DB OPTIMIZER > WORKING WITH DATA SOURCES

¢ and three subnodes: Connection Information, Data Source Information, and Security

Parameters.

These nodes are identical to the parameters used to initially define the data source during the
data source registration process. For more information on these values and how to modify them,
see "Register Data Sources" on page 12.

The SQL Filter node enables a developer to place filters on data source objects that appear in
the Database Explorer. For more information, see Filter Database Objects on page 18.

SEARCH FOR DATABASE OBJECTS

Database object searches rely on the Object Index when returning results. By default, caching is
set to configure only parts of a database. To configure the Index to expand object searches, see
Set Index Configuration Preferences on page 61.

1

Select Search > Database. By default, the search scope is all currently connected
databases. Under Specify the scope for the search, clear any databases or server check
boxes you do not want to search.

Specify the search criteria:

Type the value to search for in the Search String field. Use the * character to indicate
wildcard string values and the ? character to indicate wildcard character values.

Select Case Sensitive to indicate to the search function that you want case sensitivity to be a
factor when searching for appropriate string matches.

Select Search Indexed Data to indicate that the search function should read the Index. This
increases the performance of the search function and will typically result in faster returns on
any hits the search might make.

Select Apply SQL Filters to apply any relevant database or vendor filters to the search.

Choose Declarations, References, or All Occurrences to specify what the search is
restricted to in terms of database objects.

¢ A Declaration is an instance where an object is declared. For example, an object is
declared in a CREATE table.

¢ A Reference is an instance where an object is used or referred to. For example, an object
is referred to in a procedure or as a foreign key in a table.

e Choose All Occurrences to return both declarations and references in the search results.

Use the check boxes beside the database object panel to select and deselect the specific
database objects that you want to be included in the search process.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 17

USING DB OPTIMIZER > WORKING WITH DATA SOURCES

3 Click Search.

The results of your search are generated in the Search view. When you open a matched file,
references to the keyword are flagged with yellow arrow icons that appear in the left-hand
column of the editor.

= DELETE FROM Shape Edge Display Ver
= WHERE Shape Edge Display ID IN
- (SELECT do.Object_Table Row ID

FROM Diagram Object do,
Meta Table mc

WHERE mt.Name = 'Shape Edge Display' and
do.Mera Table ID = mt.Meta Table ID and
do.Diagram ID = @DelDiagramID)

Ty

DELETE FROM Shape Edge Di=play
WHERE Object GUID IN
(SELECT do.Object GUID
FROM Diagram Object do,
Heta Table mt
WHERE mt.Name = 'Shape Edge Display' and
do.Heta Table ID = mt.Meta Table_ ID and
do.Diagram ID = @DelDiagramID)

You can navigate between keywords within all returned files using the yellow “up” and
“down" arrows that appear at the top of the Search view.

FILTER DATABASE OBJECTS

Filters can be placed on data sources and corresponding data source objects to restrict their
display in Data Source Explorer. This feature is useful if you have data sources that contain large
numbers of database objects. You can apply filters to view only the schema objects you need for
the development process.

There are two types of data source filters available:

* Global filters that affect all registered data sources in the DB Optimizer™ XE and DB
Optimizer™ 2.5 development environment.

e Data Source specific filters affect only the specified data source for which they are defined.

¢ On Sybase and SQL Server platforms, you can apply database filters, which enables you to
set different filters on different databases within the same source.

In both cases, data source object filters are defined via the Object Filter Manager, through the
development of filter templates. Once defined, filter templates can be activated and
deactivated as you need them.

Several filter templates can be combined at a global level or applied to a specific data source.

18 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING DB OPTIMIZER > WORKING WITH DATA SOURCES

See also:
Define Global Database Object Filters on page 19

Define Data Source-Specific Object Filters on page 19

DEFINE DATA SOURCE-SPECIFIC OBJECT FILTERS
Data source-specific object filters affect only the specified data source.

To define data source-specific filters:

1

In Data Source Explorer, right-click the data source and select Properties.
The Properties dialog appears.

Select the SQL Filters node and select Enable data source specific settings. The other
controls on the dialog become enabled.

Click New. The Filter Template dialog appears.
Specify the parameters of the filter.

In the Name field, enter the name of the filter as you want it to appear in the selection
window on the SQL Filter node.

The Database Type pane provides a list of data source objects. Deselect the data source
objects that this template filters so that they do not appear in Database Explorer when
displaying data source objects for the data source.

Click New to add filter parameters for data source object properties. The New SQL Filter
Predicate dialog appears.

Use the Property and Operator fields to supply the filter criteria. Property specifies whether
the value is a Name or Schema, and Operator specifies the matching type of the filter
syntax. (Equals, Not Equals, Like, Not Like, In, Not In)

In the Value field, enter the full or partial syntax of the property or properties you want to
filter in Data Source Explorer.

Click OK. The filter property specification is added to the Filter Template.

When you have finished defining the filter template, click OK. The template name is added
to the Properties dialog. It can be enabled and disabled by selecting or deselecting the
check box beside its name, respectively.

DEFINE GLOBAL DATABASE OBJECT FILTERS

Global filters affect all registered data sources in the DB Optimizer™ XE and DB Optimizer™ 2.5
development environment. When you create and apply a global filter to a platform vendor in DB
Optimizer™ XE and DB Optimizer™ 2.5, all databases associated with that vendor are affected
by the filter, as defined.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 19

USING DB OPTIMIZER > WORKING WITH DATA SOURCES

Individual global filter templates are separated, by supported data source platform, on tabs in
the SQL Filter window. Select the appropriate tab to view existing filter templates or add new
ones, as needed.

To define a global filter:

1
2

Select Window > Preferences from the Main Menu. The Preferences dialog appears.

Expand the SQL Development node and select the SQL Filter subnode. The SQL Filter
pane appears.

Click New. The Filter Template dialog appears.
Specify the parameters of the filter template:

In the Name field, enter the name of the filter as you want it to appear in the selection
window on the SQL Filter node.

The Database Type pane provides a list of data source objects. Deselect the data source
objects that this template filters so that they do not appear in Database Explorer when
displaying data source objects for the data source.

Click New to add filter parameters for data source objects properties. The New SQL Filter
Predicate dialog appears.

Use the Property and Operator fields to supply the filter criteria. Property specifies whether
the value is a Name or Schema, and Operator specifies the matching type of the filter
syntax. (Equals, Not Equals, Like, Not Like, In, Not In)

In the Value field, enter the full or partial syntax of the property or properties you want the
template to filter in data source Explorer.

Click OK. The filter property specification is added to the Filter Template.

When you have finished defining the filter template, click OK. The template name is added
to the Properties dialog. It can be enabled and disabled by selecting or de-selecting the
check box beside its name, respectively.

TIP: Data Source object filters are added and removed from the development environment
by selecting and de-selecting the checkboxes associated with each filter template on
both the global and data source-specific dialogs.

DROP A DATABASE OBJECT

To delete an object permanently from a database, right-click the object in Data Source Explorer
and choose Drop from the menu. The Drop Wizard prompts you to confirm removal of the
object and provides a DDL preview of the deletion code.

20

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING DB OPTIMIZER > WORKING WITH SQL PROJECTS

WORKING WITH SQL PROJECTS

You create projects to organize and store SQL development files. The purpose of projects is to
keep your work-in-progress files organized, as well as maintain a common directory structure
when developing code and executing files on registered data sources. Once a file has been
developed and is ready for deployment, that file can then be executed on a registered data
source.

SQL Project Explorer is used to view and access files. It uses a tree view to display the project as
a series of folder directories with a folder labeled with the project name as the parent directory,
and with project categories, and associated project files as its children.

53 pata source Explor | 25 50 Project Explore 21 . — O
= !ﬁﬂ:l Jacquis
1 4 Connections
& | Creation Scripts
=T General SOL
= % Insert
#3 schamahlame. tableflame
£k Untithed 50050
* -’_‘;L SO Project

[# Untitled Tuning Job22.bun
[vritled Tuning Jokw.tun

All files in an SQL Project project are organized under the following categories:

e Connections: List the connections of any given SQL file of a data source associated with the
project.

e Creation Scripts: Provide DDL statements and statements that define database objects.

* General SQL: Provide a category for all other SQL files that are not used in database object
creation. This includes DML files, and so on.

® Large Scripts: Contain all files larger than the currently set SQL Editor preference. The file
size limit can be modified on the Preferences panel by selecting Window > Preferences in
the Main Menu.

Physically, the projects and files you create as you work in DB Optimizer™ XE and DB
Optimizer™ 2.5 are stored under the Workspace directory you specified at the prompt when DB
Optimizer™ XE and DB Optimizer™ 2.5 was started. The directory and files can be shared, and
other tools may be used to work on the files, outside the DB Optimizer™ XE and DB
Optimizer™ 2.5 development environment.

You can move existing files within a project by clicking and dragging the file you want to move in
the Project Explorer from one node to another, or via the File > Move command.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 21

USING DB OPTIMIZER > WORKING WITH SQL PROJECTS

CREATE A NEW SQL PROJECT

1 Select File > New > SQL Project from the DB Optimizer™ XE and DB Optimizer™ 2.5
Main Menu. The New Project Wizard appears.

2 Enter the appropriate information in the fields provided:
* Name: Enter the name of the project as you want it to display in the Project Explorer view.

e DBMS Platform: Select the data source platform to which the new project will be
associated. This enables DB Optimizer™ XE and DB Optimizer™ 2.5 to properly parse SQL
development code for project files.

¢ Location: When selected, the Use Default Location check box indicates the project is to be
created under the currently selected Workspace. Deselect the check box and specify a new
folder path if you do not want to create the project in the currently selected Workspace.

3 Click Finish. The new project icon appears in the Project Explorer view under the name that
you specified. If you did not select Use Default Location, the project will appear in the
appropriate Workspace when you open it in DB Optimizer™ XE and DB Optimizer™ 2.5.

NOTE: Alternatively, you can select New > SQL Project from the Main Menu or click the New
Project icon in the Tool Bar to create a new project.

OPEN AN EXISTING PROJECT

You can open projects by navigating to SQL Project Explorer and expanding the node of the
project that contains the files you want to access.

Below each project name are a series of nodes that categorize any existing SQL files by
development type:

e Connections: Lists the connections of any given SQL file of a data source associated with
the project.

¢ Creation Scripts: General data source object development scripts. This node contains DDL
statements and statements that define database objects.

e General SQL: Provides a category for all other SQL files that are not used in database object
creation. DML files, etc.

e Large Scripts: Contains all files larger than the currently set SQL Editor preference. The file
size limit can be modified on the Preferences panel. (Choose Window > Preferences in the
Main Menu to access the panel.)

NOTE: Physically, the projects and files you create as you work in DB Optimizer™ XE and DB
Optimizer™ 2.5 are stored under the project directory that you specified at the prompt
when the project was created. The directory and files can be shared, and other tools
may be used to work on the files, completely exempt from the DB Optimizer™ XE and
DB Optimizer™ 2.5 development environment.

22 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING DB OPTIMIZER > WORKING WITH SQL PROJECTS

SEARCH A PROJECT

1

Select Search > File.

2 Specify the search criteria:

® Type the value to search in the Containing Text field. Use the * character to indicate

wildcard string values, the ? character to indicate wildcard character values, and the \
character to indicate an escape character for literals (* ? /).

Select Case Sensitive and indicate to the search function that it should take into account
case when searching for appropriate string matches.

Select Regular Expression to indicate to the search function that the string is a regular
function.

In the File Name Pattern field, specify the extension name of the files to search for explicitly.
If the value in this field is a * character, the search function searches all files regardless of
extension. Manually type in the extensions to indicate file type (separate multiple file types
with commas), or click Choose and use the Select Types dialog to select the file extensions
the process will search for the string by.

Select Consider Derived Resources to include derived resources in the search.

Select Workspace or Working Set to choose the scope of the search. If you choose
Working Set, specify the name of the defined working set manually, or click Choose and
navigate to the working set you want to search for in the provided string.

3 Click Search. The results of your search are generated in the Search view on the Workbench.

ADD FILES TO A PROJECT

Existing files that reside in directories outside of the workspace can be added to a project via the
following methods:

¢ Dragging and dropping the file set from a system directory to SQL Project Explorer.
e Copying and pasting the file set from a system directory to SQL Project Explorer.

e Executing the Import command.

To drag/drop or copy/paste files from a system directory to SQL Project Explorer:

1

With the SQL Project Explorer view open, navigate to the directory where the files you want
to add to the project are located on the system.

Drag and drop the files you need from Windows Explorer into SQL Project Explorer. The files
appear in the tree view under the appropriate categories.

NOTE: Alternatively, you can use the Copy command on the files you want to add in Windows
Explorer, and then right-click the Project Explorer and select Paste from the menu. The
files appear in the tree view under the appropriate categories.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 23

USING DB OPTIMIZER > WORKING WITH SQL PROJECTS

To use the Import command:

1

Right-click anywhere on the Project Explorer and select Import. The Import dialog appears.

2 Expand the General node and double-click File System. A dialog containing the import

specification parameters appears.

In the From directory field, manually type the directory location of the files you want to
import to Project Explorer, or click Browse and navigate to the appropriate folder. The
panels below the field populate with the folder selection and a list of suitable files contained
in that folder. Use the check boxes beside each folder and file to specify what folders/files
you want the import function to add in Project Explorer.

In the Into folder field, manually type the name of the folder within Project Explorer where
you want to import the files specified in the panels above, or click Browse and navigate to
the appropriate folder.

Select the Overwrite existing resources without warning check box if you do not want to
be prompted when the import process overwrites Project Explorer files that contain the
same name as the imported files.

Choose Create complete folder structure or Create selected folders only, depending on
whether you want the import process to build the folder structure of the imported directory
automatically, or only create those folders you selected in the panels above, respectively.

Click Finish. The import process moves all selected folders and files into Project Explorer
and thus into the DB Optimizer™ XE and DB Optimizer™ 2.5 development environment.

NOTE: In addition to accessing the Import command via the shortcut menu, you can also
access the Import dialog by choosing File > Import... from the Main Menu.

DELETE A PROJECT

You can delete a project by right-clicking its folder in the SQL Project Explorer and selecting
Delete.

When you delete a project, DB Optimizer™ XE and DB Optimizer™ 2.5 will prompt you with a
Confirm Project Delete dialog that asks you to confirm the deletion of the project, and offers you
the option of deleting the project from the DB Optimizer™ XE and DB Optimizer™ 2.5
interface, or deleting the project from the system.

24

e If you select Do not delete contents, the files and directory structure will be removed from

SQL Project Explorer, but they will still exist on your machine.

e If you select Also delete contents ..., the files and directory structure will be removed from

SQL Project Explorer and deleted from your machine.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

CREATING AND EDITING SQL FILES (SQL EDITOR)

The SQL Editor is a Workbench interface component that enables the development, viewing,
and formatting of SQL code.

@Bensnn.sql &3 |:| sglLog.log

CREATE TABLE dbo.ben=on

|
ok char(8) NOT NULL,
=al numeric(38,0) NOT NULL,
loc numeric(38,0) NOT MULL,
CONSTELINT pjob
PRIMARY EEY CLUSTERED (job)

)

qo
IF COBJECT ID('dbo.benson') IS NOT MNULL
PRINT '<<«< CREATED TABLE dbo.benson >>>'
ELSE
PRoNT '<<« FAILED CEEATING TABLE dbo.benson >>>'
oo

The Editor supports the following the functionality
¢ Code assist:

e Code complete: Type Ahead and Name completion. For more information, see
"Understanding Code Assist" on page 31.

e Code templates: Templates for creation of tables, procedures, etc. For more information,
see "Understanding SOL Templates" on page 43.

e Hyper links. For more information, see "Understanding Hyperlinks" on page 34.

e Semantic validation. For more information, see "Sematic Validation" on page 26.

¢ Object hovering: Hover over an error found and an explanation of the cause of the error
appears.

e Code formatter. For more information, see "Understanding Code Formatting" on page 34.

e Code correction and transformations, For more information, see "Examples of
Transformations and SQL Query Rewrites" on page 110.

* Object indexing: For more information, see "Set Index Configuration Preferences" on
page 61.

e SQL Project Explorer. For more information, see "Working with SQL Projects" on page 21.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 25

> CREATING AND EDITING SQL FILES (SQL EDITOR)

SQL Editor contains context-sensitive command menus that are tailored with pertinent
functionality for the specified file format.

If SQL Editor does not recognize a selected file format, DB Optimizer™ XE and DB Optimizer™
2.5 automatically launches the file externally in the system default application. External editors
are not embedded in the Workbench. For example, on most machines, the default editor for
HTML files is the system Web browser. SQL Editor does not, by default, recognize HTML files,
and opening an HTML file from the Workbench launches the file in an instance of the Web
browser instead of the Editor.

Any number of instances of SQL Editor can be open on the Workbench at the same time.
Multiple instances of SQL Editor displaying different content may be open in the same
Workbench. These instances will be stacked by default, but can also be tiled side-by-side so the
content of various files can be viewed simultaneously for comparison or multi-tasking purposes.
When an instance of SQL Editor is active, the Workbench Main Menu automatically contains
commands applicable to the file format. If a view is active, SQL Editor commands are disabled
automatically, except when commands are still valid between the selected view and the file
displayed in the interface.

Sematic Validation

When working with code in SQL Editor, the window contains a number of features that provide
an increase in the efficiency and accuracy of code development. The following syntax
highlighting changes are automatically applied to code as a user adds lines in the interface.

Code Formatting
Comments Green font, italics
SQL Commands Dark blue font
Coding Errors Red underline
Strings Red font
Non-Executable Command Line Aqua font
Commands

Single line and multiple line comments appear in different colors.

Furthermore, SQL Editor provides two column bars, one on either side of the code window. The
purple change bar in the left-hand column indicates that the line of code has been modified.
Hover over the change bar to display the original code text. The red square in the right-hand
column indicates that there are errors in the code window. Hover the mouse over the square to
view the error count. Click the red bar in this column to navigate directly to the line in which the
SQL Editor detects the error. SQL Editor automatically highlights the appropriate code. Non-
executable command line commands are displayed in a different formatting style than SQL
commands. Syntactic and semantic errors are also highlighted.

SQL Editor also features dynamic error detection, object lookup and suggestion features, code
folding, and auto-formatting. SQL Editor is able to identify different areas in a statement, and
enables users to retrieve subclauses, resolve table aliases, and dynamically return lists of tables,
views, and columns, as needed.

26 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

> CREATING AND EDITING SQL FILES (SQL EDITOR)

See also:
Working in SOL Editor on page 27

CREATE AN SQL FILE
1 Create or open a SQL project.

2 Select File > New > SQL File. A blank instance of SQL Editor appears.

NOTE: If you are not in a SQL project when you create a new SQL file, it will not open in SQL
Editor.

OPEN AN EXISTING SQL FILE
1 Open the SQL project containing the file, or that you want to contain the file.

2 If necessary, add the file to the project. (see "Add Files to a Project" on page 23)
3 Inthe SQL Project Explorer, double-click the file to open it in SQL Editor.

WORKING IN SQL EDITOR

SQL Editor handles SQL code formats and contains context-sensitive command menus, tailored
with pertinent functionality for development purposes. Other files may be opened in DB
Optimizer™ XE and DB Optimizer™ 2.5, as well, but these are handled by other editors.

For example, if a text file is opened in the Workbench, DB Optimizer™ XE and DB Optimizer™
2.5 detects and opens the contents of that file in a text editor viewer with pertinent commands
for that file type.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 27

> CREATING AND EDITING SQL FILES (SQL EDITOR)

Any number of instances of SQL Editor can be active on the Workbench at the same time.
Multiple instances of SQL Editor displaying different content may be active on the same
Workbench. These instances will be stacked, by default, but can also be tiled side-by-side, so
the content of various files can be view simultaneously for comparison or multi-tasking purposes.
When an instance of SQL Editor is active, the Main Menu contains commands applicable to the
file format. If a view is active, SQL Editor commands are disabled automatically, except when
commands are still valid between the selected view and the file displayed in the interface.

s, *Benson.sql 3

FREATE TRBLE dbo.benson

[
job char (B} NHOT NULL,
s2al numeric(38,0) NOT WULL,
loc nmumeric(38,0) HOT NULL,
CONSTRAINT pjob
PRIMARY KEY CLUSTERED (job)
)
go
IF CBJECT ID('dbo.benson'") IS NOT NULL
PRINT '<<<« CREATED TAELE dbo.benson »>>>'
ELSE
PRINT '"<<<« FAILED CREATING TAELE dbo.benson >>>'
go

Among the commands SQL Editor supports via the right-click menu:

* Revert File: Automatically restores the working file to the original text as it appeared the last
time the Save command was issued.

¢ Shift Right/Shift Left: Indents the line of code in the working file to the right or left,
respectively.

* Toggle Comments: Hides or displays comments in the code of the working file, depending
on the current hide/show state.

28 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

> CREATING AND EDITING SQL FILES (SQL EDITOR)

¢ Add Block Comment/Remove Block Comment: A block comment is used to insert a
comment into SQL code that spans multiple lines and begins with a forward slash and
asterisk. While block comments are typically used to insert a command that spans multiple
lines, some developers find them more useful than line comments, especially if a
development team is using different text editors on an individual basis. Moving code from
one text editor to another often breaks line comments in the middle of a line and causes
errors. Block comments can be broken without causing errors.

NOTE: In addition to editing commands, some commands such as extract, drop, and execute
can be accessed by right-clicking over statements in SQL code that are performed on
specific tables, views, and columns. These commands will appear automatically in the
appropriate menu when the code is highlighted. Full information on using these
commands is found elsewhere in this documentation, based on the task each
executable performs.

e Explain Plan: An explain plan details the steps that occur in SELECT, UPDATE, INSERT, and
DELETE statements and is primarily used to determine the execution path followed by the
database in its SQL execution.

See also:

e Understanding Automatic Error Detection on page 29

Understanding Code Assist on page 31

Understanding Hyperlinks on page 34

Understanding Code Formatting on page 34

Understanding Code Folding on page 39

Understanding Code Quality Checks on page 39

Understanding SOL Templates on page 43

UNDERSTANDING AUTOMATIC ERROR DETECTION

SQL Editor orders and classifies SQL statements. This enables it to edit code as you work within
SQL Editor and highlight errors and typographical errors in “real time”. As you work, SQL Editor
examines each clause in a statement and provides error reporting and other features as
required.

SQL Editor identifies the following clauses and elements:
e SELECT: Specifies the field, constants, and expressions to display in the query results.
* FROM: Specifies one or more tables containing the data that the query retrieves from.

e WHERE: Specifies join and filter conditions that determine the rows that query returns. Join
operations in a WHERE clause function in the same manner as JOIN operations in a FROM
clause.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 29

> CREATING AND EDITING SQL FILES (SQL EDITOR)

* GROUP BY: Specifies one or more columns used to group rows returned by the query.
Columns referenced in the SQL SELECT statement list, except for aggregate expressions,

must be included in the GROUP BY clause. You cannot group by Memo, General or Blob
fields.

¢ HAVING: Specifies conditions that determine the groups included in the query. If the SQL
statement does not contain aggregate functions, you can use the SQL SELECT statement
containing a HAVING clause without the GROUP BY clause.

e ORDER BY: Specifies one or more items used to sort the final query result set and the order
for sorting the results.

As you develop code in SQL Editor, it automatically detects semantic errors on a line-by-line
basis. Whenever an error is detected, the line is flagged by an icon located in the left-hand
column of the editor.

E“} benson E@ *ADDRESS_ROLE |i“} *Benson.sgl 3

“'CEREATE TABLE dbo.benson
!
job CHAR (8) NOT NULL,
szal NUMERIC (38, 0) NOT NULL,
loc NUMERIC (38, 0) NOT NULL,
CONSTRAINT pijobk PRIMARY EEY CLUSTERED (job)

go
IF CBJECT ID('dbo.benson' IS5 NOT NULL
PRINT '<<« CREATED TAELE dbo.benson >>>!
ELSE
(%] PRoNT '<<« FAILED CREATING TABLE dbo.benson »>>>!

go
S SELECT *
@ FROM tbo.benson:

30 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

> CREATING AND EDITING SQL FILES (SQL EDITOR)

Additionally, all semantic errors detected in SQL Editor are displayed in the Problems view.

[2! Problems 53

3 errors, 0 warnings, 0 infos

Description Resource Fath Location
= & Errors (3 items)
3 An unexpected token ™< << FAILED CR Benson.sgl SQL Project 1 line 14
3 An unexpected token ™ was found. Exp File.sgl SQL Project 1 line &
3 Table benson cannot be resolved on 'da Benson.sgl SQL Project 1 line 19

Right-click the an error and select Go To in order to find the error. DB Optimizer™ XE and DB
Optimizer™ 2.5 opens and navigates to the specific line of code containing the specified error.

UNDERSTANDING CODE ASSIST

When SQL Editor has finished analyzing a partial piece of code, it displays a list of data source
objects for you to select from.

SQL Editor takes the following into consideration when analyzing code for a list of possible data
source objects for insertion:

* Text to be inserted

¢ Original text to be replaced

¢ Content assist request location in original text

¢ The database object represented by the insertion text

Generally, insertion suggestions use the following format:

<insertion_text > - <qualification_ information >

Code assist is available for SELECT, UPDATE, INSERT, and DELETE statements, as well as stored
procedures, and functions (built-in and user defined.)

Additionally, code suggestions can be made for DML statements nestled within DDL statements.
This functions in the same manner as code assist for statements that are not nestled, and applies
to CREATE PROCEDURE, FUNCTION, TRIGGER, TABLE, and VIEW statements.

When the code assist window is open, you can filter out singular object suggestions by pressing
(Ctrl + Spacebar). This removes all objects from the assist window while retaining procedures
and functions. To display objects again, press (Ctrl + Spacebar) again.

The following table displays a list of all possible object suggestions, and the format in which SQL
Editor inserts the suggestions into a statement:

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 31

> CREATING AND EDITING SQL FILES (SQL EDITOR)

Object and Stored Procedure Suggestions

Object Suggestion Syntax/Example

Table (TABLE) [catalog].[schema]
EMPLOYEE - (TABLE)HR

Alias Table (TABLE ALIAS)

[catalog].[schema]tableName
EMPLOYEE-(TABLE ALIAS)HRJOBS

Column datatype - (Column)
[catalog].[schema].tableName

JOB_TITLE: varchar(20)-
(Column)HRJOBS

Alias Column datatype - (COLUMN ALIAS)
[catalog].[schema].tableName.
columnName

JOB_TITLE:int-(COLUMN
ALIAS)HR.JOBS.JOB_ID

Schema (SCHEMA)) [catalog]
dbo-(SCHEMA)NorthWind

Catalog (CATALOG)

Call Call HR.ADD_JOB_HISTORY

Function Suggestions

Function Suggestion Syntax/Example

Built-in SELECT A FROM HR.DEPARTMENTS
WHERE HR.DEPARTMENTS AVG

User-Defined SELECT + FROM HR.CLIENTS WHERE
HR.F_PERSONAL

NOTE: Function suggestions are only available for Oracle and DB2 platforms.

SQL Editor detects incomplete or erroneous code, processes the code fragments, and then
attempts to apply the appropriate logic to populate the code.

As code is typed into SQL Editor, the application ‘reads’ the language and returns suggestions
based on full or partial syntax input.

Depending on the exact nature of the code, the automatic object suggestion feature behaves
differently; this enables SQL Editor to provide reasonable and ‘intelligent’ suggestions on
coding.

Additionally, semantic validations can be made for DML statements nestled within DDL
statements. This functions in the same manner as validation for top-level statements, and
applies to CREATE PROCEDURE, FUNCTION, TRIGGER, TABLE, and VIEW statements.

32 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

> CREATING AND EDITING SQL FILES (SQL EDITOR)

The following chart displays the possible statement fragments that SQL Editor will attempt to

suggest/populate with objects:

Statement Fragment Elements

Object Suggestion Behavior

SELECT

A list of tables, when selected
automatically, prompts the user to
select a column.

UPDATE and DELETE

A list of tables appears in the FROM
and/or WHERE clause.

INSERT

A list of tables and views appears in the
INSERT INTO and OPEN BRACKET
clause prior to values.

A list of columns based on the table or
view name appears in the OPEN
BRACKET or VALUES clause.

In addition to DML statements, SQL Editor also suggests objects based on specific fragmented

syntax per line of code:

Statement Syntax

Object Suggestion Behavior

A partial DML statement (for example
SEL ... indicates a fragment of the
SELECT clause)

The keyword is completed
automatically, assuming SQL Editor
can match it. Otherwise, a list of
suggested keywords is displayed.

If the preceding character is a period,
and the word prior is a table or view, a
list of columns appears.

If the word being typed is a part of a
table name (denoted by a schema in
front of it) the table name is
autocompleted.

If the word being typed has a part of a
column name (denoted by a table in
front of it) the column name is
autocompleted.

Without typing anything.

A list of keywords appears.

A period is typed.

If the word prior to the period is a
name of a table or view, a list of
columns is displayed.

If the word prior to the period is a
schema name, a list of table names is
displayed.

If the word prior to the period is either
a table name or a schema name, then
both a list of columns and a list of table
names is displayed.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

33

> CREATING AND EDITING SQL FILES (SQL EDITOR)

To activate code suggestions:

By default, code suggestions are automatically offered if you stop typing in SQL Editor for one
second. You can turn off the automated suggestion feature on the Code Assist preferences

page.

If automated code suggestion is disabled, you can still access the suggestion window using the
following method:

1 Click the line that you want SQL Editor to suggest an object for.

2 Press (CTRL + Spacebar) on your keyboard. SQL Editor ‘reads’ the line and presents a list of
tables, views or columns as appropriate based on statement elements.

NOTE: On a per platform basis, auto-suggestion behavior may vary. (For example, the WITH
statement on DB2 platforms.)

To modify object suggestion parameters, including setting it from automatic to manual, see "Set
Code Assist Preferences" on page 64.

You can speed up the performance of the code assist functionality by enabling datasource
indexing either when you connect to the datasource, see "Working with Data Sources" on

page 11 or on the Preferences page, see "Set Index Configuration Preferences" on page 61.

UNDERSTANDING HYPERLINKS

SQL Editor supports hyperlinks that are activated when a user hovers their mouse over a word
and presses the CTRL key. If a hyperlink can be created, it becomes underlined and changes
color. When the hyperlink is selected, the creation script for the hyperlink object is opened in a
new editor.

Hyperlinks can be used to link to tables, columns, packages, and other reference objects in
development code. Additionally, hovering over a hyperlink on a procedure or function of a call
statement will open it. You can also use the hyperlink feature on function calls in DML
statements.

Clicking a hyperlink performs an action. The text editor provides a default hyperlink capability. It
allows a user to click on a URL (for example, www.embarcadero.com) and database object links.

Hyperlink options (look and feel) can be modified via the Hyperlinking subnode in the Editors >
Text Editors node of the Preferences panel.

NOTE: Hyperlink functionality relies on certain objects being captured in the Object Index. If
the index is turned off, or has been restricted in what information it captures, users will
be unable to link them (as they are non-existent within the Index.) To specify object
index types, see "Set Index Configuration Preferences" on page 61.

UNDERSTANDING CODE FORMATTING

Code formatting provides automatic code formatting in SQL Editor while you are developing
code.

34 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

> CREATING AND EDITING SQL FILES (SQL EDITOR)

To access the code formatter, select the open editor you want to format and select Ctrl+Shift+F.
The code is formatted automatically based on formatting parameters specified in the Code
Formatter subnode of the SQL Editor node in the Preferences panel.

You can also format an entire group of files from Project Explorer. To do so, select the directory
or file and execute the Format command via the shortcut menu. The files will be formatted
automatically based on your formatting preferences. See "Set Code Formatter Preferences" on
page 65 for more information.

The following examples display a list of code formatting parameters and the resultant output in
SQL Editor, based on the same set of SQL statements.

Custom Code Formatting Example 1

The following chart indicates a list of custom code formatting parameters and their
corresponding values. The chart is followed by the actual syntax as it would appear in SQL
Editor, based on the formatting parameter values. Compare the parameters and formatted code
in Example 2 with this example for a concept of how custom formatting works.

Custom Code Formatting Parameter Value (if applicable)

Stack commas separated by lists? Yes
Stack Lists with ___ or more items. 3
Indent Size? 2
Preceding commas? Yes
Spaces after comma? 1

Trailing commas? -

Spaces before comma? -

Right align FROM and WHERE clauses | Yes
with SELECT statement?

Align initial values for FROM and Yes
WHERE clauses with SELECT list?

Place SQL keywords on their own line? | No

Indent size? --
Indent batch blocks? Yes
Number of new lines to insert 1
Indent Size 5
Right Margin? 80
Stacked parentheses when they No

contain multiple items?

Stack parentheses when list contains -
___ormore items.

Indent Size? 5
New line after first parentheses? No
Indent content of conditional and Yes

looping constructs?

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 35

> CREATING AND EDITING SQL FILES (SQL EDITOR)

Custom Code Formatting Parameter

Value (if applicable)

Number of new lines to insert?

1

Indent size? 5
+File,sgl &3 =
Eegin &
If x=5
SELECT apple
. pear
' agrange “Big Orange”’
* strawberry =
' orchard name
' OWnEer
FROM fruit F, orchard O
WHERE fruit region in (‘latin america’
' ‘france”
' ‘russiaf
* ‘canada* B
‘' “hawaii’)
and orchard not in (select region
from bad growers bg, (select orchard
from hybrid growers
where us_approved in [Z
36 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

> CREATING AND EDITING SQL FILES (SQL EDITOR)

Custom Code Formatting Example 2

The following chart indicates a list of custom code formatting parameters and corresponding
values. The chart is followed by the actual syntax as it would appear in SQL Editor based on the
formatting parameter values. Compare the parameters and formatted code in Example 1 with
this example for a concept of how custom formatting works.

Custom Code Formatting Parameter Value (if applicable)
Stack commas separated by lists? Yes

Stack Lists with ___ or more items. 2

Indent Size? 0

Preceding commas? -

Spaces after comma? Yes
Trailing commas? Yes
Spaces before comma? 2

Right align FROM and WHERE clauses with SELECT statement? | No
Align initial values for FROM and WHERE clauses with SELECT -

list?

Place SQL keywords on their own line? Yes
Indent size? 4
Indent batch blocks? No
Number of new lines to insert 1
Indent Size 5
Right Margin? 80
Stacked parentheses when they contain multiple items? Yes
Stack parentheses when list contains ___ or more items. 2
Indent Size? 2
New line after first parentheses? Yes

Indent content of conditional and looping constructs? --

Number of new lines to insert? 1

Indent size? 5

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 37

> CREATING AND EDITING SQL FILES (SQL EDITOR)

*File,sgl &4 =
Begin [ﬁ
If %x=5

SELECT =
apple ., 1
pear ,
orange 'Big Crange’ ,
strawberry , I |
orchard name ,

OWner

FROM
fruit F ,
orchard ©

WHERE

fruit region in |
‘latin america® ,
‘*france’ ,
‘russia’ ,;
‘canada’ ,

38 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

> CREATING AND EDITING SQL FILES (SQL EDITOR)

UNDERSTANDING CODE FOLDING

SQL Editor features code folding that automatically sorts code into an outline-like structure
within the editor window for easy navigation and clarity while developing code.

s}, *ADDRESS_ROLE £2 . [9 *Benson.sgl
CREATE DEFAULT ET FALSE AS 0

go
+IIF OBJECT ID('PERFCHNTR E5.ET FALSE') IS5 NOT HULL{]
go

~CREATE TAELE PERFCNTE KS5.ADDEESS ROLE
{

ADDRESS ROLE_ID numeric{10,0) IDENTITY (20000,1),
NAME varchar (128) NOT NULL,

DESCRIPTICN varchar (255) NULL,

LIST ORDER int NOT NULL,

15 DEFAULT bit NOT NULL,

15 SYSTEM REQUIRED bit NOT NULL,

ROWTIMESTAME datetime CONSTRAINT DF__ADDRESS R__ ROWTI__ 1BFI

CONSTRATINT ADDRESSROLEPE
PRIMARY KEY CLUSTERED (ADDRESS ROLE ID)

)

go
EXEC .Sp_]::indefault b PE_:.]:_C:-IT_:._E{S . ET_]:_E-'L:SE i 'E::F.ESS_F.C:E I 3_:3]:_3{_7:'[' :
go

(%] EX sp_l::indrale 'PERFCNTE ES.TRUOECEFALATLSE', ' E::RESS_RC:E I S_ZEFE__T:I' .
3| 1l |

The editor window automatically inserts collapsible nodes in the appropriate lines of code for
organizational purposes. This enables you to expand and collapse statements, as needed, while
developing code in particularly large or complicated files.

UNDERSTANDING CODE QUALITY CHECKS
Code quality markers provide annotations that prevent and fix common mistakes in the code.

These notes appear in a window on any line of code where the editor detects an error, and are
activated by clicking the light bulb icon in the margin or by pressing Ctrl + |.

For example, if a statement reads select * from SCOTT.EMP, SCOTT.DEPT, when you click the
light bulb icon or press Ctrl + |, a window appears beneath the line of code that suggests Add
join criteria.

When you click on a proposed fix, the statement is automatically updated to reflect your change.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 39

> CREATING AND EDITING SQL FILES (SQL EDITOR)

The following common errors are detected by the code quality check function in the editor:

Code Quality Check Type

Definition

Statement is missing valid JOIN criteria

If a SELECT statement contains missing join criteria, when it is executed, it
can produce a Cartesian product between the rows in the referenced
tables. This can be problematic because the statement will return a large
number of rows without returning the proper results.

The code quality check detects missing join criteria between tables in a
statement and suggests join conditions based on existing foreign keys,
indexes, and column name/type compatibility.

Example
The following statement is missing a valid JOIN criteria:

SELECT * FROM employee e,customer c, sales_order s
WHERE e.employee id = c.salesperson_ id

The code quality check fixes the above statement by adding an AND
clause:

SELECT * FROM employee e,customer c, sales_order s
WHERE e.employee id = c.salesperson_id AND
s.customer_id = c.customer_id

Note: This code quality check is valid for Oracle, DB2, and Sybase-specific
join conditions.

Invalid or missing outer join operator

When an invalid outer join operator exists in a SELECT statement, (or the
outer join operator is missing altogether), the statement can return
incorrect results.

The code quality check detects invalid or missing join operators in the
code and suggests fixes with regards to using the proper join operators.
Example

The following statement is missing an outer join operator:

SELECT * FROM employee e, customer c WHERE
e.employee id = c.salesperson id (+) AND c.state =
\ CAI

The code quality check fixes the above statement by providing the missing
outer join operator to the statement:

SELECT * FROM employee e,customer c WHERE
e.employee id = c.salesperson_id(+) AND
c.state(+) = ‘CA’

40

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

> CREATING AND EDITING SQL FILES (SQL EDITOR)

Code Quality Check Type

Definition

Transitivity issues

The performance of statements can sometimes be improved by adding
join criteria, even if a join is fully defined. If this alternate join criteria is
missing in a statement, it can restrict the selection of an index in Oracle’s
optimizer and cause performance problems.

The code quality check detects possible join conditions by analyzing the
existing conditions in a statement and calculating the missing, alternative
join criteria.

Example
The following statement contains a transitivity issue with an index problem:

SELECT * FROM item i, product p, price pr WHERE
i.product id = p.product id AND p.product id =
pr.product id

The code quality check fixes the above statement with a transitivity issue by
adding the missing join condition:

SELECT * FROM item i, product p, price pr WHERE
i.product id = p.product id AND p.product id =
pr.product id AND i.product id = pr.product id

Nested query in WHERE clause

It is considered bad format to place sub-queries in the WHERE clause of a
statement, and such clauses can typically be corrected by moving the sub-
query to the FROM clause instead, which preserves the meaning of the
statement while providing more efficient code.

The code quality check fixes the placement of sub-queries in a statement,
which can affect performance. It detects the possibility of moving sub-
queries from the FROM clause of the statement.

Example

The following statement contains a sub-query that contains an incorrect
placement of a WHERE statement:

SELECT * FROM employee WHERE employee id = (SELECT
MAX (salary) FROM employee)

The code quality check fixes the above statement by correcting the sub-
query issue:

SELECT employee.* FROM employee (SELECT DISTINCT
MAX (salary) coll FROM employee) tl WHERE
employee id = tl.coll

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 41

> CREATING AND EDITING SQL FILES (SQL EDITOR)

Code Quality Check Type

Definition

Wrong place for conditions in a
HAVING clause

When utilizing the HAVING clause in a statement

It is recommended to include as few conditions as possible while utilizing
the HAVING clause in a statement. DB Optimizer™ XE and DB Optimizer™
2.5 detects all conditions in a given HAVING statement and suggests
equivalent expressions that can benefit from existing indexes.

Example

The following statement contains a HAVING clause that is in the wrong
place:

SELECT col_a, SUM(col b) FROM table a GROUP BY
col a HAVING col _a > 100

The code check fixes the above statement by replacing the HAVING clause
with equivalent expressions:

SELECT col _a, SUM(col b) FROM table a WHERE col_a
> 100 GROUP BY col_a

Index suppressed by a function or an
arithmetic operator

In a SELECT statement, if an arithmetic operator is used on an indexed
column in the WHERE clause, the operator can suppress the index and
result in a FULL TABLE SCAN that can hinder performance.

The code quality check detects these conditions and suggests equivalent
expressions that benefit from existing indexes.

Example

The following statement includes an indexed column as part of an
arithmetic operator:

SELECT * FROM employee WHERE 1 = employee id - 5

The code quality check fixes the above statement by reconstructing the
WHERE clause:

SELECT * FROM employee WHERE 6 = employee id

Mismatched or incompatible column
types

When the data types of join or parameter declaration columns are
mismatched, the optimizer is limited in its ability to consider all indexes.
This can cause a query to be less efficient as the system might select the
wrong index or perform a table scan, which affects performance.

The code quality check flags mismatched or incompatible column types
and warns that it is not valid code.

Example

Consider the following statement if Table A contains the column col int and
Table B contains the column col 2 varchar(3):

SELECT * FROM a, b WHERE a.col = b.col;

In the above scenario, the code quality check flags the ‘a.col = b.col’ part
of the statement and wamns that it is not valid code.

42

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

> CREATING AND EDITING SQL FILES (SQL EDITOR)

Code Quality Check Type Definition

Null column comparison When comparing a column with NULL, the !=NULL condition may return a
result that is different from the intended command, because col=NULL will
always return a result of false. Instead, the NULL/IS NOT NULL operators
should be used in its place.

The code quality check flags occurrences of the !=NULL condition and
replaces them with the IS NULL operator.

Example
The following statement includes an incorrect col = NULL expression:
SELECT * FROM employee WHERE manager id = NULL

The code quality check replaces the incorrect expression with an IS NULL
clause:

SELECT * FROM employee WHERE manager_ id IS NULL

UNDERSTANDING SQL TEMPLATES

DB Optimizer provides code templates for DML and DDL statements that can be applied to the
Editor via the (Ctrl + Spacebar) command. When you choose a template from the menu that
appears, SQL Editor automatically inserts a block of code with placeholder symbols that you can
modify to customize the code for your own purposes.

El¥ CREATE_TABLE - creates & tabls with 3 columns [CREATE TABLE schemahlame. tablefame

Ei} CREATE_TABLE - creates and populabes a table w EO}_WN seme1 dataTypel PRIMARY KEY,
ﬂ}‘ CREATE_TRIGGER - creates a database trigger colurmniames dakaTypes |,
columniame3 dataTypes

--define other columns

X

Code templates are available for DML, ALTER, DROP, CREATE, and platform specific
commands.

There are 267 templates available for all supported platforms and respective versions. You can
modify and create new templates via the SQL Templates panel on the Preferences dialog. See
"Set SQL Code Template Preferences" on page 66 for more information on how to create and
alter SQL code templates.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 43

> CREATING AND EDITING SQL FILES (SQL EDITOR)

VIEW CHANGE HISTORY

Each time an SQL file is saved, the local history of that file is recorded (changes made). Using the
Local History command, you can view all changes made to the file. Local History is accessed via
the shortcut menu of SQL Editor and selecting Compare With > Local History.

=
Eensun.sql (test.sql (ED Compare Benson.sqgl Current and Current Revision 3 ~ =
TextCnmpare Iﬁ - et SR
Local: Benson.sql
k:REILTE TABLE dbo.benson CREATE TABLE dbo.benson
i |
job char (8) HOT HULL job char(8) HOT 1
sal numeric(33,0) NHOT NULL zal numeric(38,0) NOT]
loc numeric(38,0) NOT NULL loc numeric(38,0) NOT]
CONSTRLINT piob CONSTRLAINT piob
PRIMARY EEY CLUSTERED (job PRIMARY EEY CLUSTEEED
))
go go
IF CBJECT ID('dbo.benson') IS IF CBJECT ID('dbo.benson')
PRINT '«<<«<« CREATED TABLE d PRINT '<<< CREATED TARB
ELSE ELSE
PRoNT '«<<« FATLED CREATING PRoNT '<<« FAILED CREA]
go go
(] 1 | [i] (%] i | [i]
Py — = 4
SQL Log (ESEL SQL Erro ﬂ__h Problem (E. Tasks (Eu] Bookmar gt Outline (@ History &2 - =
v = _ﬂ
Benson.sqgl f:::}(‘_.:. <~}=={} = 2 ﬂ}} E||E;|
Revision Time
E o05/02/08 11:45 AM
B 04/02/08 11:43 AM
[il 1l | m

® The History view displays all recorded times the file was changed since its inception/
introduction into the workspace.

e Double-click a time in the History view to access the Text Compare panel. It displays the
text of the file after the change occurred at the time indicated in the History view.

44 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

> CREATING AND EDITING SQL FILES (SQL EDITOR)

REVERT TO AN OLD VERSION OF A FILE

The Replace With > Local History command provides you with the ability to revert a SQL file
back to a previously recorded local history.

To replace the contents of a file with the contents of a previously saved version via local
history:
1 Right-click the SQL Editor and select Replace With > Local History from the shortcut menu.

The Replace from Local History dialog appears.

£F Compare - [Ql
/5QL Pragect 1/Bensan.sql =
Rievizion Time
£ D4/02/08 11:43 AM
%] 2]
[t Texr Compare Pttt Wl
t{ﬂ Warkspace Fie B Local Hstory (04/02/08 11:43 AM] B |
COMSTERINT pich CONSTEAIMT pick A
PRIMARY FEY CLUSTERED (job) FRIMARY FEY CLUSTERED (job)
] }
go ga
IF OBJECT_ID("dbo.benson’) I3 KOT NUL IF CBJECI_ID("dbo.benson') IS NOT
BRINT '<<< CREATED TABLE dbo.bena PRINT 'c<< CREATED TASLE dbo.
ELSE ELSE -
[PRONI '<<< FAILED CREATING TASLE — PRINT "<<< FAILED CREATING TA|
go go 1]
=
| I ¥ [] >
(@ [Replace] [Cancel |

2 In the Local History of ... panel, select a previously recorded version of the file by clicking
the appropriate timestamp.

3 Click Replace.

The contents of the currently-opened file revert to the contents of the file at the history
point you selected in the dialog.

Alternatively, from the shortcut menu, select Replace With > Previous from Local History
to replace the contents of the file with DB Optimizer™ XE and DB Optimizer™ 2.5's last
recorded history point.

DELETE AN SQL FILE

To delete a file, right-click its icon in the SQL Project Explorer and select Delete. This will remove
the file from both the SQL project and the file system.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 45

> EXECUTING SQL FILES

EXECUTING SQL FILES

DB Optimizer™ XE and DB Optimizer™ 2.5 can execute SQL code directly on registered data
sources.

