EMBARCADERO
TECHNOLOGIESs

Product Documentation

DB Optimizer™

Evaluation Guide
3rd Edition

Version 2.0

Published November 19, 2009

Copyright © 1994-2009 Embarcadero Technologies, Inc.

Embarcadero Technologies, Inc.
100 California Street, 12th Floor
San Francisco, CA 94111 U.S.A.
All rights reserved.

All brands and product names are trademarks or registered trademarks of their respective owners.

This software/documentation contains proprietary information of Embarcadero Technologies, Inc.; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright law. Reverse engineering of the software
is prohibited.

If this software/documentation is delivered to a U.S. Government Agency of the Department of Defense, then it is delivered with
Restricted Rights and the following legend is applicable:

Restricted Rights Legend Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c)(2)(ii) of DFARS 252.227-7013, Rights in Technical Data and Computer Software (October 1988).

If this software/documentation is delivered to a U.S. Government Agency not within the Department of Defense, then it is delivered
with Restricted Rights, as defined in FAR 552.227-14, Rights in Data-General, including Alternate Il (June 1987).

Information in this document is subject to change without notice. Revisions may be issued to advise of such changes and additions.
Embarcadero Technologies, Inc. does not warrant that this documentation is error-free.

Contents

Introduction to DB Optimizer5

Introduction to DB OptimIzer. 5
About This Evaluation GUIAEo e e e e 6
Session 1: Getting Started with DB Optimizer 7
Install DB OptimIzZero 7
User INterface OVEIVIEW et e e e e e e 8
Session 2: Working with Data Source EXPIOrer e 10
AddiNg Data SOUICES oottt e e e e e e 11
Browsing Dat@ SOUICESottt et e et e e e e e e e 12
Session 3: Profiling @ Data SOUICE oot e e 13
Starting a Profiling Session e 14
ANAlyzing SeSSION Dataot 14
Load Chart . . .o 15

TOP ACHVIEY .« o et 16
Profiling Details e 17
Saving a Profiling SeSSIioN e 22
Importing Statements t0 SQL TUNETot e e e 23
Session 4: Tuning SQL Statementso 24
Creating @a New TUNING JObDo o e 25
AddiNg SQL StatemMeNtSo 27
Running a Tuning Jobo 28
Analyzing Tuner Results onthe Overview Tab 30
Finding Missing Indexes and SQL Problems i e 31
Finding MiSSIiNg INDEXES oot e e e 32
Changing Diagram Detail Displayo e 33
Viewing the VST Diagram in Summary Mode. e 34

Viewing the VST Diagram in Detail Mode e 34

Changing Detail Level for a Specific Table 35

Viewing All Table Fields 36

Viewing Diagram ObjJect SQLot 37
Expanding Views in the VST Diagramttt e e e 37
Interpreting the VST Diagram Graphics CONVENtIONS.ottt e e i e 40

JCOMIS e 41

C0l0rS 41

ONE-10-ONE JOIN . . .ttt 42

ONE-t0-Many JOIN . . . e e 42
CartesSIan JOIN . . . oo 43
Implied Cartesian JOoiN. e 44
Many-to-Many JOINo e 45
Finding Problematic SQL Or SChema o 45
CartesSIaN JOIN . . . o ot 46
Implied Cartesian JOiN. e 46
Many-to-Many Relationships. 47
Applying Tuner Results to the Data SOUICEt e e e 48
Implementing Recommendations onthe Overview Tab e 48
Implementing Recommendations on the Index Analysis Tab 48
Session 5: SQL Code Assist and EXeCULION e 50
Code EXIraCioNot 51
Code Highlightingo e e 51
Automatic Error DEtECHIONo 52
Code ComMPIEte .. e 54
HYPEIINKS o 54
Code FOrMALtiNG . . .ottt et e e e e 55
Code FOldING . . . 55
Code Quality ChecCkso e 56
SOL EXECULION . . e e e 56
Configuring SQL EXECULiON Parametersttt e e e e e e 57

Additional Evaluation RESOUICESo ittt ettt e e e e e e e e e e 59

Introduction to DB Optimizer

DB Optimizer is an enterprise SQL development and optimization tool that provides an environment for building code,
analyzing database performance, and optimizing query paths on specific data sources. This enables users to ensure
the efficiency of the overall enterprise, and provides a single application from which to develop, diagnose, and
optimize. This product provides support for IBM DB2 for LUW, Microsoft SQL Server, Sybase, Oracle, and generic
JDBC data source platforms. It is available as a stand-alone application, or as an Eclipse plug-in. The application is
structured and composed into three main interface parts. This design provides you with a comprehensive workflow
that enables development, query analysis, and tuning capabilities. This workflow, in turn, leads to more efficient task
management in terms of time and efficiency, overall.

The three major interface components of DB Optimizer are as follows:

SQL Profiler: Provides continuous data source monitoring that builds a statistical model, or profile, of the specified
data source, and highlights top SQL, event, and session activity. This component is used to locate and diagnose
problematic SQL code and event-based bottlenecks via its graphical interface, which is used to identify problem areas
and drill down to individual, problematic statements. Additionally, Profiler enables the investigation of execution and
wait time event details for individual stored routines. Profiling Details of the SQL Profiler have been expanded to show
Session Details for Sybase, and SQL Server and the SQL that ran in the selected session for Sybase, SQL Server,
and DB2.

SQL Tuner : Provides an easy and optimal way to discover efficient paths for queries that may not be performing as
quickly or as efficiently as they could be. Tuner enables the optimization of poorly performing SQL code through the
detection and modification of execution paths in data retrieval through hint injections. Users are supplied with a list of
possible cases generated by Tuner, and can select and update a statement with the most efficient path to reduce load
and improve efficiency, overall. The Analysis tab of the tuner provides a graphical diagram of an SQL query to show
how the tables in the query would be joined to satisfy the query and also provides suggestions for the creation of
indexes that may increase query performance.

SQL Editor : Simplifies SQL development by utilizing features that improve productivity and reduce errors. It
provides a rich interface that offers code completion, real-time error caching, code formatting, and sophisticated object
validation tools. In context with SQL Profiler and SQL Tuner, it provides an interface for viewing and editing SQL files
and database packages, as accessed through Profiler and Tuner functionality.

Product Benefits

« Interface provides a comprehensive and task-based workflow to enable a simple process, allowing for statement
analysis and subsequent database tuning in a short number of convenient and intuitive steps.

« Real-time and continuous database monitoring enables the application to run in the background, and presents
you with a live view of statement execution processes and problem areas.

 Drill-down functionality enables granular views of statements, events, and sessions being monitored by the
application, and access to the underlying code for modification, duplication, or examination purposes.

« Migration and enterprise management functionality organizes all data sources within your enterprise, as well as
objects and other application information under one roof.

« Code execution occurs directly on data sources registered in the application, but is always initiated on the
interface. This provides a single point of entry to all of your data sources, and enables a faster and more efficient
way to manage your enterprise.

About This Evaluation Guide

This evaluation guide enables you to get started with DB Optimizer.

Its purpose is to provide you with the foundation needed to fully utilize the features and benefits of the products, and
apply them to your own enterprise. This guide contains information on how to get the application up and running, how
to register data sources from your enterprise, and how to profile, analyze, and tune SQL statements, sessions, and
events for the purpose of optimizing the efficiency of your data sources, as well as identify and prevent system
bottlenecks and other wait-related issues.

This guide is divided into five sections:
Session 1: Getting Started with DB Optimizer
Session 2: Working with Data Source Explorer

Session 3: Profiling a Data Source

Session 4: Tuning SQL Statements

Session 5: SQL Code Assist and Execution

Once you have started the application, you can select Help from the Menu Bar to find additional resources that
compliment and build upon the features and tasks presented in this guide.