Files are executed via the Execute SQL command in the Run menu, or by clicking the green
arrow button on the toolbar.

When an SQL file is open in the Workspace, select it and choose a database and an associated
catalog on which you want to execute the file via the lists in the Toolbar.

You can click the execute icon to execute code on the specified database and catalog, start a
transaction or commit a transaction, or modify SQL session options prior to execution.

To execute a file:
Open the SQL file you want to run, ensure it is associated with the correct database, and
click Execute. DB Optimizer™ XE and DB Optimizer™ 2.5 executes the code on the data
source you specified. Results are displayed in the Results view and can be exported into a
file via the Data Export wizard, or displayed in multiple file formats (HTML, XML, and TXT
formats).

To execute a transaction:

To execute transactions, you need to ensure that the auto commit feature is turned off. See
"Set SQL Execution Preferences" on page 64 for more information on how to turn off auto
commit.

Open the transaction file you want to run, ensure it is associated with the correct database,
and click Start Transaction. DB Optimizer™ XE and DB Optimizer™ 2.5 executes the
transaction on the data source you specified.

Once the transaction runs, you can execute the file as normal.

NOTE: Click Commit or Rollback to finish or cancel a transaction.

To commit a transaction:

Open the transaction file you want to commit, ensure it is associated with the correct database,
and click Commit Transaction. DB Optimizer™ XE and DB Optimizer™ 2.5 commits the
transaction on the data source you specified.

TIP: You can set transactions to auto-commit prior to execution on the SQL Execution node
of the Preferences panel.

See Also:
® Associate an SQL File with a Data Source on page 47

e Configure a SQL Session on page 48

e Execute SQL Code on page 49

46 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

> EXECUTING SQL FILES

e View and Save Results on page 49

ASSOCIATE AN SQL FILE WITH A DATA SOURCE

When working with files, SQL Editor enables developers to view and change the data source to
which they are connected.

The bread crumb line in SQL editor is used to display and specify a data source in relation to the
specified SQL Editor file. The menu contains a list of all registered data sources. Additionally, on
platforms that support catalogs, these are displayed as well.

[*urtitled SCAL 5) =0
b) Microscft SCL Server b S ROMLABSCLOS I (9.003054.00 b [master = %

select * from dbo.Customers:

Changing a catalog via the drop down lists is the equivalent of issuing a USE DATABASE
command on SQL Server, Sybase, and MySQL platforms. Any change will not affect the current
connection, and the list automatically updates to display the name of the newly selected data
source.

If no registered database is associated with a SQL file (as would be the case if a user started a
new, unsaved file), the list is empty. This indicates that the file is not connected to a registered
data source.

To change or associate a registered data source with a SQL file:

Click the database list and select the name of a registered database from the list provided.
Depending on the state of the code in SQL Editor, DB Optimizer™ XE and DB Optimizer™ 2.5's
behavior differs when the connection is made:

TIP: If you are receiving multiple syntax errors, always check that the file is associated with
the correct data source and corresponding database/catalog before troubleshooting
further.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 47

> EXECUTING SQL FILES

CONFIGURE AN SQL SESSION

The SQL Session Options dialog provides configuration parameters that indicate to DB
Optimizer™ XE and DB Optimizer™ 2.5 how to execute code in the development environment.

=%

ﬁ‘.‘l S0L Session Options

SQL Session Options

Spedify the SQL session options for the current editor,

v

—| Transactions
Izsaolation Level

Property Value
—| Ansi Defaults
Set ansi_nulls false
Set ansi_padding false
Set quoted_jdentifier frue
Set ansi_warnings false
Set ansi_null_dfit_on false
|=| Arithmetic
Ignore Arithmetic Owverflow false
Abort On Arithmetic Overflow false

Read Committed

Set implicit_transactions false
Set cursor_dose_on_commit false
—| Result 5et
Maximum Rows in Result Set [¥]
Maximum Mumber of Bytesina ... 2048
Query Timeout (seconds) a
'i':’:' Finish l [Cancel

To modify SQL session options:
1 Click the SQL Session Options icon in the Toolbar.

The SQL Session Options dialog appears.

2 Click on individual parameters in the Value column to change the configuration of each
property, as specified.

3 Click Finish.

The session options will be changed and DB Optimizer™ XE and DB Optimizer™ 2.5 will
execute the code as specified when you execute it.

Session options only apply to the corresponding editor and are not retained when executing
multiple SQL files.

48 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

> EXECUTING SQL FILES

ExecuTe SQL CODE

Files can be launched from within the DB Optimizer™ XE and DB Optimizer™ 2.5 development
environment for execution on a registered data source Files are executed via the commands in
the Run menu.

When a SQL file is open in the Workspace, select it and choose a database and an associated
catalog on which you want to execute file using the drop down menus in the Toolbar. You can
click the execute icon to execute the code on the specified database and catalog, start a
transaction or commit a transaction, or modify the SQL session options prior to execution.

To execute code:

Open the SQL file you want to run, ensure it is associated with the correct database and click the
Execute icon. DB Optimizer™ XE and DB Optimizer™ 2.5 executes the code on the data source
you specified. Results are displayed in the same tab or in a new tab.

To execute a transaction:

Open the transaction file you want to run and ensure it is associated with the correct
database, and then click the Start Transaction icon. DB Optimizer™ XE and DB Optimizer™
2.5 executes the transaction on the data source you specified.

To commit a transaction:

Open the transaction file you want to commit, ensure it is associated with the correct
database, and then click the Commit Transaction icon. DB Optimizer™ XE and DB
Optimizer™ 2.5 commits the transaction on the data source you specified.

TIP: You can set transactions to auto-commit prior to execution on the SQL Execution node
of the Preferences panel in DB Optimizer™ XE and DB Optimizer™ 2.5.

VIEW AND SAVE RESULTS

Once a file has been executed, the results are displayed in the Results view. Here, you can
examine the outcome of the execution process, as well as save the results in other file formats,
as needed.

You can view results in the following formats:
e HTML
o XML
o TXT

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 49

> TROUBLESHOOTING

To save results:

1 Right-click on the Results view and select Save Data. The Save Data dialog appears.

*F Save Data

Save data to a file
Save data ko a specified file type,

Enter or seleck the parent folder:
MyProject

=,

@ % MyProject

File nanme: [result

File type: |Delimited bext files (*.csv, *.ppe, *.tab, *.txt)

Delimited bext Files (*.csv
Excel Files {*.xls)
2L Files (* .ol
HTML Files (*. bkl

Include
Field delimi

@ |_Einish]I Cancel I

2 Select the project name to which you want to save the results, enter a file name, choose the
file parameters, and then choose a file format from the drop down menu. You can select
delimited text file, Excel, XML, or HTML file formats.

3 Click Finish. The results are saved in the directory location and format that you specified.

TROUBLESHOOTING

DB Optimizer™ XE and DB Optimizer™ 2.5 contains a number of views used exclusively to log
and monitor the SQL development process.

50 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

> TROUBLESHOOTING

e The SQL Log captures all SQL commands executed by SQL Editor and the system. SQL Log
entries are listed by SQL Statement name, Date issued, Host/Server, Service, User, Source,
and the Time (in milliseconds) it took to execute the command.

=] 501 Leg 2% . % 5QL Errors | (21 Problems | & Tasks | L[ll Bookmarks | 2= cutine | (2] Histary =
B Bk E~

SOL Statement Date Hast/Server DEMS
% €3 ALTER TABLE dbo.testapps ADD COMNSTRAINT CX_123 CHECH 2008-02-04 11:06:12.656 datoth19 SQLServer ¢
© & CREATE TASLE dha.benson [jab char(3) NOTMNULL, =alm 2008-02-04 11:05:53.00 datath 19 SOLServer &
] IF CBJECT _ID{dba.benson’) IS NOT NULL PRINT < << CREATEL 2008-02-04 11:05:53.171 datoth19 SQLServer £
| £] i >

® The SQL Errors log automatically logs all SQL errors encountered when SQL commands are
executed through DB Optimizer™ XE and DB Optimizer™ 2.5. Errors are listed by Error
Code, SQL State, error Details, Resource, and the Location of the error in the SQL file.

([50 Log | % squLErrers 51 [21 Problems | 42 Tasks | Ll Bockmarks | OF Outine | £ Hatory o= = O
Error Code E4L State Datais Resource Location
170 37000 Line % Incorract syntax near PRONT', Bersan. 24l line 13
i 37000 Line 8; Incorrect symitax near ‘sdasd', Benson.sgl ine 8

e The Problems view captures syntactic and semantic errors and warnings in the files of the
workspace. These entries typically take the form of error messages or warnings issued by the
system over the course of a procedure execution. Problems are organized by Description
(which indicates the type of problem logged), Resource, file Path, and Location. Using the
Problems view, you can apply quick fixes to issues that DB Optimizer detects, as well as
locate other problems that have similar attributes.

] 50L Log | % SOu Errors |20 Problems 52 . = Tasks | (Il Backmarks | GF Outine | 5 History R
0 errors, 0 warnings, 0infos
Description - Resource Path Location

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 51

> TROUBLESHOOTING

See Also:

¢ View Log Details on page 52

Maintain Logs on page 53

Filter Logs on page 53

Import and Export Error Logs on page 56

Find and Fix SQL Code Errors on page 57

Find and Fix Other Problems on page 57

VIEW LOG DETAILS

The SQL Error Log and Problems views contain functionality that enable you to view details
regarding individual log entries, and in some cases, locate or fix those issues automatically.

To view details about SQL Errors entries:

Right-click the error whose details you want to view and select SQL Error Details.

&1 SOL Error Details

@ Line 4: Incorrect syntax near 'PRoMT,

Reason:
Batch: 2

Line: 12

Position: 0

Error Code: 170
S0L State: 37000

Details: Line 4: Incorrect syntax near 'PRoMT'.

The SQL Error Details dialog provides information about the specified SQL error.

Additionally, you can double-click the error to view the problem code in SQL Editor.

To view details about Problems

Right-click the entry whose details you want to view and select Properties. The Properties
dialog appears, summarizing the issue.

52 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

> TROUBLESHOOTING

MAINTAIN LOGS

The SQL Log and SQL Errors views both contain commands that enable you to save, restore, or
otherwise move log entries into files outside of DB Optimizer™ XE and DB Optimizer™ 2.5.
Additionally, both views also contain commands that enable the clearing of the view.

The current editor option will only show users statements as generated by the active editor.

To maintain log entries:
All entries automatically captured by the Error Log are written to a file (.log suffix) that resides in
the Workspace .metadata folder.

* From DB Optimizer™ XE and DB Optimizer™ 2.5, right-click in the SQL Log and select
Clear Log Viewer to remove all messages.

¢ In the shortcut menu, select Delete Log to delete the .log file. If entries are created after the
Delete Log command is issued, DB Optimizer™ XE and DB Optimizer™ 2.5 will
automatically generate a new .log file in the .metadata subfolder.

NOTE: Old Error Log entries cannot be recovered once the .log file is deleted. To prevent data

loss, archive the .log file via the Export command prior to deletion.

® To clear the Error Log view without deleting the .log file, select Clear Log Viewer from the
shortcut menu. The View will be cleared of entries, but these entries will still be contained in
the .log file.

e To restore the Error Log view based on the entries contained in the .log file, select Restore
Log from the shortcut menu. The View is restored based on the entries in the .log file.

FILTER LOGS

Filters can be applied to Problems, SQL Log, and the SQL Error Log to limit searches when
troubleshooting and pinpointing specific processes within the system.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 53

> TROUBLESHOOTING

To filter the SQL Log:

e Select the Toolbar Menu icon (the downward-pointing arrow in the right-hand corner of the
view) and choose Filters. The SQL Log Filters dialog appears.

=

&1 SOL Log Filters

SOL statement types
Successful

Failed

Limit display statements to: | 100

(<]}

[]show statements with host:

Filter by source
User

[By current editor
[system generated
Unavailable source

[Ok, H Cancel]

* In the SQL Statement Types frame, select Successful or Failed to filter by the type of Error
Log entries.

e Select Limit display statements to indicate a maximum limit of the number of entries
displayed in the Error Log, and enter the maximum entry value in the corresponding field.

e Select Show statements with host to indicate that only entries from a specific data source
are to be displayed, then type the name of the data source (as it appears in the Database
Explorer) in the corresponding field.

¢ In the Filter by Source pane, specify User, System Generated or Unavailable Source to
filter statements by the type of source from where they originated.

54 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

To filter the Problems log:

> TROUBLESHOOTING

Select the Toolbar Menu icon and choose Configure Filters. The Filters dialog appears.

&

{3 O celactad alement and its childran
() On working setz «<no working set selected >

| .

Description | contains ;_V]

[t v e smvemily i

[sectal || oessiectal |

®

& Filters
""c_r R %) On any elemant Shew items of tyae:
= {-}On any elemant in same project Problem
{7 On sefactad alement anhy [SQL Errar Marker
Remave

%] I [

| seectan || vessectan |

Restore Defaults

[ox J[conce |

The Filters dialog enables the creation of multiple filter profiles that can be applied to the
log via the Toolbar Menu. The User Filters panel on the left-hand side of the dialog displays
all existing filter profiles stored in the Workspace. Initially, the Workspace only contains the
Default filter profile. Selecting it displays its filter parameters, and selecting the check box
associated with its name enables the filter in the Problems view (only problems that match

the criteria defined in the Filters dialog will appear in the view).

The ability to define different profiles enables the selection of multiple filter profiles. For
each profile selected, the profile criteria is applied to the View, concurrently. You can filter

problems by:
* Working Set

Character String

Problem Severity

Problem Type

A combination of the above four filter options

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

55

> TROUBLESHOOTING

Profile Criteria Description

Working Set The options located in the center of the dialog enable you to filter problems based on defined
Working Sets. A Working Set is a collection of user-defined Project files that you can organize,
as needed, in DB Optimizer™ XE and DB Optimizer™ 2.5. Select an option, and then click
Select to define a Working Set to which the parameters apply. If no Working Sets exist, you
need to define one or more via the New button on the Select Working Set dialog.

Select one or more Working Sets to which you want the criteria to apply. If no Working Sets
exist, or none suitably match the current filter criteria, click New or Edit to define a new
Working Set, or edit an exist Working Set, respectively.

Character String Use the Description list to select contains or doesn’t contain, as needed, and type the character
string in the field below the list. The Problems view is filtered to only contain, or omit, problem
descriptions that fully or partially match the string value.

Problem Severity | Select the Where severity is check box and choose Error, Warning, Info or some combination
of the three check boxes. Only entries whose severity matches the check boxes you have
selected remain visible in the Problems view.

Problem Type The options in the Show items of type list on the right-hand side of the dialog enable you
to filter problems by type. Deselect Problem to remove any system entries from the view, or
deselect SQL Error Marker to remove any SQL code entries from the view.

Once you have defined and/or selected the appropriate filter profiles, the profiles will
appear in the Filters submenu in the Toolbar Menu of the Problems view. Select or deselect
the profiles from the submenu, as needed.

IMPORT AND EXPORT ERROR LOGS

Error messages are written to a file named .log located in the Workspace directory .metadata
folder. This file can (and should) be cleared periodically via the Delete Log command to prevent
performance issues with regards to system memory and file size. However, the Export command
enables you to archive log files prior to deletion. The files created by the Export command can
then be imported back into the Error Log as needed at a later point in time.

To export the SQL Log:

Right-click the SQL Log view and choose Export Log. The log is saved in the specified
directory path with a .log extension.

To import the Error Log:

Right-click the SQL Log view and choose Import Log. Select the previously exported .log
file. The Error Log view is restored with the entries from the specified export file.

56 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

> TROUBLESHOOTING

FIND AND Fix SQL CODE ERRORS

The SQL Errors view contains an option that enables you to navigate directly to the resource
associated with an error entry.

@Bensun.sql &3 |=| sglLog.log
CONSTELINT pjob
PREIMARY EEY CLUSTERED (job)
)

ga

IF OBJECT ID('dbo.benson') IS5 NOT NULL
PRINT '<<< CREATED TABLE dbo.benson >>>'

ELSE

PRoNT '<«<« FAILED CREATING TABLE dbo.benson >>>'

Lo

To navigate to the source of a SQL error entry:

Right-click the entry to which you want to navigate and select Go To. The file to which the
error applies automatically opens in a new instance of SQL Editor, and the line is highlighted

in the window.

FIND AND FIX OTHER PROBLEMS

By default, the Problems view organizes problems by severity. You can also group problems by

type, or leave them ungrouped.

The first column of the Problems view displays an icon that denotes the type of line item, the
category, and the description. Click the problem and DB Optimizer™ XE and DB Optimizer™

2.5 will open the SQL file and automatically highlight the line that triggered the issue.

You can filter Problems to view only warnings and errors associated with a particular resource or

group of resources. You can add multiple filters to the view, as well as enable/disable them as

required. Filters are additive, so any problem that satisfies at least one of the filters will appear.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

57

> TROUBLESHOOTING

Problems can sometimes be fixed via the Quick Fix command in the shortcut menu. The Quick
Fix dialog enables you to apply a fix to a problem detected by the view. The dialog also
provides a list of similar problems to the one you selected, and enables you to apply a fix to
multiple problems at the same time.

&9 Quick Fix (<]
Select a fix

Salect the fix for “Using the TRUNCO
furection suppresses index usage®. =

Select a fix:

£
I

i» 33 warnings, 0 infos

iplion - Resource
& Using the CONVERT() function suppresses index usage Sybase.sql
& Using the LEM() Function suppresses index usage Svbase,sql
& Using the LEMN() function suppresses index usage Sybase.sql
) Lsing the LEM() Function suppresses index usage Sybase, S -
Using the ROUND() function suppresses index usage Svhase sql : :
) Using the ROUND() function suppresses index usage Svbase. Resource Location]
& Using thee SUBSTRING() function suppresses index usage Sybase.sql (&) DEZ.sql line 151

5 Sybase.sql lire 181 M

Sybase.sgl line 185

& Usineg the SUBSTRING() function suppresses index usage Sybase.
& Using the SUBSTRING() Function suppresses index usage Sybase.sql

INENENEE
8

i Lsing the TRUNC() function suppresses index usage DB2.sql fine: 187

& Using the TRUNC() function suppresses index usage DEz.sql (% DBZ.sq line: 90

8 Using the TRUNCE) function suppresses indax usage DEZ.sql & D825 lire 103

& Lising the TRUNCE) function suppresses index ussge D82.5ql {8 DBZ.5q] lires 146 ™

Fatal

8 Using the TRUNCE function suppresses indsx usage MeyFile.sql nE o bl et Yo e
& Usireg thee TRUNCO Funckion suppresses index: ussge MyFile.sgl

L

&
2

To apply a quick fix to an issue in the Problem view:

1 Right-click on a problem in the list and select Quick Fix from the menu. The Quick Fix
dialog appears.

2 Select a fix from the list provided and click OK. DB Optimizer attempts to resolve the issue.

To find similar issues:

1 In the Quick Fix dialog, click Find Similar Problems. The Problems list populates with all of
the issues that are similar to your initial selection.

2 Use the check boxes beside the problems to select them, and then choose a fix and click
OK. DB Optimizer attempts to resolve all of the specified issues.

58 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING PROFILING

For details on working with profiling, see the following topics:

e Understanding Profiling on page 3

Understanding the Interface on page 4

Running a Profiling Session on page 5

Configuring Profiling on page 35

Using Load Tester on page 42

UNDERSTANDING PROFILING

Profiling continuously samples the data source to build a statistical model of the load on the
database. Profiling can be used to locate and diagnose problematic SQL code and event-based
bottlenecks. Additionally, profiling enables you to investigate execution and wait time event
details for individual stored routines. Results are presented in the profiling editor, which enables
users to identify problem areas and subsequently drill down to individual, problematic SQL
statements.

Profiling filters out well performing light weight SQL and collects information on heavy weight
SQL. SQL that is heavy weight are either long running queries or queries that are short but run
so often that they put load on the database

Profiler takes snapshots of user and session activity once a second and builds up a statistical
model of the load on the database. The sampled data is displayed in three ways:

¢ | oad on the database measured in average number of sessions active
e Top Activity - Top SQL, Event, and Sessions, Object I/O, and Procedures
e Details - Detail on a SQL statement, Session, Event, Object I/O or Procedure

The graph on the top of the screen shows the load on the database and can quickly indicate
visually how the database is functioning. The database could be

Idle

Lightly loaded

Heavily loaded

Bottlenecked

Problems can come from any one or more of four areas
® Machine CPU or Engine, slow disks (network)

e Application locks, invalid SQL

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 3

USING PROFILING > UNDERSTANDING THE INTERFACE

e Database cache sizes, log files, etc

¢ |nefficient SQL

UNDERSTANDING THE INTERFACE

The profiling interface is divided into three major parts:

= T10A ~ Prosmtens: |- ¥ Fwby s v o |
Profile Session & (g
'g BONCPU B Systam B0 B LUiser 0 FCluster B Appication B Confgurataon B Coemmid B kstwork BAdministative B Concumency [Schadular B Othar
el
=
24
z
o
£,
&
BE overven | B Events A0 Sessons
o R)
S0L Statements Events Sesshons
et Askity (W) ¢ A ' Eveent | mberv i) 7| M s iProprem 51D f Serial ety () <| M
ﬁ RO [55 BT — 5523 SYETEM [Swmcutordae 135, 31553 mE FT R
f SEUSCT COUL.'SPSTEed PRl | dob scheduer...r siave wat B 20.60 | ORACLE.ENE [CTWR) 1%, 3 = 592
o5 SeEEAT I, 00 ECT 6 W B0 | b e secuental raad | .44 ORACLE EVE (£ 5040) 12,1 = .87
m WO [3393152364) 1 1.4} ok Me sonitered read I 55 | CRACLE.ENE [raldd) 1L, 2854) 343
B ueoun [146 103937 LY caningl e peguental read 0.3 SYGTEM [Executoreue 143, 5504) in
'IEE‘\‘SE.TI‘J...E"E.LEEE 053 b e paradsl perite 0.23 ORIAICLE.ENE [SMOH) 14, 1 I i
m TRUHCATE .5 _DATA_L [Latch: lbrary cache: f.12 SFETEM [Execstorexe L11, 23683) e
+3 PESAT D . Free, LR s g M i sl it 0.2 SIETEM [Enecutorens 47, 43023 I .85
o o pelect count . rioe g © is e | eudl gt 0.0 o | SFaTEH [Eeeoutorae | LXL 299 L 15 =
B s S S TS Y Lemar s s b pn) S5_BSmA, i
@ Erofing Detals 23 : =[]
SOL: SALECT COUNT]™) FROM (SILECT USERIAME FROM SYS.08A_USIRS WHERL DEFAULT_TABLESPACL="SYSTEHM' OR TEMPO..
B 508 Tewt |ED Everes | 27 Sessiors | 00 Crioer Dt | iy S Dt | |
SOL Identdfication Optenizer and Jwthne Parsing Statistics Execution Stateckics (botal) Execution Statitics (per execution) # |
0L I L143IL005 Ciestirier Madie ALl ROWS Harery TSRS Fanddus 000 Fateug 000
S0 Addrecs KSATTRDS Parang User [D & Losds 5 Eogaibons 1 Esoutons (LOG
Child Addrass SRE00E5E Cuitire: Chlegary Erreabadationg @ Sats Soets QDG
hildren 1 Gutine 510§ ke Bpads & Gk Pimaddy. D00
Fian Hash elue 2069026503 Buffer Gets © Bufffer Gets 0LOG
el TS Rlaict Praiadesd © Rt Priveusssedd QDG
Pragram 1D 1OLE4S
Programbines 58 |

® The Load Graph is located on the top section of the editor and provides a display of the
overall load on the system. The bars represent individual aspects of the enterprise, and the
view can be used to find bottlenecks.

® Top Activity is located on the middle section of the editor and displays where the load
originates. Specifically, the top SQL statements, top events that the database spends time
in, as well as the top activity sessions.

¢ The Profiling Details View is located on the bottom section of the editor and displays
detailed information on any item selected in the middle section. For example, an SQL
statement, an Event, or a Session.

4 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

The graphical portion of the profiling editor presents the distribution of sessions executed over
the length of the profiling process, and those that were waiting in DBMS-specific events. It
provides a first and most important step in identifying problem areas. Results can be viewed in
real-time.

The Load Graph and Top Activity Section compose one view in the editor, while the Profiling
Details view is a separate interface component that only activates when an item in the Top
Activity Section is specified.

NOTE: Use a 1280 x 1024 monitor resolution when viewing profiling information. Smaller
resolution sizes can obscure details in the view.

RUNNING A PROFILING SESSION

Profiling provides the continuous monitoring of a data source and builds a statistical model
based of database load based on the users state every second. The created profile can then be
saved to file, and the data can be saved, analyzed, and optimized by importing statements into
the tuning component and running a tuning job.

The following list provides the general workflow and overhead tasks, when attempting to
monitor data sources and store query information.

1 Execute a Profiling Session on page 6
2 Work with Session Results on page 7

3 Saving Profiling Sessions on page 30

4 Import Statements to Tuning on page 32

In addition to the workflow tasks outlined above, the profiling interface also enables a number of
important functions to help in statement analysis and diagnosis. This additional, or extra,
functionality can be found in "Other Profiling Commands" on page 33

Furthermore, in some cases you will need to configure system variables and parameters in order
to get the results you need from the application. See "Configuring DBMS Properties and
Permissions" on page 35 for more information on how to configure profiling and your registered
data sources prior to running a session.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 5

USING PROFILING > RUNNING A PROFILING SESSION

EXECUTE A PROFILING SESSION

Profiling is monitored and managed via profiling’s three major interface components: the Load
Chart, Top Activity Section, and Profiling Details view.

& romlabsgl0S_1-sa = ot ble Fler by: | -Hone- » S| @

Profile Session & =}

BCPU [OLlock BUo OBuffer O Memary O Other

clive Sess5ions (@

Crvervie | ES“ 0L {EF Events | 3"' Sessions ,;E, Pr-:-:n:durl:s_

S0L Statements Events Sessions
Skabement b Event 4 User Mame [Application | 5P
o SELECT SCH.. mFRCM s 'P.S'H'NC_,NET'-.I.-*::-RIL,IO 5 imizer
" USE [pubs] 5...015,2),0(PAGEICLATCH_SH 23 | Embare. . B Optimizer
o SELECT €500, = ‘Adar ja s 1] 5a | Execubor Module
& SELECT SC,. EMA_MAME Y || LCE_M_x || #a [Executor Module k]
4 | > L4 > ¢ | >

[Prablems | ¥ Tasks | L Bockmark | 5 Gutine | 5 5oL Ervor |5 SGL Log | @ Profiing 22 - T 0
Session: 59_2010-01-08 06:20:20,710

EE secsion Dietzils | 9.:”." S0L {:_Ei Ewenits ﬁﬁ Procedues
Database Server Connection -

SPID 59
KPID 9200
Dababase 1D 52
Lleer 100 Q
Lagin time 2000-01-07 23:20:20.71
Client Application

To execute a profiling session:

1 In Data Source Explorer, right click on the data source you want to profile and select Profile
As from the menu, and then choose Data Source 1.

2 In the Profiling Session Launch Configuration dialog, select the configuration to use for
this profiling session.

The profiling session begins. Alternatively, clicking the Profiling icon on the Toolbar
automatically runs a profiling session for the last data source you selected.

Once a profiling session launches, it runs until you stop it. When a session has run for a
length of time, you can then interpret and analyze the results. See "Work with Session
Results" on page 7.

6 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

To stop a profiling session:

You can stop a profiling session at any time by clicking the Stop icon in the upper left-hand
side of the Profile Session screen.

BB FB A

9 pata 23 % sae| — & i"} db2_cpu.sdgl (=% db2_jo.sql ik LUOWWAIT _smal.oar

:DT ~
iy

=

Sk

Profile Session

type filter text ™

Executing a Session from the Command Line
You can launch a profiling session from the command line using the following syntax:
dboptimizer.exe profile ds:ROM*L*ABORCL10G_1 duration:20 tofile:c:\testprofile.oar

In the above command, the user has specified ROM*L*ABORCL10G_1 as the data source, and
indicates a profiling session of 20 minutes. The tofile variable specifies the directory and name of
the file to which the profiling session will be saved.

WORK WITH SESSION RESULTS

Results are displayed in the Profiling Session editor whenever a profiling session is executed.
Results can appear in real time (if real time profiling is enabled) or once a session as finished its
execution.

Results are displayed in the three major interface components of the editor, which you can use
to analyze the overall efficiency and capacity of queries running on the data source, to various
levels of detail:

The Profiling Ul has three correlated sections:

e Selection in Chart will fill the top activity section data, distributed in Overview/SQL/Events/
Sessions/Object I/0.

e Selection in any tab of Top Activity will fill the Profiling Details with top selection type related
data.

For more information, see:

® Opening an Existing Profiling Session on page 8

® Analyze the Load Chart on page 8

e Analyze the Top Activity Section on page 10

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 7

USING PROFILING > RUNNING A PROFILING SESSION

* Analyze Profiling Details on page 15

OPENING AN EXISTING PROFILING SESSION

Saved profiling session data is stored in either an SQL Project or in a Profiling Repository on an
Oracle data source.

To view a saved profiling session, locate it in either the SQL Project Explorer or in the Data
Source Explorer and double-click the icon to open it in the Profiling Session window.

94 Data Source Expl 52 %’ S0l Project Expl |~ O | |99 Data Source Expl % S0l Project Expl &3 =0

=
i B%5 E& <
| | = 55 sQLProject
= I=F Managed Data Sources (5] 4 Connections
[=)-1=F Dakta Source Group (3) Creation Scripts
5oL
= Microsoft SOL Server (23 1 General 0L
=1 Oradle (6) Rl rorLaBORCLE_22.0
=-Hi ROMLABORCLEI_1 (Oracle 8.1.7.4) i TORLABSQLOO_1_#2.0ar
[_1;] Database Objects @ Untitled Tuning Job.tun
=-HE ROMLABORCLY_Z (Oracle .2,0,1) LZ] Untitled Tuning Job2.tun
(i3 Datahase Objects L) Untitled Tuning Jobzz.tun
= @ Praofiling Repasitary @I IIntitled Tuning Jobw . tun

Efs| ROMLABDEZ9_1
= romlaborclgi_2
K=Y z010-01-20¢
j'j romlabsglos_1
= % sPypclb0l embarcadero,com (Oracls 10,
[I] Database Objects
= |E_l:| Prafiling Repository
= % ramlabsql0S_1-sa
r& 2010-01-08 00:46: 23 (34m)

ANALYZE THE LOAD CHART

The Load Chart is located on the top section of the Profile Session editor and provides a display
of the overall load on the system. The bars represent individual aspects of the enterprise, and
the view is used to discover bottlenecks.

Profile Session & g

NONCPU B Syslem U0 B Use ¥ | Custar B Applicadon B Corfiguration B Commit B Hatwark BAdminisiraive B Concusrancy 0 Schadular B Other

ra ' =

Attive Sesslons (avg)
E=]

8 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

The most important part of the screenshot above is the Average Active Sessions (AAS) graph.
AAS shows the performance of the database measured in the single powerful unified metric
AAS. AAS easily and quickly shows any performance bottlenecks on the database when
compared to the Max Engines (for Sybase) or Max CPU (for Oracle) line. The Max Engines line is
a yardstick for performance on the database. When AAS is larger than the Max CPU line there is
a bottleneck on the database. Bottleneck identification is that easy.

AAS or the average number or sessions active, shows how many sessions are active on average
(over a 5 second range in DB Optimizer) and what the breakdown of their activity was. If all the
users were running on CPU then the AAS bar is all green. If some users were running on CPU
and some were doing I/O, represented by blue, then the AAS bar will be partly green and partly
blue.

The line Max Engines or Max CPU represents the number of CPU processors on the machine. If
we have one CPU/Engine then only one user can be running on the CPU/Engine at a time. If we
have two CPUs/Engines then only two users can be on CPU at any instant in time. Of course
users can go on and off the CPU/Engine extremely rapidly. When we talk about sessions on the
Engines we are talking about the average number of sessions on CPU/Engine. A load of one
session on the Engine, thus would be an average which could represent one uses who is
consistently on the CPU/Engine or many users who are on the CPU for short time slices. When
the number of Engines becomes a resource bottleneck on the database we will the average
active sessions in CPU/Engine state go over the Max Engine/Max CPU line. The number of
sessions above the Max Engine line is the average number of sessions waiting for CPU/Engine.

The Max CPU is a yardstick for performance on the database. The number of CPUs or Engine on
the data source is information DB Optimizer obtains during the profiling process. However,
sometimes the number of CPUs or Engines is not reported. In these cases it might be desirable
to change the default number of CPUs/Engines from one to a number more closely matching
the actual system running the data source. You might also want to change the Max CPU/Engine
line to reflect the performance impact of adding or removing a CPU or Engine from the system.

To change the Max CPU or Max Engine count in the Load Graph:

1 From the Profile Session window, right-click anywhere on the AAS graph and select Edit
Engine Count or Edit CPU Count.

2 Inthe Engine Count dialog that appears select Use a custom value, enter a new value, and
then click OK.

The AAS or Load Chart Max CPU or Max Engine line is updated immediately to reflect the
change.

The Load Chart is designed as a high level entry point to profile session results. Subsequently,
you can use the Top Activity and Profiling Details views to examine more detailed information on
waiting and executing sessions over the length of the session. Alternatively, you can select one
or more bars on the graph to populate the Top Activity section (and subsequently, the Details
View) with information on a specific subset of the graph.

The Load Chart displays the distribution of waiting and executing sessions over the length of a
profiling session.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 9

USING PROFILING > RUNNING A PROFILING SESSION

e Time is displayed on the X axis. You can zoom in and zoom out on the graph via the icons in
the upper right hand corner of the graph, once a profiling session is stopped.

® The Y axis shows the average number of sessions waiting or executing. Each supported

platform has a specific set of wait event times.

DBMS Wait Event Category

IBM DB2 Fetch, Cursor, Execution, Operation,
Transaction, Connectivity, Lock, Other

Oracle On CPU, System I/O, User I/O, Cluster,
Application, Configuration, Commit,
Other

SQL Server CPU, Lock, Memory, Buffer, I/O, Other

Sybase CPU, Lock, Memory, I/O, Network,
Other

e A chart legend displays a color and code scheme for executing and waiting session

categories, in the upper right-hand corner of the view.

ANALYZE THE TOP ACTIVITY SECTION

The Top Activity Section is located in the middle section of the editor and displays where the
load originates. Specifically, the top SQL statements, top events that the database spends time

in, as well as the top activity sessions.

10

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

The Top Activity Section is composed of a series of tabs that provide detailed statistics on
individual SQL statements and sessions that were waiting or executing over the length of a
profiling session.

|T[_l:| romlabsglds_1-5a |E_l:| romlabordsi_z 3 = 8
j’!‘l romlabc-rclgi_Z - Processes: Filker br: |Llser Marme VISYSTEM V||;~1:§h @
Profile Session &

) B Cr CPU W Systern O W User VG 0O Cluster W Application B Configuration B Cormmit @ Other
z
=)
W
W
(k)
o
ak]
= y P Enﬁ 'ESQQ o . P F:;QD .
o at ot art ” ot s o or” a”
£< Overview E|'-_9|L S0L {B‘ Events ﬁfj Sessions | &0 Object IO
SOL Statements Events Sessions
Statemnent e Event [User | Prograrn e
D03 1yseRT INT...0INSERTI ||| log file svnc B | SvsTEM
ck C.na... = u.userd I O CPU B SYSTEM
+ O UMKNOWN | || db file sequential read] ||| FYSTEM 3
< | y |« | IS >

e The top SQL tab provides more detailed information than provided on the Overview tab, in
terms of executing SQL statements and procedures. For more information, see "Top SQL
Tab" on page 11.

e The top Execution Activity (DB 2 Specific) tab provides details about the statements and
procedures that ran. This is DB 2 specific. For more information, see "Top Execution Activity

Tab (DB2 Specific)" on page 13.

¢ The top Events tab displays information about wait events profiled by the execution
process. For more information, see "Top Events Tab" on page 13.

® The top Sessions tab displays information about sessions profiled by the execution process.
For more information, see "Top Sessions Tab" on page 14.

® The top Object I/O tab (Oracle-Specific) tab does not appear in the Top Activity Section
unless the data source being profiled is an Oracle platform. This tab displays information
about the I/O profiled by the execution process. For more information, see "Top Object I/O

Tab (Oracle-Specific)" on page 14.

® The top Procedures tab (SQL Server and Sybase Specific) displays information about
procedures profiled by the execution process. For more information, see "Top Procedures

Tab (SQL Server and Sybase Specific)" on page 15.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 11

USING PROFILING > RUNNING A PROFILING SESSION

When you select any item from the Top Activity tabs, details are displayed in the Profiling Details
view. The tabs that appear in Profiling Details will be different depending on the database
platform and whether you selected a statement, session, or an event. This is to accommodate
the parameter specifics of the item you selected.

Top SQL TaB

The Profile editor's SQL tab shows a representation of all SQL statements that are executing or
waiting to execute over the length of the profiling session or within the currently selected graph
bars.

NOTE: The image below depicts results achieved for a Sybase database. The columns
displayed on this tab differ depending on the database platform.

Profile Session @ g
= BCPU OLock MUS B Metwork O Memory B Other
oz
'
= W
o T—

L
w
&1
=
2070w I o
S . S s S .
T = £ e
| S Overview | 0 50U L Events | g Sessons | E; Procedures |
Statements CPU Physical [0 | Mamory Usag 4
& select count(™) From doo, TYERDOR a1, dbo. TYENDOR a2, dbo. TVENDOR a3 whiere 1=] 7
#F INSERT INTO codruta b€ 1if, i, 1, u) WALIES { @i, &, @i, @) 2 3
B DELETE FROM codruta.t] WHERE jjj = (select mac(fii) from codruta,b1) & 4267
5% WHILE {SELECT COUNT(*) FROM codrutet1) = 1 BE.. . jij = (select max{jii) From codruba.t1) END 0 2163
Gk 52T @i= @i+ t 1
E‘f WHILE @i <= 1000000 BEGIM INSERT INTO codnut. . LUES | @, @i, @i, @i) SET @i= @i+ 1END L o
O% er laeke 5 o I
A1) | E]
Statements

Statements can be grouped by type by right-clicking the view and selecting Organize > By
Type. The statement types are: INSERT, SELECT, DELETE, and UPDATE

TIP: Statements are grouped when they differ only by their clause values. This enables the
roll-up of SQL statements that only differ by a variable value. For example: select * from
emp where empno=1; and select * from emp where empno=2. A '+’ symbol appears
beside rollup statements. You can click the symbol to expand and view the different
statement predicates.

Additionally, the SQL tab displays two other groupings of statements:

Group Description

OTHER Includes all recognized statements other than INSERT, SELECT, UPDATE,
and DELETE statements.

12 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

Group Description

UNKNOWN Statements that are not recognized by the application. DB Optimizer has
been improved to query the caching more often and more intelligently so
that UNKNOWN appears less frequently in the Top SQL tab. The system
queries the data source for SQL text in 15 second intervals. Unknown may
still appear infrequently as the SQL text may have been removed by the
database.

All statements are displayed in a tree structure with the following statement components:

Statement Component Description

Subject The DML statement type (and FROM clause, as appropriate).
Predicate The WHERE clause.

Remainder Any statement component following the WHERE clause.

For example, all statements with common subjects are shown as a single entry with multiple
children; one child for each unique predicate. Predicates are similarly broken down by
remainders.

NOTE: Right-clicking the SQL tab and selecting Organize By lets you choose between
Statement Type grouping and None. The None option disables grouping by
statement.

Statistics

Statistics are provided for statements and statement components. The statistics let you evaluate
costs and spot wait event problems not just at the level of entire SQL statements, but also at the
level of statement components. For each subject, predicate or remainder entry, the following
statistics are provided:

NOTE: Columns displayed on the top SQL tab differ depending on the data source platform.

Statistic Shown for Platform | Notes
Executions SQL Server, Oracle, | The number of active executions for the statement or statement
Sybase, DB2 component over the length of the profiling session or the selected
graph bars.
Avg. Elapsed (sec) Oracle, DB2 The average amount of time that elapsed while executing the

statement during the profiling period. This column appears for only
SQL Server, DB2 and Oracle datasources.

DB Activity (%) SQL Server, Oracle, | A graphical representation of the distribution of execution and wait
Sybase, DB2 time for the statement or statement component.
SQLID Oracle The ID value of the SQL statement. This statistic only appears on Oracle

data sources.

Child Number Oracle The child number in the database. This statistic only appears on Oracle
data sources.

Parsing User ID Oracle The ID of the user who parsed the statement. This statist only appears
on Oracle data sources.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 13

USING PROFILING > RUNNING A PROFILING SESSION

Statistic

Shown for Platform

Notes

Plan Hash Value

Oracle

The execution value of the statement. This statistic only appears on
Oracle data sources.

ToP EXECUTION ACTIVITY TAB (DB2 SPECIFIC)

In addition to the statistics displayed on the Top SQL tab, DB2 platforms have an additional tab
in the Profile Session editor named Execution Activity, which contains the following statistical
rows: Rows Read, Rows Written, Fetch Count, Statement Sorts, Sort Time, and Sort Overflows.

Top EVENTS TAB

The Top Events tab displays information about wait events on the resources involved in the
profiling process. This display is used to tune at the application or database configuration level.
For example, if the top events are locks, then application logic needs to be examined. If top
events are related to database configuration, then database setup should be investigated.

Profile Session

8 Bon CPU B System VO BUser 10 O Clustzr BApplication B Configuration B Commit B Metwal

W5

n

T

20 s > o » s @

o o

k] o w7 w7 W R w o7
2 overview | % 5oL | €5 Evers| 27 Sessions &0 Object [0

Ewent Wik Courk Mg, Per Wal (sac) Class DB Acthty (%) =

Ofl CPU Ol P [] 75.23
db file saquential read 445 0.359 User [IO [| 15.01
resmgricpu guantum 218 0,085 Schaduler 1] 7.9
db File parallal wriba 18 0.458 Sysbem [IO 0,61
erig: OF - contention & 1.194 Cither 0,32

NOTE:

The columns that display are data source-dependant. For example, the Wait Count and

Avg. Per Wait (sec) columns display only for an Oracle data source.

14

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

TOP SESSIONS TAB

USING PROFILING > RUNNING A PROFILING SESSION

The Sessions Tab provides information about individual sessions. This tab provides information
about sessions that are very active or bottlenecked.

EE overview | 5 S0L 'ET;) Events | £ Sessans

| Usar Name Program 51D Senals Activity (%) - Madhine Eession Type
ESTSTEM Execulor.exe 125 32563 I 27.19 EMBARCADERO'ROWEBITAD] WSER
ORACLE.EXE (C230) 162 iy 2067 TORLABORCL10G_1 BACKEROLND
ORACLE.EXE (maao) 111 229521 3.43 TORLABORCLIOG_1 BACHGROLMD
EYSTEM Exacutor.exe 143 2685941 2.72 EMBARCADERCNROWVEANITUCADL IUSER
ORACLE.EXE (SMOM) 154 i 1-70 TORLABORCL10G_1 BACKGROLMND
SYSTEM Sxecutor.exe 111 228831 2,37 EMBARCADERONROVISMOVACTL IUSER
EYSTEM Evecutor.exe 97 482281 1.86 EMBARCADERC\ROV/ENOVACTI USER
SYSTEM SxecUlon.exe 120 Ehlmme g | 1.59 EMBARCADEROROVENOVACDL USER
ORACLE.EXE (md01) 57 45155 1 1.54 TORLABCRCL10G_1 BACKGROLND
AN As = ove fuanank ac 8 a T ADANGTT a0, 8 L i ada U T]

Top OBJECT I/O TAB (ORACLE-SPECIFIC)

The Object I/O Tab is specific to the Oracle data source platform, and displays information

about Oracle I/O loads on the profiled data source.

Ei Quervien E.:'m S0L ﬂ:ﬁ Events gjic::irf 0 Obiect [jO

Coject Type

LB Actiwity [Yh) Teblesoace File ID

ENMF TAELE I 100 .00 SYSTEM 1

The following parameters are displayed on the 1/O tab:

B local w
Wreadb
B b fil=
0 db fil=
O drect;
0 direct
W direct
N drect;
0 Undo

B Other

Value Description
Object The name of the data source object affecting the Oracle I/0.
Type The object type. For example, table, partition, or index.

DB Activity (%)

load on the data source during the profiling session.

Use the color chart on the right-hand side of the I/O tab to view the 1/0O

Tablespace

The name of the tablespace where the object resides.

File ID

The unique ID value of the file from where specified object resides.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

15

USING PROFILING > RUNNING A PROFILING SESSION

ToP PROCEDURES TAB (SQL SERVER AND SYBASE SPECIFIC)

The Procedures Tab is specific to the SQL Server and Sybase data source platforms. It displays
information about Procedure loads on the profiled data source.

%% Overview | |5:E"|L L |{9 Events |§1 Sessions I_;?; Pruceduresl

Procedure Marme | Database Mame | Procedure ID | Executions | DB Ackiviy (%1 = |
{TEST_PROCZ cadriuta £50099055 1 50,00
TEST_PROCL cadriuta 1542107572 1 I 50,00

The following parameters are displayed on the Procedures tab:

Value Description

Procedure Name The name of the procedure affecting the database performance.

Database Name The name of the database where the procedure resides.

Procedure ID The unique ID value of the file where the specified procedure resides.

Executions The number of times the procedure was executed during the session.

DB Activity (%) Use the color chart on the right-hand side of the Procedures tab to view the
procedures load on the data source during the profiling session.

ANALYZE PROFILING DETAILS
The Profiling Details view displays detailed information on any item selected in the Top Section
View, such as an SQL statement, an Event, a Session or a Procedure.
U Prafiing Details) =58
S0L: INSERT INTO PERFCHTR_DATA_1(QUERYID, WALUEL) SELECT 951, COUNT(™) FROM SY5Y_SLOCK LSyYS.DEA OBIECT..

B sop Text | ot 5L Dtk | €8 Bvents | 29 seasions | BB chidren Details

SOL Tdentification Optimizer and Guthine Execution Skatistics (tobal) perexeculion Perrow
S0LID 1135735865 Oplimizer Mode ALL_ROWS Fabches 0,00 0,00 0,00
QL Address S99ECESD Farsng Liser ID § Execubons 1 L0 1.00
Child Address &3BAASZ0 CQutiine Cabegary Sorks 0 .00 0,00
Childnan 1 Culline 510 0 Disk Reads 1004 1,006,060 1,004,000

Blam Hash Valae 3582252508 Buffer G=t= 13261 13, 261.00 13,2600

Parsing Statistics

Madulz Exedubsr.exs 2 PRurws Processed 1 100 1,00
Action Memary 162433 P Time 93, 750,00 &3, 750.00 93, 750.00
500 Operation Code 2 Laacs 134 Slapzed Tme 70,279 420.00 70,279,820.00 70,275, 820,00
Program I00 10 1644 Invaidatiors 132

Frogram Line= 195

Depending on the data source platform you have specified, the tabs that appear in the view will
be different, in order to accommodate the parameter specifics of the statement you have
selected.

Depending on the top activity selected and the profiled platform types, some tabs may not be
available.

16 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

Statement Selected

When a Statement is selected the following Profile Detail tabs are available.