Session 1: Getting Started with DB Optimizer

Install DB Optimizer

Launch the installation program via the installer executable included in your software package and follow the
instructions in the wizard to complete it.

DB Optimizer can be installed as a standalone application (RCP installation) or as an Eclipse plug-in (Plug-In
installation).

The RCP installation provides an enclosed application that runs DB Optimizer in a contained framework.

The Eclipse plug-in installation leverages plug-in capabilities to run within the Eclipse framework. You must have

a previously installed version of Eclipse (version 3.3 or higher) on your machine prior to installing DB Optimizer
as a plug-in.

e Embarcadero DB Optimizer E|§|@

Choose Install Set

Install as Standalone Application

Install Embarzadero 0B Optimizer 2.0, an integrated
development envirenment that simplifies SQL optimization and
development for application developers with many features for
Choozse Install Folders improving productivity and reducing errars.

Chodse Shortut Folder

Pre-Installation Surmmary

Installing...

Install Complate Install as Eclipse Plug-in

Install Embarzadero DB Optimizer 2.0 as a plug-in to an existing

Eclipse installation. Eclipse wersion 3.3 (Europa) or higher is
required.

& Choose Install Set

£ EMBARCAD EBP

OWER TO Y OUR P

Installiangschare by Macrovision

Cancel Previous

DB Optimizer can be installed as a standalone application or as a plug-in for an existing Eclipse installation.

Both the RCP and plug-in versions of DB Optimizer provide full product functionality.

You may be required to restart your machine to complete the installation of DB Optimizer. It is also recommended that
you copy the installer to the desktop of your machine prior to running the installer.

To start DB Optimizer:

¢ From the Desktop, choose the Windows Start menu and then select Programs > Embarcadero >
Embarcadero DB Optimizer 1.5 > Embarcadero DB Optimizer 1.5.

User Interface Overview

The DB Optimizer application environment is known as the Workbench.

The Workbench provides an interface through which you manage data sources and analyze and tune statements. The
Workbench is composed of common interface elements that provide tools to accomplish these tasks. These objects
provide a uniform system for working with tuning jobs, profile sessions, and data sources.

& 500 Optimization - sfvpclb0.embarcaders,com - Embarcaders DB Optin ents and SettingstJacquieldboptimizeryworkspaced |‘:||1EI|E
Fim Edt Mavigate Search Project Bun Window Help
s & (- E -0 @R B | 4% sqLopinizat... |
(I pata source £2 . 5 SOL Project | O|([E Tuning Jobt.tun @ sfpehL eebarcasare coen 5 _ = 0|
melba 55 7| 5 sfupclbol.embarcadero.c ~
[bvpe Fiter b om = Fracessas: [-Al- ~ Filterby: -Hone- b W | @
= l=* Managed Data Sources (8)
B = Data Souree Graug (&) Profile Session q g9
-1 Microsoft SOL Sarver (2)
[=-1=F Orade (2] B On CPU B Systern VO BUser FO O Cluster BApplication B Configuration B Comrmit 0 Metwork B Administrative B Concurrency
¥ Mz deka source (Crack 5.1, [Scheduler @ Other
[i POMLABORCLET L (Cracle &1
¥ Sl ROMLASIROLAI_Z (Draclz .7 a b
H ﬁl sPwpchil. embarcadeno.com [&
¥ i TORLABORCLE ? (Crace £, @
- TORLABORCLE 3 (Trace) =]
2
o
2
]
! = & s & o i &
R ey et ok N ¥ Aa¥
|22 tvervien | ' st | (5 Events| 47 Sessians %0 Cbisct 110
SOL Statenenks Evenks Sessions
Srateman DE Activiy Evank DB Addvity [Lisar [Program Ackive E".
1 T8 nEncnaig T on CRU [|| 5¥STEM | Exeutor.eo i
db file sequarntial resd [] PRSP [emagent.ee (|
SHSTEM | Executor exe]
4 >
[progress 3@ =0
[3 Prafiing sFvpclall embarcadero,com
T) =
Click to s=e dats urder prafilng.
% x| |# | == |
O= | Profiing sfvpeh0le. readero.com [Bee) @

The Workbench provides an environment to build profiling sessions and tune query statements.

¢ The Welcome Page is the first item in the Help menu. Click Help > Welcome to gain access to documentation
and help files/tutorials to familiarize yourself with the product. It provides easy access to information that may be
of value to new users.

w0 and Settingel e guieddbopTimi e rmeras pace 3

Fin Edt Flawgate Searcs Propcs Bun Wardow Hels

) ek %

WelcomeltolEmbarcadero® DB Optimizer™

Overview

an overaeyr of the DB Optimizer
21

Tutorials

- &r and llarials

Workbench

o the Workbench

Copyright (c) 1854-2008 Embarcadera Tec agies,
Al Rightts Resered, Unauhoisd Duplcation Pr o

Frafilrg el e neadios

The Welcome page provides links to help tutorials and provides access to the application environment.

e The Workbench Space is composed of Views, Editors, and the Menu Bar and Command Toolbar. Views and
Editors are interface components that enable you to perform DB Optimizer functions and work tasks, as well as
manage resources.

e The Menu Bar and Command Toolbar contain commands that execute various functional aspects of the
application such as launching Views and Editors, navigation commands, and environment preference settings.
The Toolbar contains icons that represent specific menu commands. For example, the Search command can be
launched via the Search > Search menu in the Menu Bar, and also via the Search icon in the Command Toolbar.

* Views are Workbench interface components typically used to navigate a hierarchy of information, open Editors,
or display the properties of various application elements. For example, the Data Source Explorer view provides
a tree of all data sources in the environment and the comparison jobs associated with each. You can launch
these jobs directly from Data Source Explorer, modify the connection properties of data sources, or create and
edit configuration archives from this View.

« Editors are Workbench interface components typically used to access DB Optimizer functionality. For example,
the SQL Editor provides a means to view, edit, and save SQL code. Editors are largely differentiated from Views
in that they operate on an individual level rather than a supportive one. The SQL Profiler and SQL Tuner
components of DB Optimizer can be considered Editors for the purposes of understanding the Workbench
interface.

Session 2: Working with Data Source Explorer

Data Source Explorer provides a tree view of all data sources registered in DB Optimizer. In addition, it breaks
down the components of each data source and categorizes databases and corresponding database objects by
object type and underlying SQL code. This feature provides you with a view of the contents of data sources in
your enterprise in an easily navigated and cataloged interface.

(k3 Data Source I3 Eﬁq.ﬁuject. o

Rinhoo Bl ™
la 1 -

|type filter text ' Em

= 1=F Managed Data Sources [Z) A

S romlabartordsi (Oracle)
(=58l torisbegl00_2 (SQL Server 8,0,203
B L-l:] Database Objects

=0

=0 e

&0 #dd=
=[] 2005
+aw

b n a%
&[0 asca
+-I activation
[AlexLevatoTest
&0 ancas
+- [AppDb
[capacity
+- [CapRepo
[case

#- cases
[casetest
[cata.1
#-0 cd_repo
[changeRepo
® 0 dd
&[] coc

[codruta

& concatenate
B n constrain{Test
#-[costino1
&[] cotoinz

| %

Data Source Explorer sorts databases and database objects by category within DB Optimizer.

If data sources are particularly large or complex, or you are only developing specific objects, you can apply database object
filters on the view in Data Source Explorer.

Adding Data Sources

In order to profile and tune statements, you need to register the data sources to be analyzed in the environment by
providing connection information and other details to DB Optimizer. Data sources are registered and managed in Data
Source Explorer. Each time you register a new data source you need to specify its connection information and
organize it in the View, as needed. Once a data source has been registered, it remains stored in a catalog and does
not need to be registered again each time you open DB Optimizer. Furthermore, it can be used in multiple jobs,
archived, or otherwise “shared” with regards to the general functionality of the application.

99 Data Source E2 %SQL Project | O
TR

=l T=F Managed Data Sources (5]
=1l Daka Source Group (5)
+-l=F Microsoft S0L Server (2]
=l 1=F Orade (&)
+|-) Mew data source (Oracle 8.1,
+-) ROMLABORCLEI_1 (Oracle 8.1
+- S ROMLABORCLS 2 (Oracle 2.2
+ _‘gi sfvpelb0l . embarcadero.com
+- S TORLABORCLEI_Z (Oracle 8.1
+- S| TORLABORCLEI_3 (Oracle)

The Data Source Explorer view provides an organizational tree of registered data sources and the parameters associated with them.

To add a data source:

Select Data Source Explorer and choose File > New > Data Source from the Menu Bar. The Data Source
Wizard appears. Follow the steps provided to register the data source. When you are finished, the data
source is added to Data Source Explorer.

Browsing Data Sources

In order to analyze and tune statements on data sources within your enterprise, you need to access the
data source objects within the application environment. It is important to be able to view databases and
underlying code in an organized manner, especially when maintaining a large system. Data Source
Explorer’s tree structure can be used to view databases, tables, and other information about data sources.
Expand the nodes of each registered data source to view details about each data source. Data Source
Explorer is also used to launch profiling sessions, by enabling you to select the data source that you want
to execute, and then launching a profiling session from your selection.

B pata Source 12 . 5 SOLProject | — O

type filter text &Y

= 1= Managed Data Sources (2)
i romlabartordsi (Orade)

=] toriabsqgl00_2 (SQL Server 5. (paenges
S Disconnect

of Cut

=| Copy

i Delete

[Duplicate
Mowe. .

1 Refresh

Run Az 4

13- Open Profile Dialog...

o> Go Into

Propertes

The Data Source Explorer tree provides a list of databases, and enables you to launch Optimizer features, such as SQL Profiler, via
the context menu.

All objects listed in Data Source Explorer are organized, in descending order, by data source. Additionally, if you
double-click on an object, SQL Editor will open and display the underlying SQL code.

To browse a data source:
Expand the node of the data source that you want to examine. Double-click an object to view the code in SQL Editor.

Session 3: Profiling a Data Source

NOTE: The SQL Profiler is not available in the “Basic” version of DB Optimizer.

SQL Profiler is an interface component that constantly samples a data source and builds a statistical
model of the load on the database. Profiling is used to locate and diagnose problematic SQL code and
event-based bottlenecks. Additionally, Profiler enables you to investigate execution and wait time event
details for individual stored routines. Results are presented in the profiling editor, which enables you to
identify problem areas and view individual SQL statements, as needed.

e T1OA - B e by #l®
Frodds Saann (WS
E. B O CFU I Sysiem KO W User 30 0 Chastar l Apzlication B Cotiguration B Gemm R Hatwerk BAgministatea | Concamenty § Schadal B Othar
wt |
£, . .
- " i
- :I
£, 1 - . - . - y . e — g s
o o L o e -.1.'5'"* .}‘9" & & s o - Pl i

B cvervees | B 500 |18 e | 0 S

sGL Statements twenbs
Sraiepent Alwiy (W) T| & Eveni L b S =
B uronawai [— 0 DHCRU o 5570
o SELECT COLLSTSTE - job ichiduér. .+ et wikt I LD
S FERATI..EET D B o Ml e i read - 2.4
2= Hla ackomes read 1 i3
vl e skl reed L5
o Ml ol verie L ¥
miche lorary cache iz
e S il v [BE]

gt s
— s i el el

S0L: SPUECT COUMT{*] FROP (SELECT USSRIGHE FEOM SYL.0RA_LISERS WHERE DEFALILT_TAELESRACE="SYSTER OR TEMPO..

2 50 oo |5 et |07 Sesmors B0 ke s | 650 et

£ i i e wse Faisiig SLalmsils RECUIRE SCADED0E (ReRal] Lasmnen SADSDOE [(Ber Nt &
T G Crptiioer Mace Bk, ROWS Mamary ITRMIM Petches. 008 meires .00
ey, SRETIROH B acs & Bosusons. | a0
fres SUBEDBSE ¥ Iresbidyiong 1 Sors 0 iz 30
e 1 H-1] Ceah Poeadi Ll
Plar sk ol 200008503] am
torti Eaesier. o o 2.0
o o 00D = 2.0
3 Cpeeaban Core] = 006 el T (000

B i
k)

SQL Profiler analyzes and provides a statistical model of database load that identifies problematic code and event-based
bottlenecks.

SQL Profiler is composed of the following diagnostic parts:

e The Load Graph provides a display of the overall load on the system. The bars represent individual aspects of
the data source.

« The Top Activity section displays where load originates. Specifically, Top Activity displays the top SQL
statements, the top events the database spends time in, and the top activity sessions that may be causing issues
in terms of query time and response.

¢ The Profiling Details View displays detailed information for any item selected from Top Activity. For example,

examining a SQL statement from Top Activity displays the identification parameters and the execution statistics
of that specific statement selection.

Starting a Profiling Session

In order to access SQL Profiler, you need to run a profiling session on a data source registered in Data
Source Explorer. You can do this by right-clicking on a data source and selecting Profile As > Data
Source from the context menu. You can also click the Profile icon in the Toolbar, which initiates a profile
session on the last selected data source in Data Source Explorer.

Once a profiling session launches, it runs until you stop it or it has run for its specified length of time. You
can stop a session by clicking the Stop icon on the upper left-hand side of the Profiler.

When the profiling session is complete, the first two sections (Load Chart and Top Activity) will be
populated with information about the database load. You can then begin analyzing the data and identifying
problem areas.

@ Progress 7 3& ~ =0
mPrl:-ﬁling terlabsgloD_2
[(eess=]

Initializing session. ..

The Progress view indicates that the profiling session has been initiated.

To run a profiling session:

In Data Source Explorer, right-click on a data source and select Profile As > Data Source. The profiling session
begins.

Analyzing Session Data

Profiler is composed of three essential diagnostic views that provide information about load on a particular database in
the system. These views enable you to identify bottlenecks and view details about specific queries that execute and
wait over the course of a profiling session.

SQL Profiler is composed of the following three components, listed in descending order of granularity:
e Load Chart
« Top Activity
« Profiling Details

Load Chart

The Load Chart provides an overview of the load on the system, and is designed as a high level entry
point to reading session results. The colored bars represent individual aspects of the database, and the

graph can be used to discover bottlenecks.
Profile Seamicn | g
0§ OMCPU B System PO B Uscrlid 0 Costar Bapplcaien B Somouraior B Sommit B Metyork B Acminisiratse @ Corcumenicy | Schedular § Cthar

Acten Sasalons [As]
i
e

i = pr iz # o # # i
5 W 5 o i P o &5 ot " e -

]

The Load Chart displays the overall load of the database that you analyzed with Profiler.

Time is displayed on the X axis, and the Y axis shows the average number of sessions waiting or executing. Each
support platform type has a specific set of wait event times. For example, Sybase platforms will display CPU, Lock,
Memory, I/O, Network, and Other. Use the chart legend to understand the graph. It displays a color and code scheme

for executing and waiting session categories in the upper right-hand corner of the chart.