Tab Name | Description Supported Platform
Oracle | Sybase |DB2 |SQL
Server
SQL text Displays the full code of the selected SQL statement. yes yes yes |yes
SQL Details | Provides details on statement, like execution statistics. yes yes
Events Provides database activity details about events the statementis | yes yes yes |yes
associated with.
Sessions Shows which sessions executed this statement. yes yes yes |yes
Children Lists all copies of the cursor or sgl query, if Oracle has cached | yes
Details multiple copies of the same statement.
Object I/O | If the SQL query has done physical I/O, then these are the yes
objects, such as tables, and indexes that were read to satisfy the
query. Temporary objects with not have values in Object and
Type columns.
Procedures | Shows which procedures contain the selected statement. yes yes
Event Selected
When an Event is selected the following Profile Detail tabs are available.
Tab Name | Description Supported Platform
Oracle | Sybase |DB2 |SQL
Server
SQL Shows which SQL statements waited on this event. yes yes yes |yes
Sessions Provides information about the sessions associated with the yes yes yes |yes
event.
Procedures | Shows which procedures contain the selected event. yes yes
Raw Data Raw data that was sampled from the database, specifically the | yes
following:
® Sample time
¢ SID
e Serial #
® User name
® Program
e SqlID
* P1
* P2
*P3
Analysis Displays for “buffer busy waits” and “cache buffer chains latch” | yes
waits. The analysis shows data and documentation to assist in
solving these bottlenecks.
DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 17

USING PROFILING > RUNNING A PROFILING SESSION

Session Selected

When a Session is selected the following Profile Detail tabs are available.

Tab Name | Description Supported Platform
Oracle | Sybase | DB2 | SQL
Server
Sessions Provides parameters regarding the session. For example, yes yes yes
database server connection information, and data regarding the
client tool and application.
SQL Shows which SQL statements this session ran. yes yes yes |yes
Events Shows which events this session waited on. yes yes yes |yes
Procedures | Shows which procedures ran the selected session. yes yes
NOTE: When right-clicking on a SQL statement in the Top Activity Section in Profiling, if the

SQL statement is run by a different user than the user who is running DBO, than the
User Mismatch dialog appears, with an example of the following message: “This query
was executed by [SOE] and you are currently connected as [system]. We recommend
you reconnect as [SOE] to tune the SQL. Would you like to continue anyway?” This
message indicates that the statement is being tuned by a user other than the user who
originally ran the query, and tables may be missing based on the different schemas.

Click OK to run the query, or click Cancel and run tuning under the original user.

Procedure Selected

When a Procedure is selected, the following Profile Details become available

Tab Name | Description Supported Platform
Oracle | Sybase | DB2 |SQL
Server
SQL Text Shows the SQL text of the selected procedure. yes yes
SQL Shows which SQL statements this procedure ran. yes yes
Events Shows which events the selected procedure waited on. yes yes
Sessions Provides parameters regarding the session. For example, yes yes
database server connection information, and data regarding the
client tool and application.

This section also addresses the following topics:

¢ Viewing Details on the SQL Tab on page 18

e Viewing Details on the Sessions Tab on page 21
¢ Viewing Details on the Events Tab on page 92

18

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

e Viewing Details on the Procedures Tab on page 27

VIEWING DETAILS ON THE SQL TAB

In the Top Activity Session, selecting a statement entry on the SQL tab displays information in
the Profiling Details view. The graph portion and details on the event category tabs on the new
editor pertain only to the selected statement. Additionally, new tabs become available:

¢ SQL Text tab: Shows the full code of the SOL statement. For more information, see "SQOL
Text" on page 19.

® SQL Details tab: Displays execution details. This tab is only displayed for Oracle data
sources. For more information, see "SQL Details" on page 19.

* Events tab: Displays information about the events the selected statement is associated with.
For more information, see "Events" on page 20.

e Sessions tab: Displays information about the sessions that the selected statement is
associated with. This tab is displayed only for Oracle data sources. For more information, see
"Sessions" on page 20.

® Procedures tab: Displays information about the procedures that contain the selected
statement. This tab is displayed only for SQL Server and Sybase datasources. For more
information, see "Procedures" on page 21.

To select a SQL tab statement entry:

e On the SQL tab, click on a statement with no child nodes or on a leaf node in the statement
structure.

The new profiling editor page opens, as reflected by the bread crumb trail at the top left of the
editor. You can continue to drill down into the statement, as needed.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 19

USING PROFILING > RUNNING A PROFILING SESSION

SQL Text
The SQL Text tab displays the full code of the SQL statement.

i Profling Betails 52

SO SELECT COUNT(™) FROH (SELECT USERKAME FROM SYS.DEA_USERS WHERE DEFAULT_TABLESPACE="SYSTEM' OR TEMPO..

.;_ EQL Tent {PJ Events Eﬂ Sesshons | TH] Chigren Detals q‘ﬁ 57 Detals
SELECT COTMI (*)
FROH
I
EELECT USERNIME
FROM S¥E.DBA TSERS
WHERE
EFATLT TASLESPACE = "SYSTEM'
TEMPORARY TASLESPACE = '"5¥
THICH

SY5.08A T3 _QUOTAS
TABLESEALE HIHE = 'EVSTEM'

T GBANIEE

5Y3.D0A 55 PRIV3

WEIERE PRIVILEGE = E IETED TABLESPACE'

SQL Details

The SQL Details tab provides information and the execution of the statement and other
information related to how it is running. It is only applicable to Oracle data sources:

(G Profing Dol 5 :

|3k s TEt | @a 5O Detals [£33 Everts| 47 sessiors | @ Childien Datals |

SOL: TNSERT INTO PERFCHTR_DATA_1(QUERVID, VALUEL] SELECT 851, COUNT(=) FROM SYSV_sLOCK LSVS.DEA_OBIECT...

S0 Identification Optimizer and Dutline Execution Statistics (total) per execulion Perrow
SOLID f1357355065 Oabmzar Mode ALL_ROWS

T Adoress

Fetches 0,00 000 0,00

SI%ECESD Parsing Liser 1D 5

Ex=outions 1 L0 1.0
GEEAASA] Subine Cab=gory Sorts O (¥ i) 0.m
Bn 1 Qutine 5100 0 Disk R=acs 1004 1,C04,00 1,004.00
Flan Hagh Value 3592383808 . . Cuffer Gels 13261 13,265.00 13,25 .00
o Farsing Skatistics
Module Exedubar, &g e v R Rows Processed 1 1.6 1.00
Actian CPUTime 93,750.00 &3,750.00 93,750.00

50L Ope=raton Code 2
Program 1D B0 1644 Irvaidations 132
Frogram Lre= 185

Slapsed Time 70,275 420,00 70,279,320.00 70, 278.820,00

SQL Details include:

Parameters Description

SQL Identification Values The SQL ID value of the statement.

Optimizer and Outline Values Optimizer-specific values pertaining to the parsing user ID value and

outline SID.

Parsing Statistics Information regarding memory, loads, and invalidation values.

Execution Statistics

buffer gets, rows, and values that represent CPU and elapsed time.

The execution statistics of the statement. This category includes disk reads,

20

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING S
Events

The Events tab provides details about the events that the statement is associated with.

| @ Frofing Detain £1

SQL: INSERT INTO PERFCNTR_DATA_1(QUERYID, VALUEL) SELECT 951, COUNT(*) FROM SYS.V_$LOCK L 5Y5.DBA_DBIECT...

Sl 5L Text | gw QU Details | (D) Evente| 7 sessione | T Chidren Detais|
Event Activity (%) ™|

db file sequential read

1 i
db file scattered read 0.50

ESSION

Sessions

The Sessions tab provides information about any sessions the statement is associated with:
| @ ProfingDeisis i1

S0L: INSERT INTO PERFCNTR_DATA_1(QUERYID, YALUEL) SELECT 951, COUNT[*) FROM S¥YS.V_SLOCK L,5YS.084_DBIECT...
Bt 50 Tet | o 50t Detats €5 vents | £7 sessians | T chidren Details
Lismr Hame Aragram | =10 Sanal= | Actraty (%) - | Machins | Sezmion Type | |
SYSTEA Executar.exns 145 IR0 I 3. 1= EMBARCADER D AWENCOVAZDL LEER
SYETEH Execubar.exe 145 3242 I 0.85 E¥BARCADER ROWENCOVATZDL LS

Session details include information on different parameters, depending on the platform. For

example, on Oracle platforms, the following parameters are displayed: User Name, Program,
SID, Serial #, Activity (%), Network Machine Name, and Session Type.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 21

USING PROFILING > RUNNING A PROFILING SESSION

Procedures

The Procedures tab provides information about any procedures containing the selected
statement.

@ Frofiing Detsis 12 =8
S0L: WHILE {SELECT COUMT{*) FROM codrutatl) > 1 BEGIN DELETE FROM codrutat] WHERE jjj = (select mas{jj..
,EE SO beack | 51 Events _:-I Sesions _[';1 Praceduras

Procedure: hame Database Name Frocedure 1D Executions DB Activiby (%)
TEST_PROC? codruts ASO0RG0AE 1 I 16.19

The following parameters are displayed on the Procedures tab:

Value Description

Procedure Name The name of the procedure that contains the selected statement.

Database Name The name of the database where the procedure resides.

Procedure ID The unique ID value of the file where the specified procedure resides.

Executions The number of times the procedure was executed.

DB Activity (%) Use the color chart on the right-hand side of the Procedures tab to view the
procedures load on the data source during the profiling session.

VIEWING DETAILS ON THE SESSIONS TAB

In the Top Activities Section, selecting a statement entry on the Sessions tab displays
information in the Profiling Details view. The graph portion and details on the event category
tabs on the new editor pertain only to the selected statement. Additionally, new tabs become
available.

Selecting an event type entry on an event category tab opens a new profiling editor page. The
graph portion and details on the Sessions tab and event category tabs on the new editor page
pertain only to the selected wait event and to SQL statements that waited in that event.

e Session Details tab: Shows system details about the selected session. For more
information, see "Session Details" on page 22.

¢ SQL tab: Displays information about the SQL files that the selected session is associated
with. This tab only appears on Oracle platforms. For more information, see "SQL" on
page 23.

¢ Events tab: Displays the time and parameter information about the selected session. For
more information, see "Events" on page 24.

® Procedures tab: Displays the details of any procedures run in the selected session. For SQL
Server and Sybase datasources only. For more information, see "Procedures” on page 24.

22 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

Session Details

The Session tab provides further information about the selected session. The following are
examples of the session details provided for different platforms.

NOTE: The fields that display vary depending on the database platform.

Oracle Profiling Details

Session: 145, 9180

ES session Detais | B 59| (D Events|

Database Server Connection Client Tool Application
SID 145 Program Exepuior.exs SOLID 15945343752
Sensls 9180 05 User NT AUTHORITY \ARNCHYMOUS LOGON SQL Operation Code 3
Lizer Mame SYSTEM 05 Process 1D TB72: /676 Last Call Bapsed Time 96

Process OS5 PID 142532 Host EMEBARCADERC ' ROWSHOVACDL Modu'e Exscutor.sxs
Logged On Time 2008-12-19 17:25:08.0 Terminal ROWSMOVACDL Action

Logged On For 00:01:27.0 Chent ID S0 Trace DISAHLED
Connecton Type DEDICATED Client Infa

Sesson Typs USER
Resauros Carsumer Group

Microsoft SOL Server

Session: 55_2009-092-30 09:40:34.940 (5a / Executor Module)
= Session Detais | 5 5oL | (5 Everts |

Database Server Connection Client Application

SPID 55 Application neme Executor Madule
KPID 4,048 MT domain
Database 10 100 NT wse s

User IDv O Hosk process I 3552
Login bimee 20009 -09=30 09:40: 34,94 Hostrearme TORLABDEMOO1
et address 00OCZ9592136
Met bbrary TCPIIP

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 23

USING PROFILING > RUNNING A PROFILING SESSION

SQL

The SQL tab displays information about the statements associated with the session.

i Profiing Detais £

Session: 145, 9180

=2 Secmon Detes | Ty 50U £5 Events

Shetement

%%

¥%3 [SERT INTO PERFCNTA, D... AND L 6 =

+$ MWEERT INTC FER=CI-\.TR_ .. LEER=FROM 5¥5 . USER L 0.20 530002594 a

W TEECT cci:*r['j--—.!rr-: SY...=ERE STATLS = TOLITME Lk 0.05 LR45343752 a 8 ZE10734404
;,',EJH‘J:IJ-T~ Li 0.05 3440472121 0 0o

SQL statements are listed by the following parameters:

Value Notes

Statement The name of the statement.

Executions The number of times the statement was executed during the session.

Activity (%) A graphical representation of the distribution of execution and wait time
for the statement or statement component.

SQL ID The SQL ID value of the statement.

Child Number The child number in the database.

Parsing User ID

The ID of the user who parsed the statement.

Plan Hash Value

The execution value of the statement.

24

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

Events

The Events tab provides details about the events that the session is associated with.

USING PROFILING > RUNNING A PROFILING SESSION

r@ Frofiing Details &3

Session: 145, 9180

5oL

££ session Details | & saL [{E} E'u'enisl

Event | Actvity (%) |

i db file sequential read | 2.79
db file scattered read 0,60
local verite wait 0,05

Events are listed by the following values:

Value

Notes

Event Name

The name of the event.

Activity (%)

A graphical representation of the distribution of execution and wait time

for the statement or statement component.

Procedures

For SQL Server and Sybase data sources only, the Procedures tab provides details about the
procedures that the session is associated with

@ ProfingDetsis 1 =0
Session: 112, 5505108 (sa)
EE sessanpessic | T squ (D) events |) procedures
Procedure Mame | Frocedure I | Executions | DB Activiky (%)
TEST_PROCE codruta ASO0FG0EE 1 T £00.00
DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 25

USING PROFILING > RUNNING A PROFILING SESSION

The following parameters are displayed on the Procedures tab:

Value Description

Procedure Name The name of the procedure that ran during the selected session.

Database Name The name of the database where the procedure resides.

Procedure ID The unique ID value of the file where the specified procedure resides.

Executions The number of times the procedure was executed during the session.

DB Activity (%) Use the color chart on the right-hand side of the Procedures tab to view the
procedures load on the data source during the profiling session.

VIEWING DETAILS ON THE EVENTS TAB

In the Top Activities Section, selecting a statement entry on the Event tab displays information
in the Profiling Details view. The graph portion and details on the event category tabs on the
new editor pertain only to the selected statement. Additionally, new tabs become available.

Selecting an event type entry on an event category tab opens a new profiling editor page. The
graph portion and details on the Events tab and event category tabs on the new editor page
pertain only to the selected wait event and to SQL statements that waited in that event.

e SQL tab: Shows the statements involved in the selected event. For more information, see
"SQL" on page 25.

* Sessions tab: Displays information about the sessions that the selected event is associated
with. For more information, see "Sessions" on page 26.

® Procedures tab: Displays information about the procedures that ran during the selected
event. For more information, see "Procedures" on page 27.

SQL
The SQL tab displays information about the SQL statements involved in the selected event.
@ Profing Detais 1 = A
Event: wail for someone else bo finish reading in mass

B 50| 27 Sessions | &) Procedures

Statements PU Physical 10 | Memoary Usage Eseuy
3 DELETE FROM codruta,t] WHERE j1i = (sefect mac(ij) from codruta,t1) 0 K] B
.T:t WHILE [SELECT COUNT(*) FROM codruta k1) = 1 BE., . E jjj = (sedect macx(i) from codruts. k1) END 1] 1625 B
Value Notes
Statement The name of the statement.
SQL ID The ID value of the SQL statement.
Child Number The child number in the database.
Parsing User ID The ID of the user who parsed the statement.
Plan Hash Value The execution value of the statement.

26 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

Value Notes

CPU Cumulative CPU time for the process. (measured in “ticks”, an arbitrary unit
of time)

Physical 1O Cumulative disk reads and writes for the process. (total count)

Memory Usage

Number of pages in the procedure cache that are currently allocated to
this process. A negative number indicates that the process is freeing
memory allocated by another process.

Executions

The number of times the statement was executed.

Activity (%)

A graphical representation of the distribution of execution and wait time
for the statement or statement component.

Sessions

The Sessions tab displays the sessions and related information regarding those that were
associated with the selected event.

1@ Profiing Datals

[T
5o | g0

User [ame

| 15MmE
| 575

| SHSTEM
| 1enE
[

The following parameters are

: & i
- Besskng >.Jg.-_ Raw Data

Frogram

QRACLEEXE (CTWR)
GRACLE_EXE {DEWE)
QRACLEEXE (MMOMN)
QRACLE.ENE (3002}
ORACLE_ENE {SMON)
ORACLE EXE (PSP
QRACLE.SXE (M015)
QRACLEEXE {007)
Enomourtor mne
QRACLE.EXE (M000)

510

Event: O CFU

Madune
31,42 EMIWRCADERCIRCWWERITADL

Attty {32

7 — 25,43 TORLATORCLIOG 1
1 0.5 TOALABORCL G 1 ACHLIND
1 0,45 TOALASCRCL 105 _1 EACHGAIUND
26503 0,10 TOALAZORCL DG] USER
1 0.10 TOALAZORCL 1aG_1 BACKGRCOUND
1 0,10 TORLASORCL 1OG 1 BACKGATUND
1 0,05 TORLA3CORCL10G_1 USER
E) 0,05 TORLAIORCL 190G _1 USER
a4z 0.05 EMBARCADER OROGEMOVATD UISER
5 0,05 TORLAFORCL 106 _1 USER

displayed on the Sessions tab:

Value Notes

User Name The user name under which the session was run.

Program The name of the executable under which the session was run.
SID The SID value of the session.

Serial Number

The serial number of the machine from which the session executed.

Activity (%) A graphical representation of the distribution of execution and wait time
for the statement or statement component.
Machine The machine name and network location of the machine from which the

session executed.

Session Type

The type of session.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 27

USING PROFILING > RUNNING A PROFILING SESSION

Procedures
The Procedures tab displays the procedures and related information regarding those that were
associated with the selected event.
@ Profing Detads 5 =8
Ewent: waiting for disk write to complete
oo | 27 Sessions | B Procedures

Procedure hamea Database Name Frocedurs 10 Exmoutions DB Actrviy (%)
TEST_PRieCi codruta 1842102572 1 [1 (0, ()

The following parameters are displayed on the Procedures tab:

Value Notes

Procedure Name The name of the procedure that ran during the event.

Database Name The name of the database where the procedure resides.

Procedure ID The unique ID of the procedure.

Executions The number of times the procedure ran during the event.

DB Activity (%) A graphical representation of the distribution of execution and wait time
for the procedure.

VIEWING DETAILS ON THE PROCEDURES TAB

In the Top Activities Section, selecting a procedure entry on the Procedure tab displays
information in the Profiling Details view. The graph portion and details on the procedure
category tabs on the new editor pertain only to the selected procedure. Additionally, new tabs
become available.

Selecting a procedure type entry on a procedure category tab opens a new profiling editor
page. The graph portion and details on the Procedure tab and procedure category tabs on the
new editor page pertain only to the selected procedure and to SQL statements that waited in
that procedure.

e The SQL Text tab shows the SQL of the procedure. For more information, see "SQL Text"
on page 28.

e The SQL shows the statements involved in the procedure. For more information, see "SQL"
on page 28.

® The Events displays the time and parameter information about the selected procedure. For
more information, see "Events" on page 29.

* The Sessions displays information about the sessions that the selected procedure is
associated with. For more information, see "Sessions" on page 29.

28 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

SQL Text
The SQL Text tab displays the full code of the procedure.
@ Profing Detsis £ =8
Procedure: TEST_PROCI

500

2 son Text | 2 s | {5h Evers | 47 Sessions

CREATE FROCEDURE dbo.TEST _FROC1 AS i
DECLARE Bi INT
BEGIN
SET Bd = 1
WHILE
#i <= 1000000
BEGIN
SQL

The SQL tab displays information about the SQL statements involved in the selected procedure.
@ Frofiing Detsis £ =8

Procedure: TEST_PROCI

S8 oon Test | B soL | V5 Events | 37 sessions
Statements CPU Physical 10 | Memary Usage Execu
#% TNSERT INTO codruta, 11 iif, i, i, u) VALUES { @, @i, @, 5) z 3 E:
5} WHILE 4 <= 1000000 EEGIN INSERT INTO cadrut,, LUES { @, &, @, @i) SET @i = @i + 1 END 1 0 8
% SET @i = @i+ 1 1 0 8

The SQL tab displays the following parameters about the statement:

Value Notes

Statement The name of the statement.

SQL ID The ID value of the SQL statement.
Child Number The child number in the database.

Parsing User ID

The ID of the user who parsed the statement.

Plan Hash Value

The execution value of the statement.

CPU

Cumulative CPU time for the process. (measured in “ticks”, an arbitrary unit
of time)

Physical 1O

Cumulative disk reads and writes for the process. (total count)

Memory Usage

Number of pages in the procedure cache that are currently allocated to
this process. A negative number indicates that the process is freeing
memory allocated by another process.

Executions

The number of times the statement was executed.

Activity (%)

A graphical representation of the distribution of execution and wait time
for the statement or statement component.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 29

USING PROFILING > RUNNING A PROFILING SESSION

Events

The Events tab provides details about the events that the session is associated with

@ Profling Detads 13

500

o son Text | o sol [{Eh Everks| 47 Sessions

Procedure: TEST_PROCI

Event “ Chass
wasiting For disk wrike to complete (a]
wutng o ok el e e 7
waziting for ssmaphore LK
waziting on run gueds after sleep CFU
waaiting on run gueus after yield CFU

Events are listed by the following values:

Value

Notes

Event Name

The name of the event.

Class The wait group the event in the selected procedure belongs to.
Activity (%) A graphical representation of the distribution of execution and wait time
for the event.
Sessions

The Sessions tab displays the sessions and related information regarding those that were
associated with the selected procedure.

i@ Frofing Detais &3

0 cog Text | B sou | (D) Evenes | 20 Sessions

User Name Applicaton SPID

Procedure: TEST_PROCI

KPID Active (%) v Hast Name 1P Address
40 si11966 I 100.00 TCAMYEGHD] 10.40,30, 155

The following parameters are displayed on the Sessions tab:

Value Notes

User Name The user name under which the session was run.

Program The name of the executable under which the session was run.
SID The SID value of the session.

Serial Number

The serial number of the machine from which the session executed.

Activity (%) A graphical representation of the distribution of execution and wait time
for the statement or statement component.
Machine The machine name and network location of the machine from which the

session executed.

Session Type

The type of session.

30

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

SAVING PROFILING SESSIONS

The profiling session is saved automatically or when you try to close it according to the choices
made in the Profile Configuration dialog. For information on configuring the your profiling
sessions, see "Building Launch Configurations" on page 39. Profiling sessions can be saved in
the current workspace in an archive file with a .oar suffix or for Oracle users, into the Profiling
Repository.

The .oar archive file is named with a default file name of:

® The name of the data source if the session was not initiated from a named launch
configuration

® The name of the launch configuration if the session was initiated from a named launch
configuration.

If you are using an Oracle data source and have configured DB Optimizer to automatically save
profiling sessions in a Profiling Repository within an Oracle data source, then the profiling
session is saved in the Profiling Repository under the name of the data source. Each profiling
session for that data source is named using a date and time stamp. As you can see below, the
duration of the profiling session is also saved with the session data.

= 5§ TORLABORCLS 1
%13 Databass Chjects
=r{ili] Profilrg Reposkory
= Sl ROMLABORCLIOG 2
[@ 2000-02-18 21:55:16 (1m)
L& 2000-02-23 Z2:50:03 (1m)
[g 2000-02-24 20:38:03 (2m)
L&y 2000-02-24 20:43:00 (1m)
+ s ROMLABORCLI0G_3

For information on working with the Profiling Repository, see "Work with the Profiling
Repository" on page 31.

The time period of the saved session is the amount of data on the chart. The maximum amount
of data on the chart is determined when profiling is started (1 hour default). You can specify the
amount of time to profile the data source in the Profile Configurations dialog and you can also
stop the profiling at any time.

Saving the profile lets you open the archive at a later time for subsequent analysis by yourself or
by other DB Optimizer users. Use standard DB Optimizer file techniques to save, open, or close
SQL Profiling archives.

If you open a profiling archive on a machine on which the associated data source is not
registered, a Data source not available warning appears in the profiling editor header. Use the
associated control to specify a data source already defined on the machine or to register a new
data source.

b EXTOVMHHBO2 % naacacn acs aiaisiia

Attach Existing Data Source ...

Profile Session Aktach Mew Daka Source ..

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 31

USING PROFILING > RUNNING A PROFILING SESSION

WORK WITH THE PROFILING REPOSITORY

NOTE: Saving wait-time statistics to the Profiling Repository is not supported in DB Optimizer
XE Developer.

The Profiling Repository is only available when profile session data is saved to an Oracle data
source. For more information, see "Building Launch Configurations" on page 39. When the
system is configured to automatically save profiling information to the Profiling Repository DB
Optimizer can profile 24 hours a day 7 days a week, thus providing much more statistical data for
analysis. Also, since the Profiling Repository resides on a data source and not on the local disk,
other DB Optimizer users can also view and analyze the profiles.

To start saving profile sessions to the Profiling Repository:

1 From the Data Source Explorer right-click the data source you want to profile for and select
Profile As from the menu, then choose Profile Configurations.

The Profile Configurations dialog appears.
2 In the Name field of the Profile tab, enter a name for the profile group for this data source.

3 Inthe Profiling Repository area of the Profile tab, click Save to data source and then from
the list of available datasources, choose the Oracle data source where you want to store your
profiling information.

4 Click Apply and then click Profile to start a profiling session immediately.

Any new profiling session that you start continue until you manually stop it. The profile
session can be for as long as you like, days or weeks even. When the profiling session has
been stopped a profile file is stored in the profile group for this data source. The name of
the profile file is the date and time when the profile finished.

To delete profile sessions saved in the Profiling Repository:
1 In the Data Source Explorer, locate and then click the Profiling Repository.

= 5§ TORLABORCLS 1
Tl Databass Chjads

= i ROMLABC S5
L& 2000
[& 2010
L& 2010-
Lg 2010 =
& ROMLABL
18] ROMLABC
i ROMLABC gy Clean

I!I ROMLABC Lﬂ Desete 4l
{8 ROMLABFroor ot

G Irko

Froparties

4 R ==

DB Optimizer connects to the Profiling Repository data source.

32 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

2 To delete all sessions in the Profiling Repository, right-click Profiling Repository and then

select Delete All.

To delete a specific profiling session, expand the Profiling Repository and the data source
containing the profiling session, and right-click the name of the profiling session, and then

select Delete.

The profiling session data is deleted, however, some information about the data source is
retained in order to expedite future profiling on this data source. If you are certain you will
not want to retain this information, right-click the Profiling Repository and then select Clean.

IMPORT STATEMENTS TO TUNING

The profiling feature lets you submit one or more SQL tab statements for tuning by the tuning
feature. This lets you take advantage of tuning’s hint-based and transformation-based
suggestions, detailed execution statistics, and explain plan costing, in tuning a statement.

Overview | B 5QL {P} Ewvents g-‘-::ﬂ Sessions | B0 Object Ij0
SQL Statements
Statement DB Activity (%)
IET=Tvrmeerre e BN
Cid pygr Organize By ' .67
sat BEC -8 Explain Plan I ij%

o SEL |

To open a tuning job on a statement appearing on the SQL tab of the profiling editor:

e Select one or more statements, right-click and select Tune from the context menu. Tuning
opens on the selected statement.

NOTE:

The SQL will be tuned as the user/schema that profiling was running under. If the query
being tuned was run by another user/schema, it is recommended to connect to the
database as that user/schema and copy/paste the query into tuning, rather than import
the statement directly from profiling.

For more information, see “Tuning SQL Statements” in the SQL Tuner help.

OTHER PROFILING COMMANDS

In addition to the default viewing options provided by the views, profiling also provides the
following features and functionality:

® Zooming In and Out. For more information, see "Zooming In and Out" on page 33.

e Filtering Results. For more information, see "Filtering Results" on page 34.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 33

USING PROFILING > RUNNING A PROFILING SESSION

ZOOMING IN AND OUT

To zoom in or out on the Load Graph:
In the upper right-hand corner of the Load graph, click the Zoom In or Zoom Out icons,
respectively.

NOTE: The Zoom In and Zoom Out commands are only available when a session has been

stopped.

By default, the information contained on the Load Chart spans the entire length of the profiling
session. You can select one or more bars of the graph to have the tabbed view populated with
statistics for only the selected subset of the graph.

To display statistics for one or more bars on the graph, use one of the following methods:

Click-drag across one or more bars.

FILTERING RESULTS

You can display filtered subsets of the original profiling results set for each section of profiling
based on DBMS platform type:

e IBM DB/2 for Windows, Unix, and Linux: Creator ID, Cursor Name, Package Name, and
Statement Type

* Microsoft SQL Server: Application Name, Command, Database Name, and Hostname
¢ Oracle: Action Hash, Module Hash, and Program
¢ Sybase: Application, Database ID, Host, IP Address, and Process priority

You filter results using the filter controls in the upper, right-hand part of the profiling editor.

Filter by: | -hone- v H)ﬁh I

Additionally, on Oracle platforms, you can filter results by user, or foreground, or background
activity. Select All, User (Foreground), or Background to filter out the specified process activity,
respectively.

34 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING PROFILING > CONFIGURING PROFILING

To filter profile editor results:

1 Use the Filter By menu to select a filter type. The second menu becomes active based on
your selection in the first menu.

2 Use the second menu to specify a value.
The profiling editor is updated to show only results associated with your choice.

TIP: Select -None- from the Filter by dropdown to restore the unfiltered results.

CONFIGURING PROFILING

This section addresses the following topics:

e Configuring DBMS Properties and Permissions on page 35

e Building Launch Configurations on page 39

CONFIGURING DBMS PROPERTIES AND PERMISSIONS
Profiling supports the following DBMS platforms:

e |BM DB/2 for Windows, Unix, and Linux
e Microsoft SQL Server

e Oracle

e Sybase

The following describe how to set up a platform to utilize Optimizer on supported database
platforms:

e Configuring IBM DB/2 for Windows, Unix, and Linux on page 35

e Configuring Microsoft SQL Server on page 37

e Configuring Oracle on page 38

* Configuring Sybase on page 38

CONFIGURING IBM DB/2 FOR WINDOWS, UNIX, AND LINUX
NOTE: The connected profiling user should be a member of the DB2 SYSMON group.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 35

USING PROFILING > CONFIGURING PROFILING

By default, DB2 Monitor flags are set to OFF. As a result, when attempting to launch a Profile job
on a DB2 data source, users may encounter the following message: “One or more errors have
occurred that prevent session profiling against this data source.” Examine the details below and
consult your data source administrator and/or the data source documentation to resolve the
problem(s).”

You can resolve this error using one of two methods:
¢ Enabling DB2 Monitor Flags via Embarcadero DBArtisan

e Command Line Option

To resolve the error through DBArtisan:

1 Ensure the following DB2 Monitor Flags are turned on in DB2:
e dft_mon_uow

e dft_mon_uow

dft_mon_stmt

dft_mon_timestamp

dft_mon_lock

dft_mon_bufpool

dft_mon_table

dft_mon_timestamp

You can set view and set Monitor Flags via DBArtisan. Ensure that the New Value field for
each variable is set to Yes, as shown below.

Edit Configuration for TCP1ESE

Parameter: | dft_ran_bufpaal |

Current W alue: |EIFF |

Hew alue:

(1] 4 | |ﬁ Cancel | | r:, Help |

2 Restart the DB2 data source to enable the changes, then launch DB Optimizer and begin
profiling.

36 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING PROFILING > CONFIGURING PROFILING

To resolve the error through the command line:
This solution must be performed from DB2 CLP, on the DB2 server. If you attempt to perform
these tasks through a client, an error message will result.

1 Navigate to start > Programs > IBM DB2/COMMAND LINE TOOLS > COMMAND LINE
PROCESSOR.

2 Turn the monitor switches on using the following commands:

db2 update dbm cfg using dft _mon_lock on dft mon bufpool on dft mon_ sort on
dft mon stmt on dft mon table on timestamp on dft mon uow on

db2stop

db2start

3 Ensure that the switches are turned on by connecting to the server with the following
command:

Db2 connect to database username password password

The following screenshot provides an example of the input and output from the server:

dbZ => connect to gim user dbladmin
Enter current password for dbladmin
dbZ2 => get monitor switches

Monitor Recording Switches
Switch list for db partition number 0

Buffer Pool Activity Information (BUFFERPOOL) = ON 03/05/2009 19:14:06.61257
Lock Information (LOCE) ON 03/05/2009 19:14:06.61257

Sorting Information (SO0RT) = ON 03/05/2009 19:14:06.61257
SQL Statement Information (STATEMENT) = ON 03/05/2009 19:14:06.61257
Table Activity Information (TABLE) = ON 03/05/2009 19:14:06.61257
Take Timestamp Information (TIMESTAMP) = ON 03/05/2009 18:50:44.00034
Unit of Work Information (UOW) = ON 03/05/2009 19:14:06.61257

CONFIGURING MICROSOFT SQL SERVER
Perform the following tasks to ensure that SQL Server is compatible with Optimizer:

e If you are setting up SQL Server 2000, ensure the current user is a member of the sysadmin
group.

e |f you are setting up later versions of SQL Server, the current user must meet one of the
following requirements:

® Be a member of sysadmin, or have the VIEW SERVER STATE permission enabled.

e Be a member of sysadmin, or have the SELECT permission enabled.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 37

USING PROFILING > CONFIGURING PROFILING

On SQL Server 2000 only:
You can enable profiling to capture more SQL by adding the following flag:

DBCC TRACEON (2861)

Trace flag 2861 instructs SQL Server to keep zero cost plans in cache, which SQL Server would
typically not cache (such as simple ad-hoc queries, set statements, commit transaction, and
others). In other words, the number of objects in the procedure cache increases when trace flag
2861 is turned on because the additional objects are so small, there is a slight increase in
memory that is taken up by the procedure cache.

Ensure you restart the server for your changes to take affect.

CONFIGURING ORACLE

Oracle users need access to V$ views. In order to configure Oracle to provide users with these
privileges:

e If you are setting up Oracle 10 or later, ensure you are logged in as sys or system with the
sysdba role, or the SELECT_CATALOG_ROLE has been granted to user_name.

e If you are setting up an earlier version of Oracle, ensure you are logged in as sys or system
with the sysdba role.

CONFIGURING SYBASE
Perform the following tasks to ensure that Sybase is compatible with Optimizer:

e Ensure the following system configuration properties are activated:
® Enabling Monitoring (sp_configure “enable monitoring”, 1)
e Wait Event Timing (sp_configure “wait event timing”, 1)
* Max SQL Text Monitored (sp_configure “SQL batch capture”, 1)
e SQL Batch Capture (sp_configure “max SQL text monitored”, 4096)
Additionally, perform the following tasks, as necessary:

* |f a user does not have mon_role enabled, the user will not be able to access Adaptive
Server's monitoring tables.

e If the monProcess table is missing, the user will not be able to view currently connected
sessions.

e If the sysprocesses table is missing, the user will not be able to view information about
Adaptive Server processes.

e |f the monWaitEventinfo table is missing, the user will not be able to view information about
wait events.

38 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING PROFILING > CONFIGURING PROFILING

® |f the monProcessSQLText table is missing, the user will not be able to view currently
executing SQL statements.

NOTE: These packages should only be installed by the DBA.

Profiling enables you to create a set of launch configurations to store the basic properties for
each profiling session that you run on a regular basis. A launch configuration enables you to start
profiling sessions from a single menu command, rather than re-define configuration parameters
each time you want to run one.

BUILDING LAUNCH CONFIGURATIONS

Profiling enables you to store parameters related to specific profiling sessions, in a launch
configuration for stored routines. Multiple configurations can be created for each data source in
your enterprise and saved with unique names that identify them in the application.

NOTE: On all supported platforms, support for stored routines includes functions and
procedures. On Oracle, stored routine support also includes package functions and
package procedures.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 39

USING PROFILING > CONFIGURING PROFILING

To create a launch configuration:

1 Right-click on the data source you want to build a configuration for and select Profile As

from the menu, then choose Profile Configurations.

The Profile Configurations dialog appears.

& Profile Configurations @

Create, manage, and run configurations

A

= m Data Source

X o

i

L] Mew data s | Data source: | TORLABORCLEI 2 (Oracls) v|
ik ROMLABOR| | Profiling Repositary
ik RoMLABOE (%) Save to disk { .OAR fils)
MSvaclbDI.f o lerath |1 ‘||‘| |E| J,h|]
m TORLAEOR Time inkerval length: + | DOurs ~ | minutes
il ToRLABCR () save to data source:
lilsf ToRLABCR
m TORLAES) Real-time profiling
m TORLABSC) Showe data while profiling session is in progress
i soL Stared Ros
< .
Filter matched 11 of 11
o
@_,J [Profile] [Close]

Mame: | sfvpclbdl. embarcadero.com |

|E_[:| Prafile

=] Common

2 Select the name of the data source and modify the parameters on the Profile tab, as

needed.

3 In the Name field, provide a name for the launch configuration. You should select a name
that will make the launch configuration unique and easily identified once it is saved in the

application.

40

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING PROFILING > CONFIGURING PROFILING

4 In the Profiling Repository area, choose to save the profile session to disk or if you are
profiling an Oracle data source then you can choose to save the profile session to the data
source.

If you choose to save the session to disk, in the Time interval length area specify the length
of the profiling session. When you try to close the Profile Session, you will be prompted to
save the file and can then name the file as desired.

A .oar file saved to disk opens very quickly from File > Open dialog and has a limit of just
under 1000 hours of profiling data. Profiling to a data source directly allows the system to
capture more data for a longer period of time, until you decide to stop the profiling session.
The profiling session is automatically saved to the Profiling Repository where other DB
Optimizer users can also view the session for their own analysis.

5 Click Apply. The launch configuration is stored in the application.

Once a launch configuration is defined, you can execute it in profiling. For more
information, see "Running a Profiling Session" on page 5.

NOTE: The parameters provided when you select the data source name in the left pane control
session parameters for the specified data source. To set these controls, see
"Configuring DBMS Properties and Permissions" on page 35.

The following describes fields and options of the Profile tab that require further explanation.
e Name indicates the name of the profile configuration.

¢ Data source indicates the name of the data source to which the profile applies.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 41

USING PROFILING > CONFIGURING PROFILING

¢ Save to disk/Save to data source gives you the option to save your profiling session to a
.oar file which you can access from within DB Optimizer or you can save the profiling session
to a data source of your choice if you are using an Oracle data source. DB Optimizer will
create a Profiling Repository, similar to the following on the selected Oracle data source. The
structure of the Profiling Repository is created from the name of the data source and the
date and time of each specific profiling session.

E'EI Data Source Explar 23 % S0L Project Explore = 0O
TN

=l = Managed Data Sources (&) L
=I-1=F Data Source Group (3)
=== Microsoft SOL Server (2)
+-l=F Microsoft SOL Server (1)
+- Sl TORLAESQLOO_1_#2 (501 Server 60,20
=l l=F Orade (&)
+ i| Mew daka source (Oracle 5,1.7.4)
+- i ROMLABORCLEI_L (Cracle 8,1.7.4)
+- Sl ROMLABORCLSI_Z (Cracle 2,2.0.1)
= _‘gi sfvpclb0l.embarcadero,.com (Cracle 10,2
+ L_Lj Database Ohjects
= M Prafiling Repository
= i ramlabsql0S_1-sa
g 2010-01-08 00:46:23 34m)

+ [l TORLABORCLSI 2 (Cracle 5.1.7.4) v
$ »

Saving your profiling sessions to a live data source enables you to better organize your
profile session data for later review.

¢ Time Interval Length indicates how many hours of the session to save to disk. Since the
profile session continues until you manually stop it the session length may exceed the time
interval length. For example, the time interval length is set to four hours but the profiling
session continues for 10 hours. In this case only the last four hours of data is retained. This
parameter also indicates the total width of the time load graph. The longer a profile is, the
larger the saved file will be. For heavily loaded databases, the time interval length value
should not exceed eight hours.

* The Show Data While Profile Session is in Progress check box enables “real time”
profiling, which refreshes the data of the session as profiling runs. The Refresh Interval
specifies how often in seconds profiling updates this data.

NOTE: Profiling can run sessions based on ad hoc parameters you designate before executing
the profiling process. However, by building profile launch profiles, it is a much more
efficient method of managing standard, frequent, or common profiling sessions.

42 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING LOAD TESTER

File Edit Mavigate Search Project Run

USING PROFILING > USING LOAD TESTER

Window Help

iR o e]im e

The load editor can be run either with File > New > Load Editor or with the load editor icon

shown above in the red square.

The icon depicts an RPM meter on a car with a red line. The idea behind the icon is that we can
run a load on a database and stress the database with the load similar to red lining.

48 SO0 Optimization - Load Editor/ni_pl_outer_inner.osl - Embarcadero DB Optimizer - C-\Documents and Settingsik. .. r:_||ﬁ||'£|

File Edt HNavigate Search Progect Eun Window Help

- I Qe

) nl_pl_cuter mnerosl 5 3 ri_inner_outer.cs _"_'j *nl_setup. 53

dy | B8 192.168.1.104 ghacce dete sousc

® AdhacSQL () SOL fie

in (#elect id from CUGEX) Loop

WLET i

({sslest id from inner wheare id =

HNumber of parallsl s=czons; 2

[#] Execution end oonditian

() Time:

(%) umber of executions: | 30

D‘:- BED DESWDEN ENEILITIONE

r:j -

= s T

The load editor page has space on the left to show the sgl to be run. The sgl can be typed in or
pasted in or read from a file if the SQL File option at the top right-hand side of the window is

selected.
On the right are options on how to run the SQL
® Number of parallel sessions
e Length of test
* Number of executions
Sleep between executions
e No sleep

e Fixed sleep

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

43

USING PROFILING > USING LOAD TESTER

e Random sleep between a max and min

Methodology
e \Write SQL with Editor

Set up Load with Load Editor

Kick off profiling the database

Run the load in the Load Editor

Verify the database load profile to see if there are any major issues

The SQL Load Editor enables you to configure and execute SQL code against a data source.

| B lab_system chargedassouce

®adhoesqL S0l fe

"
F
(e BLE |

]
L | !11

MERTY

-
. H
$ oo

@ e #
'r: o W O

e
(O |

i O

§i o

WD _RETROPARY EARN

. PS_RETROPAY_

T

dal

i

ot of paralel geqnee &

[l Exeston end condter:

) tme:

&) Nurber of exscutions: |25 &
[#] Gmms et men snpe b

{=) Fomd delay 1000 5 s

{7 Randam ritsrsl

, BS_RETROPAYPGM TBL E
nese A.RUN ID = ‘P02
and A.FAY_CONTIRM ATWM - "
and B.COMPANY = A,CCMPANY
and B PRYGROUF = A.FPAYGRCUP
ard E.CFF CYCLE = A.PAY CFF CYCLE CAL
and B.EFFDT = (SELECT

*+ gb name vk R3) *

MAX (F.EFFDT

w3

©

This feature enables you to specify a data source against which the code will be executed, and
then provides options that enable you to choose a period of time that you want the script to
execute for, and at what intervals the execution “loop” occurs.

On execution, SQL Load Editor runs in the background. It can therefore be run in conjunction
with a profiling session in order to analyze the effects of the executing load against the specified
data source. Once you run a SQL script via Load Editor, you can start the SQL Profiling function

and analyze the results of the load.

44 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING PROFILING > USING LOAD TESTER

The Load Editor is accessed via the Load Editor icon on the Toolbar:

. SOL Optimization - Untitled SQL Load - Embarcadero DB Optimizer - C:\Documents 3
File Edit Mavigate Search Project Run Window Help

0-8-Q-: 4 :

When you open Load Editor, click Select Data Source to specify the data source against which
you want the SQL script to run.

Choose Ad hoc SQL and manually type (or copy/paste) the SQL code into the window provided,
or select SQL file and navigate to the SQL file you want to run. The window populates with the
code from the selected file.

The following configuration parameters are set with Load Editor prior to executing the SQL
script:

Configuration Parameter Description

Number of Parallel Sessions Specifies the number of jobs that the
execution script will operate on.

Execution End Condition Specifies if the script execution process
runs for a set amount of time or script
executions.

Choose Time if you want the script to
execute over a specific period of time,
or Number of Executions if you want
the script to execute a specific number
of times.

Sleep Between Executions Specifies if Load Editor will wait before
running the execution script again.
Select the check box and choose Fixed
Delay or Random Interval, depending
on whether you want the script to
execute at a specific time, or at
random intervals within a specified
range of time.

To run Load Editor:
1 Access Load Editor by selecting the icon on the Toolbar. Load Editor opens.

2 Click Select Data Source and choose a data source you want to run the SQL code against.

3 Choose Ad hoc SQL or SQL file, and then copy/paste or manually type the code you want
to execute in the window provided, or navigate to the location of the file, respectively.

4 In the right-hand panel, choose the execution configuration parameters to specify how you
want Load Editor to handle the script.

5 Click the Execute icon in the lower right-hand corner of the screen. The script starts to
execute against the specified data source, using the configuration parameters you selected.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 45

USING PROFILING > USING LOAD TESTER

6 Ifyou are profiling a data source, start and run a new profiling session on the data source you
specified in Load Editor. The session will reflect how your SQL script executes against the
specified data source.

46 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING

This section provides information on tuning, its functionality, and is structured so a user can
follow the information provided to fully tune their enterprise in terms of more efficient query
paths at the SQL statement level of individual data sources.

Tuner has three parts
® Query rewrites and quick fixes
¢ Alternative execution plans generated via optimizer directives
¢ Analysis of Query showing

® Indexes used, not used, missing (suggested to create)
¢ Graphic display of query

The SQL tuner will take a query and add database optimizer directives to change the execution
path of the query. A list of all the unique execution paths will be generated with all duplicates
eliminated from the list. The final list of alternative paths can be executed. Any path that takes
more that 150% of the base case will be canceled because we are only interested on paths that
could be faster than the base case so no need to waste time and resources continuing to run
cases that are slower than the original. After the cases have been executed they can be sorted in
order of elapsed time. If a better path is found then those optimizer directives can be included in
the original query to achieve optimal response time.

This section contains the following topics:

¢ |ntroduction to Database Tuning on page 47

e Understanding the Tuner Interface on page 60
® Tuning SQOL Statements on page 67

e Using Oracle-Specific Features on page 97

e Additional Tuning Commands on page 102

e Executing a Session from the Command Line on page 105

e Configuring Tuning on page 106

e DBMS Hints on page 111

INTRODUCTION TO DATABASE TUNING

This discussion will help you understand the methodology behind DB Optimizer's tuning
functionality and how you can use it to optimize database performance. This discussion is
comprised of the following topics:

e Introduction to DB Optimizer's Tuner on page 48

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 47

USING TUNING > INTRODUCTION TO DATABASE TUNING

SQL Tuning Methodology on page 50

SQL Tuner Overview on page 51

What's happening on the databases? on page 52

e Tuning Example on page 55

e The Database is Hanging or the Application has Problems on page 55
e The Database Caused the Problem on page 57

¢ The Machine Caused the Problem on page 58

Finding and Tuning Problem SQL on page 60

INTRODUCTION TO DB OPTIMIZER'S TUNER

DB Optimizer's methodology grew out of the impossible predicament presented by the defacto
method of database tuning. The standard method was trying to collect 100% of the statistics
100% of the time. Trying to collect all the statistics as fast as possible ends up putting load on
the monitored database and creating problems. Stories of problems created by database
monitoring products abound in the industry. In order to avoid putting load on the target
database, performance monitoring tools have to collect less often as a compromise. Oracle
compromised in 10g with AWR (their automated performance data collector), only running it
once an hour because of the performance impact. Not only is the impact on the monitored
target high, but the amount of data collected is staggering, but the worst problem of all though,
is the impossibility of correlating statistics with the sessions and SQL that created the problems
or suffered the consequences.