Top Activity

Below the Load Graph, the Top Activity section displays where the load originates and outlines the top SQL
statements, top events, and the top activity sessions on the database. It is composed of a series of tabs that provide
detailed statistics on individual SQL statements and sessions that are waiting or executing over the length of the

profiling session.

e T o¥arllel

o ol e St bl oMy b

(K P Ehn cmmrd

A mew -1] = ol 77 b = e T e =B T e e - ™ =
i - = - -
[P .
m b - -
: " B b= 0 Prn T e P e P R L] (S I PRSP
L]
L
- *
1
i i
d
| I
' | |
2 4 4 - # -
Mo B ¥ o i ey W
R R e e ¥ yaemy
o - e - e = o
" o S o — i -
" i - W .-
" - - 1 - T
x
- o i - "
o 58 - = = -
4 ® o i :
ot mmar e aapruplorry o i B .
[- ;
- il i - i
. u . I
© Bt PRE s b e e - ;
- 1}
il - - - t -
L 13 [» Pl .
S A —— bRy e SRy e @

The Top Activity section displays a more detailed view of the Load Graph. It identifies top statements, events, and sessions that are
waiting or executing over the length of the profiling session.

« The Overview tab provides summary information about SQL statements and events and their activity levels, and
sessions, their system process ids and their activity level. You can reorder the rows in any of the three sections of
this tab. For example, clicking the Event column in the Events section changes the alphabetical order to
ascending or decending.

« The SQL tab provides information about SQL statements and procedures. This includes all INSERT, SELECT,
DELETE, and UPDATE statements that are executing or waiting to execute over the length of the profiling
session.

* The Events tab displays information about wait events, and should be used to tune at the application or database
configuration level. For example, if the top events are locks, then application logic needs to be examined. If the
top events are related to database configuration, then the database setup should be investigated.

¢ The Sessions tab displays information about sessions, and can be used to discover sessions that are very active
or bottlenecked.

« If you are profiling an Oracle data source, the Object I/O tab provides information about 1/O. This tab will not be
displayed if you are profile a database on a platform other than Oracle.

Profiling Details

When you select any item from Top Activity, details are displayed on the Profiling Details view.

TIP: You may have to select Windows > Show View > Profiling Details to display the Profiling

Details view.

The tabs that compose the Profiling Details view are dependent on the nature of the object selected in
Top Activity, in order to reflect that item’s specific information.

Frotile Session

Far...

ID PHa..

307...

307...

)

BOn CPU B Systern W0 B User U0 O Chsster B Application B Cordguraion B Commi B Naeteors B Adminisirative B Conurancy L Scheduler H Qususing B Other

W

Jue
307...
307...
307...

28
28
28

28

=

28

gul l - :;;; _;_p;\ r:"@ . ;,,e_-r ?- ﬂz-*:"' :‘_k‘;\ 1_;_en _a? 1_;,‘:;) o) a® 1_?¢:¢ o
I QOverview 5 SQL © Events £"Sessions #3 Object I/O
U & Program SID S..#% .ﬁa:l: %) Machme Ses e CI| nfn
SYSTEM | 250 1865 | Imlcgrigore0l USER (10..52 |
S‘r’STEH 285 2193 - 82.04 mlcgngoreﬂl LISER 10 52
SYSTEM 251 1809 57.49 rolcgrigore0l USER 10...52
SYSTEM IRA BRA rrlearinnreni | EFR in_ B
@ Profiling Details :
Session: 259, 1865 (SYSTEM)
IfSession Details 5 SOL © Events
Statement Ex..s Awvg..ec) DB..%) - SQLID Chi..er
< update cata.cli...il.codcl,5) = 2 1 3483 23.0318..9 0
@ update cata.cli...Lcodcl,3) = 1 1 1465l 18.4236..2 0
@ update cata.cli...il.codc, 3) = 1 1 17818 15.1330..0 0
S INSERT INTC CAT...lient', Tasi') 32094 p.oolM 14.4796..33 0
@ update cata.cli...l.codcl,5) = 2 0 o000 9.8731.5 0
S INSERT INTO ...B/MMYYYY'Y) 0 o000 7.8934..5 1]
+ 2t UNKNOWN 0 0.00l 5.92 1]
2 update cata.cli...l.codcl,7) = 5 0 o.00l 3,85 54...00 0
it begin FOR i I... END LOGF; end 1 9.89] 1.3232..5 0

o I T TR F, IV R, T, Y

Profiling Details displays detailed parameter information on a statement, event, or session that was selected in Top Activity. The data

displayed also varies by database platform.

The tabs that appear in Profiling Details will be different depending on whether you selected a statement, session, or
an event. This is to accommodate the parameter specifics of the item you selected.

« When you select a statement, the SQL and Events tabs appear. Additionally, if you are profiling an Oracle data
source, the SQL Details and Sessions tab appears as well.

Tab Name

Description

SQL Text Displays the full code of the selected SQL statement. For Oracle, parameter details

related to how the selected SQL statement is executing. For example, parsing
statistics, and SQL identification details.

Tab Name

Description

SQL Details (Oracle only)

Provides parameter details on different parameters about any sessions the
statement is associated with. For example, SID number and machine directory
location.

Events

Provides database activity details about events the statement is associated with.

Sessions

Provides information about the sessions associated with the statement.

Children Details (Oracle only)

Lists all copies of the cursor or sql query, if Oracle has cached multiple copies of the
same statement.

Object I1/10

If the SQL query has done physical I/O, then these are the objects, such as tables,
and indexes that the were read to satisfy the query.

When you select an event, the Sess

ion Details, SQL, and Sessions tabs appear.

Tab Name

Description

SQL

Displays information about the statements associated with the event.

Sessions

Provides information about the sessions associated with the event.

Raw Data

Raw data that was sampled from the database, specifically the following:
Sample time

SID

Serial #

User name

Program

Sql ID

P1

P2

P3

Analysis

Displays for “buffer busy waits” and “cache buffer chains latch” waits. The analysis
shows data and documentation to assist in solving these bottlenecks.

When you select a session, the Session Details, SQL, and Events tabs appear.

Tab Name

Description

Session Details

Provides parameters regarding the session. For example, database server
connection information, and data regarding the client tool and application.

SQL

Displays information about the statements associated with the session.

Events

Provides information about the events associated with the session.

To view session details:

1 Inthe Profile Session area of the SQL Profiler, click anywhere in the row of an application that ran during the
profiling session.

2 Inthe Profiling Details area, click the Sessions Details tab.

Details of the session are displayed.

@ Profiling Details =
Session: 259, 1865 (SYSTEM)
22 Session Details % SQL & Events

Database Server Connection Client Tool
SID 259 Program
Serial# 1,865 0S User
User Name SYSTEM 0S Process ID 1234
Process OS PID 1280 Host rolcgrigore01
Logged On Time 2009-10-29 12:40:25.0 Terminal
Logged On For 00:02:33.655 Client ID
Connection Type DEDICATED Client Info 10.100.40.52

Session Type USER
Resource Consumer Group
Application
SQLID 2267746324
SQL Operation Code 6

Last Call Elapsed Time 6
Module
Action

SQL Trace DISABLED

To view session SQL:

1 Inthe Profile Session area of the SQL Profiler, click anywhere in the row of an application that ran during the
profiling session.

2 Inthe Profiling Details area, click the SQL tab.
The SQL for the application that selected displays.
@ Profiling Details =
Event: db file scattered read

% SQL £"Sessions ¢ Raw Data

Statement Ex..s Avg...ec) DB...%) - SQLID Chi...er
@ UPDATE CATA.... > 10000*:B1 299 0.09 16.67 29...8 0
@ update cata.cli...il.codcl,5) = 2 1 3483 11.1118..9 0
& Non-SQL Activity 0 0.00MM 11.1125..4 0
++#INSERT INTO ...SELECT COUN 1 48110 8.3332..5 0
*+INSERT INTO P...EXTENT > (SE 0 0.00I0 8.3314...8 0
@ update cata.cli...1.codcl,3) = 1 1 14.68 10 8.33 36...2 0
++INSERT INTO P...YS','SYSTEM') 0 0.000 5.56 29...8 0
*#INSERT INTO ...RE O.0BJ)# = 1 1.720 5.56 27...2 0
@ update cata.cli...il.codcl,3) = 1 1 17.81 1 5.56 30...0 0
*#INSERT INTO ...=0.0BJECT_ID 1 11.531 2.7811...5 0
+# INSERT INTO ...OUNT FROM S 0 0.001l 2.78 39..4 0
v SELECT SUM(..._FREE_SPACE 0 0.001l 2.7813...1 0
+ select * from cata.clientil 0 0.000 2.78 21...8 0

$

Par...

S
m im (A i (A " (A (A" (A" [[A"@ & (3@ ;A3

TIP: From the SQL tab you can easily tune a statement by right-clicking a statement on the SQL tab
to initiate the tuner, which then opens with the selected statement in the Ad hoc SQL tab of the
Tuner Input.

3 Click the SQL Details tab for summary details of the SQL.

-+ Profiling Details -
SQL: SELECT C.OWNER, C.TABLE_ NAME, C.COLUMN_NAME, DATA_TYPE, DATA_TYPE_OWNER, DATA_TYPE,

& SQL Text <L SQL Details & Events £"Sessions @ Children Details +0Object IfO

SQL Identification Optimizer and Outline Parsing Statistics
SQLID 3876920720 Optimizer Mode ALL_ROWS Memory 293,921
SQL Address 1FDASDB4 Parsing UserID 5 Loads 1
Child Address 1FE3EE7C Qutline Category Invalidations 0
Children 1 Outline SID 0
Flan Hash Value 2,065,268,871
Module
Action

SQL Operation Code 3
Program ID 66,664
Program Line# 53
Execution Statistics Total Per Execution Per Row

Fetches 4,126 0.00 0.10
Executions 0 0.00 0.00
Sorts 0 0.00 0.00
Disk Reads Se7 0.00 0.01
Buffer Gets 108,022 0.00 2.62

Rows Processed 41,260 0.00 1.00

T s N AT CalaTal LAl alal

Saving a Profiling Session

A profiling session can be saved to a file with a . oar suffix that contains the name of the data source. This enables
you to open the file at a later time for analysis.

Save As

Save file bo another lacation,

Enter ar seleck the parent Falder:

| SQLProject

% solProject

File name: | sFvpclbdl. embarcadero. com. oar |

@ Ok l [Cancel]

Profiling sessions can be saved as .oar files for use at a later time.

Once you have saved a profiling session, it appears in the SQL Project Explorer under the name you saved it as. It
can be opened again by double-clicking the project name.

To save a profiling session:

Select the profiling session and then choose File > Save As. Specify the project location you want to save the file in
and modify the file name, as needed. Click OK. The project is added to SQL Project Explorer.

Importing Statements to SQL Tuner

SQL Profiler enables you to submit one or more statements into SQL Tuner. This enables you to take advantage of
Tuner’s hint-based and transformation-based suggestions if you want to tune a problem statement that you detected

over the course of a profiling session.

2 Profiling Details :

Session: 251, 18(
E=Session Details |5 SQL 2 Events
Statement Ex..s Avg...ec) L
@ LUPDATE CATA.... > 10000*:B1 299 0.09
_ select * from cata TS o R ___0.00
@ UPDATE CATA... 4 0.19 1
< LUPDATE CATA.. .., Copy 0.00]
vselect * from catd &= Eyplain Plan 0.001
#INSERT INTO CA... . Tune 0.00]
2 Nan-SQL Activity 0.00]
« selact * from cata 0.00]
B hegin FOR i IN ...factl.nrfact < 0 0.00]

Context menu commands in SQL Profiler enable you to import statements to a tuning job directly from the Profiler interface.

To Import a statement from Profiler into Tuner
Select one or more statements in Profiler, right-click and select Tune from the context menu. SQL Tuner opens and
contains the selected statements in a new tuning job. You can now proceed to tune the problematic statements.

Session 4: Tuning SQL Statements

SQL Tuner provides an easy and optimal way to discover efficient paths for queries that may not be performing as
quickly or as efficiently as they could be. Tuner enables the optimization of poorly-performing SQL code through the
detection and modification of execution paths used in data retrieval. This is primarily performed through hint injection,
and index and statistics analysis.

b Input B Overview P Analysis
@ Overview | eror detected @
Tuning Statements Generake cases [#]Perfarm detail anatysis [#|Execute each generated cass | 1 = | times @ '{!j
Statement | Time | Analysis |
Mg Schema _ Text Tables Vigws Elapsed (s} | Improved (s) Cases Inde:es
= [seEcri SYSTEM seleck from SH.SALES, SH.TIMES 2 i} 5 0 0 1
W DOseecrz SYSTEM selmck From < Jnined Tables: 1] i 0 0 1
o SELECT 3 SYSTEM select from SH.SALES, SH.TIMES, 5 0 0,00 0,00 B3 1 3 6
= [AseEcT 4 SYSTEM select from CATA. INVOIOE_LIMES, 4 0 0.00 0.00 13/ 31 0
Generated Cases £
5L Statements and Cases | 3 Cost | € Execution Statistics [Gther Execution Statistics =
| Mame | _ Texk | Walue | ElapsedTime(s) Result | R, Physical Reads | Logical Reads | CPU Time (s) |
+ Ty SELECT 1 select from SH.SALES, 853930.0
gl =55 SELECT 3 select From SH.SALES, B58.0 0.00 1 0 o &0 .00
eql PARALLELZ 125.0 0.04 E— 1452 2047 0.01
el PARALLELL 42,0 0.5¢ E— [1454 1574 0,01
MO _INDEY 59,0
E:
E: LEADIMGE ga1.0
LEADINGS 861.0
[El LEADINGS 875.0
El MO _USE_HASH 1082.0
LEADING1 21780
] ORDERED 2419,0 0.00 1 D o 4 0.00
E INDEX_COMBIME 4233.0
LISE_MERGE 7218.0
INDE¥_S5_ASC 13353.0
[E INDEX_55_DESC 13353.0 P
i L e m d

Tuner analyzes specified SQL statements and then supplies execution path directives. This enables you to select alternate paths for
queries, thus optimizing system performance based on analysis.

For example, if tuning is selecting from two tables (A and B), it will enable the joining of Ato B, or B to A as well as the
join form. Additionally, different joining methods such as nested loops or hash joins can be used and will be tested, as
appropriate. Tuning will select alternate paths, and enable you to change the original path to one of the alternates.
Execution paths slower than the original are eliminated, which enables you to select the quickest of the returned
selections and improve query times, overall.

This enables the DBA to correctly optimize queries in the cases where the native optimizer failed.

Creating a New Tuning Job

New tuning jobs are created from scratch where you can specify the statements to be tuned from a variety
of sources, or statements can be directly imported from existing profiling sessions on data sources
currently registered in the environment.

b £} Oracle b [sfvpclb0l.embarcadera.com (10.2.0.1)
> B B
~ Input

Tuning Candidates
Gather the SQL statements to be tuned,

T Adhoc 5oL | [Database Objects | 51 SQL Files | % Active SQL in 5GA

Input 5L statements ko be tuned.