The solution to collecting performance data required letting go of the old problematic
paradigm of trying to collect as many performance counters possible as often as we could and
instead freeing ourselves with the simple approach of sampling session state. Session state
includes what the session is, what its state is (active, waiting, and if waiting, what it is waiting on)
and what SQL it is running. The session state method was officially packaged by Oracle in 10g
when they introduced Active Session History (ASH). ASH is an automated collection of session
state sampling. The rich robust data from ASH in its raw form is difficult to read and interpret.
The solution for this was Average Active Sessions (AAS). AAS is a single powerful metric which
measures the load on the database based on the ASH data. AAS data provided the perfect road

map for what data to drill into. The main drill downs are “top sgl”, “top session”, “top event”,
and "“top objects”.

Other aggregations are possible based on the different dimensions in the ASH data.

48 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > INTRODUCTION TO DATABASE TUNING

Tuning Example

Here is an example screen shot of the same batch job being run four times. Between each run
performance modifications are made based on what was seen in the in the profiling load chart:

@ 0L Optimization - three_tuning_steps.oar - Embarcadern DB Optimizer - C\Documents and Settingsikyleh\dboptimizerworkspace..

Fie [Edi Magate Sepch Progsct Bum Wiedow Hel
Els G R O-Q- @ - il AP B | su coteazar.... |
I.’-__] Diats B SO £ =0 "-ﬂ Toulfer_busy_waits | @ “Comemt_gwery o o5 H theee_hurng_steps.o =3 E o ysiem ”:- SeC)
= 5 & Home syslem = Procesess: | -al- W Fiter by: | Home- " J
1 alond eder
E gy A SQL Project Profibe Session #
=y & S0L Progest 2
- f Connectons B ON CPU B System 0 BUser v0 O Cluster BApplication B ConSguraton B Cormmit B Hetwork B Administrative
¥ 2] Coeaton Sty 8 Concurrency O Scheduter @ Othes m
gy Gereral 50U ar
B i DE0 B &
l.j dual, o8y ‘-:"
B KO8 z *
® = LA ¥-at
5 caR ® =)
2 5C_demos E
. 11
g 500 <
& TN = &
&A= VST o W
checkpoint
P log create
& 5 || | HE overves | B 5L {5 Bvents | £7 Sesmons | 640 Cigect 10|
= - SO Skaternents Events Leusions
5oL (6 Prog 1
= s Statement 08 Actind Event DA Az Liger | Program Act =
o + [Lracouimi DR | - bty vts [] QRACLE, EVE (LEWA) =
o gyibem || B iter atab.. 000M revse log fie srt. .t incompiete) [l STSTEM]
[=== e | b aher clanab, . 000M revse log fie gyme [} SrETEM = |
Exetuting 500 Load.., | || e SELECT HASH.,.{ . 0,0 O CPU '] CYSTEM s
P Profing Home system : o fepuniciont] sveTey -
Crrreess—— W fog e wich complenon [l SYETEM [|
Clck b se. - profiing | Log fie it wnte | CYSTEM o | i
| ol Foe el g I SYoTEM - I
control Se pacadsl wrize | g ! STSTEM |
| 4 + AF - ¥ € >
- Faome gystee; {13%) (T %
Run:

1 Inrun1,” logfile sync “event is the primary bottleneck. To correct this we moved the log files
to a faster device. (You can see the checkpoint activity just after run 1 where we moved the
log files.)

2 Inrun 2, the "buffer busy wait” event is the primary bottleneck. To correct this we moved the
table from a normal tablespace to an Automatic Segment Space Managed tablespace.

3 Inrun 3 the "log file switch” (checkpoint incomplete) event is the primary bottleneck. To
correct this we increased the size of the log files. (You can see the IO time spent creating the
new redo logs just after run 3.)

4 The run time of run4 is the shortest and all the time is spent on the CPU which was our goal,
take advantage of all the processors and run the batch job as quickly as possible.

NOTE: To view an explanation of the event, hover over the even name in the Event section.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 49

USING TUNING > INTRODUCTION TO DATABASE TUNING

Conclusion:

With the load chart we can quickly and easily identify the bottlenecks in the database, take
corrective actions, and see the results. In the first run, almost all the time is spent waiting, in the
second run we eliminated a bottleneck but we actually spent more time - the bottleneck was
worse. Sometime this happens as eliminating one bottleneck causes great contention on the
next bottleneck.(You can see the width of the run, the time it ran, is wider in run 2). By the third
run, we are using more CPU and the run time is faster and finally by the 4th run all the time spent
is on CPU, no waiting, and the run is the fastest by far.

SQL TUNING METHODOLOGY
1 Verify that the execution path is the optimal for the query

If not either use the tuning directives (such as hints on Oracle) or
Identify why the native optimizer failed to pick the optimal path
2 If the query is still slow then look at adding indexes
3 If the query is still slow, then you know you are going to have to look a the architecture
What information is the query trying to get?
Is this information necessary?
Are there alternative ways to get this information?

DB Optimizer's SQL Tuner can help with 1 and 2. Step 3 will have to be done by a developer or
DBA but knowing that step 1 and 2 have already been validated can indicate to management
that step 3 is necessary rand therefore allocate sufficient resources for step 3.

How do we know if the native database optimizer chose the optimal path? How long would it
take to check this by hand?

DB Optimizer's SQL Tuner is a solid fast sanity test to verify the plan chosen by the native
database SQL optimizer. Tuner quickly generates as many alternative paths as possible and
allows the user to execute them to see if there are more efficient execution paths. DB
Optimizer's SQL Tuner is successful at tuning queries that have a suboptimal execution path.

A query has a sub-optimal execution path when the database optimizer has miscalculated the
cost of the various possible access paths and mistakenly chosen a bad path. The access path
calculations can be miscalculated because of the following reasons:

¢ The table/index statistics are missing or wrong. (For example, the number or rows is missing
or way off.)

e The data is skewed, for example, the number of orders with an open status is usually low
compared to all the orders that have a closed status because the work is complete. (For
example, orders get filled every day, but only a few are open and needing to be processed.)
Looking for open orders should probably use an index and return fewer rows than looking
for closed orders which should probably just do a full table scan.

50 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > INTRODUCTION TO DATABASE TUNING

® The predicates used are correlated. The optimizer treats two predicate filters on a table as
more selective than just one, but this is not always the case such is the case in the query, how
many Swedes speak Swedish which basically returns the same number of results as just
asking for the number of Swedes alone. Another example is how many Swedes speak
Swahili, which is probably more selective than the optimizer would guess.

e Abugin the optimizer

DB Optimizer's SQL tuner will take a query and try to produce as many execution paths as
possible. These alternative execution paths can then be run to see if there is a faster or less
resource expensive execution path. The execution of each alternative case is timed and if the
execution exceeds 1.5 X the original case then its execution is stopped and we move on to the
next case. This avoids wasting time and resources on execution plans that are clearly
suboptimal.

SQL TUNER OVERVIEW

Tuning provides an easy and optimal way to discover efficient paths for queries that may not be
performing as quickly or as efficiently as they could be.

The application enables the optimization of poorly-performing SQL code through the detection
and modification of execution paths used in data retrieval. This process is performed through
the following functions:

® Hint Injection
¢ Index Analysis
e Statistic Analysis (Oracle only)

e Query re-writes such as suggesting joins to eliminate Cartesian joins, adding transitivity
predicates, and unnesting subqueries in the WHERE claus.

Tuning analyzes an SQL statement and supplies execution path directives to the application that
encourage the database to use different paths.

For example, if tuning is selecting from two tables (A and B), it will enable the joining of A to B,
or B to A as well as the join form. Additionally, different joining methods such as nested loops or
hash joins can be used and will be tested, as appropriate. Tuning will select alternate paths, and
enable you to change the original path to one of the alternates. Execution paths slower than the
original are eliminated, which enables you to select the quickest of the returned selections and
improve query times, overall.

This enables the DBA to correctly optimize queries in the cases where the native optimizer
failed.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 51

USING TUNING > INTRODUCTION TO DATABASE TUNING

WHAT'S HAPPENING ON THE DATABASES?

Is the database idle, working or bottlenecked?

When a bottleneck happens how can you know which of these problems are causing the
problem? A bottleneck could be caused by:

* An application problem
¢ An undersized machine
¢ SQL requiring optimization
¢ A misconfigured database
All of these can be easily identified from DB Optimizer's performance profiling screen.

Let's look at the components of the performance profiling screen

T e e e
fe [Seamw bt Bued o D o
5 g E-'F W3 O 34 L= BT 5 i ot -
T B | 70 s e T e i T =

: i b wyillanim = Femrmr i W P by G e ¥
3

__ TopActivity

re

ra o kbl
|

ke
B Lo]

u-lu@

Yid il

The screen has six important parts
1. Databases. For more information, see "Databases" on page 53.

2. Average Active Sessions (AAS) Load of selected database. For more information, see
"Average Active Sessions (AAS) Load of selected database" on page 53.

3. Maximum CPU line. For more information, see "Maximum CPU line" on page 53.

4. Top SQL. For more information, see "Top SQL, Top Bottlenecks, and Top Sessions" on
page 54.

5. Top Bottlenecks. For more information, see "Top SQL, Top Bottlenecks, and Top
Sessions" on page 54.

6. Top Sessions. For more information, see "Top SQOL, Top Bottlenecks, and Top Sessions"
on page 54.

52 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > INTRODUCTION TO DATABASE TUNING

Databases
First, on top left, is a list of our databases we have registered.
Average Active Sessions (AAS) Load of selected database

The most important part of the screen is the Average Active Sessions (AAS) graph. AAS shows
the performance of the database measured in the single powerful unified metric AAS. AAS easily
and quickly shows any performance bottlenecks on the database when compared to the
Maximum CPU line. The Max CPU line is a yardstick for performance on the database. When
AAS is larger than the Max CPU line there is a bottleneck on the database. Bottleneck
identification is that easy.

AAS or the average number or sessions active, shows how many sessions are active on average
(over a 5 second range in DB Optimizer) and what the breakdown of their activity was. If all the
users were running on CPU then the AAS bar is all green. If some users were running on CPU
and some were doing IO, represented by blue, then the AAS bar will be partly green and partly
blue.

Maximum CPU line

The line "Max CPU" represents the number of CPU processors on the machine. If we have one
CPU then only one user can be running on the CPU at a time. If we have two CPUs then only 2
users can be on CPU at any instant in time. Of course users can go on and off the CPU extremely
rapidly. When we talk about sessions on the CPU we are talking about the average number of
sessions on CPU. A load of one session on the CPU, thus would be an average which could
represent one user who is consistently on the CPU or many users who are on the CPU for short
time periods. When a CPU becomes a resource bottleneck on the database we will see the
average active sessions in CPU state go over the Max CPU line. The number of sessions above
the max CPU line is the average number of sessions waiting for CPU.

The Max CPU is a yardstick for performance on the database.

From looking at the previous chart the problem is a machine resource problem.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 53

USING TUNING > INTRODUCTION TO DATABASE TUNING

Top SQL, Top Bottlenecks, and Top Sessions

In order to know what the problem is, we have to find out where that demand is coming from. To
find out where the demand is coming from we can look at Top SQL and Top Session tables
below the load chart. In our case shown here the load is well distributed over all SQL in Top SQL
and all sessions in Top Session. There is no outlier or resource hog. In this case it's the machine
that's underpowered. What does a case look like where we should tune the application? The
following screenshot depicts such a problem.

Fratim Ly

WOt cPu I Systim 0 I Uer 10 2 kb 18 atin B4 ool guibian Il Commt@ Sawen: [ademniseitivs [Contamarey [Schiduli [Chis

Ates SastanE e

MW omrvens | 55 500 | (5 s | 7 esors | 60 Cpesci L0
L Msteminby
58 vy 41

¥
EEEEEEEEDEE

In this case, again the CPU demand is more than the machine can supply but if we look at “Top
SQL" we can see that the first SQL statement (with the large green bar) uses up much more CPU
than any of the rest, actually 60%! If we could get it down to 10% CPU then we'd save 50% of the
CPU usage on the machine! Thus in this case it's worth our while to spend a day or week or even
a couple weeks trying to tune that one SQL statement instead of buying a bigger machine.

54 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > INTRODUCTION TO DATABASE TUNING

Finally, how do we know when the database configuration is a problem? We know it's a
configuration problem when we are seeing something other than CPU as the bottleneck in Top
Bottleneck section. Here's an example

B DM e Mp DWT A DA O
‘B LR B Q- Q- @ - L= - o 3 coomane | =
LT A el PN e B o N it e r

S L sysbems = | 8 B v i [

LB
B
3
=¥

fr i
a7
e
2
€

In this case we can see the load is higher than the Max CPU line but the load is coming from
brown colored bars and the green CPU colored bars. If we look at Top SQL we see that there is
only one SQL taking up almost all the load, but it's not because of CPU which would be a green
bar, but some other color. What does this other color represent? We can look at the Top
Bottleneck section and see that it is “log file switch (incomplete)” which basically means the log
files are too small, the database is not correctly configured. This bottleneck can be resolved
simply by increasing the log size.

TUNING EXAMPLE

This example is comprised of the following parts:

e The Database is Hanging or the Application has Problems on page 55

e The Database Caused the Problem on page 57

¢ The Machine Caused the Problem on page 58

THE DATABASE 1S HANGING OR THE APPLICATION HAS PROBLEMS

| wonder if you can imagine, or have had the experience of the application guys calling with
anger and panic in their voices saying, “The database is so slow, you've got to speed it up.”

What's your first reaction? What tools do you use? How long does it take to figure out what's
going on?

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 55

USING TUNING > INTRODUCTION TO DATABASE TUNING

Let's take a look at how it would work with DB Optimizer.

e B

WE can clearly see that the database is not bottlenecked and there must be a problem on the
application.

Why do we think it's the application and not the database? The database is showing plenty of
free CPU in the load chart, the largest chart, on the top, in the image above. In the load chart,
there is a horizontal red line. The red line represents the number of CPUs on the system, which in
this case is 2 CPUs. The CPU line is rarely crossed by bars which represent the load on the
database, measured in average number of sessions. The session activity is averaged over 5
samples over 5 seconds, thus bars are 5 seconds wide. The bars above fall mostly about one
average active session and the bars are rarely green. Green represents CPU load. Any other
color bar indicates a sessions waiting. The main wait in this case is orange, which is log file sync,
waits for commits. Why is the database more or less idle and why are most of the waits we do
see for “commit”? When we look at the code coming to the database we see something like
this:

insert into foo values ('a');
commit;
insert into foo values ('a');
commit;
insert into foo values ('a');
commit;
insert into foo values ('a');
commit;
insert into foo values ('a');
commit;
insert into foo values ('a');
commit;
insert into foo values ('a');
commit;

56 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > INTRODUCTION TO DATABASE TUNING

Doing single row inserts and committing after each is very inefficient. There is a lot of time
wasted on network communication which is why the database is mainly idle. When the
application thinks it's running full speed ahead, it is actually waiting mainly on network
communication and commits. If we commit less and batch the work we send to the database,
reducing network communications, we will run much more efficiently. Changing the code to

begin
for 1 in 1..1000 loop
insert into foo values ('a');
-- commit;
end loop;
end;

/

commit;

improves the communication delay and now we get a fully loaded database but we run into
database configuration issues.

THE DATABASE CAUSED THE PROBLEM

et e e ey i g

D U -
T —

| Ay L
-
by Wi P e ol ons o [s gt - s g [el e . [s g) et s £ bt B
=3 =
- o i
e s i]
. - L
T - i
- - 45
& E
| H
- ¥
-
. o g]
i - " " -
3 - g drame
Tl ® e =
i = R ety f— ———
= e e o = g ~
- - Ed C —— = -
g = - @
v =
- B
= H
- ¥ -
. i

In the above DB Optimizer screen, the same workload was run 4 times. We can see that the time
(width of the load) reduced, and the percent of activity on CPU increased.

Runs:

1. "log file sync”, the orange color, is the biggest color area, which means uses are waiting on
commits, still even though we are committing less in the code. In this case we moved the log
files to a faster device. (you can see the checkpoint activity just after run 1 where we moved the
log files)

2 "buffer busy wait”, the burnt red, is the biggest color area. We drilled down on the buffer busy
wait event in the Top Event section and the details tells use to move the table from a normal
tablespace to an Automatic Segment Space Managed tablespace.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 57

USING TUNING > INTRODUCTION TO DATABASE TUNING

3."log file switch (checkpoint incomplete)”, the dark brown, is the largest color area, so we
increased the size of the log files. (You can see the 10 time spent creating the new redo logs just
after run 3.)

4. The run time is the shortest and all the time is spent on the CPU which was our goal, to take
advantage of all the processors and run the batch job as quickly as possible.

THE MACHINE CAUSED THE PROBLEM
Now that the application is tuned and the database is tuned let's run a bigger load:

N WS o5 . . L
T vt vup—
e by gt - — s & Mg e W

i P — & |

L R e R L et TR B Tt B ST &2

We can see that the CPU load is constantly over the max CPU line. How can we have a bigger
CPU load than there are actually CPUs on the machine? Because the demand for CPU is higher
than the CPU available on the machine. In the image above there are 2 CPUs on the machine but
an average of three users think they are on the CPU, which means that on average one user is
not really on the CPU but ready to run on the CPU and waiting for the CPU.

At this point we have two options. In this case we are only running one kind of load, the insert.
For inserts we can actually go even further tuning this insert and use Oracle's bulk load
commands:

declare

TYPE IDX IS TABLE OF Integer INDEX BY BINARY INTEGER;
MY IDX IDX;

BEGIN
for i in 1..8000 loop

MY_IDX(i):=1;

end loop;
FORALL indx IN MY IDX.FIRST .. MY IDX.LAST
INSERT INTO foo (dummy)
VALUES (MY_IDX(indx));
COMMIT;

end;

/

58 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > INTRODUCTION TO DATABASE TUNING

But if this was an application that had a lot of different SQL and the SQL load was well
distributed across the system then we'd have a case for adding more hardware to the system.
Making the decision to add more hardware can be a difficult decision because in general the
information to make the decision is unknown, unclear or just plain confusing, but DB Optimizer
makes it easy and clear, which can save weeks and months of wasteful meetings and debates.
For example

U Lab_wystem = P = - e o -
e L

P . W5 W e v W v [Snvtes b s B Criguranan Il amms l binaraan. Il ey I S macomanacy [denas duses B Smas

» - & W i W -5 wh e a g

3
®

EEEEEAEpFIAR
JTABLEEN B AR

(1

If we look in the bottom left, there is no SQL that takes up a significant amount of load, there is
no outlier SQL that we could tune and gain back a lot of wasted CPU. We'd have to tune many
SQL and make improvements on most of them to gain back enough CPU to get our load down
below the max CPU line. In this case, adding CPUs to the machine might be the easiest and
most cost affective solution.

Conclusion:
e With the load chart we can quickly and easily identify the bottlenecks in the database, take
corrective actions, and see the results. In part 1 we had an application problem, in part 2 we
had 3 database configuration issues and in part 3 we had a hardware sizing issue. In all 3
instances DB Optimizer provides a clear and easy presentation of the data and issues
making solutions clear.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 59

USING TUNING > UNDERSTANDING THE TUNER INTERFACE

FINDING AND TUNING PROBLEM SQL

W SO Opstimiration - TORLABMCL 10y 1 oar - Embarcadern D8 Optimicer - C:\Bocuments, and Settingsiingdehidboptiminer worapece_ #production_ion o
O Do et BepTh Dl Qun el Do
AN R Q- Q- @ 4~ . B Bewm | Fumon ™
Bym B ¥ “uretied Tuning Job 7 M = _prwnes i “rasied BOL Loas 4 i PSRRI, Mg
B TOHLABORCLIDg 1= RO | W Dy e w
e By
Profile Srsams &,
BP0 B Spwem oD B U A0 00 wsian g anen I Confaat ston Bl Corarelll hanssdd B bam e siaies B Cos enency O Brtesdular 1 Cire
ot 'rf:".."!.--l o
<dpa A
= BT
Deveicgrre &
- -
i a_wat B
® U s cie =
i H
R L aE =
Frocuctor u
|| | B
‘i'\..'! c 3
2l TR A 2
-’ Q.
& -
gl i LT q
FEcovons W soe 5 para | {7 tecsore #0 Ctomct 1O
B S Aty SrEan
B 08 BiFaAly i | Bl i Al [L
o [s [— |
i ead - # .
E3RT el v] ol .
= by o e fuee] i .
= i sl oo o [—]
> o wir g . =K
ash: e st Sars o3 | 508 [] »
= B T
« * e]
e oo]
SR i 1
" = 1
3 = 02 =
0 E L N R " ¥ & ¥ ¥
L ! ¥
Urses Turg Job g Josh)
—— =

DB Optimizer is targeted at finding problem sgl in a running load with the profiler and then
tuning that (or those) specific queries with the tuner.

It's not efficient just to dump a bunch of procedure code into the tuner and then try and see if
any of the SQL in the package or procedure are tunable. Most queries should, by default, run
optimally on a database, so the goal of DBO is to tune those queries that for one reason or
another are not optimally tuned by the database by default. The easiest way to find those
queries is to identify them on a running system. They can be identified on a running system
because they take up a lot of resources. If we find a resource intensive query then it's worth the
time to generate cases and analyze it for missing indexes to see if there is a way to tune it.

UNDERSTANDING THE TUNER INTERFACE

In the application interface, tuning is composed of three tabs:

* Input

e Overview

60 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > UNDERSTANDING THE TUNER INTERFACE

e Analysis

NOTE: When using tuning on Oracle sources, several additional tabs appear on the Analysis
and Outlines tabs. For more information on utilizing these extra features, see "Using

Oracle-Specific Features" on page 97.

UNDERSTANDING THE INPUT TAB
Use the Input tab to specify which SQL statements to tune.

¢ Ad hoc SQL: Copy/paste SQL statements to the Ad hoc SQL tab or write queries by hand.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 61

USING TUNING > UNDERSTANDING THE TUNER INTERFACE

¢ Database Objects: Drag and drop data base objects containing SQL that you want to tune
from the Data Source Explorer to the Database Objects tab. Alternatively, you can click Add
and enter the first few letters of the database object. DB Optimizer will search through the
database to find objects matching your input and presents matches for you to choose. In
order for this option to work, you must enable Data Source Indexing in the properties for the
database. If the data source has not already been indexed you will receive a message
indexing that no indexing information is available. You can configure the database
Properties dialog from the Data Source Objects Selection dialog by clicking Configure
datasource indexing....

& 500 - Untitled Tuning Job - Embarcadero DB Optimizer Professional - C:\Docwnants and Sattings\Jacquieldboptimize riwarkspace

IMES i -0 i P

(B Data SonwenExnl 51 B e PreimetExpl | = 1| (] rorinbectoS_tan |l ramiabereki 2 =]
@ w25 7 ||r oo » B 0RLGOAGE 2 (8.1.7.5)
: = | & Input | b ovarview | B Anabysis |
[ﬂ: Java Resgurces 5
B & Java SOces 4 Input @
& Jabs
i ﬂ Litearies Tuning Camndidates
<] —fhmhndmmgs Gakhyer the 50U skatamants ko be buned,
LB aterislzed ews % b hoe 50U | [Datebess Objects | 254 500 Files %5 ckive S0Lin 568
@[ouines
& ¥ Packaoe Bodies Spedly dakabese chinds containieg SOL o ke ured, Vou may s5a doeg and diop objecks Fiom the Dsts Souroe Explorer,
=5 Packages (11)
=4 MOWIES RENTALS
2 code Rerivs
| H-% Package Body
Prooniree Al
& Data Source Objects Selection . |OX]|
Erker object mame prafix of paltern (7 = any charadber, = any string):
m
Elaticiving abjescrs: '
W Prforemnces =0
S MDTAR (Mg
SANETATARLE PROP_VALLES (Viaw) - FERS | = e Bt | | Data Source Indesing - [emeSkey_ordinsl .
S METATABLE_PROP_VALLES (W) - PERS 5.6 |
S NETATAELE_FROP_VELLES [Vier) - P Oata s Enable indsxing on coonect
SSMETATABLE FROP_VALLES (Vo - Eninl mm":d::uﬂnu e R A
S METRTAELE_PROP_VALLES (Viord) - FEPY % Halp
SAMETRTRELE_PROP_VALLES [Wierd) - FEPY S
AR MIETATED S Mrean SIS fEs s TRIED ; Instalplipdate [Eristie rdeing
S T — [pply 520 Blgrs | Sart Yrckesin | | St Ineesing |
o Daka Source Tndexing et b indg
) % 5oL Edece ELT Z
= 0L Exsaution Om oY v
H S Fikgws : =
¢ i R 3
= 5 Team [] = puifer Focls
n} M1 E2 Certificobes

For information on setting data source indexing properties, see "Set Index Configuration
Preferences" on page 61.

e SQL Files: Browse the workspace or file system and select SQL files.

62 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > UNDERSTANDING THE TUNER INTERFACE

e Active SQL in SGA: For the Oracle platform only, you can also scan the System Global Area
(SGA) for statements to tune.

LEI *adHoe SOL Tuning Job.tun 25 LEI *Untitled Tuning Jab 7.tun =0

B, Oracle jgﬂvSvacII:nEIl.emharcadern:n.n:n:nm (10.2.0.1)
b B B
~ Input

Tuning Candidates
Gather the S0L statements ko be tuned.

 Adhoc 5oL | [Database Objects | 50} SQL Files | %y Active SGL in 5GA

Input SOL statements ko be tuned.

WHEERE
F.EMPLID = E.EMFLID AND
F.EMPL RCD¥ = E.EMPL RCD# LND
F.EFFDT < = A.PAY END DT) AND
E.EFF3EQ = (BELECT Mi¥X (G.EFF3IEQ)

T TTT T o

UNDERSTANDING THE OVERVIEW TAB

Once you click the Run Job icon on the top right-hand side of the Overview tab, the Overview
tab provides the list of statements that were analyzed by the Tuner, as well as the cases
suggested by the execution process to improve them. Additional information may include
statement Name, Text, Source, Cost, and Elapsed Time values, depending on the platform.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 63

USING TUNING > UNDERSTANDING THE TUNER INTERFACE

Only the Elapsed Time statistic, appears on all supported platforms. On Oracle platforms,
Execution Statistics and Other Execution Statistics columns will appear. When determining the
best possible path using the Overview tab, it is best to use the Elapsed Time value as the
guideline. The faster the path, the more optimized the query will become.

| ¥ Anabysis |

H-r Fipe; = Dverview
@ Overview Lere datsced)]
Tursing Statements [#] Gererate cases [lPerfare detail anabois [FlExmoute sach generated case | 1 - lLimas k !j el
Statement) | Trpe | M‘sis-
Hane Sk Taxt Tables Vs Elapsed (5} Tmprareesd () Cames Indexes
T EseEcT SYETEM seleck from SH.SALES, SH.TIMES 2 o 5 00
% DOseecrz SYETEM selleck From < Joined Tablne: i o 1o 0
o HEseecrs SYSTEM salact from SH.SALES, SH.TIMES, 5 o 0.a0 0.00 w13
e EseEcT4 SYSTEM sallact froin CATA IRVOBCE_LINES, 4] 0.00 0.00 13 3 1
Generated Cases Y
SOL Statwnmnts and Cases #iost |4 Exeostion Statistics [Otfe Expoution Stabstics A
M Text Walye Elapsed Time (5) Resdt i, Physical Reads Logical Reads | CPU Time (5)
El & ‘ﬂ' SELECT 1 sedact from SH.SALES, BE3930L0
=l = ‘ﬁ' SELELCT 3 sedact From SH.SALES, BER.0 Q.o 1] o &l]
| PRAALLELE 125.0 0.7 I 1462 2047 (U}]
| BARALLELL Men 054 E— (1 1454 1874 B
E C_DHDEX 5590 -
i TS S R I A R T
k| LEADINGE 6610
E| LEADINGS B0
] LEADINGS ET5.0
E] HO_LISE_HASH 10620
El LEADRG] 21780
=l ORLEREL 241%.0 Q.0 o o 4 L]
Ll INDEX_COMBINE 42330
El LISE_MERGE 7218.0
M INDEN_55_&SC 133530
El NDEX_55_DESEC 133530 3

There are three tuning options to choose from before clicking Run Job:
To analyze the SQL statement, click Generate cases

To perform the analysis that populates the Analysis tab now, click Perform detail analysis.
Otherwise, the analysis tab is populated when you click the Analysis tab.

To have the system generate execution statistics, click Execute each generate case and
then select the number of time the system should execute each generated case. Multiple
executions can verify that the case results are not skewed by caching. For example, the first
time a query is run, data might be read off of disk, which is slow, and the second time the
data might be in cache and run faster. Thus, one case might seem faster than another but it
could be just benefiting from the effects of caching. Generally, you only need to execute the
cases once, but it may be beneficial to execute the cases multiple times to see if the
response times and statistics stay the same.

64 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > UNDERSTANDING THE TUNER INTERFACE

UNDERSTANDING THE ANALYSIS TAB

Index analysis is started when you either generate cases with Perform detail analysis selected
on the Overview tab, or when you click the Analysis tab. If any columns referenced in the
WHERE clause of the tuning candidate are not the first column of an index, tuning will
recommend that you create an index on that column.

The color-coded Index Analysis feature highlights missing indexes as well as shows which
indexes are used and which are not used in the default execution path. The Index Analysis
feature highlights issues where the database optimizer might not be using the preferred
indexes. DB Optimizer also lists indexes on the tables that do not have fields in the WHERE
clause helping the designer to see if adding an additional predicate in the WHERE clause might
make use of an existing index.

The layout of the Analysis tab shows the SQL text and Visual SQL Tuning (VST) diagram on the
top, and the indexes on the tables in the query below.

;r"'-"l-lll i-"‘ll'-'-"\' = # Analvsix

B SQL Analysis l Select statemert of inberest; |SELECT 1 ¥ & @
SELECT +
FRON =h.countries 3 COUNTRIES
WHERE UDL[HEE?_EEU:LD rl._:l.cl. =1 =

5B COUNTRY_REGION_ID: NUMEER
B

E OUNTRIES_P¥ 3

[tndex Anelysis FF] Table Statistics. 8 Calumn Statistics And Histograms [£] Cutines

Coleck snd creste ndexss i £|_.
Irclex Name Table Cwnes Table Mame Column Mams Index Type Table SH.COUNTRIES is scanned
| |z mx countrEs 0 |51 [couwtrEs | countRy reston o [ormel) || via fulltable scan but & has 2
— = = = fiter country_region_id =1 on it
DOcountrIEs px SH SOUNTRIES COUNTRY I rdie » and we created a virtual index
% 100 _COUNTRIES _0 wahich the 5
4 optimizer picked up, so we
sugoest implementing this indes.

The Analysis tab has five important components as depicted in the previous illustration:
1 Statement selector, if there are multiple statements in the tuning set.
2 Statement text for selected statement.
3 Graphical diagram of the SQL statement.

4 Index analysis of the SQL statement.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 65

USING TUNING > UNDERSTANDING THE TUNER INTERFACE

5 Description of the selected index, including the reasoning behind DB Optimizer
recommendations.

NOTE: For the Oracle platform, there are several other tabs available, including Table
Statistics, Column Statistics And Histograms, and Outlines. For more information, see
"Using Oracle-Specific Features" on page 97.

TIP: The text, diagram, and analysis sections can be resized or expanded to take up the
whole page.

The Analysis tab suggests missing indexes, indicates which indexes are used in the execution
path and lists all indexes that exist on all the tables in the query. Indexes on the table are listed
on the Analysis tab and color coded as follows:

Text Color Interpretation

Index is used in the query

Index is usable but not used in the current execution path.

This index is missing. DB Optimizer recommends that you create this index.

- This index exists on the table but not usable in this query as it is written.

From the example illustrated above, we can see the following:

SELECT *
FROM
client_transaction ct,
client c
WHERE
ct.transaction status = c.client marital status AND
c.client first name = 'Brad'

Since there is no index on CLIENT.CLIENT_FIRST_NAME and there are 5600 records in CLIENT,
DB Optimizer proposes creating an index:

66 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > TUNING SQL STATEMENTS

In the Collect and Create Indexes table, orange-highlighted entries indicate missing indexes
that DB Optimizer recommends be created to improve performance. Clicking on that index, as

shown in the illustration that follows, displays text to the right outlining the rational behind this
recommendation.

P‘ Input P" Overview L-?' Analysis

o »
SQL Anal‘,ﬂ'SIS Select statement of interest: |SELECT1 Vl N O —
SELECT * 12*;’ :.:.:
FROM | CLIENT _TRAMSACTION I{ct]l|
client transaction ct, o
client o .
I
WHERE
) CLIEMT fic)
Ct.transaction status

c.client first nawme =

£

| ™

o

Index Analysis Table Statistics | E£ Column Statiskics And Histograms Cutlines

Collect and create indexes t;')(h £|:I
Index Mame Table Cvner Table Marne ~
&D O ID%_CLIENT..SACTION_O S¥STEM CLIEMT_.. . ACTION TRAMNSE
& [JCLIENT MULTI SYSTEM CLIEMT CLIEMT —
3 [CLIENT_EROKER SYSTEM CLIEMT BROKER
3 [OJcLENT INCOME SYSTEM CLIEMT CLIENT %
£ i >

s

For more information on using the Analysis tab, see "Using the Analysis Tab" on page 81.

TUNING SQL STATEMENTS

A tuning job enables you to view the cost details of SQL statements on a registered data source
and then select the best, or most efficient, array of execution path directives in order to make
query execution faster, therefore improving the entire enterprise, overall.

There are four methods through which statement tuning can be activated:

® Ad hoc statement tuning via manual entry, or cutting and pasting into the tuning window.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 67

USING TUNING > TUNING SQL STATEMENTS

e Database object selection, by selecting stored packages from a list on the registered data
source.

e SQL file selection, by choosing an SQL file saved on the system.
* Importing statements directly from profiling.

A tuning job consists of a set of SQL statements and any analysis results you generate against a
data source using tuning. The SQL statements and analysis results that compose a tuning job
can be saved in a tuning file (.tun). This enables you to open a tuning job at a later time for
inspection and analysis, to add, delete, or modify the SQL statements, or generate new
execution statistics.

The following topics provide a high-level overview of the tuning process:

1 Create a New Tuning Job on page 68

Specify a Data Source on page 69
Add SQL Statements on page 70

2

3

4 Run a Tuning Job on page 72

5 Analyze Tuning Results on page 75
6

Modify Tuning Results on page 79

NOTE: Foradditional commands that fall outside the general tuning workflow, but may still be
helpful, see "Additional Tuning Commands" on page 102.

CREATE A NEW TUNING JOB

New tuning jobs can be created via the File > New > Tuning Job command, or by importing
statements directly from profiling. A New Tuning Job icon is also available on the Toolbar.

To create a new tuning job via the Menu or Icon command:
Select File > New > Tuning Job, or click the New Tuning Job icon on the Toolbar. Tuning
opens.

You can now proceed to set up the parameters of the new job.

To create a new tuning job from profiling:

After you have run a profiling session, in profiling’s Profiling Details tab, select one or more
statements, right-click, and select Tune from the context menu. Tuning opens, pre-
populated with parameters based on the statements you selected.

To open an existing tuning job:
Navigate to the SQL Project tab and double-click the name of the existing tuning job.

68 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > TUNING SQL STATEMENTS

To name a job, save it:

Ensure you specify a meaningful name that identifies the job in other views and dialogs. You
can save the job by selecting File > Save or File > Save All from the Menu bar. Once a job
is saved, it is added to the SQL Project view.

Y9 patas =saLer 22 - T O [l TORLABORCLE 22.0ar L] Untitled Tuning Jobw.tun £ = O
2 G 7y ffhorate b S TORLABORCLEI_2 (8.1.7.4)
5OL .
= = SQLProject ‘ |.-" Input P Overview P’ Analysis

i f- Connections

* ,i[l] Creation Scripks P Input @
T General SOL
Il TORLABORCLSI_22.0ar Tuning Candidates
'J;E] TORLABSQLOO_1 _#Z.0ar Gather the SOL statements to be tuned,
L] Untitled Tuning Job.bun “saL =

' &d hoc S0L Database Chjects | 5 L Files | = Active SCLin SGA

L#] Untitled Tuning Job2.tun - et g jects | K SQL Filos | 7 Active SQL
{_él Unkitled Tuning JobZ2.tun Il'lp'l.lt SQL statements bo be buned,

12 Untitled Tuning Jobu tun |
= e SELECT /#+ RULE =/ A

I.TAELE_OUMER,
I.TAELE MAHE,
IC.INDEX OWNMER,
IC.INDEX NAME,
IC.INDEX OWNER,
IC.COLUMN MNANE,
I.TAELE_TYPE,

& Progress 1 W~ =0 IC.COLUMN_POSITICH,
e tod A IC.DESCEND,
REEERE e R C.COLUMN EXPRESS TOM v
S
< | &

SPECIFY A DATA SOURCE

The bread crumbs at the top of the tuning job window identify the data source where the SQL
statements to be tuned reside. The default data source is the one that was selected when the
new tuning job was initiated. For example in the following image, we see that the data source is
Sfvpclb01.embarcadero.com., which is part of the Oracle data source group.

b g Oracle b ﬁSF‘-.fpu:II:uEIl.embarcaderu.cnm{1[!.2.[!.1}

L-'-?' Inpuk h‘-" Overview FP Analysis

Input

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 69

USING TUNING > TUNING SQL STATEMENTS

You can change the data source of a tuning job by clicking a breadcrumb triangle and then
navigating to the datasource or using the filter to locate and then select a data source. In the
following screenshot, Microsoft SQL Server was clicked and T was entered in the filter text area,
which resulted in several matches.

[= =F Data Source Group
[=-1=F Microsoft QL Server
[=-1=F Microsoft SOL Server

ST m
58] TORLAESQLOO_1 .
[=-1=F Cracle

j’ﬂ Sfvpclbdl . embarcadero, com

Click the name of the desired data source to affect the change.

NOTE: Multiple tuning jobs can be saved against the same data source. You can therefore set
up your tuning jobs organizationally. You might for example, set up a tuning job to tune
only SQL associated with procedures or a set of SQL sources that are functionally
related. Alternatively, your tuning jobs may be organized by application.

ADD SQL STATEMENTS

Once you have created a tuning job and named it, using File > Save As, you need to add SQL
statements to the job that are to be tuned. All standard DML statements can be tuned (SELECT,
INSERT, DELETE, and UPDATE).

NOTE: When you try to tune a statement containing a bind variable you will be warned that
either the type is not set or the value is not set.

" Input | = Overview | = Analysis

o Overview 1 emar detected

Tuning ts DELETE 1: bind variable type is HOT setln, derail analysis [Execy
Statement Time: Analysis
MHarme C.9 |5c.a Texk T.s|V.s H.2) Im.) C.5 In_ec

1 O e

CLIENT_TRM

-.1'\1 |~.-:.;‘.-; 3 CLIENT _TR? f Gaizel = BL

Only ane SQL DML statement allawed

Hame M.l Daka Type Value
asizel O gt
Gt O bégink

70 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > TUNING SQL STATEMENTS

Statements are added to tuning via the Tuning Candidates pane.

= Inpulk E' Owerview ‘ P' Analysis
Input

Tuning Candidates
Gather the S7L staterents bo be tuned.

B Adboc 50U | [Database Objects [59 SQL Files | %5 Active SOL in SGA

Irput SOL stabements to be buned,

SELECT
ct.action,
c.client id,
i.investment_unit,
it.investment type nstne

FROH
client transaction ct,
client o
imvestent _type ic,
investment i

WHERE
ct.client_id = c.client_id AND
ct.investment id = i.investment icd AND
i.investment_typs_id = it.investmwent_type_id and
zlient_transaction_ id=1

There are several different methods for adding SQL statements to a job, as reflected by the tabs
in the Tuning Candidates box:

e The Ad hoc SQL tab enables tuning via manual entry, or cutting and pasting into the tuning
window.

* The Database Objects tab enables you to select stored SQL from the data source to which
you are connected. You can either drag and drop objects from the Data Source Explorer or
you can add database objects matching specified filers. For example, entering t in the filter
area of the Data Source Objects Selection dialog, can match functions, views, and
procedures, whose name begins with t.

e The SQL Flles tab enables you to choose an SQL file saved on the system.

® The Active SQL in SGA tab is available for the Oracle platform only. It enables you to scan
for and select active SQL in the System Global Area (SGA). For more information, see
"Tuning SQL Statements in the System Global Area (SGA)" on page 101

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 71

USING TUNING > TUNING SQL STATEMENTS

To add an ad hoc SQOL statement:

Select the Ad hoc SQL tab and manually type an SQL statement in the window, or copy/
paste the statement from another source.

To add a database object:

1 Select the Database Objects and click Add. The Data Source Object Selection dialog
appears.

2 Type an object name prefix or pattern in the field provided. The window below automatically
populates with all statements residing on the specified data source that match your criteria.
Database objects include functions, materialized views, packages, package bodies,
procedures, stored outlines, triggers, and views.

3 Double-click on the statement you want to add. You can click Add again to repeat the
process and add more objects to the job.

NOTE: Alternatively, after clicking the Database Objects tab, you can drag and drop objects
from Data Source Explorer into the Database Objects window. As long as the dragged
object is a valid object type, it will be added to the Database Objects tab.

To add an SQL file:

1 Select SQL Files and click Workspace or File System, depending on where the file you want
to add is stored:

* Workspace files are files that reside in the application, meaning project files or other
objects generated or stored in the system.

e File System files are files that reside on your machine or the network.

2 Select a file from the dialog that appears. It is automatically added to the job.

RUN A TUNING JOB

As you add SQL statements to the job on the Input tab of the tuner, tuning-supported DML
statements (SELECT, INSERT, DELETE, and UPDATE) are parsed from the statements and added
to the Overview tab in preparation for the tuning function execution.

Each tuning source statement is listed by Name, Schema, Text, Tables and Views. For SQL Server
and Sybase platforms, there is also a Catalog column. Additionally, each statement will have
Time and Analysis values that approximate how efficiently they execute on the specified data
source.

In the Generated Cases area of the Overview tab of a tuning job, the Cost and Execution
Statistics columns let you compare the relative efficiency of SQL statements or statement cases.
While the explain plan Cost for a statement or case is calculated when you add SQL to a tuning
job, the Elapsed Time and Execution Statistics columns are not populated until you execute that
statement or case.

72 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > TUNING SQL STATEMENTS

If the Tuning Status Indicator indicates that a statement or case is ready to execute, you can
execute one or more statements on the Overview tab. Alternatively, the Tuning Status Indicator
may show that you have to correct the SQL or set bind variables before you can execute.

Once the tuning job has run, the Overview tab provides a series of cases, per statement, that
you can select and modify based on your results.

In some cases, automatic case generation might be disabled (via the Preferences panel). If this is
true, or if you have otherwise modified the Generated Cases table and can no longer generate a
specific case, you can instead explicitly generate a case for specific statements.

Execute each generated case | 1 = | times b f/j L))

To execute a tuning job:

1

Ensure you have registered and selected a data source. For more information, see "Register

Data Sources" on page 12 and "Specify a Data Source" on page 69.

Ensure you are connected to the database by double clicking the database name in the
Data Source Explorer.

Click the tuning icon on the toolbar, or click File > New > Tuning Job.

On the Input tab, specify the SQL you want to tune:

On the Ad hoc SQL tab, enter SQOL statements of copy/paste SQL statements from
another source.

Click the Database Obijects tab and then click and drag database objects, such as
Procedures, from the Data Source Explorer to the Database Object tab.

Click the Database Objects tab and then click Add to choose database objects matching
the filter you provide.

Click the SQL Files tab and navigate to the SQL file you want to tune.

Navigate to the Overview tab and modify the number of times to execute each statement in
the Execute each generated case field, as needed.

Click the execution icon to the right side of the case generation field.

The tuning job runs, exacting and analyzing each statement and providing values in the
appropriate columns.

To explicitly generate a case for a specific statement:

1

Ensure you are connected to the database by double clicking the database name in the
Data Source Explorer.

Navigate to the Overview tab.

In the Generated Cases area, right-click in the Name field of a statement or transformation
case and select Generate Cases from the context menu, or click the Overview Run Job
icon. The specified case is generated.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 73

USING TUNING > TUNING SQL STATEMENTS

To view the generated cases for a specific statement

1 Inthe Tuning Statements area, click the checkbox to the left of the tuning source statement
name.

A check mark appears in the checkbox and the cases displayed in the Generated Cases area
are filtered to display only those cases related to the selected source statement.

| P Inpul | B Overview Fi' Analysis
0 Overview | e daaced
Tuning Statements [Generste cases [ElPerform detal anabesis [¥] Execute each generated case | 1 5 times \3_5]
3 1 Stabement ¥) | TI'_II | .ﬁ.mtms
Hame Sk Text Tables Vimws Elapsed (s} Tmprareed {s) Cames Indexes
i = i SYSTEM select from SH.SALES, SH.TRMES 2 o 5 @0
'.43 O seiEcT 2 salack from < Joined Tables: i L1} 1 8 0 i
1 et selact from SH.SALES, SH.TEMES, 5 o 0.00 0.00 18 1 3 6
kil SELECT 4 st Mo CATA.INWOICE_LINES, 4 D 0.00 0,00 13 3 1
Generated Cases =
SOL Statenwnts and Cases | oot e Exeosion Statistics | = Other Execution Stabstics A
Mame Text Walue Elapsed Tie {5) Resdt B, Physical Reads Logical Reads | CPU Time (5)
El +5sEEcT) selact from 5H,SALES, BEI9L0
gel ='j SELECT3 st from SH.SALES, BER.0 oo [u] o il .00
ﬁ_i PRRALLELE 1250 0,24 I 1462 2047 01
&=l PARALLELL 420 0.54 — 1454 1874 .01
lEl HO_JRDEX 8570
1 B T R, T YR T O IR S B
El LEADINGE BEL.0
E| LEADINGS B&l.0
k] LEADING3 B75.0
El HO_USE_HASH 10620
El LEADING1 21780
=l ORDERED 2919.0 Q.00 u} o 4 X
M| INDEX_COMBINE 42330
El LISE_MERGE 72180
|_| INDEX_55_KSC 13353.0

El IMDEX _55 _DESC 1353550 o

74 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

ANALYZE TUNING RESULTS

USING TUNING > TUNING SQL STATEMENTS

Once you have executed a tuning job, the Overview tab reflects tuning analysis of the specified
statements. The Analysis tab also shows the resulting analysis of the query, including indexes
used, not used, and missing (or suggested to create). For more information on using the Analysis
tab, see "Understanding the Analysis Tab" on page 65

Tuning Status Indicator Column Set Run/Cancel Job
Enable Execution Expand/Collapse Controls
Check Box Control
Increase/Decrease
Pane Size Control
Input VErview Anabefis
B meut | b S
& Overview 1 warming gefcted @
Tuning Source S [Jcenerate Cazes [JParfoem ddai analysis Exefute each ganerated caze w ?f)
Statement Time | __ An
_ me ~ | Schama Text Thbles Visws Elapsed () Irnproved (5} Cases Inde:
T MseecT2 SYSTEM select from BROKER, 8.32 6.32 0
T ElsELEcT ! SYSTEM select from 0.00 0.00 10
< ¥
Generated Case sy
Generated Cases Expand/Collapse Control Filter Control — g
/ 0L Statements and Cases ¥ Cost »Exequtl...islics] > Other
: | Text Value | Elopsed Time (s) | Physical Reads | Lo
eEl eelect from BROKER, CLIEMNT _TRAMSACTION, 34014.0 6,32 2
| 2740 0.03 o
eel gelect from chent_transaction, dient, 4.0 0.00 0
rEl 14.0 0,00 0
el 8.0 0.00 a
EF_J WNOQ_USE_NL .0 0.00 1]
&= LEADING4 _ Extracted SQL 4 4 0.00 0
S| Eapmes 1ransformation Case Statements 0.0 003 5
el LEADING2Z Hint-Based 7.0 .01 o
3! LEADING1 / Cases 4.0 0.00 0
eel INDEX_FFS 4.0 0,00 0
o= FLLL 64,0 0.00 o
o3 FIRST_ROWS 40 0.00 0
< >

e The Generated case Expand/Collapse control lets you hide or display the hint-based cases
and transformation-based case generated for a statement.