SELECT
ct.action,
c.client id,
i.investmwent unit,
it.investment type names
FROM
client transaction ct,
client o,
investmwent type it,
investment i

WHEERE
ct.client_id = c.client_id AMD
ct.investment_id = i.investment_id LMD

i.investment type id = it.investment type id and
client transaction id=1

Tuning jobs are defined in SQL Tuner by specifying the data source and corresponding statements to be tuned and then executing
the tuning job process.

To create a new tuning job:

If you determined from a profiling session that a specific SQL statement should be tuned, in the Profile Session,
right-click the statement and select Tune as follows.

Profile Session

'af‘lN CPL B System /O B User W0 O Cluster BApplication B Con
& dministrative B Concurrency 0 Scheduler [Other

oz

e

o1

. o]

i T T T

= : . o o .
=T b . Bk il
2 N N J\'-Lﬂ:p N N

£ Overview 'r|'-_9|" 0L EB' Events ﬁfj Sessions | &0 Object I/O

S0L Statements Events
Statement [Ewvent CE
+$ INSERT IMTO ... dml_locks'] QM CPU ||
+3 INSERT INTO ... 'Free', 1, R] db file sequential read |

o select #F, MTR_DaTa_ 1 | null evvent O

Qrganize By L4

< |

Copy

i@ Profiling Details &2 <22 Explain Plan

S0L: SELECT X' FROM w 1ERE OBJECT _NAME =:1

E¥ S0l Tewt | @8 S0L Do oo oo e —2ssions | ' Children Detail

OR

Select File > New > Tuning Job, or click the New Tuning Job icon on the Toolbar. SQL Tuner opens and you
can proceed to set up the parameters of the new job.

Once you have defined the input of the tuning job, you can save the file with a . tun suffix via the Save As
command. The job is added to the SQL Project Explorer and can be re-opened and re-run at any time once it is
saved to the system.

Adding SQL Statements

Once you have created a name for the tuning job and indicated its source, you can add SQL statements that you want
the job to tune. Statements are added to a job via the Ad hoc SQL box. All standard DML statements (SELECT,
INSERT, DELETE, UPDATE) are viable for the tuning procedure.

b orh) Oracle b j]sfvpcll:ulill.eml:uarcader-:u.u:u:um (10.2.0.1)
b P P
Input

Tuning Candidates
Gather the SOL statements ko be tuned.

i Adhoc QL | [Database Objects | 50} SQL Files | % Active SQL in 5G4

Input 50U statements ko be tuned.

Statements are added to a tuning job via the Input tab.

There are three or four different ways to add SQL statements to a job, as reflected by the tabs in the Tuning
Candidates box:

Use the Input tab to specify which SQL statements to tune.
¢ Ad hoc SQL: Copy/paste SQL statements to the Ad hoc SQL tab or write queries by hand.
« Database Objects: Drag and drop data base objects from the Data Source Explorer to the Database Objects tab.
* SQL Files: Browse the workspace or file system and select SQL files.
e Active SQL in SGA: For the Oracle platform only, you can also scan the System Global Area (SGA) for

statements to tune.

To add an ad hoc statement:

Select the Ad Hoc SQL tab and manually type an SQL statement in the window. Alternatively, copy/paste the
statement from another source.

To add a database object:

Select the Database Objects tab and click Add. The Data Source Object Selection dialog appears. Type an object
name prefix or pattern in the field provided and choose a statement from the window as it populates to match what you
typed.

To add a saved SQL file:

Select the SQL Files tab and click Workspace or File System, depending on where the file you want to add is stored.
Select a file from the dialog that appears and it will be added to the job.

To add Active SQL in SGA:

Select the Active SQL in SGA tab and click Scan. Specify any filters as required and then click Next. From the list of
SQL statements retrieved from the SGA, select those you want to optimize, and then click Finish. The selected
statements are copied to the text area of the Active SQL in SGA tab.

Running a Tuning Job

After you add SQL statements to the job, click the Overview tab. Once you choose your tuning options and click the
Run Job icon, the DML is parsed from the statements and added to the Generated Cases area. The Generated
Cases are alternative execution paths or explain paths that could be better or worse than the default path the
database uses. When these cases are executed you can use the execution statistics to determine which case would
optimize performance.

Each extracted statement is listed by Name and Text. Additionally, each statement has a Cost, Elapsed Time, and
Other Execution Statistics value that provide information on how effectively each case executes on the specified
data source. These parameters let you compare the efficiency of the original statements to the cases generated by the

tuning process when it is executed.

TIP:
Tuning Status Indicator

Enable Execution

Check Box

| ;‘ Input I L-v‘ Verview I P.ﬁ.ﬂﬁ' AL

Increase/Decrease
Pane Size Control

You can click the Text field of a generated case to view the SQL source of the statement.

Run/Cancel Job
Controls

Column Set
Expand/Collapse
Control

[]Perform detal analysis

Exefute sach generated cass

\

® ©

@

Statement Time An
- | Schama . Taxt Thbles Vidws Elapsad (&) | Irpraved (5} Cases Incls:
T [seEcT2 SYSTEM select from BROKER, 5.32 6.32 0
T MSEECT 1 SYSTEM gelect from 0.00 0.00 10
< \ >
Generated Base s

Generated Cases Expand/Collapse Control Filter Control .

/ 0L Statements and Cases ¥ Cost »Exequil...islics | b Qther

fie " Text Value Elapsed Time (s) | Physical Reads | Lo
dl =y gecT2 select from BROKER, CLIENT_TRANSACTION, 34014.0 6.32 2
eEl A [Missing a ...sformation 274.0 0.03]
o F g SRLECT 1 select from chent_transaction, dient, 4.0 0.00 @
[ﬁiJ; USE_HASH 14.0 0,00]
el ORDERED 8.0 0,00 i
el MNO_LUSE_NL 6.0 0.0:0 0
&= LEADING4 _ Extracted SQL 4 4 0.00 0
S| EaDmNG3 Transformation Case Statements 0o 001 o
o LEADING?2 Hint-Based 7.0 0.01 0
e EADINGL Cases 4.0 0.00 0
e INDEX_FFS 8.0 0.0 o
el FLLL &40 0,00 o
B FIRST_ROWS 4.0 .00 0

< ¥

The Generated Cases tab enables you to measure the various load costs of the original tuning statements and
generated cases for each, which suggest alternative query paths to optimizing your data source.

The Tuning Status Indicator provides the status of each statement or case, and indicates if they are ready for
execution. In some cases, SQL code may need to be corrected or bind variables may need to be set prior to executing

statements.

Use the check boxes to select which statements and cases you want to run and then click the Run icon in the lower
right-hand corner of the screen. The Execute each generated case field enables you to execute each selected

statement or case.

Once you have executed a tuning job, the Generated Cases tab will reflect SQL Tuner’s analysis of the specified
statements. Once these have been analyzed, you can proceed to modifying the Tuner results and applying specified
cases on the data source to optimize its performance.

To execute a tuning job:
1 Once you have a SQL statement that is a tuning candidate, navigate to the Overview tab.

2 Inthe Tuning Statements area, select the checkbox next to the Statement name that you want to analyze and
then

3 To analyze the SQL statements, click Generate cases.

To perform the analysis that populates the Analysis tab now, click Perform detail analysis. Otherwise, this
analysis tab is performed when you click the Analysis tab.

To have the system generate execution statistics, click Execute each generate case and then select the
number of time the system should execute each generated case. Multiple executions can verify that the case
results are not skewed by caching. For example, the first time a query is run, data might be read off of disk,
which is slow, and the second time the data might be in cache and run faster. Thus, one case might seem faster
than another but it could be just benefiting from the effects of caching. Generally, you only need to execute the
cases once, but it may be beneficial to execute the cases multiple times to see if the response times and
statistics stay the same.