* The Enable Execution check boxes let you enable multiple statements or cases for
simultaneous execution while the Run/Cancel Job controls let you start and stop

simultaneous execution.

e The Column set Expand/Collapse controls let you expand a column set to display more of

the columns within the table.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

75

USIN

G TUNING > TUNING SQL STATEMENTS

The Tuning Status Indicator indicates whether a statement or case is ready to execute or
has successfully executed. The following table provides information on the Tuning Status
Indicator states:

Icon Description
The case has not been executed. There are no errors or warnings and the case is ready to be executed.
Ei:'—il The case has been successfully executed.

; xecution for this case failed or was cancelled due to execution time exceeding 1.5 of original case time.
E E tion for th failed lled due t tion t ding 1.5 of original t

76

Hovering the mouse over the Tuning Status Indicator displays a tip that notes the nature of a
warning or error.

NOTE: If a warning indicates that one or more tables do not have statistics, you can right-click
the statement and select Analyze Tables to gather statistics.

A warning can indicate an object caching error. For example, a table may not exist or not be
fully qualified. Cases cannot be generated for the associated statement.

The explain plan-based Cost field can be expended to display a graphical representation of
the values for statements or cases. Similarly, after executing a statement or case, the
Elapsed Time field can be expanded to display a graphical representation. The bar length
and colors used in the representation are intended as an aid in comparing values,
particularly among cases. For example:

D.?E —

1,545 I

0,655

0,499 .

I:Iu?g? E———

0,825

In the case of both Cost and Elapsed Time, the values for the original statement are
considered the baseline values. With respect to color-coding for individual case variants,
values within a degradation threshold (default 10%) and improvement threshold (default
10%) are represented with a neutral color (default light blue). Values less than the
improvement threshold are represented with a distinctive color (default green). Values
greater than the degradation threshold are shown with their own distinctive color (default
red).

With respect to bar length, the baseline value of the original statement spans half the width
of the column. For child-cases of the original statement, if one or more cases show a
degradation value, the largest degradation value spans the width of the column. Bar length
for all other children cases is a function of the value for that case in comparison to the
highest degradation value.

NOTE: Forinformation on specifying colors, and the improvement threshold and degradation
threshold values used in these graphical representations, see "Set Tuning Job Editor
Preferences" on page 108.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > TUNING SQL STATEMENTS

Additionally, once results have been generated you can:
e Compare Cases. For more information, see "Compare Cases" on page 77.

e Filter and Delete Cases. For more information, see "Filter and Delete Cases" on page 78.

e Visual SQL Tuning. For more information, see "Visual SOL Tuning" on page 83.

e Create an Outline. For more information, see "Create an Outline" on page 78.

COMPARE CASES

You can compare cases between an original statement and one of its tuning-generated
statements, or another statement case via the Compare to Parent and Compare
Selected commands, respectively

& o &
D selECT 2: DB Transformation (SELECT 2):
BROKER &, BROKER &, _
CLIENT TRANSACTION B, CLIENZ_IRANSACIION B,
OFFICE_LOCATION C, :’fj,::i,—,_‘f:_j“j‘m o
INVESTMENT I L TEEeEe
T":'!E__ 3 WIAERE
L.BROXER ID = 3.3ROXER ID ANI e e Rl YR
7 FFICE LOCATION ID = C
A.OFFICE LOCATION ID = C.OFFI—— ek g e L
ERONE WY B.INVESTMENT ID = I.INVES
S =
GROTT =Y
L.BROKER_ID, e s [I
A.BROKER LAST NAME, A.BRORER 1D,
2.BROKER FIRST NAME A.BROKER LAST NAME,
"= sEEs_m e st r - e g -
A.YEARS WITH FIRM, A.BRORER_FIRST_NRME,
c OFFICE MAME: A.YEARS WITH FIRM, a2
< > < >
-
@

To compare a case side-by-side with its parent:

Right-click in the Name field of a case and select Compare to Parent from the context
menu.

To compare two cases:

Select the two cases then right-click in the Name field of either case and select Compare
Selected from the context menu.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 77

USING TUNING > TUNING SQL STATEMENTS

FILTER AND DELETE CASES

You filter cases from the Generated Cases table via the Filter icons on the Generated
Cases Toolbar of the Overview tab.

-+l
=

Filter the cases on the Overview tab so that hints that are not improvements on the original
statement are not displayed. You can filter:

¢ Non-optimizable statements
e Optimized statements

* \Worst cost cases

* Worst elapsed time cases

When filtering, the criteria remain in effect until you change the criteria. That is, as new cases are
generated, only those cases that do not satisfy the filtering criteria are displayed. To restore an
unfiltered set of cases, open the Filter dialog and deselect the filtering options.

When removing cases, the criteria you set has no effect on cases subsequently generated.

To filter cases from the Overview table:

1 Click the Filter button, respectively. A Filters dialog opens.

2 Use the check boxes to select your filtering and then click OK.

To delete cases from the Overview table:
1 Right-click on the row of the case you want to delete and select Delete. A Delete dialog
opens.

2 Use the check boxes to select your filtering and then click OK.

When removing cases, the criteria you set has no effect on cases subsequently generated.

CREATE AN OUTLINE

If SQL is executed by an external application or If you cannot directly modify the SQL being
executed but would like to improve the execution performance, you can create an outline on the
Oracle platform. An outline instructs the Oracle database on the execution path that should be
taken for a particular statement.

To create an outline for a change suggested by a case:

1 On the Overview tab of a tuning job, rlght-click in the Name field of a case and select
Create Outline from the context menu.

A New Outline wizard opens.

78 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > TUNING SQL STATEMENTS

2 On the first panel, provide an Outline name, select an Outline category, and then click
Next.

A Preview Outline panel opens previewing the SQL code to create the outline.

3 Select an Action to take option of Execute or Open in new SQL editor and then click
Finish.

For more information, see "Using the Outlines Tab" on page 100.

MODIFY TUNING RESULTS

As you add SQL source to the Input tab of a tuning job, the supported DML statements are
automatically parsed out and a numbered statement record for each statement is added to the
Overview tab.

Cases generated from tuning candidates are alternative forms of the original statement that
have been optimized or otherwise “fixed” by the tuning function. Once you have executed a
tuning job, tuning automatically generates all SQL optimizer hint-based variations that can be
applied to the statement:

e All SQL Optimizer hint-based variations that can be applied to a statement.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 79

USING TUNING > TUNING SQL STATEMENTS

e A transformation-based case, if any of the eight common quick fixes can be applied to an
SQL statement. This feature leverages the DB Optimizer Code Quality Check functionality.
See "Understanding Code Quality Checks" on page 39 for more information on the eight
quick fixes. A transformation case, in turn, has its own set of SQL Optimizer hint cases. For
information on Oracle transformations or query rewrites, see "Oracle Query Rewrites" on
page 81. For information on other transformations, see "Examples of Transformations and
SQL Query Rewrites" on page 110.

| F" Input 1,,-' Overview | P Analysis
s Overview 1 warning detected @
Tuning Source State [Generate Casss [Perform detal analysis [#] Execute each generated case @)
Statement | Time | An
Mame Text Tables Views Elapsed (=) Improved (s) Cases Inde:
T HEssEcT2 salect from BROKER, 8.32 8.32 0
T BssEcT select from 0.00 0.00 10
< ¥
Generated Cases Transformation-based case 3
nts and Cases ¥ Cost #Executi. istics | ¥ Other
Mame Text Value Elapsed Time {(s) | Physical Reads | Lo
E'.FJ E sﬁ‘ SELECT 2 select from EROKER, CLIENT_TRAMSACTION, F014.0 £.32 2
=] [Missing a ...sformation 2740 0.03 0
el EISEECT1 select from cient_transaction, dient, 4.0 0.00 o
el ._ISE_I-AEI-'\ 14.0 .00 0
EFJ QQEEQE:' H|nt-based cases 3,:' |:,|:,|:| |:|
el MO_USE_NL 8.0 0.00 0
ﬂ?_l LEADINGS 8.0 0.00]
E'FJ LEADING3 10.0 0.01 g
ERl LEADING2 s 0.01 0
ekl LEADING1 4.0 0.0 0
el INDEX_FFS 2.0 .00 0
el FULL £4.0 0.00 0
g FIRST_ROWS 4.0 0.00 o
4 ¥

Hint-based cases and the transformation-based case are a special case of the statement records
added to the Overview tab as you add candidates to a tuning job. With the exception of the
Text, Source, and Index Analysis fields, cases are identical to the standard statement record.
Similarly, execution, statistics collection, and other options available for basic statement records
are available for individual cases.

Once cases have been generated, if you have the required permissions on the specified data
source, you can apply the changes suggested by hint and transformation based cases in the
Overview table.

80 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

To apply a change:

USING TUNING > TUNING SQL STATEMENTS

1 Right-click on the Name field of the case that you want to use to modify the original

statement and select Apply Change.

The Apply Change dialog appears.

2 Choose Execute to apply the change to the statement automatically.

Alternatively, select Open in New SQL Editor to open the modified statement in SQL
Editor for manual changes or to save it to a file.

ORACLE QUERY REWRITES

The following query rewrites or transformations may be recommended during tuning for Oracle

data sources.

Before

After

select * from t1 where
EXISTS
(select null from t2 where t2.key = t1.key);

select * from t1 where t1.key
IN
(select t2.key from t2);

select * from t1 where
NOT EXISTS
(select null from t2 where t2.key = t1.key);

select * from t1 where t1.key
NOT IN
(select t2.key from t2 where t2.key is not null);

select * from t1 where t1.key
IN
(select t2.key from t2);

select * from t1 where
EXISTS
(select null from t2 where t2.key = t1.key);

select * from t1 where t1.key

NOT IN

(select t2.key from t2 where t2.key is not null);

select * from t1 where
NOT EXISTS
(select null from t2 where t2.key = t1.key);

select * from t1 where
NOT EXISTS
(select null from t2 where t2.key = t1.key);

select t1.* from t1, t2 where t1.key = t2.key(+) and t2.key
is null

select * from t1 where t1.key
NOT IN

(select t2.key from t2 where t2.key is not null);

select t1.* from t1, t2 where t1.key = t2.key(+) and t2.key
is null;

select column BETWEEN X AND Y

select (column <= X AND column >=Y)

select column NOT BETWEEN X AND Y

select (column < X AND column >)

select (column<= X AND column >=Y)

select column BETWEEN X AND Y

select (column < X AND column >Y)

select column NOT BETWEEN X AND Y

USING THE ANALYSIS TAB

The Analysis tab provides detailed information about statements and cases selected from the
Overview tab, after a tuning job has been executed. It also shows filter ratio, and table and join

sizes.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 81

USING TUNING > TUNING SQL STATEMENTS

The Analysis tab contains information about the statement or case, its full SQL code, a diagram
of the SQL statement, and Index Analysis.

Fﬁ‘ Input p‘ Overview Lr’ Analysis

E SQL Analysis Select staternent of interest: |SELECT 1 v| wR | (@)
SELECT A WE | |
ar.action, |_E| CLIEMT_TRAMSACTION {et) |

c.cliant id,
ls i!".'-’ES:I‘.".E'l’._._'.lT.'.:,

T.investment TYpE name

B —SVES. | BB cLeEnT 0| | B8 mvesTmEnT ()
client transaction ct,
client <, H
invescmant Type itT, i | INVESTMENT _TYPE ﬁ:}l

investment i
WHERE

ct.client id = ¢.,clienc id
- =

ct.inveatment id = i.investr

i.investment _type id = it.ir—

client Transaction id = 1; &
< | >

o

. Trndex Analysis | 53 Table Staﬁstﬁ? £8 Column Statistics And Histograms Outlines

I

Collect and create indexes L_,éh ;:L
=L __Ingex Name __ TebleQwner | Tabie Name ' Column Name #%

o [CLIENT PK SYSTEM CLIENT CLIENT_ID

" [JCUENT TRAMSACTION_PK SYSTEM LIENT _...ACTION | CLIENT TRAMSACTION_=2

" [C]MVESTMENT PK SYSTEM THVESTMENT TNVESTMENT_ID i

+ [CJINvESTMENT TYPE_PK SYSTEM INVESTMENT _TYPE | INVESTMENT_TYPE_ID

® [JcuenT TRa..ION CLIENT SYSTEM CLIENT ...ACTION lCI_IENT hin} s

£ b

Additionally, for the Oracle platform there are Table Statistics, Column Statistics and Histograms,
and Outlines tabs. For more information, see "Using Oracle-Specific Features" on page 97.

Statement analysis is performed when you click Perform detail analysis on the Overview tab
and then click Run Job or when you click the Analysis tab. In order to view and analyze
statement statistics, select the tab (Index Analysis, Table Statistics, Column Statistics and
Histograms, or Outline) and the statements whose statistics you want to analyze.

For more information, see "Visual SQOL Tuning" on page 83.

IMPLEMENTING INDEX ANALYSIS RECOMMENDATIONS

Once you have added tuning candidates to a tuning job, DB Optimizer can analyze the
effectiveness of the indexes in the database and recommend the creation of new indexes where
the new indexes can increase performance.

82 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > TUNING SQL STATEMENTS

In the Collect and create indexes table, any indexes DB Optimizer recommends you create are

marked in orange.

Index Analysis Table Statistics | E£ Column Statistics And Histograms Cutlines

&

Create
Ingdex

Collect and create indexes tﬁh
Index Mame Ta...er Ta...e ||| Table SYSTEM.CLIEMT _TRAMSACTION is
BT i e R R ey | | scanned via full table scan but it has a fiiter
=~ = = ck.transackion_status = c.client_marital_status
® [CLENT_MULTT SYSTEM CLIENT CLIENT_FIR' || o it and we cieated a virtual index
3 I CLENT_BROKER SYSTEM CLIENT BROKER_ID || IDX_CLIENT_TRANSACTION_O which the
3 I cLENT_INCOME SYSTEM CLIENT CLIENT_HoL | Stimizer picked up, 50 we suggest implementing
- - this index,
3 CJcuEenT Py SYSTEM CLIENT CLIENT_ID
3 [JCLIENT_TRANSACTION BROKER SYSTEM CLL..ON BROKER_ID
W [TPMT TRAMSACTION 1 TERT SYSTEM 1T (b L TERT TR %
£ *>

To accept the suggestion and have tuning automatically generate an index:

1 For any recommended index, click the checkbox to the left of the index.

Optionally, modify the Index type by clicking in the Index Type column and then selecting a

type from the list.
2 Click the Create Indexes button.
The Index Analysis dialog appears.

3 To view the index SQL in an editor for later implementation, click the statement and then
click Open in a SQL editor.

4 To run the index SQL and create the index on the selected database, click Execute.

VISUAL SQL TUNING

NOTE: Visual SQL Tuning is not available in DB Optimizer XE Developer.

DB Optimizer can now parse an SQL query and analyze the indexes and constraints on the
tables in the query and display the query in graphical format on The Visual SQL Tuning (VST)
diagram, which can be displayed in either Summary Mode or Detail Mode, helps developers,

designers and DBAs see flaws in the schema design such as Cartesians joins, implied Cartesians

joins and many-to-many relationships. The VST diagram also helps the user to more quickly
understand the components of an SQL query, thus accelerating trouble-shooting and analysis.

This section is comprised of the following topics:

e Changing Diagram Detail Display on page 84

e |nterpreting the VST Diagram Graphics on page 92

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 83

USING TUNING > TUNING SQL STATEMENTS

CHANGING DIAGRAM DETAIL DISPLAY
This section is comprised of the following topics:

e Viewing Table Counts and Ratios on page 84

e Viewing the VST Diagram in Summary Mode on page 85

Viewing the VST Diagram in Detail Mode on page 85

Changing Detail Level for a Specific Table on page 86

Viewing All Table Fields on page 87

Viewing Diagram Object SQL on page 89

Expanding Views in the VST Diagram on page 90

VIEWING TABLE COUNTS AND RATIOS

By default the diagram does not show table counts, two table join sizes and filtered result set
ratios. Click the Ratios and Counts on/off switch to view or hide this information

b i) oracke b 5 shpchDi . embarcadero.com {10.2,0.1)
- - =

[E SQL Analysis Select statement of inberest: |SELECT 4 v] Al @

Ratios and Counts On/Off Switch — g X |]

SELECT COUNT (*) =]

FRON 6E7330 0,01 %
HOVIES. CUSTOMER CS,) 1
HOVIES. AOVIERENTAL HE m CL‘STCIN'EQ I:CSII]

WHERE |
LENGTH (C5.LASTHAME) <> 4 AND ki
CS.ZIF > 75062 AND .-_l %
MR.TOTALCHARGE < .00 AND : o9
MR.CUSTOMERID = C5.CUSTOMERID . 36947 [0.72%

MOVIERENTAL LMR}|

Green numbers at top left of table represent the total number of rows in that table. In the above
the Customer (CS) table has 687330 rows.

Blue percentage at the top right of the table represent the percentage of rows in that table that
meet the selection criteria. In the above example, 72 percent of the rows in the MOVIERENTAL
(MR) table have met the selection criteria:

MR .TOTALCHARGE < 7.00 AND
MR .CUSTOMERID = CS.CUSTOMERID

The Red number on the table join indicates the total number of rows that meet the selection
criteria for both rows.

84 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > TUNING SQL STATEMENTS

VIEWING THE VST DIAGRAM IN SUMMARY MODE

By default the diagram displays Summary Mode, showing only table names and joins, as seen in
the following illustration

]],

| CLIENT_TRANSACTION (ct)

CLIEMT {c) | [MVESTMEMT ()

|

| B INVESTMENT _TYPE (it) |

VIEWING THE VST DIAGRAM IN DETAIL MODE

By default, the VST diagram displays in Summary Mode, but by clicking the Detail Mode/
Summary Mode switch.

R Q

| §F CLIENT_TRANSACTION {ct) |

Detail Mode/ Summary Mode
Switch

| B cLEnT (0| | B MVESTMENT ()

| E INVESTMENT_TYPE (t) |

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 85

USING TUNING > TUNING SQL STATEMENTS

additional details of the tables display, including table columns and indexes

izuf ‘hll:l(
3 AN

CLIENT_TRAMNSACTION {ct)
£ CLIENT_ID: NUMBER

= CLIENT_TRANSACTION_ID: NUMBER
2= INVESTMENT _ID: NUMBER.

CLIENT_TRAMNSACTION_BROKER
CLIENT_TRAMSACTION_CLIEMT
CLIENT_TRAMSACTION_IMVESTMEMT
".;}3 CLIENT_TRAMSACTION_PK

AN

CLIENT (&) IMVESTMENT (i)
EE CLIENT_ID: NUMEER. EE INVESTMENT_ID: MUMBER
££ INVESTMENT_TYPE_ID: MUMBER

CLIENT_BROKER

CLIENT _MULTI IMYESTMENT _INVESTMENT _TYPE
WP CLIENT_PK %P INVESTMENT_PK

i

INVESTMENT_TYPE {it)
2= INVESTMENT _TYPE_ID: NUMBER.
v

INVESTMENT _TYPE_PK

CHANGING DETAIL LEVEL FOR A SPECIFIC TABLE
You can also switch between Summary Mode and Detail Mode for a specific table or view, by
double-clicking the object name.

86 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > TUNING SQL STATEMENTS

VIEWING ALL TABLE FIELDS

By default, only fields that are used in the WHERE clause are displayed in detail mode; however,
all fields in the table can be seen in a pop-up window when, while in Summary Mode, you hover
the mouse over the table. The illustration below shows an example of a pop-up window that
appears when hovering the mouse over a table.

| B CLIENT, TRANSACTION ct) |

CLIENT_TRAMSACTION (ct)

ACTION: WARCHARZ

ROFER_ZOMMISSION: MUMEER.

ROKER_ID: MUMEER.

CLIEMT_ID: MUMEER.

= CLIEMT_TRANSACTION_ID: NUMEBER
ESCRIPTION: WARCHARZ

MYESTMEMT_IDC: MUMEER.
IIMEER._OF_LIMITS: MUMEER.

PRICE: MUMEER.
TRAMNIS&ZTION_COMP_TIMESTAMP: TIMESTAMP
RAMSACTION_STATUS: YARCHARZ
TRAMNSACTION_SUE_TIMESTAMP: TIMESTAMP

CLIENT (c)

CLIEMT_TRAMNSACTION_BROKER
CLIEMT_TRAMNSACTION_CLIEMT
CLIEMT_TRAMNSACTION_INVESTMEMT
ﬂﬁ* CLIEMT_TRAMNSACTION_PE

However, if you right-click the table you can choose to display even unused columns as follows:

CLIEMT_TRAMSACTION {ct)

= CLIENT_ID: MUMBER

ZE CLIENT_TRANSACTI
E: = t{?l Reset Layaut
== INVESTMENT _IDu ML

++ Layout Direction r
CLIEMT _TRAMSACZTI
CLIEMT _TRAMSACTI 12‘; Shows RatiosCounts
CLIEMT _TRAMSACTI| o

= Summary Mode
FOB CLIENT_TRANSACTI 2% 4

== Show Unused Columns
Il Show Object Crners @

IENT fc) [E ® ZoomIn]
) Zaam Cut

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 87

USING TUNING > TUNING SQL STATEMENTS

All the columns in the table are shown, and not just the ones used in the WHERE clause of the
SQL statement.

CLIENT_TRAMSACTION (ct)

£ ACTION: YARCHARE

BROKER _COMMISSION: MUMBER.
BROKER_ID: MUMEER.

LIEMT _ID: MUMEBER.

(= CLIEMT_TRANSACTION_IC: MUMEER.
DESCRIPTION: WARCHARZ

INWESTMENT _ID: MUMEER.
IIMBER._OF_LINITS: MUMBER.

RICE: MUMBER
RANSACTION_COMP_TIMESTAMP: TIMESTAMP
TRAMSACTION_STATUS: YARCHARZ

== TRAMIACTION_SUE_TIMESTAMP: TIMESTAMP

CLIENT _TRAMSACTION_BROKER,
CLIENT_TRAMSACTION_CLIEMT
CLIENT_TRAMSACTION_INVESTMEMT
ﬁﬂ CLIENT_TRAMNSACTION_PE

88 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > TUNING SQL STATEMENTS

VIEWING DIAGRAM OBJECT SQL
While in Detail Mode, hovering the mouse over the table name, field, or index displays the SQL
required to create that object.

CLIENT_TRAMSACTION (ct)

== CLIENT_ID: MUMEER

= CLIENT_TRAMSACTION_ID: MUMEER

INWESTMENT _ID: MUMEER.

CLIENT _TRAMSACTION_BROKER
CLIENT_TRAMSACTION_CLIEMT

CLIENT_TPﬁACTION_INUESTMENT
R

B CLIENT_TRAmBACTION PK
ﬁj}? CREATE INDEX SYETEM.CLIENT TRANSACTION INWVESTHMENT

O SYSTEM.CLIENT TRANSACTION(INVESTHMENT_ ID)
TAELESPACE SYSTEM

LOGGING
CLIEMT {c} PCTFREE 10

£= CLIENT_ID: MUMBER | |INITRANS 2
MALTRANS ZEE

CLIEMT_EROKER NOPARALLEL
CLIEMT _INCOME NOCOMPRESS
CLIEMT _MULTI B IMVESTMENT _PK

“B CLIENT_PK

INVESTMENT _TYPE (it)
£ INVESTMENT_TYPE_ID: NUMBER.

B INYESTMENT _TYPE_PK

Hovering over the join between two tables displays the relationship between the two tables.

| B CLIENT _TRANSACTION (ct) |

CLIENT I: | PN yruiecTraACE T S |

ct.client _id = c.client_id
Columns=s
CLIENT.CLIENT_ID
CLIENT TERANSACTION.CLIENT_ ID
Bow count ratio:
CLIENT Ee0o
CLIENT TRANSACTION 18675

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 89

USING TUNING > TUNING SQL STATEMENTS

EXPANDING VIEWS IN THE VST DIAGRAM
If there are views in the Visual SQL Tuning diagram, they can be expanded by right clicking the
view name and choosing Expand View:

For example, the following is the default layout from query join table CLIENT (c) to view
TRANSACTIONS (t):

&3 TRANSACTIONS ()

CLIEMT {c)

Right click on the view, TRANSACTION (t) and choose Expand View

& TRAMNSACTIC
&% Expand View

,céh Reset Layout
CLIENT ¢ +I+ Layout Direction r

A .
., Detail Mode
Il Show Chject Cwners

E"l Zoom In

Now we can see the objects in the view:

&3 TRANSACTIONS (1)

&& INVESTMENTS (i)
(0)

| CLIENT_TRANSACTION (ct)

. -

CLIENT (0

90 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > TUNING SQL STATEMENTS

We can further expand the sub-view within the original view:

&3 TRANSACTIONS (1)

&3 INVESTMENTS ()

| EF INVESTMENT ()

| B mvesTMENT _TYPE (t) |
o

| E CLIENT_TRANSACTION (ct)

L 4

CLIENT {c)

The following is an example of view expansion along with the Explain Plan to the left.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 21

USING TUNING > TUNING SQL STATEMENTS

Notice in the view expansion a list of all the indexes on all the underlying tables in the views and
sub views and which of those indexes is used in the default execution plan.

o - Liealiked Tuning Jobi 5 - Esbarcadera [l Cotimieer - C\ocumenis and Seitings eyl eh \dbopiimizes iwoikapace 30 bets
Fie DR Hyegeks Sewch Project Fun Window el
-8 TSR SRR B R L T R LY =R B[52 cpmman_ |
| it P [@ ETO) Ured Tuwg b | U UnabedTurg b (LR qiebtedTunngdh | =0
iy Bt o = el TS WPACHON, > B tesen | B Owerien i.'-.l.n.w..|
B [oetmemt Ui || B SOL Analysis @
Py ol I] o5
Selestfhaterest ol pinent: |SELECT) o b
- Ot by L -
»
g | W T ST SELEST SOUNT (%) LA)
[wonet FROM 53 TRAAACTIONS {I]
= I NESTED LR i
e e 200H AFEEET S EITVENTS [}
= L AT L0 T [0 hESTMINT £
I TABUL ACCESS - SEFTEM.IHESTHENT e.eliene_id,
I P - ST BTN T ©.1RVEStRENT_URit, |
I Tadu# ACCRSS . Sr3, LIENT TRANBACTION €, ARVRAERARE TYPe_AKRE
B roEs - sesTEd LT P, FROM
EIanBacRians S, :
slians ¢
WMERE L.Ell!n!_lﬂ - E.Ellt!!_lﬂ.
L]
eS|
I cuenT i)
Bl EsceaR_n e
. I CLIENT CFTY: iaREHAR]
] rvte arnafmn | TE e Stutsnes | W Sokmns Stmtien Ao Haingrams [cutions | W CLENT _CounTeY: vaRCHAS
W CLIENT B0 0w
Colect and crewte roeues B e oo oo e | 2
.] TobpOvow | Teldntaee oo] I CLIENT I A SBERL
v Do STSTEN T T) I CLIENT LAST fost: vancrt s
 Omotsnier ree p SFSTIM et T Tt povesean et I CLITNT MARITAL STATUS: VhACHAAS
& Dlama ., Fogner §enm aBr.cnon poesmean | IECUDNT Prone panen: vinoua
@ [Clooesmer 1 smen_ tee Seimm prvesaerer_peee tf I CLIBT poiTar dotd: vaacesns
K Do peosdn FEETEM BRoeER D I CLIENT _STATE PRIVRCE: VARDHUAD
K O R TOR BRNER, STSTIEM W CLIENT STREET _ASORESS: WRRCHAR]
¥ Clcusnr massacreon ame sesmy IECLIENT 82 _0F BRTH: HBER
- e R g o
.-~ L - TR CLIENT P
< % (| &
g Uettied Tuing Job ... Job 2 [1%) e 9@

INTERPRETING THE VST DIAGRAM GRAPHICS
This section contains the following topics that will help you understand the graphics in VST

diagrams:
® |cons on page 93

e Colors on page 93

e Connecting Lines/Joins on page 93

92

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

ICONS

USING TUNING > TUNING SQL STATEMENTS

The following describes the icons used in tables displayed in Detail Mode.

Table Icon Description
Table Name
== Field
- Field with a filter, used in the WHERE clause
G=
Index
o Primary Ke
R y Rey
COLORS

The color of the index entries in the Collect and Create Indexes table is interpreted as follows:

Text Color

Interpretation

Index is used in the query.

Index is usable but not used by the current execution path.

This index is missing. DB Optimizer recommends that you create this index.

This index exists on the table but not usable in this query as it is written.

CONNECTING LINES/JOINS

Joins are represented with connecting lines between nodes. You can move tables in the diagram
by clicking and dragging them to the desired location. The position of the connecting lines is
automatically adjusted. The following describes when a particular type of connecting line is used
and the default positioning of the line.

Connecting Lines

When used

+—+

One-to-One Join relationships are graphed horizontally using blue lines. For more
information, see "One-to-One Join" on page %4.

B One-to-Many Join relationships are graphed with the many table above the one table. For
more information, see "One-to-Many Join" on page 94.
Cartesian Join shows the table highlighted in red with no connectors to indicate that it is
joined in via a Cartesian join. For more information, see "Cartesian Join" on page 95.
e Many-to-Many Join relationships are connected by a red line and the relative location is not

restricted. For more information, see "Many-to-Many Join" on page 97.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 93

USING TUNING > TUNING SQL STATEMENTS

ONE-TO-ONE JOIN
If two tables are joined on their primary key, such as:

SELECT COUNT (*)
FROM
investment type it,
office location ol
WHERE investment type id = office_location_ id;

Then graphically, these would be laid out side-by-side, with a one-to-one connector:

| E INVESTMENT _T¥PE H—+ E3 OFFICE_LOCATION

ONE-TO-MANY JOIN

This is the default positioning of a one-to-many relationship, where INVESTMENT_TYPE is the
master table and INVESTMENT is the details table.

INVESTMENT

| & mvesTvenT _Tvee |

The following is an example of a query that consists of only many-to-one joins, which is more
typical:

SELECT
ct.action,
c.client id,
i.investment unit,
it.investment type name

FROM

client transaction ct,
client c,

investment type it,
investment i

WHERE
ct.client_id = c.client_id AND
ct.investment id = i.investment id AND
i.investment_type_ id = it.investment_type_id and
client transaction id=1

| B CLIENT_TRANSACTION |

| B cLenT | | B INvESTMENT |

| B mvesTMENT _TYPE |

94 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > TUNING SQL STATEMENTS

CARTESIAN JOIN

A Cartesian join is described in the following example where the query is missing join criteria on
the table INVESTMENT:

SELECT

A.BROKER_ID BROKER_ID,
A.BROKER_LAST NAME BROKER LAST NAME,
A.BROKER_FIRST NAME BROKER FIRST NAME,
A.YEARS WITH FIRM YEARS WITH FIRM,
C.OFFICE _NAME OFFICE_NAME,
SUM (B.BROKER COMMISSION) TOTAL_ COMMISSIONS

FROM
BROKER A,
CLIENT TRANSACTION B,
OFFICE_LOCATION C,
INVESTMENT I

WHERE
A.BROKER_ID = B.BROKER_ID AND
A.OFFICE_LOCATION ID = C.OFFICE_LOCATION ID

GROUP BY
A.BROKER_ID,
A.BROKER_LAST NAME,
A.BROKER_FIRST NAME,
A.YEARS WITH FIRM,
C.OFFICE_NAME;

Graphically, this looks like:

| B cLIENT _TRANSACTION |

W]

[E9 oFFicE_LocaTIon|

INVESTMENT is highlighted in red with no connectors to indicate that it is joined in via a
Cartesian join.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 95

USING TUNING > TUNING SQL STATEMENTS

Possible missing join conditions are displayed in the Overview tab under Generated Cases in
the transformations area. DB Optimize recommends that you create these joins.

* S0 Statements and Cazes | ¥ Cost WExmouii, sk | W ther Exsqulion Stetistics
Mame Tenct Valua Elapsed Time {5} | Physical Reads | Logical Reads CA
SELECT 1 select from BROKER,

Bl [Mizzing & valid jain criberia] transforma tian 1740 0.04] 157
ALL 34015.0 6,29 a 173
LEADINGL 34017.0 8,25 a 142
ALL_ROAE 34014.0 B35 1] i
LEADTHES 320170 B.41 a 170
IRDEX 343920 6,58 a 414
LEADING2 381430 794 a 170
QORDERED w'i40 B.51] 170
LISE_ML IE193.0 9.03 a 37316

NOTE: Transformations are highlighted in yellow.

IMPLIED CARTESIAN JOIN

If there are different details for a master without other criteria then a Cartesian-type join is
created:

SELECT *

FROM
investment 1,
broker b,
client ¢

WHERE
b.manager id=c.client id and
i.investment type id=c.client_id;

| E sroxer | | B INvESTMENT

The result set of BROKER to CLIENT will be multiplied by the result set of INVESTMENT to
CLIENT.

96 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > USING ORACLE-SPECIFIC FEATURES

MANY-TO-MANY JOIN

If there is no unique index at either end of a join then it can be assumed that in some or all cases
the join is many-to-many; there are no constraints preventing a many-to-many join. For example,
examine the following query:

SELECT *
FROM
client_transaction ct,
client c
WHERE
ct.transaction status=c.client marital status;

There is no unique index on either of the fields being joined so the optimizer assumes this is a
many-to-many join and the relationship is displayed graphically as:

| E CLIENT TRANSACTION |
7

If one of the fields is unique, then the index should be declared as such to help the optimizer.

USING ORACLE-SPECIFIC FEATURES

This section describes the tuning features available for the Oracle platform. These features are
not available for other database platforms.

e Using the Table Statistics Tab on page 98
e Using the Column Statistics And Histograms Tab on page 99

e Using the Outlines Tab on page 100
e Tuning SQL Statements in the System Global Area (SGA) on page 101

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 97

USING TUNING > USING ORACLE-SPECIFIC FEATURES

USING THE TABLE STATISTICS TAB

The Table Statistics area of the Analysis tab indicates when and if table statistics were last taken.
Using the Table Statistics you can view the information the optimizer uses to choose a path and
assess the validity of the various hints presented on the Overview tab.

Fﬁ Inpaut I l'r"' Dverview | = Analysis
B SOL Analysis)

Salact stzbement of interast: ESELECT 1 w Wi

2ELECT -

R LR 1] [wacacr
A, CONPANY, ‘_J —"'-'_E

A, PAYGROUF, o]
.OFF_CYCLE, [romomwe_werin | _0_,_|FI woicacy |
. 3EPCHE_FLAG, B S TR
e '._.-EFR-‘\'_IHENII-M“I- |Fm_l?nc-w'£hsm] |\|;k;'.l_,l':|lldl
. TAX PERICDS, T 2
.RETROPAY ERNCD,
UM (C.ANCUNT_DIFF) 3UH_ARCUNT
FRZH
PS5 PAY CALENDAR &,
VE _JOE B,
WE_RETROFPAY_EARNE C,
FS_RETROFPAY_ROST D,
P35 RETROPAYPGH TEL E
VHERE - w

I o I]

[E] Index Anakyss | 2 Table Statistics | 22 Column Stadstics and Histograms | [£] Cutines

Wiew tabke statistice wi | g
chject | = Statistics 3 Maritoring ¥ Attribdtes ”
Table Comer Table Hame Stekiskics Stabus Days Since Skats Tawen Maritorirg Cathe
ESE PS_RETROPAYFGM TBL Stakichcs OF =0 YES n }
HEETE PE_PAY_CALEMDAR Stakishes Ce 2o ves T W
O swsTEr WB_IDE Statistics DF 200 YES il
O zvsmem WE_RETROPAY ESRMS Stakickics 0 0 YES 1
: [P T— e T e e e v P o a bt

This table draws attention to:

¢ Missing statistics: Missing statistics can cause the optimizer to choose the wrong path
because the optimizer uses table statistics to make decisions. If the statistics are missing,
you can click the select a table and then click

Collect Statistics i on the far right of the tab. This sends a request to the database to
analyze the table and calculate the statistics.

98 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > USING ORACLE-SPECIFIC FEATURES

e Out-of-date statistics: Like missing statistics, out-of-date statistics can also cause the
optimizer to choose the wrong path. You can update the statistics by selecting a table, and

then clicking Display Statistics %", which refreshes the statistics from the database or by

clicking Collect Statistics - , which requests the database to analyze the table and
calculate the statistics.

NOTE: Collecting Statistics may be time-consuming, depending on how many tables the
database is analyzing and the number of rows in each table.

e Useful statistics: The number of rows in a table and whether the table has been modified
since the statistics were last collected can help you to determine which hints you should
implement in the SQL code. These statistics can help the DB Administrator to better
understand the database.

TIP: You can right-click anywhere in a row and choose options such as Collect Statistics,
Display Statistics, and Copy from the short-cut menu.

USING THE COLUMN STATISTICS AND HISTOGRAMS TAB

Histograms are special statistics that exist for a limited number of columns and are created by
the database administrator. Column histograms should be created only when there are highly-
skewed values in a column, such as is the case of an order details table with an Order Status
column where the number of closed orders for a business operating for several years is far
greater than the number of open orders. The Order Status column therefore meets the criteria of
a useful target for a histogram because the data is highly skewed. Using histograms the
optimizer determines that a full-scan is recommended when searching for closed orders, but an
index scan is more useful when searching for open orders.

DBOptimizer looks at the columns that have histograms and using statistics tries to determine
whether the column is a good or bad candidate for a histogram and presents this information on
the Column Statistics And Histograms tab.

[E] brockese Anabys's | T3] Tebde Shatistize S Cohumn Statishics Aod Hetograme. [Culines

iz colomn sk atishios | g0
Chisct | et Histograms
Sathzr | Drop Teble Hame Codurnin Marnee Histogram £ Euchets Fillcer Tope Ircexed Median Waloe Devation # Dt Walue
(] O PS5 _PAY_CALERNDAR Py CONFIRM _RLUM HOHE L Uteral Equalky L=
D D P3_RETROPAY ROST RETRCFAY _ZEQ NO HOHE L Jduin Equelty es L
(] O PS5 _RETROPAYPE TEL COFF _CWCLE NOHE L Join Equalty Ha
[m] O P5_PaY_CALENDAR PAYGACLF NOHE L JoinEquelty Ve
l:l - P S B - . - - L

The row shading indicates the following:
* Green: Good histogram candidate
¢ Red: Bad histogram candidate

* No shading: Not determined to be a good or bad histogram candidate

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 99

USING TUNING > USING ORACLE-SPECIFIC FEATURES

Median Value Deviation

For columns that have histograms, the median value deviation is presented. Understanding the
median value deviation can help you determine whether an index scan or a full-table scan would
be more efficient.

The median value deviation represents the number of values that have duplicates away from the
median. In the case or the Order Status column, there are only three possible values, open,
processing, and closed. Consider the following:

10 open orders
100, 000 closed orders
1 order in processing

In this case the median is the middle value, 10. The number of closed orders is 10,000 times the
median which indicates that the column data is highly skewed. In this case the value in the
Median Value Deviation column would be presented as

1,0,0,0,1,0,0,0

There are 1's at the first and 5th spot in the median value deviation field indicating one column
value (value of orders in the processing state which appears once) is 1 factor of 10 away from the
median and there is a 1 at the 5th position indicating there is a column value (orders in the
closed state) that appears 5 factors of 10 more often (10,000) than the median value of 10.

A column with a median value deviation of 0, 0, 0, 0, 0, 0, O, 0 indicates that the column data is
not skewed and it is a bad candidate for a histogram, and therefore a full scan of the table would
more efficiently satisfy a query than an index scan.

To update the statistics of any object, you can select Gather for that column and then click
Display Statistics or Collect Statistics.

To stop gathering statistics for an object, such as a bad candidate for a histogram, select Drop
for that column and then click Display Statistics or Collect Statistics.

TIP: If you are gathering statistics for a column for which the statistics were missing or out-
of-date, then once the statistics collection is complete, you should return to the
Overview tab and rerun the cases, because the characteristics of the column may have
changed, so the hints to improve performance would also change.

USING THE OUTLINES TAB

The Outlines tab provides detailed information about outlines created by the query during the
statement execution process on the Overview tab.

100 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > USING ORACLE-SPECIFIC FEATURES

It provides information including the SQL statement name, if the outline is enabled or not, and
the Name, Category, and Hints associated with the outline. Additionally, the Drop parameter
specifies if it is dropped or not at execution time.

[E2 Index Analysis | EE] Table Statistics | S Cakmn Statistics And Hisbograms | [E] Outlines

Visw autines
. Enablzd Drop Mame Cakeqgory Hirks
o O SYS_0... 20684 DEFALLT FULL{"SELS2”
(m] AL TEST SWAP JOIN_INPUTS(@ SELS1”

In order to view outlines, the session needs to have USE_STORED_OUTLINES set prior to
execution. Outlines in tuning are created for the DEFAULT category, by default. Use the
following commands to enable outlines with the default settings:

alter system set USE STORED OUTILNES=true;

alter system set USE_STORED_OUTLINES=‘DEFAULT' ;
alter session set USE STORED OUTLINES=true;

Additionally, in order for a session to USE_STORED_OUTLINES, the user requires the create any
outline role. Use the following command to set up the proper permissions:

grant create any outline to [user];

TUNING SQL STATEMENTS IN THE SYSTEM GLOBAL AREA (SGA)

On Oracle platforms, SQL statements that reside in the SGA can also be tuned. When you
create a tuning job and specify an Oracle source, an additional tab appears in the Tuning
Candidates section of tuning, named Active SQL in SGA.

The SGA contains all the SQL since the database has been started up, except for those that
have been purged when the system runs out of memory. When analyzing the causes of a
database bottleneck, it is perhaps more useful to view and tune the SQL statements most
recently run, than those that have run in the last month, for example. DBOptimizer cannot tell
you which statements have most recently run by looking in the SGA. However, by profiling the

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 101

USING TUNING > ADDITIONAL TUNING COMMANDS

database using DBOptimizer Profiling and then optimizing the code by executing and running
the generated cases, you will be able to see which paths are most likely causing a bottleneck
and can be altered to enhance performance. Also, you can use Embarcadero Performance
Center to continually monitor a database over a longer period of time to help you analyze and
optimize database performance.

Tuning Candidates
Gather the SQL statements to be tuned,

=it AdhocSQL | [Database Objects | [0L Files | % Active SQL in SGA

Select statements for tuning from the active SQU in the System Global Area (5GA).

SCaM... I

To add a statement active in the SGA:
1 Select the Active SQL in SGA tab and then click Scan. The Scan SGA wizard appears.

2 Set the filtering criteria for an SGA scan and then run the wizard. It returns all active
statements on the Oracle source.

3 Choose the specific statements and add them to the tuning job.

ADDITIONAL TUNING COMMANDS

In addition to tuning, the interface provides additional commands and functionality that enables
you to view source code, statements, and other information regarding the data source.

View the Source Code of Tuning Candidates on page 102

View Statement or Case Code in SQL Viewer on page 103

Open an Explain Plan for a Statement or Case on page 104

Executing a Session from the Command Line on page 105

VIEW THE SOURCE CODE OF TUNING CANDIDATES

You can view the source code of a tuning candidate as follows:

102 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > ADDITIONAL TUNING COMMANDS

® On the Ad hoc SQL tab of the Input tab, you can see the SQL statements you typed or
pasted into that tab.

¢ On the Database objects, SQL Files, and Active SQL in SGA tabs of the Input tab, you
can double-click the name of any object added to that tab and an SQL session will open that
displays the SQL of that database Object. The SQL editor in use is actually Rapid SQL, an
Embarcadero product that is integrated with DB Optimizer.

VIEW STATEMENT OR CASE CODE IN SQL VIEWER

The Tuning job’s Overview tab let you open a statement in an SQL Viewer if you want to
perform either of the following tasks:

* View the entire SQL statement.

e Set bind variables. If the Tuning Status Indicator indicates a statement or case has invalid
bind variables, you must set those variables before executing the statement or case.

To view or set bind variables in a statement or case:

1 Click in the Text field of a statement or case.

an SQL Viewer opens on the statement or case. A set of controls for working with the
statement or case bind variables appears at the bottom of the window.

2 Use the Data Type and Value (or NULL) controls to specify the type and value for each bind
variable.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 103

USING TUNING > ADDITIONAL TUNING COMMANDS

3 Close the window by clicking the collapse control in the Text field of the statement record,
above the SQL Viewer.

[P Input | [overview | B Analysis l
@ Overview ergr detected @
Tuning Source Stati [¥]Generate Cases [Perform detal analysis [[] Execute each generated case U iQ!;
Statement | Time | An|
MNarme Schama Taxt Tables Visws Elapsad (5] Improved (s) Cases Iniche:

ol = S 5= O e i iticihies | [N I] .
FROM hr.employees
WHERE employee id = :1

Oy ane SQL DML statement allowed

_ Name | ot | Data Type | Value
i1 O nurmber
< Ed
Generated Cases g
SQL Statements and Cases » Cost | Bxecuti..stics |3 o A
Mame Text Value Elapsed Time (s) = Physical Reads
8 o, saecrs Cssethonmensoees ||
%
< >

After setting bind variables, you can execute a case.

NOTE: Setting the bind variables in a parent statement sets the bind variables in all generated
cases for that statement.

OPEN AN EXPLAIN PLAN FOR A STATEMENT OR CASE

Any valid SQL statement added to the Overview tab shows a calculated explain plan cost in the
Cost field of the statement or case record. You can open an explain plan on these statements to
view the sequence of operations used to execute the statement and the costs and other explain
plan details for each operation.

104 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > ADDITIONAL TUNING COMMANDS

To initially open an explain plan on a valid SQL statement on the Overview tab:
1 Right-click in the Name field of any statement record showing a value in the Cost field.
2 Select Explain Plan from the context menu.

An Explain Plan tab opens below the Overview tab.

750U Errors| = SQL Lag @ Ermor Log -+ Search 5 Explain Plan
sedect from cata.chientil, cata.facturil, cata.linlifactl, < Nested Tables: cata limiifact] >
bype filter baxk a
Plan Cost - Estimarted Stakistics * Actual Statistics™ &%
Cpseration Cosk | Operation Cost Result | Cardinality Bytes CPUCost [0 Cost | Optimizer Starts
« SELECT STATEMENT 253.0 .o 37 2183 102..107 235 ALL..\WS
& Pl COORDIMNATOR
& P SEND - 5Y5. - TQ10004 253.0 0.0 37 2183 102..107 235
iHEEH 2530 0.0 i7 E3 102..107 235
9 P RECEIVE 2830 0.0 7 2183 102..107 235
i P SEND - 575, TO000% 2534 0.0 37 2183 10L..107 235
“HASH 2830 1.0 37 2183 102..107 235
FHASH JOI 252.0 1.0 F¥E1 470579 95195351 235
& P RECEIVE &7.0 0.0 37 TO3 24604129 63
o P SEND -, .. TQLD001 67.0 0.0 57 703 24604129 63
* P BLOCK &7.0 0.0 7 703 24604129 63
o TABLE A JENTIL 7.0 [l 27 T3 ME04129 B2 ANN, ED
FHASH JOTH 184.0 1.0 11706 468240 673671V 173 ™

Explain plan operations are shown in a typical tree structure showing parent-child relationships.
The following table describes the column groups shown for each operation on the Explain Plan

tab:

Column (group) Description

Plan Cost Includes the Name of the operation and the calculated explain plan cost.