4 Then click the Run Job icon at the top right-hand side of the window. The tuning job runs, analyzing each
statement and case, and providing values in the appropriate columns.

Analyzing Tuner Results on the Overview Tab

When you have executed a tuning job, the Generated Cases area of the Overview tab reflects Tuner’s analysis of the
specified statements and cases. The Generated cases create alternative execution or explain paths that could be
more or less efficient than the default path the databases uses. Executing these cases provides the statistics
necessary to optimize performance.

Once a tuning job has executed, use the Cost and Execution Statistics value columns to determine the fastest
execution path for each statement. The Cost column shows the performance cost of an execution path as determined
by the database. The Execution Statistics are the actual results of running the SQL statement using the generated
case. This is where DB Optimizer can help you find where the database default path is actually not the optimal path.
The Elapsed Time(s) and Results columns can more accurately show the most efficient execution path.

In the Cost and Execution Statistics columns, the values of the original statement are considered to be the baseline
values. A Cost column can be expanded to provide a graphical representation of the values for statements and cases.
Similarly, the Execution Statistics column can be also be expanded to display a graphical representation of values
as well. The bar length and colors are intended as an aid in comparing values, particularly among cases.

I:II?B I

1.545 I
0,655 M

0.499 S

0,797

0.828 E——

Case query times based on the original statement can be represented as colored bars on the Generated Cases area of the Overview
tab to help you determine the fastest execution path for the given selections.

The baseline value of the original statement spans half the width of the column, in terms of bar length. For cases of the
original statement, if one or more cases show a degradation value, the largest value will span the width of the column.
Bar lengths for all other cases will then be displayed in comparison length to the highest degradation value.

The cost and execution results are color-coded as follows:

e Light blue: These cases are within the degradation and improvement threshold. Applying these changes may
marginally improve or degrade the efficiency of the SQL statement.

« Green: These cases have values less than the improvement threshold. There is a high probability that changing
the SQL statement with this alternative execution path will improve efficiency.

¢ Red: These cases have values higher than the improvement threshold. Implementing these changes will
degrade the efficiency of the SQL statement.

To determine the best cases for statement execution path time:

Once the tuning job has executed, view the Generated Cases area of the Overview tab and determine the best
possible case in terms of the Execution Statistics column values. This will indicate the most optimized query
path for a given statement. Once you have determined the best case, you can execute that case on the specified
data source and alter the database code to run the statement as that case on the native environment.

If you don't find an acceptably fast path, go to the Analysis tab. The Analysis tab can identify missing indexes
and by examining the diagram you may be able to determine if there is something wrong with the SQL or
schema.

Finding Missing Indexes and SQL Problems

The tuner performs the index and SQL analysis as part of the tuner run job performed on the Overview tab if Perform
Detail Analysis is selected. Otherwise, the analysis is performed when you click the Analysis tab.

b Oracle b HR) sFopelbl enbarcader, cam (10.2,0.1)

E-' Input F‘ Overyiew |,..-- Analysis
[E 30L Analysis Seleck stabement of intevesk: | SELECT 1 ~| & | @
SELECT &
FROM [2 cLient_tRamzacTicn ()]
client transaction ct, |
client o %\
ot.transaction_status = ¢.oclient_mm
c.client_first pame = 'Erad' |
i Visual SQL Tuning Diagram
Create Indexes button
4 | ¥

[E] Index Aratyss | E2 Table Stadstcs | 22 Column Statistics And Hstagrams | £ oulnes

Colect and create indeses Wi | g
Iredes Mame Table Cwnes Table Name ok Mams Inde:x # || Table EETEH-EJ.IEEET‘:TRM%{]E #
] . |r' Y b T ANSAETIEN STATLS TR 15 starmed via scan =
| W IDX_CLIENT_TRANSACTION O m LrJT_...H_Tl'.T'J TF.FI'I:!F.'_T]'I”__HTL'- afiber b transaction_status =
& LICLTENT_MLLTT STEM CLIEMT CLIENT_FIRST...NT_L&ST_M&ME Mermal .o misriial_stabis.on E-sod e
[ouEnT BankER SYSTE CLIENT BROKER_ID Hormal cresbed a vitual ndex _
[ouenT IncoeE SYSTEM CLIENT CLIENT_HOUSEHOLD_INCOME Mcemnal 0% _CLIENT_TRAMSACTICHN O which

b
— || hee optimizer picked up, so we suggest
3 3 op [up o =

DB Optimizer can parse an SQL query and analyze the indexes and constraints on the tables in the query and display
the query in graphical format on The Visual SQL Tuning (VST) diagram, which can be displayed in either Summary
Mode or Detail Mode, helps developers, designers and DBAs see flaws in the schema design such as Cartesians
joins, implied Cartesians joins and many-to-many relationships. The VST diagram also helps the user to more quickly
understand the components of an SQL query, thus accelerating trouble-shooting and analysis.

This section is comprised of the following topics:
« Finding Missing Indexes

« Finding Missing Indexes

¢ Interpreting the VST Diagram Graphics Conventions

¢ Interpreting the VST Diagram Graphics Conventions

* Implementing Recommendations on the Overview Tab

Finding Missing Indexes
Missing indexes are color coded orange in the Collect and create indexes area of the Overview tab. Creating a
missing index can improve the execution path of the SQL statement being analyzed.

Indexes that are used are color coded green. Indexes that are present but not used in this
execution path are color coded grey.

B Input | B> Overview | B analysis

SQL Analysis

SELECT s
et Aactiomn,
c.olient_id,
i.investment _unit,
it.invescment Type_nate
FRCH

investment type it,
imvestment i

WHERE
ct.client_id = c.olient
ct.investment id = i.in

= e e wnd b wranm el — —

< - | >

clisnt_transaction ct, 3
client o, <

Select statement of inkerest; | SELECT 1

| B3 CLIEWT_TRANSACTION (ct) |

INVESTMENT (1)
WY

| 2 INVESTMENT _TYFE (it} |

oA

[E] Index Analysis Table Statistics | 2 Colurn Statistics dnd Histugram5| Outlines

Colect and create indewes

o |

<l Indexhame | Table Owner
& [INVESTMENT FK SYSTEM

o [INVESTMENT TYPE_FK SYSTEM

@ DCI.IEF”_TRR...ION_CLIENT SYSTEM

® [CLENT_TRA.. IWWESTMENT SYSTEM

£ |

| TableMame | (A
INYESTMEMT INVESTMEL
TNYESTMENT_TYPE INVESTMEL
CLIENT .. &CTION CLIENT_IC
CLIENT .. .ACTION INWESTMEL »

b

Changing Diagram Detail Display

This section is comprised of the following topics:

Viewing the VST Diagram in Summary Mode

Viewing the VST Diagram in Detail Mode

Changing Detail Level for a Specific Table

Viewing All Table Fields

Viewing Diagram Object SQL

Expanding Views in the VST Diagram

Viewing the VST Diagram in Summary Mode
By default the diagram displays Summary Mode, showing only table names and joins, as seen in the following
illustration.