Additional Information | The default, collapsed view shows the Cardinality, Bytes, CPU Cost, 10 Cost, and
Optimizer values. Expanded, the view also displays Access Predicates, Filter
Predicates, QB Lock Name, Distribution, Object Alias, Object Instance, Object Node,
Partition ID, Partition Start, Partition Stop, Position, Projection, Remarks, Search
Columns, Temp Space, Time, Other, and Other Tag values.

With the Explain Plan tab open, you can quickly switch the view to an explain plan for another
SQL statement.

To change the Explain Plan tab display to another SQL statement:

1 Click in the Name field of another statement record showing a value in the Cost field.

EXECUTING A SESSION FROM THE COMMAND LINE

You can launch a tuning job from the command line using the following syntax:

dboptimizer.exe tune ds:ROM*L*ABORCL10G 1 sglfile: C:\dboptimizer\workspace\test.sql

In the above command, the user has specified ROM*L*ABORCL10G_1 as the data source, and
indicates a tuning session using the test.sql script.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 105

USING TUNING > CONFIGURING TUNING

CONFIGURING TUNING

This section contains information on configuring tuning. It provides information on setting up
your data sources to work with tuning functionality, as well as information regarding preferences
within the application for the customization of various features and functionality.

This section is comprised of the following topics:

Set Roles and Permissions on Data Sources on page 107

Set Tuning Job Editor Preferences on page 108
Set Tuning Job Editor Preferences on page 108

Set Generated Case Preferences on page 109

106 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > CONFIGURING TUNING

SET ROLES AND PERMISSIONS ON DATA SOURCES

In order to take advantage of all tuning features, each user must have a specific set of
permissions. The code below creates a role with all required permissions. To create the required
role, execute the SQL against the target data source, modified according to the specific needs
of your site:

/* Create the role */
CREATE ROLE SQLTUNING NOT IDENTIFIED

GRANT

/
GRANT

/
GRANT

/
GRANT

/
GRANT

/
GRANT

/
GRANT

/
GRANT

/
GRANT

/
GRANT

/
GRANT

/
GRANT

/
GRANT

/
GRANT

/
GRANT

/
GRANT

/
GRANT

/
GRANT

/
GRANT

/
GRANT

/

SQLTUNING TO "CONNECT"

SQLTUNING TO SELECT_CATALOG_ROLE
ANALYZE ANY TO SQLTUNING

CREATE ANY OUTLINE TO SQLTUNING
CREATE ANY PROCEDURE TO SQLTUNING
CREATE ANY TABLE TO SQLTUNING

CREATE ANY TRIGGER TO SQLTUNING
CREATE ANY VIEW TO SQLTUNING

CREATE PROCEDURE TO SQLTUNING

CREATE SESSION TO SQLTUNING

CREATE TRIGGER TO SQLTUNING

CREATE VIEW TO SQLTUNING

DROP ANY OUTLINE TO SQLTUNING

DROP ANY PROCEDURE TO SQLTUNING

DROP ANY TRIGGER TO SQLTUNING

DROP ANY VIEW TO SQLTUNING

SELECT ON SYS.V_$SESSION TO SQLTUNING
SELECT ON SYS.V_$SESSTAT TO SQLTUNING
SELECT ON SYS.V_$SQL TO SQLTUNING

SELECT ON SYS.V_$STATNAME TO SQLTUNING

Once complete, you can assign the role to users who will be running tuning jobs:

/* Create a sample user*/
CREATE USER TUNINGUSER IDENTIFIED BY VALUES 'OS5FFD26E9S5CF4A4B'
DEFAULT TABLESPACE USERS
TEMPORARY TABLESPACE TEMP
QUOTA UNLIMITED ON USERS
PROFILE DEFAULT
ACCOUNT UNLOCK

/
GRANT

/

SQLTUNING TO TUNINGUSER

ALTER USER TUNINGUSER DEFAULT ROLE SQLTUNING

/

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 107

USING TUNING > CONFIGURING TUNING

SET TUNING JOB EDITOR PREFERENCES

Tuning job editor preferences let you control certain aspects of the appearance of items in the
tuning job editor as well as default behaviors.

S
% Preferences

[type filter text |

General

Data Sources

Embarcadero Licensing

Help

InstallUpdate

RunDebug

S0L Development
Data Source Indexing
Debug

B SQL Editor
EQL Exeaution
SOL Filters

=8 Tuning Job Editor

Case Generation

Bl

00 EE--EE-- R

& Team

- BX

Tuning Job Editor el

Connect to the tuning source automaticaly

) Mlways) Never (%) Prompt

Colar scheme for plan cost

Baseline: @

Improvement: (W] Threshold (3): [10 %]
Degradaton: [N Threshold (%): [0 3]

Case execution

For more reliable results, it s recommended o average the execution statistics over multiple runs,

.

Mumber of iterations: | 1 -
Result set fetch size: | 10 |3

Table Analysis
Statistics estimation sample percent: | 5 5

[Restore Defavits | | Agply |

o) e)

Select Window > Preferences > SQL Development > Tuning Job Editor

Option

Description

Connect to the tuning source
automatically

When you open a tuning perspective, it automatically opens the last saved tuning
jobs that were open when you closed the application. This option lets you specify
whether, in addition, you want to automatically connect to the data sources
associated with these tuning jobs. If you typically review existing tuning job archives
rather than run new tuning jobs, you may wish to explicitly connect to a data source
rather than connect automatically. The options are:

Always: Automatically connects to data sources associated with tuning jobs that
were open last time you shut down tuning.

Never: Automatically opens tuning job archives that were open last time you shut
down the application but does not automatically connect to the associated data
sources.

Prompt: Prompts you to connect to data sources associated with tuning jobs that
were open last time you shut down the application.

108

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > CONFIGURING TUNING

Option

Description

Color scheme for plan cost

In the graphical representations of explain plan cost and elapsed time, tuning uses a
color scheme to highlight differences among generated cases. Values for the
original statement are treated as a baseline, and values for individual cases that are
within a specified threshold range of the baseline value are represented with a
Baseline color. For cases whose values are outside the threshold range,
Improvement and Degradation colors are used to represent values in those cases.

Tip: You can set the threshold in the application preferences, by selecting Window
> Preferences > Tuning Job Editor and then changing the threshold levels as
required.

Case execution

Lets you dictate how execution statistics are gathered.

Table analysis

Lets you specify an estimation sample percentage to be used with the Analyze
Tables function.

SET GENERATED CASE PREFERENCES

Additionally, the Generated Case preference page lets you enable or disable the automatic
generation of SQL Optimizer hint-based cases of SQL statements added to a tuning job. It also
lets you indicate which specific hint types are generated when the feature is enabled.

P
2% Preferences

bype filter texct |

General

Data Sources

Embarcadero Licensing

Help

Ingtall Update

Run/Debug

SQL Development
Diata Source Indexing
Debug

- 2L Editor
S0L Exeaution
SQL Filters

= Tuning Job Editor

(Case Generation

3 1]

- B8

H-Team

- BX)

Case Generation

:i:}.

Generate cases automatically after extractng tuning candidates

Generate cases when running

Orade | Mirosoft SQL Server | 8M DB2 for LUW | Sybase ASE |
Select the hints to be considered when generating cases:

o e

= [F ORACLE_ACCESS_PATHS =
o equa
OawsTer
B FuLL
OHasA
[tHDEN
O mipex_asc
[inpex_comping ¥ 20 out of 80 sslected

Desoipbon:

[thsb:lre Defaults | [Aphy]

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 109

USING TUNING > EXAMPLES OF TRANSFORMATIONS AND SQL QUERY REWRITES

Select Window > Preferences > SQL Development > Tuning Job Editor > Case Generation.

Use the Generate cases option automatically after extracting tuning candidates control to
enable or disable automatic generation of hint-based cases, and then select the check boxes to
specify the hint-based cases that are generated for a statement added to a tuning job.

About Statement Records

Column or column set Description

SQL Statements and Cases Identifiers for the generated statement or case:

Name: Statements are assigned a numbered identifier based on the order in
which they were added to a tuning job.

Text: An excerpt of the statement or case based on the statement type
(SELECT, INSERT, DELETE, and UPDATE). For details on how to view the entire
statement or case.

Cost An explain plan-based cost estimate. This field is populated as soon as the
statement is added to the Overview tab.

This column set can be expanded to display a graphical representation of the
cost to facilitate comparisons among cases.

Index Analysis Tuning automatically detects indexes that require optimization and offers you
the option to automatically optimize the index. For more information, see
"Implementing Index Analysis Recommendations" on page 82.

Elapsed time The execution time during the most recent execution. This column set is not
populated until you execute the statement or case.

This column set can be expanded to display a graphical representation of the
elapsed time to facilitate comparisons among cases.

Other Execution Statistics The default, collapsed view has Physical Reads and Logical Reads columns.
Expanded, there are also Consistent Gets, Block Gets, Rows Returned, CPU
time(s), Parse CPU Time(s), Row Sorts, Memory Sorts, Disk Sorts, and Open
Cursors columns. For details on these statistics, refer to your DBMS
documentation.

This column set is not populated until you execute the statement or case.

EXAMPLES OF TRANSFORMATIONS AND SQL QUERY REWRITES

Cartesian Product Elimination: Detects Cartesian Joins and propose corrections based on
analysis of statement, for example suggesting dept.deptno = emp.deptno if emp and dept had
no join criteria.

Expression Transformation: Identifies actions on predicates that might suppress index usage
such as “where empid + 1 = 1", should be “where empid=0"

110 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > DBMS HINTS

Invalid Outer Join: Identifies invalid outer joins and suggests more efficient alternatives.

Before

After

SELECT * FROM employee e, customer ¢
WHERE e.employee_id = c.salesperson_id (+)
AND c.state = 'CA'

SELECT * FROM employee e, customer ¢
WHERE e.employee_id = c.salesperson_id (+)
AND c.state(+) = 'CA'

Transitivity:

Before

After

SELECT * FROM item i, product p, price pr

WHERE i.product_id = p.product_id AND
p.product_id = pr.product_id

SELECT * FROM item i, product p, price pr

WHERE i.product_id = p.product_id AND
p.product_id = pr.product_id

AND i.product_id = pr.product_id

Move Expression to WHERE Clause

Before

After

SELECT col_a, SUM(col_b) FROM table_a
GROUP BY col_a HAVING col_a > 100

SELECT col_a, SUM(col_b) FROM table_a
WHERE col_a > 100 GROUP BY col_a

NULL Column

Before

After

SELECT * FROM employee
WHERE manager_id != NULL

SELECT * FROM employee
WHERE manager_id IS NUL

Push Subquery

Before

After

SELECT *
FROM employee

WHERE employee_id = (SELECT MAX(salary)
FROM employee)

SELECT employee.*

FROM employee, (SELECT DISTINCT MAX(salary)
col1 FROM employee) t1

WHERE employee_id = t1.col1

Mismatched column types: identify joins type mismatch such as number = character which

might suppress use of Index

DBMS HINTS

Users can provide hints to a specified platform in order to instruct data source optimizer on the
best way to execute SQL statements. Tuning automatically generates cases using these hints.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 11

USING TUNING > DBMS HINTS

Hints can be enabled or disabled when cases are being generated by tuning on the Window >

Preferences > Tuning Job Editor > Case Generation panel. Choose a tab as it pertains to the
platform you want to modify and use the check boxes to select and de-select the hints you want
to enable or disable, respectively.

A
Preferences

Itype Fiter test | Case Generation
& General : : } 3
Generate cases automatically after extractng tuning candidates
Data Sources . - =
Embarcadera Licensing Generate cases when running
& Heln Ways leve Prompt
- IrgtalljUpdate
& RunDebug Orade | Microsaft SQL Server | 1BM DB2 for LUW || Sybase ASE |
=-50L Development Select the hints to be considered when generating cases:
Diata Sowrce Indexing ;
& sqL Editar Hnt |values | Select Al
SO Execution = [oraclE_accEss_paTHS =
0L Filters O squaL Deselect All
- Turing Job Editer OcwsTer
Case Generation Bl =0t
& Team O=as+
7 =y
Oloex_asc
EINDEE_COMB:NE | 20 out of 80 selected
Description:
[Restore Defaults | | apply |
@ [ok || caneal |

The following topics describe platform hints that are packaged in tuning to provide optimal
efficiency when executing jobs:

¢ Oracle Hints on page 112
e SQL Server Hints on page 118

e DB2 Hints on page 119

® Sybase Hints on page 120

ORACLE HINTS

NOTE: Hint Analysis through SQL hint injection for Oracle datasources is not supported in
DB Optimizer XE Developer.

112 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > DBMS HINTS

The following table highlights Oracle hints based on Oracle hints optimization:

Category Hint Available For Notes
ACC PATH AND_EQUAL /*+ CLUSTER (tablespec) */ -
ACC PATH CLUSTER /*+ FULL (tablespec) */ Use on Clustered Tables only
ACC PATH FULL /*+ HASH (tablespec) */ Forces a table scan even if there are
indexes.
ACC PATH HASH /*+ INDEX (tablespec [TAL: Only to tables stored in a table
indexspec]) */ cluster.
ACC PATH INDEX /*+ INDEX_ASC (tablespec If no indexspec is supplied, the
[TAL: indexspec]) */ optimizer will try to scan with each
avail index.
ACC PATH INDEX_ASC /*+ INDEX_COMBINE Essentially the same as INDEX.
(tablespec [indexspec [TAL:
indexspec]...]) */
ACC PATH INDEX_COMBINE /*+ INDEX_DESC (tablespec [Forces the optimizer to try multiple
indexspec [TAL: indexspec]...]) | boolean combinations of indexes.
*
/
ACC PATH INDEX_DESC /*+ INDEX_DESC (tablespec [Essentially the same as INDEX.
indexspec [TAL: indexspec ...])
*
/
ACC PATH INDEX_FFS /*+ INDEX_FFS (tablespec | Forces an index scan using
indexspec [TAL: indexspec]...]) | specified index(es).
*
/
ACC PATH INDEX_JOIN /*+ INDEX_JOIN (tablespec | Indexes used should be based on
indexspec [TAL: indexspec]...]) | columns in the where clause.
*
/
ACC PATH INDEX_SS /*+ INDEX_SS (tablespec [Useful with composite indexes
indexspec [TAL: indexspec]...]) | where the first column is not used in
*/ the query, but others are.
ACC PATH INDEX_SS_ASC /*+ INDEX_SS_ASC (tablespec| | Essentially the same as INDEX_SS.
indexspec [TAL: indexspec ...])
*
/
ACC PATH INDEX_SS_DESC /*+INDEX_SS_DESC (tablespec | Essentially the same as INDEX_SS.
[indexspec [TAL: indexspec]...])
*
/
ACC PATH NO_INDEX /*+ NO_INDEX (tablespec [Directs the Optimizer not to use
indexspec [TAL: indexspec]...]) | specified index(es).
*
/
ACC PATH NO_INDEX_FFS /*+ NO_INDEX_FFS ([tablespec | Directs the Optimizer to exclude a
[indexspec [TAL: indexspec]...]) | fast full scan of the specified
*/ index(es).
ACC PATH NO_INDEX_SS /*+ NO_INDEX_SS (tablespec[| Directs the Optimizer to exclude a
indexspec [TAL: indexspec]...]) | skip scan of the specified index(es).
*
/
ACC PATH ROWID - -
JOIN OP HASH_AJ - -

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

113

USING TUNING > DBMS HINTS

Category Hint Available For Notes

JOIN OP HASH_SJ - -

JOIN OP MERGE_AJ - -

JOIN OP MERGE_SJ - -

JOIN OP NL_AJ - -

JOIN OP NL_SJ - -

JOIN OP NO_USE_HASH /*+ NO_USE_HASH (tablespec | Negates the use of hash joins for
[TAL: tablespec]...) */ the table specified.

JOIN OP NO_USE_MERGE /*+ NO_USE_MERGE (Negates the use of sort-merge joins
tablespec [TAL: tablespec]...) */ | for the table specified.

JOIN OP NO_USE_NL /*+ NO_USE_NL (tablespec Negates the use of nested-loop
[TAL: tablespec]...) */ joins for the table specified.

JOIN OP USE_HASH /*+ USE_HASH (tablespec [TAL: | Directive to join each table
tablespec]...) */ specified using a hash join.

JOIN OP USE_MERGE /*+ NO_USE_MERGE (Directive to join each table
tablespec [TAL: tablespec]...) */ | specified using a sort--merge join.

JOIN OP USE_NL /*+ NO_USE_NL (tablespec Directive to use a nested-loop join
[TAL: tablespec]...) */ with the specified tables as the

inner table.

JOIN OP USE_NL_WITH_INDEX /*+ USE_NL_WITH_INDEX (Directive to use a nested-loop join
tablespec [indexspec [TAL: with the specified table as the inner
indexspec]... 1) */ table using the index specified to

satisfy at least one predicate.

JOIN ORDER | LEADING /*+ LEADING (tablespec) */ Directive to join the tables in the
order specified.

JOIN ORDER | ORDERED /*+ ORDERED */ Directive to join tables in the order
found in the FROM clause.

JOIN ORDER | STAR - -

OPT ALL_ROWS /*+ ALL_ROWS */ Indicates the goal is overall

APPROACH throughput.

OPT CHOOSE - -

APPROACH

OPT FIRST_ROWS /*+ FIRST_ROWS (integer) */ The goal is to retrieve the first row(s)

APPROACH as fast as possible.

OPT RULE /*+ RULE */ Used to disable the COST based

APPROACH optimizer.

OTHER CACHE /*+ CACHE (tablespec) */ Should be used with the FULL hint.
Places data in the most-recently
used area of the buffer cache.

OTHER APPEND /*+ APPEND */ Directs the optimizer to INSERT

data at the end of the existing table
data using direct path I/0.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > DBMS HINTS

Category

Hint

Available For

Notes

OTHER

CURSOR_SHARING_EXA
CT

/*+ CURSOR_SHARING_EXACT
*/

Directs the Optimizer to ignore
previously parsed SQL that
matches, but uses bind variables.
Forces the SQL to be parsed unless
an exact match is found.

OTHER

DRIVING_SITE

/*+ DRIVING_SITE (tablespec)
*/

Used when data is joined remotely
via DBLink. Normally data at the
remote site is returned to the local
and joined. This hint directs the
optimizer to send the local data to
the remote site for resolution of the
join.

OTHER

DYNAMIC_SAMPLING

/*+ DYNAMIC_SAMPLING
([TAL: tablespec | integer) */

Only used in simple SELECT
statements with a single table to
approximate cardinality if there are
no existing statistics on the table.

OTHER

MODEL_MIN_ANALYSIS

/*+ MODEL_MIN_ANALYSIS */

Used with spreadsheet and model
analysis to minimize compile time.

OTHER

NO_PUSH_PRED

/*+ NO_PUSH_PRED [TAL:
(tablespec)]*/

Opposite of PUSH_PRED, it directs
the Optimizer not to try to push the
predicate into the view.

OTHER

NO_PUSH_SUBQ

/*+ NO_PUSH_SUBQ | */

Opposite of PUSH_SUBQ, it directs
the Optimizer not to try and
evaluate the subquery first.

OTHER

NO_UNNEST

/*+ NO_UNNEST */

Subqueries in the WHERE clause
are considered nested. A subquery
can be evaluated several times for
multiple results in the “parent”.
Unnesting evaluates the subquery
once and merges the results with
the body of the “parent”. This hint
directs the Optimizer NOT to
unnest.

OTHER

NOAPPEND

/*+ NOAPPEND */

Directs the Optimizer to utilize
existing space in a table and
negates parallel processing.

OTHER

NOCACHE

/*+ NOCACHE (tablespec) */

Should be used with the FULL hint.
Places data in the least-recently
used area of the buffer cache.

OTHER

OPT_PARAM

OTHER

ORDERED_PREDICATES

OTHER

PUSH_PRED

/*+ PUSH_PRED [TAL:
(tablespec)]*/

Used when one of the tables in a
join is an in-line view. Forces the
predicate used to join the table and
the view into the view.

OTHER

PUSH_SUBQ

/*+ PUSH_SUBQ *

Used with an EXISTS or IN subselect
to force evaluation of the subquery
rather than the default behavior of
the last.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

115

USING TUNING > DBMS HINTS

Category Hint Available For Notes

OTHER UNNEST /*+ UNNEST */ Subqueries in the where clause are
considered nested. A subquery
could be evaluated several times for
multiple results in the “parent”.
Unnesting evaluates the subquery
once and merges results with the
body of the "parent”.

PARALLEL NO_PARALLEL /*+ NO_PARALLEL (tablespec) | Directs the Optimizer not to parallel

*/ the specified table.

PARALLEL NO_PARALLEL_INDEX /*+ NO_PARALLEL_INDEX Directs the Optimizer not to parallel
(tablespec [indexspec [TAL: the specified index(es).
indexspec]...]) */

PARALLEL NO_PX_JOIN_FILTER /*+ NO_PX_JOIN_FILTER Directs the Optimizer not to try and
(tablespec) */ join bitmap indexes in parallel.

PARALLEL NOPARALLEL /*+ NOPARALLEL (tablespec) */ | Directs the Optimizer not to parallel
the specified table.

PARALLEL NOPAARALLEL_INDEX /*+ NOPARALLEL_INDEX Directs the Optimizer not to parallel
(tablespec [indexspec [TAL: the specified index(es).
indexspec]...1) */

PARALLEL PARALLEL /*+ PARALLEL (tablespec [Number specifies degrees of
integer | TAL:DEFAULT]) */ parallelism (how many processes).

PARALLEL PARALLEL_INDEX /*+ PARALLEL_INDEX Number specifies degree of
(tablespec [indexspec [TAL: parallelism (how many processes).
indexspec]... | integer |
DEFAULT) */

PARALLEL PQ_DISTRIBUTE /*+ PQ_DISTRIBUTE(tablespec | Used in parallel join operations to
outer_distribution indicate how inner and outer tables
inner_distribution) */ of the joins should be processed.

The values of the distributions are
HASH, BROADCAST, PARTITION,
and NONE. Only six combinations
table distributions are valid.

PARALLEL PX_JOIN_FILTER /*+ PX_JOIN_FILTER (tablespec) | Directs the Optimizer to try and join
*/ bitmap indexes in parallel.

QUERY EXPAND_GSET_TO_UNIO | /*+ EXPAND_GSET_TO_UNION | Performs transformations on

TRANS N */ queries that have GROUP BY into
Unions.

PARALLEL FACT /*+ FACT (tablespec) */ In the context of STAR
transformation, this table should be
considered a FACT table (as
opposed to a DIMENSION).

PARALLEL MERGE /*+ MERGE ([view | tablespec) | Use with either an in-line view that
*/ has a Group by or Distinctin it as a

joined table, or with the use of IN
subquery to “merge” the "view"
into the body of the rest of the
query.

116 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > DBMS HINTS

Category Hint Available For Notes

PARALLEL NO_EXPAND /*+ NO_EXPAND */ Used when OR condition (including
IN lists) is present in the predicate
to not consider transformation to
compound query.

PARALLEL NO_FACT /*+ NO_FACT (tablespec) */ In the context of STAR
transformation this table should not
be considered a FACT table.

PARALLEL NO_MERGE /*+ NO_MERGE [([view | Directs the Optimizer not to

TAL:tablespec)] */ “merge” the view into the query.

PARALLEL NO_QUERY_TRANSFOR /*+ Directs the Optimizer not to

MATION NO_QUERY_TRANSFORMATIO | transform OR, in-lists, in-line views,
N */ and subqueries. Try it whenever any
of these conditions are present.

PARALLEL NO_REWRITE /*+ NO_REWRITE */ Directs the Optimizer not to use a
Materialized View, even if one is
available.

PARALLEL NO_STAR_TRANSFORMA | /*+ Directs the Optimizer not to try a

TION NO_STAR_TRANSFORMATION | Star Transformation.
*/
PARALLEL NO_XML_QUERY_REWRI | /*+ NO_XML_QUERY_REWRITE | Use only if the query is using XML
TE */ functionality.

PARALLEL NO_XMLINDEX_REWRITE | /*+ NO_XMLINDEX_REWRITE */ | Use only if the query is using XML
functionality.

PARALLEL NOFACT /*+ NOFACT (tablespec) */ In the context of STAR
transformation, this table should not
be considered a FACT table.

PARALLEL NOREWRITE /*+ NOREWRITE Directs the Optimizer not to use a
Materialized View, even if one is
available.

PARALLEL REWRITE /*+ REWRITE Directs the Optimizer to use a

[(view [TAL: view]...)] */ Materia!ized View insteapl of the
underlying tables. Specify REWRITE
without additional parameters.
Oracle will determine if it can us a
Materialized View or not.

PARALLEL STAR_TRANSFORMATIO | /*+ STAR_TRANSFORMATION Directs the Optimizer to try Star

N */ Transformation. Only try with a 3
table or more join.

PARALLEL USE_CONCAT /*+ USE_CONCAT */ Used when the OR condition

(including IN lists) is present in the
predicate to transform the query
into a compound UNION ALL.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

117

USING TUNING > DBMS HINTS

Category Hint

Available For

Notes

REAL TIME MONITOR

/*+ MONITOR */

Effective only if STATSTICS_LEVEL
initialization parameter is either set
to ALL or TYPICAL and
CONTROL_MANAGEMENT_
PACK_ACCESS is set to
DIAGNOSTIC+TUNING. Turns on
features of the Oracle Database
Tuning Pack.

REAL TIME NO_MONITOR

/*+ NO_MONITOR */

See MONITOR hint.

SQL SERVER HINTS

The following table highlights SQL hints based on MS SQL Server hints optimization:

Category | Hint

Available For

Notes

JOIN LOOP SELECT/UPDATE/DELETE Not applicable for RIGHT OUTER or FULL
joins.

JOIN HASH SELECT/UPDATE/DELETE -

JOIN MERGE SELECT/UPDATE/DELETE -

JOIN REMOTE SELECT/UPDATE/DELETE Only for INNER JOINs. Not applicable
with COLLATE

SELECT/UPDATE/DELETE -

QUERY RECOMPILE SELECT/UPDATE/DELETE -

QUERY FORCE ORDER SELECT/UPDATE/DELETE -

QUERY ROBUST PLAN SELECT/UPDATE/DELETE -

QUERY KEEP PLAN SELECT/UPDATE/DELETE -

QUERY KEEPFIXED PLAN SELECT/UPDATE/DELETE -

QUERY EXPAND VIEWS DML Statements Only for statement containing views.

QUERY HASH GROUP SELECT Only when GROUP BY, COMPUTE and
DISTINCT clauses are used.

QUERY ORDER GROUP SELECT/UPDATE/DELETE Only when GROUP BY, COMPUTE and
DISTINCT clauses are used.

QUERY MERGE UNION SELECT Only for statements chained using UNION

QUERY HASH UNION SELECT Only for statements chained using UNION

QUERY CONCAT UNION SELECT Only for statements chained using UNION

QUERY LOOP JOIN SELECT/UPDATE/DELETE -

QUERY MERGE JOIN SELECT/UPDATE/DELETE -

QUERY HASH JOIN SELECT/UPDATE/DELETE -

TABLE INDEX() DML Statements Only for tables and views with indexes.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > DBMS HINTS

Category | Hint Available For Notes

TABLE KEEPIDENTITY INSERT Only for INSERT statements using
OPENROWSET clause with BULK option.

TABLE KEEPDEFAULTS INSERT Only for INSERT statements using
OPENROWSET clause with BULK option.

TABLE HOLDLOCK DML Statements Not applicable for SELECT statements
using FOR BROWSE clause.

TABLE IGNORE_CONSTRAINT | INSERT Only for INSERT statements using

S OPENROWSET clause with BULK option.

TABLE IGNORE_TRIGGERS INSERT Only for INSERT statements using
OPENROWSET clause with BULK option.

TABLE NOLOCK SELECT/UPDATE/COMPLETE | Not applicable for the target table in
UPDATE/DELETE statements.

TABLE NOWAIT DML Statements -

TABLE PAGLOCK DML Statements -

TABLE READCOMMITED DML Statements -

TABLE READCOMMITEDLOCK | SELECT/UPDATE/COMPLETE | -

TABLE READPAST SELECT/UPDATE/COMPLETE | Not applicable for the target table in
UPDATE/DELETE statements.

TABLE READUNCOMMITED SELECT/UPDATE/COMPLETE | Not applicable for the target table in
UPDATE/DELETE statements.

TABLE REPEATEABLEREAD DML Statements -

TABLE ROWLOCK DML Statements -

TABLE SERIALIZABLE DML Statements Not applicable for SELECT statements
using FOR BROWSE clause.

TABLE TABLOCK DML Statements -

TABLE TABLOCKX DML Statements -

TABLE UPDLOCK DML Statements -

TABLE XLOCK DML Statements -

TABLE FASTFIRSTROW DML Statements -

DB2 HINTS

The following table highlights SQL hints based on IBM DB2 hints optimization:

Category Hint Notes

Command SET OPTIMIZATION LEVEL For top-level SELECT statements
only

Clause optimize for <n> rows For top-level SELECT statements

only

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

119

USING TUNING > DBMS HINTS

Category

Hint

Notes

Clause

fetch first <n> rows only

For SELECT statements only

SYBASE HINTS

The following table highlights SQL hints based on Sybase hints optimization:

Category Hint Notes

Logical distinct No explicit implementation

Logical group No explicit implementation

Logical g_join No explicit implementation

Logical nl_g_join Not applicable for: statements with chained
queries; select statements with group by
clause and having clause or group by clause
and order by clause

Logical m_g_join Not applicable for: statements with chained
queries; select statements with group by
clause and having clause or group by clause
and order by clause

Logical join No explicit implementation

Logical nl_join Not applicable for: select statements with
group by clause and having clause or group
by clause and order by clause

Logical m_join Not applicable for: select statements with
group by clause and having clause or group
by clause and order by clause

Logical h_join Not applicable for: select statements with
group by clause and having clause or group
by clause and order by clause

Logical union No explicit implementation

scan No explicit implementation

Logical scalar_agg Only used in combination with other
operators. It does not change the execution
plan itself.

Logical sequence Is a keyword that will be used in the
implementation of scalar_agg operator.

Logical hints We don't support a combination of hints

Logical prop Uses a set of pre-defined values.

Logical table Used only in combination with other
operators, when referring tables from
subqueries

Logical work_t This operator is applicable only together
with store operator

120

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

USING TUNING > DBMS HINTS

Category Hint Notes

Logical in Used only in combination with other
operators, when referring tables from
subqueries

Logical subq Used only in combination with other
operators, when referring tables from
subqueries

Physical distinct_sorted Only for SELECT statements containing
DISTINCT, and only for tables

Physical distinct_sorting Only for SELECT statements containing
DISTINCT, and only for tables

Physical distinct_hashing Only for SELECT statements containing
DISTINCT, and only for tables

Physical group_sorted Only for SELECT statements (not working for
views) with no having and no order by clause.

Physical group_hashing Only for SELECT statements (not working for
views) with no having and no order by clause.

Physical group_inserting Not implemented

Physical append_union_all Not applicable for: UNION chained clauses,

nested sub-selects in a from clause, if a
group by clause is present or if scalar
aggregation is present

Physical merge_union_all Not applicable for: UNION ALL chained
clauses, nested sub-selects in a from clause,
or if a group by clause is present.

Physical merge_union_distinct Not applicable for: UNION ALL chained
clauses, nested sub-selects in a from clause,
or if a group by clause is present.

Physical hash_union_distinct Not applicable for: UNION ALL chained
clauses, nested sub-selects in a from clause,
if a group by clause is present, or if scalar
aggregation is present.

Physical i_scan Applied to all table references in the from
clause of the main select and of the sub
select statements except: 1. statement has
sub-selects. 2. table references has no
indexes.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 121

USING TUNING > DBMS HINTS

Category

Hint

Notes

Physical

t_scan

Applied to all the table references in the
from clause of the main select and of the sub
select statements except: On Sybase 12.5
not applied for tables in the main query if: 1.
statement has chained queries. 2. Sub
queries have group by and having clauses;
and not applied to the tables in sub selects
if: 1. has select statements in from clause of
the main select. 2. sub queries have group by
and having clauses. 3. statement has select
statements in select clause. 4. statement has
parent statement and insert statement; on
Sybase 15 not applied for tables in sub
selects if: 1. has select statements in from
clause of the main select. 2. statement has
chained queries.

Physical

m_scan

Applied for all tables if in the where clause
there is a condition like:
table1.indexedColumn1 condition body OR
table1.indexedColumn2 condition body; Not
applied if the LIKE operator is used. For
columns that belong to a primary key only
the first column is considered.

Physical

store

Physical

store_index

Physical

sort

Physical

xchg

122

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

TUTORIALS

The tutorials enable you to get started using DB Optimizer. Their purpose is to provide you with
the foundation needed to fully utilize the features and benefits of the products, and apply them
to your own enterprise. This section contains information on how to register data sources from
your enterprise, and how to profile, analyze, and tune SQL statements, sessions, and events for
the purpose of optimizing the efficiency of your data sources, as well as identify and prevent
system bottlenecks and other wait-related issues.

This guide is comprised of the following sections:

* Working with Data Source Explorer on page 69

e Profiling a Data Source on page 72

¢ Tuning SQL Statements on page 81

e SQL Code Assist and Execution on page 107

Once you have started the application, you can select Help from the Menu Bar to find additional
resources that compliment and build upon the features and tasks presented in this guide.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 69

WORKING WITH DATA SOURCE EXPLORER

Data Source Explorer provides a tree view of all data sources registered in DB Optimizer. In
addition, it breaks down the components of each data source and categorizes databases and
corresponding database objects by object type and underlying SQL code. This feature provides
you with a view of the contents of data sources in your enterprise in an easily navigated and
cataloged interface. If you have implemented a Profiling Repository for your Oracle datasources
then you can access saved profiling sessions from the Data Source Explore

E'EI Cata Source Explar 63 % S0L Project Explore = 8
ik BE "

=l = Managed Data Sources (8) -~
=l 1=F Daka Source Group (3)
=I-1=F Microsoft SOL Server (2]
+-1=F Microsoft SOL Server (1)
+- Sl TORLAESQLOO_1_#2 (S0L Server 8,0,20
=T+ Oracle (&)
+ i| Mew data source (Oracle &,1,7,4)
+- i ROMLABORCLEI_1 (Oracls 5,1.7.4)
+- i ROMLABORCLSI_2 (Oracle 9.2,0,1)
= j] sfvpclbil, embarcadera.com (Oracle 10,2
+ [__fj Daktabase Chjects
= M Profiling Repositary
= ﬁ romlabsgl0s_1-sa
[q 2010-01-08 00:46:23 {34m)

| TORLABORCLSI 2 (Oracle 8.1.7.4) v
< >

+

Data Source Explorer sorts databases and database objects by category within DB Optimizer.

If data sources are particularly large or complex, or you are only developing specific objects, you
can apply database object filters on the view in Data Source Explorer.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 70

ADDING DATA SOURCES

In order to profile and tune statements, you need to register the data sources to be analyzed in
the environment by providing connection information and other details to DB Optimizer. Data
sources are registered and managed in Data Source Explorer. Each time you register a new data
source you need to specify its connection information and organize it in the View, as needed.
Once a data source has been registered, it remains stored in a catalog and does not need to be
registered again each time you open DB Optimizer. Furthermore, it can be used in multiple jobs,
archived, or otherwise “shared” with regards to the general functionality of the application.

Hy Pl £ 50l Project Expl | — O
- uwediR BE 7

[= T=F Managed Data Sources (5)
[=)T=F Data Source Group (5]
I=F Microsoft SQL Server (23
[=-T=F Oracle (&)
=l ROMLABORCLEI_1 (Oracle 8,1,7.4)
[__f:; Daktabase Cbjects
58 ROMLABORCLSI_Z (Oracle 2,2.0.1)
% sfvpclb0l. embarcadero.com (Cracle 10
=l TORLABORCLE_Z (Orace &.1.7.4)
[__[; Database Ohjecks
=l TORLABORCLE 3 (Oracle)
[[3 Database Objects
=-fs TORLABORCLi_1 (Orarle)
[__f:; Daktabase Cbjects

The Data Source Explorer view provides an organizational tree of registered data sources and the parameters associated with them.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 71

TUTORIALS > WORKING WITH DATA SOURCE EXPLORER

To add a data source:
1 Select Data Source Explorer and choose File > New > Data Source from the Menu bar.

The Data Source Wizard appears.

& New Data Source: New data source

Register a new data source

Choose the server bvpe and lacation For wour new data source,

Generate a unique name based on the alias or the host name

[Data source name:

Select a server type: Select a data source group:
CthGeneric IDBC = =F Managed Data Sources
C4IEM DEZ for LUW [=-{=F Daka Source Group
CHiMicrosoft SOL Server [=-1=F Microsoft S0L Server
CHhorace I=F Microsoft SQL Sery
Ct5vbase ASE l=F Oracle

©

2 Follow the steps provided to register the data source. When you are finished, the data
source is added to Data Source Explorer.

72 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

TUTORIALS > WORKING WITH DATA SOURCE EXPLORER

BROWSING DATA SOURCES

In order to analyze and tune statements on data sources within your enterprise, you need to
access the data source objects within the application environment. It is important to be able to
view databases and underlying code in an organized manner, especially when maintaining a
large system. Data Source Explorer’s tree structure can be used to view databases, tables, and
other information about data sources. Expand the nodes of each registered data source to view
details about each data source. Data Source Explorer is also used to launch profiling sessions, by
enabling you to select the data source that you want to execute, and then launching a profiling
session from your selection.

HH Diaka Source Expl &2 % S0L Project Expl = 0O |T[_l:| romlabsglds_1-5a |E_l:| ramlabare
- g gy =S T » forade » HE TORLABORCLE 2 (

| = Input FP' Overview FP' Ana

= I=F Managed Data Sources (5)

[=1-1=F Data Source Group (E) ;f/p Input
I=F Microsoft SQL Server (2)
== Oracle (5) Tuning Candidates
= %I ROMLABORCLS 1 (Dracle = .?.4} Gather the SQL stakements to be tunec
L3 Database Objects 11 Adhoc 3L | [Database Object
Ef8| ROMLABORCLSI_2 (Oracle 2,2.0.1)
% shvpclb0l.embarcadero. conpiiiie ™' 5L statements to be tuned.
=l TORLABORCLEI_2 (Crace ¢ & Disconnect
L3 Database Objects Dé,’ cut ngst Jacquie! Application DatalEm

= | TORLABORCLEI_3 (Cracle)
[L_Ej Database Ohjects

= £l TORLABORCLSI_L (Oracle) i Delete
L3 Database Objects & Dupicate

= Copy

o Rename.. .,
Mowe, ..

r;éh Refresh

Run Az L4

Prafile As

Prafile Configurations, ..

o o Into

Propetties

The Data Source Explorer tree provides a list of databases, and enables you to launch Optimizer features, such as SQL Profiler, via
the context menu.

All objects listed in Data Source Explorer are organized, in descending order, by data source.
Additionally, if you double-click on an object, SQL Editor will open and display the underlying
SQL code.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 73

Notice in the screenshot above, there is a Profiling Repository on the last data source in the list
of Oracle data sources. For Oracle data sources only, you can save your profiling sessions to the
Profiling Repository for later examination. We'll discuss this more later in "Saving a Profiling

Session " on page 79.

To browse a data source:

Expand the node of the data source that you want to examine. Double-click an object to view
the code in SQL Editor.

PROFILING A DATA SOURCE

NOTE: The SQL Profiler is not available in the “Basic” version of DB Optimizer.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 74

TUTORIALS > PROFILING A DATA SOURCE

SQL Profiler is an interface component that constantly samples a data source and builds a
statistical model of the load on the database. Profiling is used to locate and diagnose
problematic SQL code and event-based bottlenecks. Additionally, Profiler enables you to
investigate execution and wait time event details for individual stored routines. Results are
presented in the profiling editor, which enables you to identify problem areas and view
individual SQL statements, as needed.

& romlabsglOS_1-sa = Dpa..ble Fiter by: [-Kone- v| # | @
Profile Session & g
E'r BCPU OLlock BU0 OBuffer O Memary O Other
S a . I E— 1 . . e
% [! m M -
r
2. camdenddl " S B
@ o e o s o n}i‘f‘:' -
= @ o o ¥ o o i

Orwerview 55' S0L f_b-' Events lﬂ'f_jﬁl:ssi:lns _['ﬁ Frocedures

S0L Statements Events Sessions
Skabement b Event i User Mame [Application 5P
o SELECT SCH...m FRCH = AEMC_METWACIRE_TC MOYIES | Em...B Cptimizer
o USE [pubg] 5...(15,2),0 PAGEICLATCH_S5H 2a | Embarc. . .B Optimizer
W SELECT €500, = ‘Ada ja s 1] 5a | Execubor Module
& SELECT SC.. EMA_MAME ¥ || LCE_M_x || sa | Executor Module b
4 > % ¥ 4 >
[£ probleme | 4 Tacks | LI Bookmark | o= outine | 5 S0L Ervor | 3t SoLLog | @ Profiing 27 - T O

Session: 59_2010-01-08 06:20:20,710

== Session Details ‘-‘% S0L EB' Eweris .ﬁ Procedues
Database Server Connection *
SPID 59
EPIC 9200
Dakabase 1D 52
Leer 100 0

Login time 2000-01-07 23:20:20.71
Client Application

SQL Profiler analyzes and provides a statistical model of database load that identifies problematic code and event-based bottlenecks.

SQL Profiler is composed of the following diagnostic parts:

® The Load Graph provides a display of the overall load on the system. The bars represent
individual aspects of the data source.

e The Top Activity section displays where load originates. Specifically, Top Activity displays
the top SQL statements, the top events the database spends time in, and the top activity
sessions that may be causing issues in terms of query time and response.

¢ The Profiling Details view displays detailed information for any item selected from Top
Activity. For example, examining a SQL statement from Top Activity displays the
identification parameters and the execution statistics of that specific statement selection.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 75

TUTORIALS > PROFILING A DATA SOURCE

STARTING A PROFILING SESSION

In order to access SQL Profiler, you need to run a profiling session on a data source registered in
Data Source Explorer. You can do this by right-clicking on a data source and selecting

Profile As ...> Data Source from the context menu. You can also click the Profile icon in the
Toolbar, which initiates a profile session on the last selected data source in Data Source Explorer.

Once a profiling session launches, it runs until you stop it or it has run for its specified length of
time. You can stop a session by clicking the Stop icon on the right-hand side of the Profiling
progress bar.

When the profiling session is complete, the first two sections (Load Chart and Top Activity) will
be populated with information about the database load. You can then begin analyzing the data
and identifying problem areas.

@ Progress 7 3& ~ =0
mPrl:-ﬁling terlabsgloD_2
[(eess=]

Initializing session. ..

The Progress view indicates that the profiling session has been initiated.

To run a profiling session:

In Data Source Explorer, right-click on a data source and select Profile As ...> Data Source. The
profiling session begins.

ANALYZING SESSION DATA

Profiler is composed of three essential diagnostic views that provide information about load on a
particular database in the system. These views enable you to identify bottlenecks and view
details about specific queries that execute and wait over the course of a profiling session.

SQL Profiler is composed of the following three components, listed in descending order of
granularity:

¢ Load Chart. For more information, see "Load Chart " on page 74.

e Top Activity. For more information, see "Top Activity " on page 75.

¢ Profiling Details. For more information, see "Profiling Details " on page 76.

76 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

LoAD CHART
The Load Chart provides an overview of the load on the system, and is designed as a high level
entry point to reading session results. The colored bars represent individual aspects of the
database, and the graph can be used to discover bottlenecks.
Frohle Sessicn \ﬂ, =1
B OrCPU B Svskem PO § User 0 @ Costar @ a&ppleacn | Comdfouraticrn i Sommit | Metsorke B Acminisiratee B Corcumenicy | Scheduler § Cthar

B ! P e e [P e i . s

0o

ardvn Srsslans [As]
PR
—

o
3 a® i e e

&
k]
"
]
*
=
o,
I
B

The Load Chart displays the overall load of the database that you analyzed with Profiler.

Time is displayed on the X axis, and the Y axis shows the average number of sessions waiting or
executing. Each support platform type has a specific set of wait event times. For example,

Sybase platforms will display CPU, Lock, Memory, I/0, Network, and Other. Use the chart legend
to understand the graph. It displays a color and code scheme for executing and waiting session

categories in the upper right-hand corner of the chart.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 77

TUTORIALS > PROFILING A DATA SOURCE

TOP ACTIVITY

Below the Load Graph, the Top Activity section displays where the load originates and outlines
the top SQL statements, top events, and the top activity sessions on the database. It is
composed of a series of tabs that provide detailed statistics on individual SQL statements and
sessions that are waiting or executing over the length of the profiling session.

& romlabsgl0S_1-sa = Da.ble Filter by: | -Kone- v| & | @
Profile Session d‘}. =}
% BCPU OLock B0 OBuffer O Memary O Other
54 - EE—T - - I
i
S, etk] S
a o g o . o ,}i'ﬁ?l o
= o= o o v g g P

ZE Overview 55' S0L E'_u-' Events ﬂq Sessions _['ﬁ Frocedures

S0L Statements Events Sessions
Skabement b Event 4 User Mame [dpplcation 5P
o SELECT SCH...n FRCHM = AENIIC_METWACRE_TC MOYIES | Em... B Optimizer
" USE [pubs] 5...(15,2),6 PAGEICLATCH_SH 2a [Embarc.. B Optimizer
W SELECT C5.C... = ‘Adar ja s 1] sa [Execukor Module
& SELECT SC,, EM&_MAME Y || L _M_% || 5a [Executor Module bs]
L4 > < > % >
{21 Problems | = Tasks | LI Bockmark | 5T Cutine | %" 5oL Ervor | i) 5L Log | @ Profiing 22 - T O

Session: 59_2010-01-08 06:20:20.710

£E Seasion Detsils g—; S0L [:_5" Ewenits _ff, Procedues
Database Server Connection -
SPID 59
KPID 9200
Latabase 10 52
Lzer 100 Q

Login time 20010-01-07 23:20:20.71
Client Application

The Top Activity section displays a more detailed view of the Load Graph. It identifies top statements, events, and sessions that are
waiting or executing over the length of the profiling session.

® The Overview tab provides summary information about SQL statements and events and
their activity levels, and sessions, their system process IDs and their activity level. You can
reorder the rows in any of the three sections of this tab. For example, clicking the Event
column in the Events section changes the alphabetical order to ascending or descending.

e The SQL tab provides information about SQL statements and procedures. This includes all
INSERT, SELECT, DELETE, and UPDATE statements that are executing or waiting to execute
over the length of the profiling session.

¢ The Events tab displays information about wait events, and should be used to tune at the
application or database configuration level. For example, if the top events are locks, then
application logic needs to be examined. If the top events are related to database
configuration, then the database setup should be investigated.

78 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

TUTORIALS > PROFILING A DATA SOURCE

® The Sessions tab displays information about sessions, and can be used to discover sessions
that are very active or bottlenecked.

® The Procedures tab displays information about procedures profiled by the execution
process.This is available for Sybase and SQL Server only.

® The Object I/0 tab provides information about I/O. This tab will be displayed only if you are
profiling a database on the Oracle platform.

PROFILING DETAILS
When you select any item from Top Activity, details are displayed on the Profiling Details view.

TIP: You may have to select Windows > Show View > Profiling Details to display the
Profiling Details view.

The tabs that compose the Profiling Details view are dependent on the nature of the object selected in
Top Activity, in order to reflect that item’s specific information. The tabs are also dependent on the
datasource platform. For example, the Object I/O tab is available only for the Oracle platform whereas
the Procedures tab is available only for the SQL Server and Sybase platforms.

Frofile Session L8

BOn CPU B Systern W0 B User U0 O Chsster B Application B Cordguraion B Commi B Naeteors B Adminisirative B Conurancy L Scheduler H Qususing B Other

.
L

Actve Bessions ()
L~ I -]

:
K1

-

¥

]

]
=]
b3

-
<]

v

=]
&

8
% {

-
k-]

-
oy

=]
-]
]

-

¥

]

&

I QOverview 5 SQL © Events £"Sessions #3 Object I/O

U & Program SID S..#% .ﬁu.‘:l: %) Machme Ses e CI| nfn E
SYSTEM| 1250 1865 | lmolcgrigoredl (SRR (10..52 | |
S‘r’STEH 285 2193- BEMmlcgngoreﬂl LISER 10 52
SYSTEM 251 1809 57.49 rolcgrigore0l USER 10..52
SYSTEM IRA BRA rrlearinnreni | IEFR in_ B b

@ Profiling Details :
Session: 259, 1865 (SYSTEM)
IfSession Details 5 SQL @ Events

Statement Ex..s Awvg..ec) DB..%) - SQLID Chi..er Par..ID Pa..lue
< update cata.cli...il.codcl,5) = 2 1 3483 23.0318..9 0 S 307..28
@ update cata.cli...leodel 3) = 1 1 1465 18.4236..2 0 5 307.28
2 update cata.cli...il.codel,3) = 1 1 1751 15.1330..0 1] 5 307.28
S INSERT INTC CAT...lient', Tasi') 32094 p.oolM 14.4796..33 0 5 1]
= update cata.cli...leodel 5) = 2 0 0.00 10 9.87 31..5 0 5 307..28
5 INSERT INTO ...D/MM/YYYY'))] o000 7.8934..5 0 5 0
+ 2t UNKNOWN 0 o.00M 5.92] 0 0
2 update cata.cli...l.codcl, 71 = 5 0 o.00l 3.9554...00 0 5 307..28
it begin FOR i I...END LOOP; end 1 9,891 1.3232..5 1] 5 1]

Profiling Details displays detailed parameter information on a statement, event, or session that was selected in Top Activity. The data

displayed also varies by database platform.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 79

TUTORIALS > PROFILING A DATA SOURCE

Depending on the data source platform you have specified, the tabs that appear in the view will
be different, in order to accommodate the parameter specifics of the statement you have
selected.

Depending on the top activity selected and the profiled platform types, some tabs may not be
available.

NOTE: When right-clicking on a SQL statement in the Top Activity Section in Profiling, if the
SQL statement is run by a different user than the user who is running DBO, than the
User Mismatch dialog appears, with an example of the following message: “This query
was executed by [SOE] and you are currently connected as [system]. We recommend
you reconnect as [SOE] to tune the SQL. Would you like to continue anyway?" This
message indicates that the statement is being tuned by a user other than the user who
originally ran the query, and tables may be missing based on the different schemas.
Click OK to run the query, or click Cancel and run tuning under the original user.

To view session details:
1 In the Profile Session area of the SQL Profiler, in the Sessions column click anywhere in the
row of an application that ran during the profiling session.

2 In the Profiling Details area, click the Sessions tab.

Details of the session are displayed.

(i Profilng Detals ©1 =4
SOL: SELECT SCHEMA _NAME{D.schema_id),0uname, 0. bype, SCHEMA _NAME{D.schema_id) Lname,Cnome,S.key_ordinal,...

5“ SOL Tezt {ﬂ' Events _:i!'.l SESSONS _,ﬁ Procedurss

User Mams Applcation SPLD Mcthve [35) Hosk Kame Host Process 1D Met Ad
MICAWIES Embarcads,, piimizer 59 100,00 ROWIDAROL 3956 Q0000000
L ¥

80 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

TUTORIALS > PROFILING A DATA SOURCE

To view SOL:

1 In the Profile Session area of the SQL Profiler, click anywhere in the row of an application
that ran during the profiling session.

2 In the Profiling Details area, click the SQL Text or SQL tab.
The SQL text for the application that selected object displays.

(@ Profiing Details I =B
S0L: SELECT SCHEMA_NAME(D.schema_id),D.name,0type, SCHEMA_NAME(D.schema_id),Iname,Cname 5 key_ordinal,...

o S0L Texk 'z":' Events E‘] Sessions ﬁ, Proceduras

SELECT M
SCHEMA NAME (C.schemm_id) .
0. name,
0. type,
SCHEMA_NAME [0O.=chema_id),
I.name,
C. neme,
S.kev ordinal,

TIP: From the SQL tab you can easily tune a statement by right-clicking a statement on the
SQL tab to initiate the tuner, which then opens with the selected statement in the Ad
hoc SQL tab of the Tuner Input.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 81

SAVING A PROFILING SESSION

A profiling session can be saved to a file with a . oar suffix that contains the name of the data
source. This enables you to open the file at a later time for analysis.

Save As

Save file bo another lacation,

Enter ar seleck the parent Falder:

| SQLProject

% solProject

File name: | sFvpclbdl. embarcadero. com. oar |

@} Ok l [Cancel]

Profiling sessions can be saved as .oar files for use at a later time.

Once you have saved a profiling session to disk as a .oar file, it appears in the SQL Project
Explorer under the name you saved it as. It can be opened again by double-clicking the project
name.

To save a profiling session:

Select the profiling session and then choose File > Save As. Specify the project location you
want to save the file in and modify the file name, as needed. Click OK. The project is added to
SQL Project Explorer.

When profiling Oracle datasources you can alternatively save your profiling sessions to the
Profiling Repository which appears in the Data Source Explorer. This enables you to profile a
data source for an extended period of time, for days or weeks even. Through the Profiling
Repository you can also share your profiling session data for other DB Optimizer users to view
and analyze. For more information, see "Work with the Profiling Repository" on page 30.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 82

TUTORIALS > PROFILING A DATA SOURCE

IMPORTING STATEMENTS TO SQL TUNER

SQL Profiler enables you to submit one or more statements into SQL Tuner. This enables you to
take advantage of Tuner’s hint-based and transformation-based suggestions if you want to tune
a problem statement that you detected over the course of a profiling session.

 Profiling Details -~
Session: 251, 18(
F=Session Details 5 SQL ® Events
Statement Ex..s Avg...ec) [
< LIPDATE CATA.... > 10000%:B1 209 0.09
+ select * from cata YIRS 000
= UPDATE CATA...A 0121
% UPDATE CATA...., CopY 0.00]
vselect * from cata & gyplain Plan 0.001
WINSERT INTO CA.. .+ Tyne 0.00]
2 Nen-SOL Activity 0.00]
+select * from cata Ipe 0.00]
B begin FOR I IN ...factl.nrfact < 0 0.00]

Context menu commands in SQL Profiler enable you to import statements to a tuning job directly from the Profiler interface.

To Import a statement from Profiler into Tuner

Select one or more statements in Profiler, right-click and select Tune from the context menu.
SQL Tuner opens and contains the selected statements in a new tuning job. You can now
proceed to tune the problematic statements.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 83

TUTORIALS > TUNING SQL STATEMENTS

TUNING SQL STATEMENTS

SQL Tuner provides an easy and optimal way to discover efficient paths for queries that may not
be performing as quickly or as efficiently as they could be. Tuner enables the optimization of

poorly-performing SQL code through the detection and modification of execution paths used in
data retrieval. This is primarily performed through hint injection, and index and statistics analysis.

B Inpul | 2 Overview | ¥ Analysis |

@ Overview e datactad L]
'I'l.ri'lg Statements G-mr-d!e cased izpﬂfumdetd analyis HEIMM gererabed case | 1 - kimas Fﬂ H!'j
Skatement; | Time | Az
hlame Shema Taxt Tables Visips Elagsed (£} Tprareed (2) ks Irdecns
W EseEct SYSTEM peleck from SH.SALES, SH.TIMES z o 5 00
F Oseecrz 5 saiack from < Joined Tabins: i o 100
T Bsaecrs SYSTEM celact from SH.SALES, SH.TOMES, 5 o .00 0.00 18 1 3
T [EseEcT 4 SYSTEM salect from CATA.DNWOICE_LINES, 4 D 0,00 0.00 13 1
Generated Cases =
QL Statanmeks and Cases woost | e Exeodion Statistics [Other Exprution Stabiics -
Mame Text Walye Elapsed T {5) Resdt B, Physcal Reads Logoa Resds | CPU Time {5)
£l =5 sELecT | sedact from 5H,SALES, BE3NH0.0
=l =97 EEcTa selact from SH.SALES, BEB.0 .o o o &0 .00
| PARALLELE 125.0 0,74 E— 1462 2047 ool
&l BARALLELL e 0,54 n— () 1454 1874 .01
=l H0_DHDEX X
0, B T e TSI T TR TS B M P
L LEADIRGE Bl
E| LEADINGS BeL0
15| LEADIMNG3 BTG
El B0 _UISE_HASH 1062.0
1] LEADIMG1 21780
=l ORDERED 2419.0 .00 i a o 4 .00
] INDEY_COMIINE 42330
El LUSE _MERGE TE8.0
] INDEN_55_ASC 13353.0
=l

NDEY_55_DESC 133530 .

Tuner analyzes specified SQL statements and then supplies execution path directives. This enables you to select alternate paths for
queries, thus optimizing system performance based on analysis.

For example, if tuning is selecting from two tables (A and B), it will enable the joining of A to B,
or B to A as well as the join form. Additionally, different joining methods such as nested loops or
hash joins can be used and will be tested, as appropriate. Tuning will select alternate paths, and
enable you to change the original path to one of the alternates. Execution paths slower than the
original are eliminated, which enables you to select the quickest of the returned selections and
improve query times, overall.

This enables the DBA to correctly optimize queries in the cases where the native optimizer

failed.

84 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

TUTORIALS > TUNING SQL STATEMENTS

CREATING A NEW TUNING JOB

New tuning jobs are created from scratch where you can specify the statements to be tuned from a variety

of sources, or statements can be directly imported from existing profiling sessions on data sources
currently registered in the environment.

b gy Oracle # ﬂsfvpn:ll:ulill.embarcadern.cum(10.2.0.1}
> P P
“ Input

Tuning Candidates
Gather the QL stakements ko be tuned,

50OL

1 Ad hac S0L |] Database Objects Eﬂ} S0l Files f'r:. Ackive S0L in 5G4

Input SQL skatements to be tuned,

SELECT
ct.action,
c.client id,
i.investment unit,
it.investient TyYpe name
FEOM
client transaction ct,
client o,
investmwent _type it,
investmwent i

WHERE
ct.client id = c.client id AND
ct.investment id = i.investment id AND
i.investment type id = it.investment type id and

client transaction id=1

Tuning jobs are defined in SQL Tuner by specifying the data source and corresponding statements to be tuned and then executing

the tuning job process.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 85

TUTORIALS > TUNING SQL STATEMENTS

To create a new tuning job:

86

If you determined from a profiling session that a specific SQL statement should be tuned, in
the Profile Session, right-click the statement and select Tune as follows.

Profile Session

'a"‘lN CPLU B system /O B User 10 O Cluster BApplication B Con
& dministrative B Concurrency 0 Scheduler [Other

w2

|

=

o1

1

3 | | | []

5 Ry o AL B *ﬁicﬁ AT st AT e

EE twverview 'T'-_'Ell' 0L @ Events g-f"' Sessions | &0 Object I/O

S0L Statements Events
Statement [Ewvent CE
+3 INSERT INTO L. 'dml_locks'] oM CPU B
+3 INSERT INTO ... Free', 1, R] db file sequential read |

o select *F, NTR_DATA 1 rall event O

Organize By r

{_ | Zopy

i@ Profiling Details 2 <22 Explain Plan

S0L: SELECT X' FROM w 1ERE OBJECT _NAME =:1

E% S0l Tewt | @8 S0L Do oo o meen e —2ssions | T8 Children Detail

OR

Select File > New > Tuning Job, or click the New Tuning Job icon on the Toolbar. SQL
Tuner opens and you can proceed to set up the parameters of the new job.

Once you have defined the input of the tuning job, you can save the file with a . tun suffix
via the Save As command. The job is added to the SQL Project Explorer and can be re-
opened and re-run at any time once it is saved to the system.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

TUTORIALS > TUNING SQL STATEMENTS

ADDING SQL STATEMENTS

Once you have created a name for the tuning job and indicated its source, you can add SQL
statements that you want the job to tune. Statements are added to a job via the Ad hoc SQL

box. All standard DML statements (SELECT, INSERT, DELETE, UPDATE) are viable for the tuning
procedure.

b Oracle b j]stpcII:uEll.eml:uarcader-:u.cum (10,2.0.13
b B B
Input

Tuning Candidates
Gather the S0L stakements to be tuned,

e

1 Ad hoc 501] Database Objects EU} AL Files f’,:. Ackive S0L in 5G4

Input 5L skatements to be tuned,

Statements are added to a tuning job via the Input tab.

There are three or four different ways to add SQL statements to a job, as reflected by the tabs in
the Tuning Candidates box:

Use the Input tab to specify which SQL statements to tune.
¢ Ad hoc SQL: Copy/paste SQL statements to the Ad hoc SQL tab or write queries by hand.

¢ Database Objects: Drag and drop database objects from the Data Source Explorer to the
Database Objects tab.

® SQL Files: Browse the workspace or file system and select SQL files.
e Active SQL in SGA: For the Oracle platform only, you can also scan the System Global Area
(SGA) for statements to tune.

To add an ad hoc statement:

Select the Ad Hoc SQL tab and manually type an SQL statement in the window. Alternatively,
copy/paste the statement from another source.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 87

TUTORIALS > TUNING SQL STATEMENTS

To add a database object:

Select the Database Objects tab and click Add. The Data Source Objects Selection dialog
appears. Type an object name prefix or pattern in the field provided and choose a statement
from the window as it populates to match what you typed.

To add a saved SQL file:

Select the SQL Files tab and click Workspace or File System, depending on where the file you
want to add is stored. Select a file from the dialog that appears and it will be added to the job.

To add Active SQOL in SGA:

Select the Active SQL in SGA tab and click Scan. Specify any filters as required and then click
Next. From the list of SQL statements retrieved from the SGA, select those you want to optimize,

and then click Finish. The selected statements are copied to the text area of the Active SQL in
SGA tab.

RUNNING A TUNING JOB

After you add SQL statements to the job, click the Overview tab. Once you choose your tuning
options and click the Run Job icon, the DML is parsed from the statements and added to the
Generated Cases area. The Generated Cases are alternative execution paths or explain paths
that could be better or worse than the default path the database uses. When these cases are
executed you can use the execution statistics to determine which case would optimize
performance.

88 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

Each extracted statement is listed by Name and Text. Additionally, each statement has a Cost,
Elapsed Time, and Other Execution Statistics value that provide information on how effectively
each case executes on the specified data source. These parameters let you compare the
efficiency of the original statements to the cases generated by the tuning process when it is

executed.

TIP:
statement.

You can click the Text field of a generated case to view the SQL source of the

Tuning Status Indicator Column Set Run/Cancel Job
Enable Execution Expand/Collapse Controls
Check Box Control
Increase/Decrease
Pane Size Control
F Input I L..» VErvIiew FP AnalySis
i Overview 1 waming gefctad * @
Tuning Source S [zensrate Cazes [Perfarm detai analysis Exefute each generated case | @-]
- Statement B Time | An
J me ~ | Schama Text Thbles Visws Elapsed () Irnproved (5]} Cases Inds:
T [seecT2 SYSTEM select from BROKER, 5.32 6.32 0
" BseecT SYSTEM select from .00 .00 10
4 ¥
Generated Base sy
Generated Cases Expand/Collapse Control Filter Control —-
/ SQL Statements and Casss ¥ Cost #Exgoutl...istics] il Qther
ol =) Text Value | ElapsedTime (s) | Physical Reads | Lo
e =% zelect fram BROKER, CLIENT _TRAMNSACTION, 34014.0 6.32 2
e [Missing a ...sfarmatian 2740 0.03 o
gl R SELECT 1 gelect from chent_transaction, dient, 4.0 0.00 0
FEl LSE_HASH 140 0,00 0
e ORDERED 8.0 0.00 0
E:,E_J NO_USE_NL 6.0 0.0 1]
&= LEADING4 f _ gi‘;{:ﬁ:ggtssm 8.0 0.00 0
:ﬂ LEADING3 Transformation Case 10.0 0.0t 0
EF_J LEADING2 Hint-Based 70 0.01 1]
ERl LEADING 1 / Cases 4.0 0.0 0
eel INDEX_FFS R .00 a
o FLLL 64.0 0.00 o
o= FIRST_ROWS 40 0.00 0
< >

The Generated Cases tab enables you to measure the various load costs of the original tuning statements and generated cases for
each, which suggest alternative query paths to optimizing your data source.

The Tuning Status Indicator provides the status of each statement or case, and indicates if they
are ready for execution. In some cases, SQL code may need to be corrected or bind variables
may need to be set prior to executing statements. When you try to tune a statement containing
a bind variable you are now warned that either the type is not set or the value is not set.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

89

TUTORIALS > TUNING SQL STATEMENTS

Use the check boxes to select which statements and cases you want to run and then click the
Run icon in the lower right-hand corner of the screen. The Execute each generated case field
enables you to execute each selected statement or case.

Once you have executed a tuning job, the Generated Cases tab will reflect SQL Tuner's analysis
of the specified statements. Once these have been analyzed, you can proceed to modifying the
Tuner results and applying specified cases on the data source to optimize its performance.

To execute a tuning job:

1 Once you have a SQL statement that is a tuning candidate, navigate to the Overview tab.

2 Inthe Tuning Statements area, select the checkbox next to the Statement name that you
want to analyze and then

3 To analyze the SQL statements, click Generate cases.

To perform the analysis that populates the Analysis tab now, click Perform detail analysis.
Otherwise, this analysis tab is performed when you click the Analysis tab.

To have the system generate execution statistics, click Execute each generated case and
then select the number of times the system should execute each generated case. Multiple
executions can verify that the case results are not skewed by caching. For example, the first
time a query is run, data might be read off of disk, which is slow, and the second time the
data might be in cache and run faster. Thus, one case might seem faster than another but it
could be just benefiting from the effects of caching. Generally, you only need to execute the
cases once, but it may be beneficial to execute the cases multiple times to see if the
response times and statistics stay the same.

4 Then click the Run Job icon at the top right-hand side of the window. The tuning job runs,
analyzing each statement and case, and providing values in the appropriate columns.

ANALYZING TUNER RESULTS ON THE OVERVIEW TAB

When you have executed a tuning job, the Generated Cases area of the Overview tab reflects
Tuner's analysis of the specified statements and cases. The Generated cases create alternative
execution or explain paths that could be more or less efficient than the default path the
databases uses. Executing these cases provides the statistics necessary to optimize
performance.

Once a tuning job has executed, use the Cost and Execution Statistics value columns to
determine the fastest execution path for each statement. The Cost column shows the
performance cost of an execution path as determined by the database. The Execution Statistics
are the actual results of running the SQL statement using the generated case. This is where DB
Optimizer can help you find where the database default path is actually not the optimal path.
The Elapsed Time(s) and Results columns can more accurately show the most efficient execution
path.

90 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

TUTORIALS > TUNING SQL STATEMENTS

In the Cost and Execution Statistics columns, the values of the original statement are considered
to be the baseline values. A Cost column can be expanded to provide a graphical
representation of the values for statements and cases. Similarly, the Execution Statistics column
can also be expanded to display a graphical representation of values as well. The bar length and
colors are intended as an aid in comparing values, particularly among cases.

I:II?B I

1.545 I
0,655 M

0.499 S

0,797 R

0.828 E——

Case query times based on the original statement can be represented as colored bars on the Generated Cases area of the Overview
tab to help you determine the fastest execution path for the given selections.

The baseline value of the original statement spans half the width of the column, in terms of bar
length. For cases of the original statement, if one or more cases show a degradation value, the
largest value will span the width of the column. Bar lengths for all other cases will then be
displayed in comparison length to the highest degradation value.

The cost and execution results are color-coded as follows:

e Light blue: These cases are within the degradation and improvement threshold. Applying
these changes may marginally improve or degrade the efficiency of the SQL statement.

. : These cases have values less than the improvement threshold. There is a high
probability that changing the SQL statement with this alternative execution path will
improve efficiency.

e Red: These cases have values higher than the improvement threshold. Implementing these
changes will degrade the efficiency of the SQL statement.

To determine the best cases for statement execution path time:

Once the tuning job has executed, view the Generated Cases area of the Overview tab and
determine the best possible case in terms of the Execution Statistics column values. This will
indicate the most optimized query path for a given statement. Once you have determined
the best case, you can execute that case on the specified data source and alter the
database code to run the statement as that case on the native environment.

If you don't find an acceptably fast path, go to the Analysis tab. The Analysis tab can identify
missing indexes and by examining the diagram you may be able to determine if there is
something wrong with the SQL or schema.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 21

TUTORIALS > TUNING SQL STATEMENTS

FINDING MISSING INDEXES AND SQL PROBLEMS

The tuner performs the index and SQL analysis as part of the tuner run job performed on the
Overview tab if Perform Detail Analysis is selected. Otherwise, the analysis is performed when
you click the Analysis tab.

¥ o Oracle ¥ 5 sfvpelbil embarcadero,comi((10.2.0,1)

" " >
E sOL Analysis Select statement of inberest: |LPDATE 1 :] P @
UPDATE 2
_ . SIES0Y
MOVIERENTAL XXX T RENTALITEM (ITH)
SET TOTALCHARGE = ([SELE = =
FROE
//’K ﬁssn}
: FORGT ,x"f -'*".'m-'\\;
B o)
|
WHEF Barg0E
1
-
B30T
| v
L 2 Visual SQL Tuning Diagram
|= Index Analysts | [E] Table Statistics| £ Column Statistics And Histograms | [} Oudines
Collect and creske indexes Create Indexes button —> i
Indec: Nama Tabde Cwiner Table Hame e
o CMoVIECATEGORY PK MCAVIES MOVIECATEGORY CATEGOR
" [CmoviECory_F ICATE MCAVIECORY T IE :
o CIMovIETITLE P MCVIES MCAIETTTLE MOVIEID
v D: EMNTALITEM _P& MICVIES REMTALITEM RENTALI|»

DB Optimizer can parse an SQL query and analyze the indexes and constraints on the tables in
the query and display the query in graphical format on the Visual SQL Tuning (VST) diagram. The
VST diagram which can be displayed in either Summary Mode or Detail Mode, helps
developers, designers and DBAs see flaws in the schema design such as Cartesians joins,
implied Cartesians joins and many-to-many relationships. The VST diagram also helps the user
to more quickly understand the components of an SQL query, thus accelerating trouble-
shooting and analysis.

This section is comprised of the following topics:

¢ Finding Missing Indexes on page 90

Changing Diagram Detail Display on page 90

Interpreting the VST Diagram Graphics Conventions on page 97

Finding Problematic SQL or Schema on page 102

Applying Tuner Results to the Data Source on page 105

92 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

FINDING MISSING INDEXES

TUTORIALS > TUNING SQL STATEMENTS

Missing indexes are color-coded orange in the Collect and create indexes area of the Overview
tab. Creating a missing index can improve the execution path of the SQL statement being

analyzed.

TIP:

Indexes that are used are color-coded green. Indexes that are present but not used in

this execution path are color-coded grey.

P‘ Inpuk P Overview | = Analysis]
SqQL Analysis Selack statement of inkerest: |SELECT 1 vl | @
SELECT A
ct.action, [e CLIEMT_TRANSACTION {u}|
c.olient id, - »
i.investiwent_unit,
it. 1rwescmen1:_l: ?I]E_HBII:HE CLIENT {c}
FROM -
client _transaction ct, i Y
client o, <
investment_type it, | [MVESTMENT _TYFE (it) |
investment i
WHERE
ct.el itnﬂ_ilﬂ = z,.elisnt
et invest.ment_id = i.in
- 4 mrrAamdatvs st Eerwes el — —
< | >
Index Analysis | [Table Statistics| S5 Colurn Statistics And Histograms Outlines
Collect and create indexes o | B
| Indes: Mame | TableOwner | TableMame | [~
| [JINVESTMENT FK SYSTEM IMVESTMENT INVESTMEI
W CINVESTHENT _TYPE_PE SYSTEM INVESTMENT_TYPE TNVESTMEL
@ [CLIENT_TRA.. JON_CLIEMT SYATEM CLIENT ., ACTION CLIENT_IC
@ [JCLIENT_TRA...INVESTMENT SYSTEM CLIENT_.. ACTEON INVESTME
& >
CHANGING DIAGRAM DETAIL DISPLAY
This section is comprised of the following topics:
e Viewing the VST Diagram in Summary Mode on page 91
¢ Viewing the VST Diagram in Detail Mode on page 91
e Changing Detail Level for a Specific Table on page 92
e Viewing All Table Fields on page 93
DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 93

TUTORIALS > TUNING SQL STATEMENTS

¢ Viewing Diagram Object SQL on page 94

e Expanding Views in the VST Diagram on page 95

VIEWING THE VST DIAGRAM IN SUMMARY MODE

By default the diagram displays Summary Mode, showing only table names and joins, as seen in
the following illustration.

b‘ Inpuk l P‘ Overview

= analysis |

SQL Analysis Select stabement of inkerest: | SELECT 1 v | @
SELECT A
ct.action, | 3 CLIENT_TRANSACTION (ct)]

c.olient id,

i.investiwent_unit,

it.lnvesctwent Type name
FRON

CLIEMT ()

INVESTMENT (i)
WY

clisnt_transaction cot, Y
client o, <
investment_type it, | [MVESTMENT _TYFE (it) |
investment i

WHERE
et.eliene _id = c.elient
ct. invest.ment_id = i.in

A amwrsesdvaem st e arsne S el — —

< | >

- oA

Index Analysis | [Table Statistics | £= Column Statistics And Histograms Cuklines

Collect and create indewes o | B
| | Index Namme | TableCwner | TableMame | [
| & [INVESTMENT Pk SYSTEM TNYESTMEMT INVESTMEL

& [INVESTMENT _TYPE_PK SYSTEM INYESTMEMT_TYPE INVESTMEL A

@ [JCUENT_TRA...ION_CLIENT SYSTEM CLIENT .. ACTION CLIEMT_IC

@ [JCLENT_TRA...INWESTMENT SYSTEM CLIEMT .. .ACTION INVESTMED %

4 >

VIEWING THE VST DIAGRAM IN DETAIL MODE

By default, the VST diagram displays in Summary Mode, but by clicking the Detail Mode/
Summary Mode switch

94 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

TUTORIALS > TUNING SQL STATEMENTS

EE| CLIENT_TRANSACTION {ct)
| Y

Detail Mode/ Summary Mode
Switch

CLIENT (0 | INVESTMENT {j)

| B INVESTMENT_TYPE (it) |

additional details of the tables display, including table columns and indexes:

' [l
CLIENT_TRAMSACTICN (ct)
£E CLIENT_ID: NUMBER
= CLIENT_TRANSACTION_ID: NUMBER
£2 INVESTMENT _ID: NUMBER
CLIENT_TRANSACTION_BROKER
CLIENT_TRAMSACTION_CLIEMT
CLIENT_TRAMSACTION_INVESTMENT
P CLIENT_TRANSACTION_PK
CLIENT {c) IMNVESTMEMT (i)
£E CLIENT_ID: NUMBER £ INVESTMENT _ID: NUMBER
CLIENT BROKER £S INVESTMENT _TYPE_ID: NUMBER.
CLIENT_MULTI IMVESTMENT _INVESTMENT _TYPE
WP CLIENT_PK WP INVESTMENT_PK

i

INVESTMENT TYPE {it)
£ INVESTMENT _TYPE_ID: NUMEER

"R INVESTMENT_TYPE_PK

CHANGING DETAIL LEVEL FOR A SPECIFIC TABLE

You can also switch between Summary Mode and Detail Mode for a specific table or view, by

double-clicking the object name.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

95

TUTORIALS > TUNING SQL STATEMENTS

VIEWING ALL TABLE FIELDS

Only fields that are used in the WHERE clause are displayed in detail mode; however, all fields in
the table can be seen in a pop-up window when you hover the mouse over the table name. The
illustration below shows the pop-up window that appears when hovering over the
CLIENT_TRANSACTION (ct) table.

CLIENT _TRANISACTION (ct)
== CLIENT_ID: Naeer

== CREATE TAELE SYSTEM.CLIENT TEANSACTION
fE= CLIENT_TRAN . -
EE INVESTMENT | CLIENT_ TRANSACTION ID NUMEER(1%,0) NOT NULL,
CLIENT ID NUMEER(12,0) NOT NULL,
CLIENT_TRAN INVESTMENT ID NUMEEER(12,0) NOT NULL,
CLIEMT_TRARN ACTION VARCHARZ (10} NOT NULL,
CLIEMT_TRAN PRICE NUMEER(1Z,Z) NOT MNULL,
Y% CLIENT_TRAN NUMEEL _OF UNITS NUMEER(12,0) NOT NULL,
. TRANSACTION STATOS WARCHARZ (10} NOT NULL,
TRANSACTION SUE_TIMESTAMP TIMESTAME(§) NOT NULL,
TRANSACTION COMP TIMESTAMP TIMESTAMD (6) NOT NULL,
DESCRIFTION VARCHALZ (200} NULL,
CLIEMT () ELOKEE ID NUMEEER (10,0} NULL,
CLIEMT 1D MUMEER ELOKEL COMMISSION NUMEER(10,2) HITLL
== -_— ' :I
CLIENT_BRDKER ORGANIZATION HEALP
CLIEMT _IMCOME INYESTMENT _IMYESTMEMT _T¥PE
CLIEMT_PMULTI B INVESTMENT _PK
B CLIENT _PK *

96 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

TUTORIALS > TUNING SQL STATEMENTS

VIEWING DIAGRAM OBJECT SQL
Hovering the mouse over the table name, field, or index displays the SQL required to create that

object.

CLIEMT_TRAMSACTION (ck) 157 H &
£ CLIENT_ID: MUMEER,

= CLIENT_TRAMSACTION_ID: MUMEER
EE INVESTMENT _ID: NUMBER.
CLIEMT_TRAMNSACTION_BROKER
CLIEMT_TRAMSACTION_CLIEMT

CLIENT_TPﬁACTION_INUESTMENT
R

Y8 CLIENT_T ACTION EE
- CREATE INDEX STSTEM. CLIENT TEANSACTION INVESTMENT
ON SYSTEM.CLIENT TRANSACTION {INVESTMENT ID)
TAELESDACE SYSTEM
LOGGING
CLIEMT () DCTFREE 10

£ CLIENT_ID: MUMBER | |INITRANE 2
MATRANS ZEL

CLIEMT_EROKER NOPARALLEL
CLIEMT _INCOME NOCOMPRESS
CLIEMT _MULTI B IMVESTMENT _PK

“B CLIENT_PK

INVESTMENT _TYPE (it)
£ INVESTMENT_TYPE_ID: NUMBER.

B INYESTMENT _TYPE_PK

Hovering over the join between two tables displays the relationship between the two tables.

| 2 CLIENT _TRANSACTION (ct) | |],

[== rewiccrrarer ol

CLIEMNT
ct.client_id = c.client_id

Columns

CLIENT.CLIENT ID

CLIENT TRANSACTION.CLIENT ID
Bow count ratio:

CLIENT E&00

CLIENT TERANSACTION 18675

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 97

EXPANDING VIEWS IN THE VST DIAGRAM
If there are views in the Visual SQL Tuning diagram, they can be expanded by right-clicking the
view name and choosing Expand View:

For example, the following is the default layout from query join table CLIENT (c) to view
TRANSACTIONS (1):

&3 TRANSACTIONS (1)

CLIENT (c)

Right-click on the view, TRANSACTION (t) and choose Expand View

& TRANSACTI]
£ Expand View

1A Reset Layout
CLIENT | i+ Layout Direction r

A i
B Detail Mode
FL Show Object Owners

@& zoomIn

Now we can see the objects in the view:

&3 TRANSACTIONS (1)

& INVESTMENTS (i)
(0)

| CLIENT_TRANSACTION {ct)

L -

CLIENT (0

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

TUTORIALS > TUNING SQL STATEMENTS

We can further expand the sub-view within the original view:

&3 TRANSACTIONS (1)

&3 INVESTMENTS ()

| EF INVESTMENT ()

| B mvesTMENT _TYPE (t) |
o

| E CLIENT_TRANSACTION (ct)

L 4

CLIENT {c)

The following is an example of view expansion along with the Explain Plan to the left.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 99

TUTORIALS > TUNING SQL STATEMENTS

Notice in the view expansion a list of all the indexes on all the underlying tables in the views and
sub views and which of those indexes is used in the default execution plan.

= S0L Oyptimization - Untitled Tuning Job 5 - Embarcadero DB Optimizer - C:\Docwments and Settings\kyleh\dboptimlzer workspace_20_beta
File £t Mavigete Sesrch Project Fume Wndow el
Ml el BB b0 Qi@ i-0eq B | & s commast... |
e EN BB SO) United Tng b |18 Unated Tunng b |[B) Untted Tung o | ™ = 0]
' alect from < tiasted Tables: aractons, dent > -
h | B Input | B Overview | = Analysis
(5] | Ltype e tent [|| @ SQL Analysis ®
= | Plan Cot 1
- Salewt atastmant of mievests | SELECT | v #
-] Coeraton ’ RN |) e '-'-I
g | F RET AT SELECT COUNT (%) W aaq "
| = |, sonT FROM & TRANSACTIONS (1)
= (L NESTEDLOGOPS {
= HASH 20 o [&wesmensg
=) NESTED LOGPS £.aseien, [0 EsTMENT)
ﬂﬁﬂ.ﬁiliﬂﬁﬁ 'SW-MEW g.alisnc 1“.- ¥
I} OB + YSTEM DHVESTMENT_TYPE_FYC £, investment _unit,
u Tv’-!.l m "5”- --Llﬁ'ﬂ_mm E.1 r_w..:mr_:__: !"p‘_nm

1] THDEX, « YSTEM. CLIENT % FROM

CIansACRionS T,
eliant @

WHERE ©,cl Ler.t_i.:l & g .,I:l:I.EDE_iﬂ | u] CLIBNT _TRANSACTION w

7]
[am o)
I L) "l
Bl moEr_D: nmesr |
—a—— Bl cLiET _covy: vaRCHAR?
) i Anabyses | [T Tabie Stassties | W Colmn Suptatis Snd Histograms | [Outirs | Bl CLIBT_COURTRY; VARCHAR
Bl cuieiT_cEioeR: CHaR
Colect and areate noexes Bl cuen pousenown_ncome: noees || 52
- Inde i Todle Onrer | Tabietiame Colm] I CLIBT_ID: 14 040ER A
 Ooumm e STSTM CLENT LT D B CLIBT LAST Jive: vaROAR2
o [ClwesTienT T px SYETEM vEST...T_TroE v rve_pf I CLIENT MARITAL STATUS: VARCHAR
8 [JCUBT_ TRAN... PWESTMENT SYSTEM ouEm, oo poesmverm o | WICUENT FrONE HuMEER: VaACHARD
@ [IDWESTMENT 1., STMENT TVPE SreTEM poesent povesTeent_rvee o I CLIBNT POSTAL_COOE: VARCHARY
K CcusT sroeEr SI5TEM CLIENT EROSER_ID Bl CLIBT _STATE_PROVINGE: VARCHAR:Z
3 ClCLImr_TRAN.. TION BROSER SYSTEM CLIENT...CTION BROSER ID [l CLIBNT _STREET ADCRESS: VARCHARD
B ClCLIBNT_TRANSACTION CLENT SrSTEM CLIENT,. CTION CLEENT ID I CLIBNT _YEAR _OF _BIRTH: MUMBER
" Ecut-rr_'ﬁm.:acnm_w SYSTEM b B B | T
INVE M 'y ESTVENT 1 mn
‘F [HVESTENT X SPSTEM : INVESTMVEN INWVESTMVENT _ID ?‘I:Ll['ﬂ_pﬁ i
.- = il E = - —————————————
in £ Unbitid Tursing Job ... Job 2)1 (0%) = 0=

INTERPRETING THE VST DIAGRAM GRAPHICS CONVENTIONS

This section consists on the following topics that will help you understand the following graphic
usages:

® |cons on page 98

e Colors on page 98

¢ Connecting Lines/Joins on page 98

100 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

TUTORIALS > TUNING SQL STATEMENTS

ICONS
The following describes the icons used in tables displayed in Detail Mode.
Table Icon Description

Table Name

g= Field

z= Field with a filter, used in the WHERE clause

Index

b3 Primary Key

COLORS
The color of the index entries in the Collect and Create Indexes table is interpreted as follows:

Text Color Interpretation

Index is used in the query.

Index is usable but not used by the current execution path.

This index is missing. DB Optimizer recommends that you create this index.

This index exists on the table but not usable in this query as it is written.

CONNECTING LINES/JOINS

Joins are represented with connecting lines between nodes. You can move tables in the diagram
by clicking and dragging them to the desired location. The position of the connecting lines is
automatically adjusted. The following describes when a particular type of connecting line is used
and the default positioning of the line.

Connecting Lines When used

 — One-to-One Join relationships are graphed horizontally using blue lines. For more
information, see "One-to-One Join" on page 99.

=y One-to-Many Join relationships are graphed with the many table above the one table. For
more information, see "One-to-Many Join" on page 99.

_ Cartesian Join shows the table highlighted in red with no connectors to indicate that it is
B

joined in via a Cartesian join. For more information, see "Cartesian Join" on page 100.

e Many-to-Many Join relationships are connected by a red line and the relative location is not
restricted. For more information, see "Many-to-Many Join" on page 102.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 101

TUTORIALS > TUNING SQL STATEMENTS

ONE-TO-ONE JOIN
If two tables are joined on their primary key, such as:

SELECT COUNT (*)
FROM
investment type it,
office location ol
WHERE investment type id = office_location_ id;

Then graphically, these would be laid out side-by-side, with a one-to-one connector:

| E INVESTMENT _T¥PE H—+ E3 OFFICE_LOCATION

ONE-TO-MANY JOIN

This is the default positioning of a one-to-many relationship, where INVESTMENT_TYPE is the
master table and INVESTMENT is the details table.

INVESTMENT

| & mvesTvenT _Tvee |

The following is an example of a query that consists of only many-to-one joins, which is more
typical:

SELECT
ct.action,
c.client id,
i.investment unit,
it.investment type name

FROM

client transaction ct,
client c,

investment type it,
investment i

WHERE
ct.client_id = c.client_id AND
ct.investment id = i.investment id AND
i.investment_type_ id = it.investment_type_id and
client transaction id=1

| B CLIENT_TRANSACTION |

| B cLenT | | B INvESTMENT |

| B mvesTMENT _TYPE |

102 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

TUTORIALS > TUNING SQL STATEMENTS

CARTESIAN JOIN

A Cartesian join is described in the following example where the query is missing join criteria on
the table INVESTMENT:

SELECT

A.BROKER_ID BROKER_ID,
A.BROKER_LAST NAME BROKER LAST NAME,
A.BROKER_FIRST NAME BROKER FIRST NAME,
A.YEARS WITH FIRM YEARS WITH FIRM,
C.OFFICE _NAME OFFICE_NAME,
SUM (B.BROKER COMMISSION) TOTAL_ COMMISSIONS

FROM
BROKER A,
CLIENT TRANSACTION B,
OFFICE_LOCATION C,
INVESTMENT I

WHERE
A.BROKER_ID = B.BROKER_ID AND
A.OFFICE_LOCATION ID = C.OFFICE_LOCATION ID

GROUP BY
A.BROKER_ID,
A.BROKER_LAST NAME,
A.BROKER_FIRST NAME,
A.YEARS WITH FIRM,
C.OFFICE_NAME;

Graphically, this looks like:

| B cLIENT _TRANSACTION |

W]

[E9 oFFicE_LocaTIon|

INVESTMENT is highlighted in red with no connectors to indicate that it is joined in via a
Cartesian join.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 103

TUTORIALS > TUNING SQL STATEMENTS

Possible missing join conditions are displayed in the Overview tab under Generated Cases in the
transformations area. DB Optimizer recommends that you create these joins.

* S0 Statements and Cazes | ¥ Cost WExmouii, sk | W ther Exsqulion Stetistics
Mame Tenct Valua Elapsed Time {5} | Physical Reads | Logical Reads CA
SELECT 1 select from BROKER,

Bl [Mizzing & valid jain criberia] transforma tian 1740 0.04] 157
ALL 34015.0 6,29 a 173
LEADINGL 34017.0 8,25 a 142
ALL_ROAE 34014.0 B35 1] i
LEADTHES 320170 B.41 a 170
IRDEX 343920 6,58 a 414
LEADING2 381430 794 a 170
QORDERED w'i40 B.51] 170
LISE_ML IE193.0 9.03 a 37316

NOTE: Transformations are highlighted in yellow.

IMPLIED CARTESIAN JOIN

If there are different details for a master without other criteria then a Cartesian-type join is
created:

SELECT *

FROM
investment 1,
broker b,
client ¢

WHERE
b.manager id=c.client id and
i.investment type id=c.client_id;

| & sroxer | | & vESTMENT

The result set of BROKER to CLIENT will be multiplied by the result set of INVESTMENT to
CLIENT.

104 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

TUTORIALS > TUNING SQL STATEMENTS

MANY-TO-MANY JOIN
If there is no unique index at either end of a join then it can be assumed that in some or all cases
the join is many-to-many; there are no constraints preventing a many-to-many join. For example,
examine the following query:
SELECT *
FROM
client_transaction ct,
client ¢
WHERE
ct.transaction status=c.client marital status;
There is no unique index on either of the fields being joined so the optimizer assumes this is a
many-to-many join and the relationship is displayed graphically as:

| E CLIENT TRANSACTION |
7

If one of the fields is unique, then the index should be declared as such to help the optimizer.

FINDING PROBLEMATIC SQL OR SCHEMA
In the Visual SQL Tuning (VST) diagram, a well-formed query would resemble the following:

| B CLIENT_TRANSACTION (ct) |

CLIENT (0 | INVESTMENT i)

| B INVESTMENT _TYPE (it)

Problems such as Cartesian joins, implied Cartesian joins, and many-to-many relationships are
clearly represented in the VST. The following describes these potential query problems.

e Cartesian Join on page 103

¢ |Implied Cartesian Join on page 103

e Many-to-Many Relationships on page 104

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 105

TUTORIALS > TUNING SQL STATEMENTS

CARTESIAN JOIN

The diagram on the Analysis tab can help identify SQL problems such as missing or Cartesian
joins. For example, you might see a table or view marked in red as in the following diagram.

| & cLEnT_TRANSACTION |

[B9 oFFice LocaTion|

A red table or view indicates that here is Cartesian join that could be resolved by implementing
a rewrite suggestion shown in the Generated Cases area of the Overview tab.

Possible missing join conditions are displayed in the Overview tab under Generated Cases in the
transformations area. DB Optimizer recommends that you create these joins.

* 501 Statements and Casss | ¥ Cost WExmouti, isbcs | 2 Orther Exsqution Stetislics

Mame Tenct Valua Elapsad Time {s) = Physical Reads | Logical Reads CA

34014.0 5,22 0
B [Mizzig & valid jain eriberia) ransfarmatan 1740 0.04 a 157
ALL 34015.0 6,29 a 173
LEADINGL 34017.0 8,25 4 192
ALL_ROANE 390140 6,35] 170
LEADTMGES 330170 6,41 a 170
IRDEX 343820 6,58 a 414
LEADING2 381430 794 a 170
QORDERED |40 B.&1 0 170
LSS ML iE194.0 9.03 a 37516

NOTE: Transformations are highlighted in yellow.

IMPLIED CARTESIAN JOIN

In a well-formed query, there should only be at most one detail table above any master
table.The following diagram shows an implied Cartesian join, here we have two details tables
above the BROKER table. When there can be more than one row that satisfies the join between
the first join CLIENT and BROKER and the second join BROKER and CLIENT_TRANSACTION,
DB Optimizer presents an implied Cartesian join. This could signify a flaw in the query or a flaw
in the schema design.

106 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

TUTORIALS > TUNING SQL STATEMENTS

In the following case, the result set of BROKER to CLIENT will be multiplied by the result set of
INVESTMENT to CLIENT.

SELECT *
FROM
investment i,
broker b,
client c
WHERE
b.manager id=c.client id AND

i.investment_type_id=c.client_id;

| = sroker | | B mwvESTMENT

MANY-TO-MANY RELATIONSHIPS

If master detail information is missing then the VST diagram will have many-to-many connectors:

SELECT COUNT (*)
Bl b, R
el &, \qh
E.val2 = 100 RND i
a.,vall = k. id RND <
B.vall = £.3id;

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 107

TUTORIALS > TUNING SQL STATEMENTS

The same set of data with properly defined unique indexes or primary key and foreign key
definitions would look like:

SELECT COUNT (*)

FROM
b2 b,
o2 o,
a2 a

JHERE
b.wal2 = 100 RND |
a.vall = b.id AND 2
b.vall = c.id;

The optimizer can more consistently optimize a well-formed query, so the query will run faster.

APPLYING TUNER RESULTS TO THE DATA SOURCE

Once Tuner has generated cases and statement results and analyzed the indexes, you can apply
the suggested changes to the data source from the Generated Cases area of the Overview tab.
You can create any recommended indexes from the Index Analysis area of the Analysis tab.

IMPLEMENTING RECOMMENDATIONS ON THE OVERVIEW TAB

To change an SQL statement based on a transformation or hint-based case:

1 In the Generated Cases area, right-click the Name field of the case you want to modify the
original statement with and choose Apply Change.

The Apply Change dialog appears.
2 Choose Execute to apply the change to the statement automatically.

TIP: Alternatively, you can select Open in New SQL Editor to make manual changes or save
it to a file.

108 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

TUTORIALS > TUNING SQL STATEMENTS

0L Statements and Cases ¥ | Cost ¥ | Elapsad Tima ¥

Other Execution Skatistics

Narme Vahe - Walue () Physical Reads Logical Reads | Consistent Gets
El S5 statement 1
E i+ B [l colume comparison]
5 @ steenent 2
E T Statemert 3 o
El [Ty Statement 4 ™ Transformation-based case
= ?," Sllenmid 5
El =E 5 stetement 11 + Hinthased cases
El [é&asstement 13 -
A T T 1 3 3
El FIFIRST_Rows 2.0
El FINC PARALLEL 2.0

Cases can be selected and applied on the data source where the statement originated. This process improves the former
statement’s execution path and therefore lessens overall data source load.

IMPLEMENTING RECOMMENDATIONS ON THE INDEX ANALYSIS TAB

Once you have added tuning candidates to a tuning job, DB Optimizer can analyze the
effectiveness of the indexes in the database and recommend the creation of new indexes where

the new indexes can increase performance.

In the Collect and create indexes table, any indexes DB Optimizer recommends you create are

marked in orange and have the little create index.

Index Analysis Tahle Statistics | £ Column Statistics And Histograms Cutlines

Collzct and create indexes ,{:ﬁh .ED
Index Mame Table Owner Table Marne Colurnn Marne Index #
ED B IDx%_CLIENT_TRANSACTION_O S¥STEM CLIEMT_TRAMSACTION TRAMSACTION_STATUS Mormal
® [JCLIENT_MULTI SYSTEM CLIEMT CLIEMT_FIRST...MT_LAST_MAME Mormal
¥ [CJCLIENT_BROKER SYSTEM CLIEMT BROKER_ID Mormal
[OJcLENT INCOME SYSTEM CLIEMT CLIEMT _HOUSEROLD_IMNCOME Mormal [
¢ [JcLenT pr SYSTEM CLIEMT CLIEMT _ID Unique
[JCLIENT_TRAMNSACTION_EROKER SYITEM CLIEMT_TRAMSACTION BROKER_ID Mormal
{u FCATFMT TRARMSACTTOR) TERIT SYETFM CLTFRT TRAMSACTTOR L TFRT T | Mnrm.:ul} b

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

109

TUTORIALS > SQL CODE ASSIST AND EXECUTION

To accept the suggestion and have tuning automatically generate an index:
1 For any recommended index, click the checkbox to the left of the index you want to create.
For a selected index you can modify the Index type by clicking in the Index Type column

and then selecting a type from the list: Normal, Bitmap, Reverse Key, Reverse Key
Unique, or Unique.

Indesx Analysis Tahle Statistics | £ Column Statistics And Histograms Outlines

Collect and create indexes ,:éh E
Index Mame Ta...er Ta...e T ™ Tahble SYSTEMCLIEMNT _TRAMSACTION is
m IDX CLIENT TRANSACTION 0 |° CLL. OM | TRAMSACTI: scanned via Full table scan but it has a Filker Create
= = = == e ch.transackion_status = c.client_marital_statug Index
'.' D CLIENT_MLILTI SI'I'ISTEM CLIENT ':I.]:ENT_F]:R.I on ||: and FAT2] Ereated a l.l,lir'tual index
F D CLIEMT_BR.OKER, SYSTEM CLIEMT BROKER_ID IDX__';LIEN_'I'_TRF'-NSF'.CTIDI"-.I_EI Whil:.h the .
3¢ [CLIENT INCOME SYSTEM CLIENT CLIENT HOL ':'lft'm'aer picked up, so we suggest implementing
- - this index,
3 [OJcLEnT P SYSTEM CLIENT CLIENT ID
oL D CLIEMT_TRAMSACTION_BROKER SYSTEM CLL...OM BROKER_ID
W T1r TFMT TRARMSACTTOR I TERIT SWSTEM 1T bl CLTEMT TR O
< >

2 Click the Create Indexes button.
The Index Analysis dialog appears.

3 To view the index SQL in an editor for later implementation, click the statement and then
click Open in a SQL editor.

4 To run the index SQL and create the index on the selected database, click Execute.

SQL CODE ASSIST AND EXECUTION

SQL Code Assist is an interface component that enables the development and formatting of
SQL code for the purposes of creating and modifying database objects. It provides a front-end
application for the delivery of code through its object code extraction capabilities.

110 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

TUTORIALS > SQL CODE ASSIST AND EXECUTION

Code Assist provides a number of key features that assist in the coding process, ensuring
greater accuracy in coding, faster development cycles, and a general increase in efficiency
overall.

f} Benson.sgl &%
CREATE TABLE dbo.benson N
{
job CHAR (8) NOT HULL,
sal WOMERIC (38, 0) NOT MULL,
loc WOMERIC (38, O0) NWOT NULL,
COMSTRAINT pijob PRIMARY EEY CLUSTERED (job)

go
IF OBJECT ID('dbo.benson') IS5 NOT NULL L.
PRINT '<<< >33
ELSE
X] PROMT <<« by
[]

SQL Editor provides key features to ensure an increase in code accuracy and overall development efficiency.

The following key features are provided with SQL Code Assist:

e Code Extraction

Code Highlighting

e Automatic Error Detection

Code Complete

Hyperlinks

Code Formatting

Code Folding
e Code Quality Checks

In order to access SQL Editor, you need to create a new file or edit existing code from Data
Source Explorer.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 11

TUTORIALS > SQL CODE ASSIST AND EXECUTION

Additionally, SQL Project Explorer provides a tree structure for all files created in DB Optimizer.
You can access files from here by double-clicking the file name you want to open as well.

3 Data Source Explorer E_P;l SQL Project Explorer &) ==

1
r
=

= fi3 SQL Project 1
* -}‘r Connections
= |ll' Creation Scripts
=[5 Tables
[5 dbo.benson (Berson.sql) [datotb15]
+ =|:|L General QL
* | l' Large Scripts
+ E Unknown Fles
[, Benson.sql
% Fie,sal
|#% test.sql

SQL Project Explorer provides a tree of all files developed and saved in DB Optimizer.

To create a new file:
Choose File > New > SQL File.

A blank instance of SQL Editor appears in the Workbench. If you save this file, it is
automatically added to the SQL Project Explorer.

To edit an existing file:

Use Data Source Explorer or Project Explorer to navigate to the code you want to modify
and double-click it.

An instance of SQL Editor appears in the Workbench, populated with the extracted code of
the specified object or SQL project file.

CODE EXTRACTION

SQL Editor provides the ability to extract the underlying SQL code of database objects
registered in DB Optimizer to provide a front-end application for the development and
modification of data sources in your enterprise.

To extract underlying SQL code:

¢ Navigate to a database object in Data Source Explorer and select Extract via the right-click
menu.

The object’s underlying SQL code appears in SQL Editor and is ready for editing and further
modification.

112 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

CODE HIGHLIGHTING

SQL Editor identifies commands and provides syntax highlighting changes that are
automatically added to the code as you add lines, which enables you to clearly and quickly
understand code when you read it in the interface.

The following syntax highlighting is automatically added to lines of code in SQL Editor:

Code Formatting
Comments Green italic font
SQL Commands Dark blue font
Syntax Errors Red underlined font
Coding Errors Red font

e Comments: green italics

e SQL Commands: dark blue
e Syntax Errors: red underline
e Coding Errors: red

Additionally, SQL Editor provides a purple change bar in the left-hand column that indicates if a
line of code has been modified from the original text. You can hover over this change bar to view
the original code line. A red square icon in the right-hand column indicates that there are errors
in the code line. You can hover over the icon to view the error count.

sl pxcs
CREATE TABLE dbo.benson
{
job CHAR (8) HOT WULL,
sal NUMERIC (38, 0) NOT NULL,
loc NUMERIC (38, 0) HOT NULL,
CONSTRAINT pjob PRIMARY FEY CLUSTERED (jab)

o]
k]

IF OBJECTI_ID('dbo.benson') IS5 NOT NULL

The purple change bar indicates if a line of code has been changed from its original text. Hover your mouse over the change bar to
view the original text.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 113

TUTORIALS > SQL CODE ASSIST AND EXECUTION

AUTOMATIC ERROR DETECTION

The automatic error detection functionality of the editor highlights errors and typos in the code
as you work in “real time".

Automatic error detection automatically identifies and analyzes SELECT, FROM, WHERE,
GROUP BY, HAVING, and ORDER BY statements. If it detects any syntax errors while you type
these statements, the line is automatically flagged by the error icon in the left-hand column of
SQL Editor. You can hover your mouse over the icon to view any errors.

| 5% *Benson.sql e m

REATE TAEBLE dbo.benson i

- 1

Job CHAR (28) NHOT WULL,

=al HOMERIC (38, 0) HOT HULL,

loc HOMERIC (3B, 0) NOT NULL,

COMSTRAINT pjob PRIMARY KEY CLUSTERED (job)

go
IF DEE:T_E]:IL':':'I::'.“.E?:'.F!.".'.’] I5 NOT WULL
PRINT '<«<«<« CREATED TABLE dbo.benson >>»"
| ELsE
@ Bn unexpected token ™ < < >>"™ was found. Expected COLON On

Syntax errors are automatically flagged by line as you work with code in SQL Editor. Hover the mouse over the error icon to view the
specific error message.

Additionally, all semantic errors are recorded in the Problems view, an interface component that
automatically logs errors and warnings as you work with files.

2 Problems 23 e T
3 errors, 0 warnings, 0 infos
Description Resource Path Locaton
=l 1 Errors (3 items)
@ Anunexpectsd token “< << FAILED CR Benson.sql S0L Project 1 in= 14
@ Anunexpected token ™ was found. Bxg Fie.sd S0L Project 1 ine &
3 Table benson cannot be resolved on 'da Benson.sql SQL Project 1 ine 19

The Problems view logs errors and warnings as you work with files in SQL Editor.

You can double-click on a line in the Problems view and DB Optimizer will automatically navigate
you to that issue in SQL Editor.

114 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

TUTORIALS > SQL CODE ASSIST AND EXECUTION

CODE COMPLETE

SQL Editor provides suggestion capabilities for both DML statements and objects. It has the
ability to look up object names in order to avoid errors when defining table names, columns, etc.
in the development process. This feature provides lists of object and code suggestions that will
make the development process more efficient as you will not be forced to manually look up
object names and other statement values. SQL Editor provides code assist for SELECT, UPDATE,
INSERT, and DELETE statements and object suggestion support for tables, alias tables, columns,
alias columns, schemas, and catalogs.

To activate code assist:

1 Click the line on which you want to activate the code assist feature.

2 Press CTRL + Spacebar on your keyboard. Code assist analyzes the line and presents a list
of suggestions as appropriate based on the elements of the statement.

HYPERLINKS

Hyperlinks are used in SQL Editor to provide links to tables, columns, packages and other
reference objects. When you select a hyperlinked object from a piece of code, a new editor
opens and displays the source. Additionally, hyperlinks can be used to link procedures or the
function of a call statement, as well as function calls in DML statements. To enable a hyperlink,
hover your mouse over the object name and hold the CTRL key. It becomes underlined and
changes color.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 115

TUTORIALS > SQL CODE ASSIST AND EXECUTION

CODE FORMATTING

Code formatting is automatically applied to a file as you develop it in SQL code. This enables
you to set global formatting preferences one time, and then apply it to all code development,
saving time and allowing for a more efficient code development process. The code formatter
can be accessed by selecting CTRL + Shift + F in the editor. All code is automatically formatted
based on parameters specified on the Code Formatter node of the Preferences panel. (Select
Window > Preferences in the Main Menu to access this panel.)

i’ —
R B=1% |
type filter text Code Formatter =i
B E:‘e-‘a' Select 2 profile:
= o
& Tnstal LUpdate Embarcaders [built-in] ﬂ I_,_EE,E,_]
4| Licenze Manager
#- RunDebug P
= S0L Development Prewiew
Cache Configuration CREATE TAHLE colTable &
Loggng (
(=1 S0L Editor) coll INT,
Ciode Assist = :
= call2 INT,
Besults Viewss i
et col4 VARCHAR (30) r
S0L Execution b
S0L Fitters
PR INSERT
INTO colTable
VALUES
{
9 ¥
g,
8,
‘teat VJ
[Rsﬁeﬁ!&uﬂs] [Apply]
5 [0K] l Cancel]

Code formatting parameters can be globally set and then applied to all development work in SQL Editor.

In addition to formatting code per individual file, you can also format an entire group of files
from Project Explorer. Select the directory of files that you want to apply formatting to and
execute the Format command from the right-click menu. The files will be automatically
formatted based on the global preferences.

116 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

TUTORIALS > SQL CODE ASSIST AND EXECUTION

CODE FOLDING

The code folding feature automatically sorts code into a tree-like outline structure in SQL Editor.
This increases navigation and clarification capacities during the code development process. It
ensures that the file will be easily understood should any future work be required on the code.
As you work in SQL Editor, collapsible nodes are automatically inserted into the appropriate
lines of code. Statements can then be expanded or collapsed as needed, and this feature is
especially useful when working on parts of particularly large or complicated files.

CoODE QUALITY CHECKS

On Oracle-based code, the code quality checking feature provides suggestions regarding
improved code on a statement-by-statement basis. As you work in SQL Editor, markers provides
annotations that prevent and fix common mistakes in the code.

Notes regarding code quality suggestions appear in a window on any line of code where the
editor detects an error, or otherwise detects that the code may not be as efficient as it might be.
Code quality check annotations are activated by clicking the light bulb icon in the margin, or by
selecting Ctrl + | on your keyboard.

The following common errors are detected by the code quality check function in the editor:
e Statement is missing valid JOIN criteria
e Invalid or missing outer join operator
® Transitivity issues
¢ Nested query in WHERE clause
* \Wrong place for conditions in a HAVING clause
* Index suppressed by a function or an arithmetic operator
e Mismatched or incompatible column types
¢ Null column comparison
To activate code quality checks:
e Click the light bulb icon in the margin of the editor or select Ctrl + | on your keyboard.

The editor suggestions appear in a window beneath the selected statement. When you click
a suggested amendment, the affected code is automatically updated.

SQL EXECUTION

When you have finished developing or modifying code, you can then execute the file from within
the DB Optimizer environment, on the database of your choosing. This enables you to
immediately execute code upon completion of its development. Alternatively, you can save files
for execution at a later point in time.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 117

TUTORIALS > SQL CODE ASSIST AND EXECUTION

In order to execute a file, you must first associate it with a target database. This is performed by
using the drop-down menus located in the Toolbar. When a SQL file is open in the Workbench,
the menus are enabled. Select a data source and a corresponding database to associate the file
with and then click the green arrow icon to execute the file.

datoth 19 (SOLServer) w | EMBCM - [}

The pair of drop-down menus indicate that the SQL file is associated with the dataotb 19 data source and EMBCM database. When
the green arrow icon on the right-hand side of the menus is selected, the file is executed on the specified data source and database.

Additionally, if you have turned off auto-committal in the Preferences panel (Window >
Preferences) you can commit and execute transactions via the Commit Transaction and Start
Transaction icons located beside the Execute icon.

To execute a file:

Open the file you want to run and ensure it is associated with the correct database, then click the
Execute icon. DB Optimizer executes the code on the database you specified.

To execute a transaction:

Open the transaction file you want to run and ensure it is associated with the correct database,
then click the Start Transaction icon. DB Optimizer executes the transaction on the database you
specified.

To commit a transaction:

Open the transaction file you want to commit, ensure it is associated with the correct database,
and click the Commit Transaction icon. DB Optimizer commits the transaction on the database
you specified.

118 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

TUTORIALS > SQL CODE ASSIST AND EXECUTION

CONFIGURING SQL EXECUTION PARAMETERS

If you do not want to use the default execution options provided by DB Optimizer, use the SQL
Session Options dialog to modify the configuration parameters that determine how DB
Optimizer executes code. These options ensure that code is executed the way you want on an
execution-per-execution basis, ensuring accuracy and flexibility when running new or modified
code.

= — . — - .
&1 SOL Session Options =)<
SQL Session Options @

Spedfy the SQL session options for the current editor.
Property Value
|=| Ansi Defaults
Set ansi_nulls false
Set ansi_padding false
Set quoted_identifier true
Set ansi_warnings falee
Set ansi_null_dfit_on false
[=| Arithmetic
Ignore Arithmetic Overfiow false
Abort On Arithmetic Overflow falee
[—| Transactions
Ieolation Level Read Committed
Set implidt_transactions false
Set cursor_dose_on_commit falze
[—| Result Set
Maximum Rows in Result Set 0
Maximum Number of Bytesina ... 2048
Query Timeout (seconds) 0
@ Finish || cancel |

SQL Sessions Options provide you with the flexibility to adjust execution parameters on a session-by-session basis.

To modify SQL session options:

1 Click the SQL Session Options icon on the toolbar. The SQL Sessions Options dialog
appears.

2 Click on the individual parameters in the Value column to change the configuration of each
property, as specified.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 119

TUTORIALS > SQL CODE ASSIST AND EXECUTION

3 Click Finish. The session options are changed and DB Optimizer executes the code as
specified by your options.

NOTE: SQL Session Options are only applied to the currently-selected code, and are not
retained across different files with regards to execution.

120 DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE

REFERENCE

The following topics provide reference details:

e Database Objects

e DBMS Connection Parameters by Platform

DATABASE OBJECTS

The following table describes the database objects displayed in DB Optimizer™ XE and DB
Optimizer™ 2.5 and contains information regarding each one, including object name, DBMS
platform, and any notes pertaining to the specified object.

In DB Optimizer™ XE and DB Optimizer™ 2.5, database objects are stored in Data Source
Explorer as subnodes of individual, pertinent databases.

Database Object

DBMS Platforms

Notes

Aliases

DB2

An alias is an alternate name that references a table, view, and
other database objects. An alias can also reference another
alias as long as the aliases do not reference one anotherin a
circular or repetitive manner.

Aliases are used in view or trigger definitions in any SQL
statements except for table check-constraint definitions. (The
table or view name must be referenced in these cases.)

Once defined, an alias is used in query and development
statements to provide greater control when specifying the
referenced object. Aliases can be defined for objects that do
not exist, but the referenced object must exist when a
statement containing the alias is compiled.

Aliases can be specified for tables, views, existing aliases, or
other objects. Create Alias is a command available on the
shortcut menu.

Check Constraints

All

A check constraint is a search condition applied to a table.
When a check constraint is in place, Insert and Update
statements issued against the table will only complete if the
statements pass the constraint rules.

Check constraints are used to enforce data integrity when it
cannot be defined by key uniqueness or referential integrity
restraints.

A check condition is a logical expression that defines valid
data values for a column.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 2.5 USER GUIDE 119

REFERENCE > DATABASE OBJECTS

Database Object

DBMS Platforms

Notes

Clusters

Oracle

A cluster is a collection of interconnected, physical machines
used as a single resource for failover, scalability, and
availability purposes.

Individual machines in the cluster maintain a physical host
name, but a cluster host name must be specified to define the
collective as a whole.

To create a cluster, you need the CREATE CLUSTER or
CREATE ANY CLUSTER system privilege.

Database Links

Oracle

A database link is a network path stored locally, that provides
the database with the ability to communicate with a remote
database.

A database link is composed of the name of the remote
database, a communication path to the database, and a user
ID and password (if required).

Database links cannot be edited or altered. To make changes,
drop and re-create.

Foreign Keys

All

A foreign key references a primary or unique key of a table (the
same table the foreign key is defined on, or another table and
is created as a result of an established relationship). Its
purpose is to indicate that referential integrity is maintained
according to the constraints.

The number of columns in a foreign key must be equal to the
number of columns in the corresponding primary or unique
key. Additionally, the column definitions of the foreign key
must have the same data types and lengths.

Foreign key names are automatically assigned if one is not
specified.

Functions

DB2, Oracle

A function is a relationship between a set of input data values
and a set of result values.

For example, the TIMESTAMP function passes input data
values of type DATE and TIME, and the result is TIMESTAMP.

Functions can be built-in or user-defined. Built-in functions are
provided with the database. They return a single value and are
part of the default database schema. User-defined functions
extend the capabilities of the database system by adding
function definitions (provided by users or third-party vendors)
that can be applied in the database engine itself.

A function is identified by its schema, a function name, the
number of parameters, and the data types of its parameters.

Access to functions is controlled through the EXECUTE
privilege. GRANT and REVOKE statements are used to specify
who can or cannot execute a specific function or set of
functions.

Groups

All

Groups are units that contain items. Typically, groups contain
the result of a single business transaction where several items
are involved.

For example, a group is the set of articles bought by a
customer during a visit to the supermarket.

120

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 2.5 USER GUIDE

REFERENCE > DATABASE OBJECTS

Database Object

DBMS Platforms

Notes

Indexes

All

An index is an ordered set of pointers to rows in a base table.

Each index is based on the values of data in one or more table
columns. An index is an object that is separate from the data in
the table. When an index is created, the database builds and
maintains it automatically.

Indexes are used to improve performance. In most cases,
access to data is faster with an index. Although an index
cannot be created for a view, an index created for the table on
which a view is based can improve the performance of
operations on that view.

Indexes are also used to ensure uniqueness. A table with a
unigue index cannot have rows with identical keys.

DB2: Allow Reverse Scans, Percent Free (Lets you type or
select the percentage of each index page to leave as free
space when building the index, from 0 to 99), Min Pct Used
(Lets you type or select the minimum percentage of space
used on an index leaf page. If, after a key is removed from an
index leaf page, the percentage of space used on the page is
at or below integer percent, an attempt is made to merge the
remaining keys on this page with those of a neighboring page.
If there is sufficient space on one of these pages, the merge is
performed and one of the pages is deleted. The value of
integer can be from 0 to 99.

Oracle: The Logging, No Sort, Degrees, and Instances
properties are documented in the editor.

Java Classes

Oracle

A model or template, written in Java language, used to create
objects with a common definition and common properties,
operations and behavior.

Java classes can be developed in Eclipse (or another Java
development environment such as Oracle JDeveloper) and
moved into an Oracle database to be used as stored
procedures.

Java classes must be public and static if they are to be used in
this manner.

When writing a class to be executed within the database, you
can take advantage of a special server-side JDBC driver. This
driver uses the user's default connection and provides the
fastest access to the database.

Java classes become full-fledged database objects once
migrated into the database via the loadjava command-line
utility or the SQL CREATE JAVA statement.

A Java class is published by creating and compiling a call
specification for it. The call spec maps a Java method's
parameters and return type to Oracle SQL types.

Once a Java class is developed, loaded, and published -- the
final step is to execute it.

Java Resources

Oracle

A Java resource is a collection of files compressed in a .jar file.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 2.5 USER GUIDE 121

REFERENCE > DATABASE OBJECTS

Database Object

DBMS Platforms

Notes

Libraries

Oracle

A library is a configurable folder for storing and sharing
content with an allocated quota. Multiple libraries may exist in
the same database environment.

A library is a special type of folder in Oracle Content Services.
Unlike Containers and regular folders, each library has a Trash
Folder and an allocated amount of disk space.

A library is composed of a name (mandatory), description,
quota, path, and library members.

The library service allows you to create folders, list quotas, and
manage categories, workflow, trash folders, and versioning.
The Library service does not allow you to create or upload
files.

Materialized Views

Oracle

A database object that contains the results of a query. They are
local copies of data located remotely, or are used to create
summary tables based on aggregations of table data.
Materialized views are also known as snapshots.

A materialized view can query tables, views, and other
materialized views. Collectively, these are called master tables
(a replication term) or detail tables (a data warehouse term).

For replication purposes, materialized views allow you to
maintain copies of remote data on your local node. These
copies are read-only. If you want to update the local copies,
you need to use the Advanced Replication feature. You can
select data from a materialized view as you would from a table
or view.

For data warehousing purposes, the materialized views
commonly created are aggregate views, single-table
aggregate views, and join views.

Materialized View Logs

Oracle

Because Materialized Views are used to return faster queries (a
query against a materialized view is faster than a query against
a base table because querying the materialized view does not
query the source table), the Materialized View often returns
the data at the time the view was created, not the current table
data.

There are two ways to refresh data in Materialized Views,
manually or automatically. In a manual refresh, the Materialized
View is completely wiped clean and then repopulated with
data from the source tables (this is known as a complete
refresh). If source tables have changed very little, however, it is
possible to refresh the Materialized View only for changed
records -- this is known as a fast refresh.

In the case of Materialized Views that are updated via fast
refresh, it is necessary to create Materialized View Logs on the
base tables that compose the Materialized View to reflect the
changes.

If the number of entries in this table is too high, it is an
indication that you might need to refresh the Materialized
Views more frequently to ensure that each update does not
take longer than it needs.

Select owner, then select from tables with Materialized Views,
etc.

122

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 2.5 USER GUIDE

REFERENCE > DATABASE OBJECTS

Database Object

DBMS Platforms

Notes

Oracle Job Queue

Oracle

The Oracle Job Queue allows for the scheduling and
execution of PL/SQL stored procedures at predefined times
and/or repeated job execution at regular intervals, as
background processes.

For example, you could create a job in the Oracle Job Queue
that processed end-of-day accounting -- a job that must run
every weekday, but can be run unattended, or you could
create a series of jobs that must be run sequentially -- such as
jobs that might be so large, that in order to reduce CPU usage,
only one is run at a time.

Runs PL/SQL code at specified time or on specified schedule,
can enable/disable.

Outlines

Oracle

Oracle preserves the execution plans of “frozen” access paths
to data so that it remains constant despite data changes,
schema changes, and upgrades of the database or application
software through objects named stored outlines.

Outlines are useful for providing stable application
performance and benefit high-end OLTP sites by having SQL
execute without having to invoke the cost-based optimizer at
each SQL execution. This allows complex SQL to be executed
without the additional overhead added by the optimizer when
it performs the calculations necessary to determine the
optimal access path to the data.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 2.5 USER GUIDE 123

REFERENCE > DATABASE OBJECTS

Database Object

DBMS Platforms

Notes

Packages

All

A package is a procedural schema object classified as a PL/
SQL program unit that allows the access and manipulation of
database information.

A package is a group of related procedures and functions,
together with the cursors and variables they use, stored
together in the database for continued use as a unit. Similar to
standalone procedures and functions, packaged procedures
and functions can be called explicitly by applications or users.

DB applications explicitly call packaged procedures as
necessary with privileges granted, a user can explicitly execute
any of the procedures contained in it.

Packages provide a method of encapsulating related
procedures, functions, and associated cursors and variables
together as a unit in the database. For example, a single
package might contain two statements that contain several
procedures and functions used to process banking
transactions.

Packages allow the database administrator or application
developer to organize similar routines as well as offering
increased functionality and database performance.

Packages provide advantages in the following areas:
encapsulation of related procedures and variables, declaration
of public and private procedures, variables, constraints and
cursors, separation of the package specification and package
body, and better performance.

Encapsulation of procedural constructs in a package also
makes privilege management easier. Granting the privilege to
use a package makes all constructs of the package assessable
to the grantee.

The methods of package definition allow you to specify which
variables, cursors, and procedures are: public, directly
accessible to the users of a package, private, or hidden from
the user of the package.

Package Bodies

Oracle

A package body is a package definition file that states how a
package specification will function.

In contrast to the entities declared in the visible part of a
package, the entities declared in the package body are only
visible within the package body itself. As a consequence, a
package with a package body can be used for the construction
of a group of related subprograms in which the logical
operations available to clients are clearly isolated from the
internal entities.

124

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 2.5 USER GUIDE

REFERENCE > DATABASE OBJECTS

Database Object

DBMS Platforms

Notes

Primary Keys

All

A key is a set of columns used to identify or access a row or
rows. The key is identified in the description of a table, index,
or referential constraint. The same column can be part of more
than one key.

A unique key is a key that is constrained so that no two of its
values are equal. The columns of a unique key cannot contain
NULL values.

The primary key is one of the unique keys defined on a table,
but is selected to be the key of the first importance. There can
only be one primary key on a table.

Oracle: If an index constraint has been defined for a table, the

constraint status for the table's primary key cannot be set to
Disabled.

Procedures

All

A procedure is an application program that can be started
through the SQL CALL statement. The procedure is specified
by a procedure name, which may be followed by arguments
enclosed within parenthesis.

The argument or arguments of a procedure are individual
scalar values, which can be of different types and can have
different meanings. The arguments can be used to pass values
into the procedure, receive return values from the procedure,
or both.

A procedure, also called a stored procedure, is a database
object created via the CREATE PROCEDURE statement that
can encapsulate logic and SQL statements. Procedures are
used as subroutine extensions to applications, and other
database objects that can contain logic.

When a procedure is invoked in SQOL and logic within a
procedure is executed on the server, data is only transferred
between the client and the database server in the procedure
call and in the procedure return. If you have a series of SQL
statements to execute within a client application, and the
application does not need to do any processing in between
the statements, then this series of statements would benefit
from being included in a procedure.

Profiles

Oracle

Profiles are a means to limit resources a user can use by
specifying limits on kernel and password elements.
Additionally, Profiles can be used to track password histories
and the settings of specific profiles may be queried.

The following kernel limits may be set: maximum concurrent
sessions for a user, CPU time limit per session, maximum
connect time, maximum idle time, maximum blocks read per
session, maximum blocks read per call, and maximum amount
of SGA.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 2.5 USER GUIDE 125

REFERENCE > DATABASE OBJECTS

Database Object

DBMS Platforms

Notes

Roles

Oracle

Arole is a set or group of privileges that can be granted to
users to another role.

A privilege is a right to execute a particular type of SQL
statement or to access another user’s object. For example: the
right to connect to a database, the right to create a tale, the
right to select rows from another user'’s table, the right to
execute another user’s stored procedure.

System privileges are rights to enable the performance of a
particular action, or to perform a particular action on a
particular type of object.

Roles are named groups of related privileges that you grant
users or other roles. Roles are designed to ease the
administration of end user system and object privileges.
However, roles are not meant to be used for application
developers, because the privileges to access objects within
stored progmmatic constructs needs to be granted directly.

Sequences

DB2, Oracle

A sequence generates unique numbers.

Sequences are special database objects that provide numbers
in sequence for input into a table. They are useful for
providing generated primary key values and for the input of
number type columns such as purchase order, employee
number, sample number, and sales order number.

Sequences are created by use of the CREATE SEQUENCE
command.

Structured Types

DB2

Structured Types are useful for modeling objects that have a
well-defined structure that consists of attributes. Attributes are
properties that describe an instance of the type.

A geometric shape, for example, might have as attributes its
list of Cartesian coordinates. A person might have attributes of
name, address, and so on. A department might have a name
or some other attribute.

Synonyms

Oracle

A synonym is an alternate name for objects such as tables,
views, sequences, stored procedures, and other database
objects.

A synonym is an alias for one of the following objects: table,
object table, view, object view, sequence, stored procedure,
stored function, package, materialized view, java class, user-
defined object type or another synonym.

Tables

All

Tables are logical structures maintained by the database
manager. Tables are composed of columns and rows. The rows
are not necessarily ordered within a table.

A base table is used to hold persistent user data.

A result table is a set of rows that the database manager
selects or generates from one or more base tables to satisfy a
query.

A summary table is a table defined by a query that is also used
to determine the data in the table.

126

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 2.5 USER GUIDE

REFERENCE > DATABASE OBJECTS

Database Object

DBMS Platforms

Notes

Tablespaces

DB2, Oracle

A tablespace is a storage structure containing tables, indexes,
large objects, and long data. Tablespaces reside in database
partition groups. They allow you to assign the location of
database and table data directly onto containers. (A container
can be a directory name, a device name, or a file name.) This
can provide improved performance and more flexible
configuration.

Triggers

All

A trigger defines a set of actions that are performed when a
specified SQL operation (such as delete, insert, or update)
occurs on a specified table. When the specified SQL operation
occurs, the trigger is activated and starts the defined actions.

Triggers can be used, along with referential constraints and
check constraints, to enforce data integrity rules. Triggers can
also be used to cause updates to other tables, automatically
generate or transform values for inserted or updated rows, or
invoke functions to perform tasks such as issuing alerts.

Undo Segments

Oracle

In an Oracle database, Undo tablespace data is an image or
snapshot of the original contents of a row (or rows) in a table.
The data is stored in Undo segments in the Undo table space.

When a user begins to make a change to the data in a row in
an Oracle table, the original data is first written to Undo
segments in the Undo tablespace. The entire process
(including the creation of the Undo data is recorded in Redo
logs before the change is completed and written in the
Database Buffer Cache, and then the data files via the
database writer (DBW) process.)

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 2.5 USER GUIDE 127

REFERENCE > DBMS CONNECTION PARAMETERS BY PLATFORM

Database Object

DBMS Platforms

Notes

Unique Keys

All

A unique key is a key that is constrained so that no two of its
values are equal. The columns of a unique key cannot contain
null values. The constraint is enforced by the database
manager during the execution of any operation that changes
data values, such as INSERT or UPDATE. The mechanism used
to enforce the constraint is called a unique index. Thus, every
unigue key is a key of a unique index. Such an index is said to
have the UNIQUE attribute.

A primary key is a special case of a unique key. A table cannot
have more than one primary key.

A foreign key is a key that is specified in the definition of a
referential constraint.

A partitioning key is a key that is part of the definition of a
table in a partitioned database. The partitioning key is used to
determine the partition on which the row of data is stored. If a
partitioning key is defined, unique keys and primary keys must
include the same columns as the partitioning key, but can have
additional columns. A table cannot have more than one
partitioning key.

Oracle: You cannot drop a unique key constraint that is part of
a referential integrity constraint without also dropping the
foreign key. To drop the referenced key and the foreign key
together, check the Delete Cascade option for the foreign key.

Clustered: A cluster composes of a group of tables that share
the same data blocks, and are grouped together because they
share common columns and are often used together.

Filegroup: Lets you select the filegroup within the database
where the constraint is stored.

Fill Factor: Lets you specify a percentage of how large each
constraint can become.

Views

All

A view provides an alternate way of looking at the data in one
or more tables.

A view is a named specification of a result table and can be
thought of as having columns and rows just like a base table.
For retrieval purposes, all views can be used just like base
tables.

You can use views to select certain elements of a table and can
present an existing table in a customized table format without
having to create a new table.

DBMS CONNECTION PARAMETERS BY PLATFORM

The following topics provide connection details:

e |BM DB2 LUW

® Microsoft SOL Server

128

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 2.5 USER GUIDE

REFERENCE > DBMS CONNECTION PARAMETERS BY PLATFORM

e JDBC Connection Parameters

e Oracle Connection Parameters

e Svbase Connection Parameters

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 2.5 USER GUIDE 129

REFERENCE > DBMS CONNECTION PARAMETERS BY PLATFORM

IBM DB2 LUW

Connection Parameter

Description

Use Alias from IBM Client or Generic
JDBC Configuration

If you choose to use the alias from the IBM client, select the appropriate
alias name. Otherwise, choose Generic JDBC Configuration and enter the
connection parameters, as specified.

Schema ID (Optional)

The name of the database schema.

Function Path

Optional. Enter an ordered list of schema names to restrict the search
scope for unqualified function invocations.

Security Credentials

The log on information required by DB Optimizer™ XE and DB
Optimizer™ 2.5 to connect to the data source.

Auto Connect

Automatically attempts to connect to the data source when selected in
Data Source Explorer, without prompting the user for connection
information.

JDBC Driver (Advanced)

The name of the JDBC Driver utilized by DB Optimizer™ XE and DB
Optimizer™ 2.5 to initiate a JDBC standard access connection.

Connection URL (Advanced)

Used by the JDBC Driver to connect with a data source. Often contains
host and port numbers, as well as the name of the data source to which it
connects.

For example:
jdbc:postgresql://host:port/database

jdbc:derby://host:port/database

Custom JDBC Diriver Properties
(Advanced)

The name and property value of any custom JDBC drivers associated with
the data source.

MICROSOFT SQL SERVER

Connection Parameter

Description

Use Network Library Configuration

If the data source utilizes a network library, select this parameter. The
corresponding connection parameter fields become available. Otherwise,
choose Generic JDBC Configuration and enter the connection parameters,
as specified.

Host/Instance (JDBC Configuration)

The name of the data source.

Port (JDBC Configuration) (optional)

The listening port used in TCP/IP communications between DB
Optimizer™ XE and DB Optimizer™ 2.5 and the data source.

Protocol (JDBC Configuration)

The communication mechanism between DB Optimizer™ XE and DB
Optimizer™ 2.5 and the data source. Choose TCP/IP or Named Pipes.

Default Database (Optional)

The default SQL database name, as defined by the schema.

Security Credentials

The log on information required by DB Optimizer™ XE and DB
Optimizer™ 2.5 to connect to the data source.

Auto Connect

Automatically attempts to connect to the data source when selected in
Data Source Explorer, without prompting the user for connection
information.

130

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 2.5 USER GUIDE

REFERENCE > DBMS CONNECTION PARAMETERS BY PLATFORM

Connection Parameter Description

Allow Trusted Connections Enables trusted connections to the data source from DB Optimizer™ XE
and DB Optimizer™ 2.5.

JDBC Diriver (Advanced) The name of the JDBC Driver utilized by DB Optimizer™ XE and DB
Optimizer™ 2.5 to connect and communicate with the database.

Connection URL (Advanced) Used by the JDBC Driver to connect with a database. Often contains host
and port numbers, as well as the name of the database to which it
connects.

For example:
jdbc:postgresql://host:port/database

jdbc:derby://host:port/database

Custom JDBC Driver Properties The name and property value of any custom JDBC drivers associated with
(Advanced) the data source.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 2.5 USER GUIDE 131

REFERENCE > DBMS CONNECTION PARAMETERS BY PLATFORM

JDBC CONNECTION PARAMETERS

Connection Parameter

Description

Connect String

Used by the JDBC Driver to connect with a database. Often contains host
and port numbers, as well as the name of the database to which it
connects.

For example:
jdbc:postgresql://host:port/database

jdbc:derby://host:port/database

Data Source Name

The name of the data source to which you want DB Optimizer™ XE and DB
Optimizer™ 2.5 to connect.

ORACLE CONNECTION PARAMETERS

Connection Parameter

Description

Use TNS Alias

If the data source is mapped to a net service name via tnsnames.ora, select
this parameter. Otherwise, choose Generic JDBC Configuration and enter
the connection parameters, as specified.

Host/Instance (JDBC Configuration)

The name of the host machine on which the data source resides.

Port (JDBC Connection)

The listening port used in TCP/IP communications between DB
Optimizer™ XE and DB Optimizer™ 2.5 and the data source.

Type (JDBC Configuration)

Indicates if the data source is defined via a system identifier (SID) or a
service name.

Service/SID Name (JDBC
Configuration)

The name of the system identifier (SID) or service name that identifies the
data source.

Security Credentials

The log on information required by DB Optimizer™ XE and DB
Optimizer™ 2.5 to connect to the data source.

Auto Connect

Automatically attempts to connect to the data source when selected in
data source Explorer, without prompting the user for connection
information.

Allow Trusted Connections

Enables trusted connections to the data source from DB Optimizer™ XE
and DB Optimizer™ 2.5,

JDBC Driver (Advanced)

The name of the JDBC Driver utilized by DB Optimizer™ XE and DB
Optimizer™ 2.5 to connect and communicate with the database.

Connection URL (Advanced)

Used by the JDBC Driver to connect with a database. Often contains host
and port numbers, as well as the name of the database to which it
connects.

For example:
jdbc:postgresql://host:port/database

jdbc:derby://host:port/database

Custom JDBC Diriver Properties
(Advanced)

The name and property value of any custom JDBC drivers associated with
the data source.

132

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 2.5 USER GUIDE

REFERENCE > DBMS CONNECTION PARAMETERS BY PLATFORM

SYBASE CONNECTION PARAMETERS

Connection Parameter

Description

Use Alias Information from your
SQL.INI File

If the data source is mapped to a name via SQL.INI, select this parameter
to use that name for connection. Otherwise, choose Generic JDBC
Configuration and enter the connection parameters, as specified.

Host/Instance (JDBC Connection)

The name of the host machine on which the data source resides.

Port (JDBC Connection)

The listening port used in TCP/IP communications between DB
Optimizer™ XE and DB Optimizer™ 2.5 and the data source.

Default Database (JDBC Connection)
(Optional)

The default database name, as defined by the schema.

JDBC Driver (Advanced)

The name of the JDBC Driver utilized by DB Optimizer™ XE and DB
Optimizer™ 2.5 to connect and communicate with the database.

Connection URL (Advanced)

Used by the JDBC Driver to connect with a database. Often contains host
and port numbers, as well as the name of the database to which it
connects.

For example:
jdbc:postgresql://host:port/database

jdbc:derby://host:port/database

Custom JDBC Diriver Properties
(Advanced)

The name and property value of any custom JDBC drivers associated with
the data source.

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 2.5 USER GUIDE 133

local history 57
| N d eX log 68 ’

M

A Max CPU 77

archives, profiling Max Engine 77

opening/saving 98 N
associating 59 new_project_wizard_page 33
Average Active Sessions (AAS) 76 ')
Average Active Sessions (AAS) graph 76

object properties 27

B objects 27
bind variable 138 opening 34
C Oracle 254
cases, generated P

opening in context 170 permissions, SQL Profiler 103
change history 56 permissions, SQL Tuner 175
Clean 100 Profiling Repository 99
code folding 51 profiling sessions
code formatting 46 configuring DBMS for 103
D filtering results 102

opening/saving 98
submitting tuning sessions from 100
project_info_page 33

data source 23
Data source indexing 24
database objects 30, 241

DB2 LUW 252 Projects 33
delete 36 Q
E Query Rewrites 149
editing 39 R
error 69 roles, SQL Tuner 175
error detection 41 S
error logs 68
execute 61 SQL .
explain plans tuning 135
opening from tuning job 172 SQL file 39
F SQL Server 252
Statements
files 35 grouping 79
filtering profile results 102 Sybase 255
filters 30 T
G Top Activity 78
global filters 31 Top Object I/O Tab (Oracle-Specific) 79
H Top Procedures Tab (SQL Server and Sybase Specific) 79
. transformations 149
hints S
tuning jobs

) Olpeﬁiﬂféiﬂ context 170 editor preferences 176
yperlinks index analysis 150, 228
| introduced 135

IBM DB2 LUW 252 opening explain plans from 172

Import 36 roles/permissions required 175

index analysis, SQL Tuner 150, 228 understanding generated statements 178
J tuning sessions

opening from profiling session 100
JDBC connection 254

U
L UNKNOWN statements 80
license 14 W
Load Chart 76
Load Chart legend 78 Wait Event 78

workspace 14

DB OPTIMIZER™ XE AND DB OPTIMIZER™ 2.5 USER GUIDE 257

	DB Optimizer™ User Guide
	Contents
	Welcome to Embarcadero DB Optimizer
	New Features in DB Optimizer 2.5
	Configuring DB Optimizer™ XE and DB Optimizer™ 2.5
	Initial Setup
	Specify a Workspace
	License DB Optimizer™ XE and DB Optimizer™ 2.5

	Customizing DB Optimizer™ XE and DB Optimizer™ 2.5 (Preferences)
	Set Index Configuration Preferences
	Set SQL Editor Preferences
	Set SQL Execution Preferences
	Set Code Assist Preferences
	Set Code Formatter Preferences
	Set Results View Preferences
	Set Syntax Coloring Preferences
	Set SQL Code Template Preferences
	Set File Encoding Preferences

	Using DB Optimizer
	Working with Data Sources
	Register Data Sources
	Browse a Data Source
	View Database Object Properties
	Search for Database Objects
	Filter Database Objects
	Define Data Source-Specific Object Filters
	Define Global Database Object Filters

	Drop a Database Object

	Working with SQL Projects
	Create a New SQL Project
	Open an Existing Project
	Search a Project
	Add Files to a Project
	Delete a Project

	Creating and Editing SQL Files (SQL Editor)
	Create an SQL File
	Open an Existing SQL File
	Working in SQL Editor
	Understanding Automatic Error Detection
	Understanding Code Assist
	Understanding Hyperlinks
	Understanding Code Formatting
	Understanding Code Folding
	Understanding Code Quality Checks
	Understanding SQL Templates

	View Change History
	Revert to an Old Version of a File
	Delete an SQL File

	Executing SQL Files
	Associate an SQL File with a Data Source
	Configure an SQL Session
	Execute SQL Code
	View and Save Results

	Troubleshooting
	View Log Details
	Maintain Logs
	Filter Logs
	Import and Export Error Logs
	Find and Fix SQL Code Errors
	Find and Fix Other Problems

	Using Profiling
	Understanding Profiling
	Understanding the Interface
	Running a Profiling Session
	Execute a Profiling Session
	Work with Session Results
	Opening an Existing Profiling Session
	Analyze the Load Chart
	Analyze the Top Activity Section
	Top SQL Tab
	Top Execution Activity Tab (DB2 Specific)
	Top Events Tab
	Top Sessions Tab
	Top Object I/O Tab (Oracle-Specific)
	Top Procedures Tab (SQL Server and Sybase Specific)

	Analyze Profiling Details
	Viewing Details on the SQL Tab
	Viewing Details on the Sessions Tab
	Viewing Details on the Events Tab
	Viewing Details on the Procedures Tab

	Saving Profiling Sessions
	Work with the Profiling Repository

	Import Statements to Tuning
	Other Profiling Commands
	Zooming In and Out
	Filtering Results

	Configuring Profiling
	Configuring DBMS Properties and Permissions
	Configuring IBM DB/2 for Windows, Unix, and Linux
	Configuring Microsoft SQL Server
	Configuring Oracle
	Configuring Sybase

	Building Launch Configurations

	Using Load Tester

	Using Tuning
	Introduction to Database Tuning
	Introduction to DB Optimizer’s Tuner
	SQL Tuning Methodology
	SQL Tuner Overview
	What's happening on the databases?
	Tuning Example
	The Database is Hanging or the Application has Problems
	The Database Caused the Problem
	The Machine Caused the Problem

	Finding and Tuning Problem SQL

	Understanding the Tuner Interface
	Understanding the Input Tab
	Understanding the Overview Tab
	Understanding the Analysis Tab

	Tuning SQL Statements
	Create a New Tuning Job
	Specify a Data Source
	Add SQL Statements
	Run a Tuning Job
	Analyze Tuning Results
	Compare Cases
	Filter and Delete Cases
	Create an Outline

	Modify Tuning Results
	Oracle Query Rewrites

	Using the Analysis Tab
	Implementing Index Analysis Recommendations

	Visual SQL Tuning
	Changing Diagram Detail Display
	Viewing Table Counts and Ratios
	Viewing the VST Diagram in Summary Mode
	Viewing the VST Diagram in Detail Mode
	Changing Detail Level for a Specific Table
	Viewing All Table Fields
	Viewing Diagram Object SQL

	Expanding Views in the VST Diagram

	Interpreting the VST Diagram Graphics
	Icons
	Colors
	Connecting Lines/Joins
	One-to-One Join
	One-to-Many Join
	Cartesian Join
	Implied Cartesian Join
	Many-to-Many Join

	Using Oracle-Specific Features
	Using the Table Statistics Tab
	Using the Column Statistics And Histograms Tab
	Using the Outlines Tab
	Tuning SQL Statements in the System Global Area (SGA)

	Additional Tuning Commands
	View the Source Code of Tuning Candidates
	View Statement or Case Code in SQL Viewer
	Open an Explain Plan for a Statement or Case
	Executing a Session from the Command Line

	Configuring Tuning
	Set Roles and Permissions on Data Sources
	Set Tuning Job Editor Preferences
	Set Generated Case Preferences

	Examples of Transformations and SQL Query Rewrites
	DBMS Hints
	Oracle Hints
	SQL Server Hints
	DB2 Hints
	Sybase Hints

	Tutorials
	Working with Data Source Explorer
	Adding Data Sources
	Browsing Data Sources

	Profiling a Data Source
	Starting a Profiling Session
	Analyzing Session Data
	Load Chart
	Top Activity
	Profiling Details

	Saving a Profiling Session
	Importing Statements to SQL Tuner

	Tuning SQL Statements
	Creating a New Tuning Job
	Adding SQL Statements
	Running a Tuning Job
	Analyzing Tuner Results on the Overview Tab
	Finding Missing Indexes and SQL Problems
	Finding Missing Indexes
	Changing Diagram Detail Display
	Viewing the VST Diagram in Summary Mode
	Viewing the VST Diagram in Detail Mode
	Changing Detail Level for a Specific Table
	Viewing All Table Fields
	Viewing Diagram Object SQL
	Expanding Views in the VST Diagram

	Interpreting the VST Diagram Graphics Conventions
	Icons
	Colors
	Connecting Lines/Joins
	One-to-One Join
	One-to-Many Join
	Cartesian Join
	Implied Cartesian Join
	Many-to-Many Join

	Finding Problematic SQL or Schema
	Cartesian Join
	Implied Cartesian Join
	Many-to-Many Relationships

	Applying Tuner Results to the Data Source
	Implementing Recommendations on the Overview Tab
	Implementing Recommendations on the Index Analysis Tab

	SQL Code Assist and Execution
	Code Extraction
	Code Highlighting
	Automatic Error Detection
	Code Complete
	Hyperlinks
	Code Formatting
	Code Folding
	Code Quality Checks
	SQL Execution
	Configuring SQL Execution Parameters

	Reference
	Database Objects
	DBMS Connection Parameters by Platform
	IBM DB2 LUW
	Microsoft SQL Server
	JDBC Connection Parameters
	Oracle Connection Parameters
	Sybase Connection Parameters

	Index