B Input | > Overview | [analysis

SQL Analysis Select statement of inkerest: | SELECT 1 v | @
SELECT A
ct.action, | B CLIENT_TRANSACTICH {ct) |
c.olient id, (o o

i.investiwent_unit,
it.investwent Cype name

INVESTMENT (D)
WY

FRCOHM
clisnt_transaction cot, : Y
client o, <
investment_type it, | [MVESTMENT _TYFE (it) |
investment 1
WHERE

gt.e¢liene id = g.olient
ot invest.ment_ic! = i.in

I T R L R

< = | >

v oA

[Index Analysis Table Statistics | = Colurn Skatistics &nd Histugram5| Cuklines

Colect and create indewes Wi | ﬂ_;
= Inde:c Name | TableOwner | TableMame | (e

-lf D INVESTMENT _PK SYSTEM IMYESTMEMT IMVESTMED

f D INVESTMENT_TYPE_PK SYSTEM INYESTMENT_TYPE INVESTMEL

@ [CLIENT_TRA.. JON_CLIEMT SYSTEM CLIENT .. ACTION CLIENT_IC

[] D CLIEMT _TR.A.. INYESTMEMNT SYATEM CLIENT .. ACTION INVESTMEL

£ | >

Viewing the VST Diagram in Detail Mode
By default, the VST diagram displays in Summary Mode, but by clicking the Detail Mode/Summary Mode switch

| q

| B2 CLIENT_TRANSACTION (ct) |

Detail Mode/ Summary Mode

CLIENT (¢} | B mvESTMENT () | Switeh

| B mvESTMENT TYPE (t) |

additional details of the tables display, including table columns and indexes:

CLIEMT _TRAMSACTION (cb)

CLIEMT _ID: MUMEER,
= CLIENT_TRANSACTION_ID: NUMBER
£ INVESTMENT_ID: NUMBER.

CLIEMT_TRAMSACTION_BROKER
CLIEMT_TRAMSACTION_CLIEMT
CLIEMT_TRAMSACTION_IMYESTMEMT
ﬂﬁb CLIEMT_TRAMSACTION_PE

VAN

CLIENT (c) INVESTMENT (i)
£= CLIEMT_ID: NUMEER, £ INVESTMENT_ID: NUMEER

CLIENT BROKER ££ INVESTMENT_TY¥PE_ID: NUMEER
CLIEMT _IMCOME INYESTMEMT_IMNYESTMENT _T¥PE
CLIEMT _MULTI ¥ IMVESTMEMT_PK

B CLIENT _PK

INVESTMEMT _TYPE (it)
22 INVESTMENT _TYPE_ID: MUMEER

¥R INWESTMEMT _TYPE_PK

Changing Detail Level for a Specific Table

You can also switch between Summary Mode and Detail Mode for a specific table or view, by double-clicking the
object name.

Viewing All Table Fields

Only fields that are used in the WHERE clause are displayed in detail mode; however, all fields in the table can be
seen in a pop-up window when you hover the mouse over the table name. The illustration below shows the pop-up
window that appears when hovering over the CLIENT_TRANSACTION (ct) table .

W
il
CLIENT_TRANIGACTION (ict)
== CLIENT ID: Nudimen
== CREATE TAELE SYSTEM.CLTENT TERANSACTION
f= CLIENT_TRAN . -
£2 INVESTMENT | CLIENT TRANSACTION ID NUMEER(12,0) NOT NULL,
CLIENT_ID NUMEEER (12 ,0) NOT NULL,
CLIENT_TRAN INVESTMENT ID NUMEER(12,0) NOT NULL,
CLIEMT_TRAN ACTION VARCHARZ (103 NOT MNULL,
CLIEMT_TRAN PRICE NUMEER{1Z,2) HNOT NULL,
V5 CLIENT TRAH NUMEEL OF UNITE NUMEER(1%,0) NOT NULL,
s TRANSACTION STATUS VARCHARZ (10} NOT NULL,
TREANSACTION SUE_TIMESTAMP TIMESTAME(6) NOT NULL,
TRANZACTION COMP TIMESTAMP TIMESTAMP (&) NOT NULL,
DESCRIPTION VARCHARZ (200} NULL,
CLIEMT {c) EROKEE_ID NUMEER (10,0} NULL,
CLIEMT 1D NUMEER EROKER COMMISSION NUMEER{10,Z) NULL
- !
CLIEMT_BROKER ORGANIZATION HEAPD
CLIEMT _IMCOME INVESTMEMT _INVESTMENT _TYPE
CLIEMT_MULTI B INVESTMENT_PK

¥R CLIENT_PK *

Viewing Diagram Object SQL

Hovering the mouse over the table name, field, or index displays the SQL required to create that object.

CLIENT_TRAMSACTION (ct)

CLIENT_ID: MUMEER.
= CLIENT_TRANSACTION_ID: MUMBER.
EE INVESTMEMT_ID: NUMBER:

CLIENT _TRAMSACTION_BROKER
CLIENT_TRAMSACTION_CLIEMT

CLIENT_TI%ACTION_INVESTMENT
R

B CLIENT_TRAmRACTION PK
#;}? CREATE INDEX STSTEM.CLIENT_ TRAMNSACTION INWVESTMENT

O SYETEM.CLIENT TRAMNSACTION(INVESTHMENT_ ID)
TAELESPACE ST3TEM

LOGGING
CLIENT ic) PCTFREE 10

£S CLIENT_ID: NUMBER, | |INITRANS 2z
MaTRANS ELE

CLIEMT_BROKER MOPADALLEL
CLIEMT_INCOME HOCOMPRESS
CLIEMT_MULTI B IMVESTMENT _PK

“B CLIENT_PK

INWESTMENT _THPE (it}
£ INVESTMENT _TY¥PE_ID: MUMEER.

5 INYESTMENT _TYPE_PK

Hovering over the join between two tables displays the relationship between the two tables.

| Bl CLIENT_TRANSACTION (ct) |

CLIENT [snwirerracer o

ct.client _id = c.client_id
Columns
CLIENT.CLIENT_ID
CLIENT TRANSACTION.CLIEMNT_ID
Bow count ratio:
CLIENT E&00
CLIENT TRANSACTION 18675

Expanding Views in the VST Diagram

If there are views in the Visual SQL Tuning diagram, they can be expanded by right clicking the view name and
choosing Expand View:

For example, the following is the default layout from query join table CLIENT (c) to view TRANSACTIONS (t):

&3 TRANSACTIONS (1)

CLIENT (0

Right click on the view, TRANSACTION (t) and choose Expand View

&3 TRANSACTIC peeg
% Expand View

,céh Reset Layout
CLIENT ¢ +I+ Layout Direction r

A .
., Detail Mode
Ol Show Object Owners

E"l Zoom In

Now we can see the objects in the view:

&3 TRANSACTIONS (1)

&& INVESTMENTS (i)
(0)

| CLIENT_TRANSACTION (ct)

. -

CLIENT (0

We can further expand the sub-view within the original view:

&3 TRANSACTIONS (1)

&3 INVESTMENTS ()

| B vESTMENT ()

i

| B mvESTMENT _TYPE (t) |
W

| CLIENT_TRANSACTION (ct)

" -

CLIENT {c)

The following is an example of view expansion along with the Explain Plan to the left.

SESSION 4: TUNING SQL STATEMENTS > FINDING MISSING INDEXES AND SQL PROBLEMS

Notice in the view expansion a list of all the indexes on all the underlying tables in the views and sub views and which
of those indexes is used in the default execution plan.

alimization - Untitled Tuning Jobs 5 - Enssare etk Dok iz er
L L

Fle £de Mavigste Search Project Run Window el
MBS 'R B '® Wiy-0-0Q- @0 B | & 50 Cotmaat. .
. l{:! mﬁ\ EEau‘l - lljl‘ =
L gsect hom < Hested Tobes: varmctons, dent >
iy]
B | [troe e tet | R @
TR smiectstasement of minenst: |SELECT |
' _ Cioerabon 1 | 'ﬂl) '{:\
= o SRECT STATEENT ALLECT COUNT (=) A e g
= = |, soRT FROM
= ¥k NESTED LO0RS (
Htﬁmm APLEST
=) NESTED LOGRE %.asEien,
nTMKW'EWW E.fl“ﬂl_lﬂ,
‘ IO « m.m_m;ﬁ Bad ﬂ“#::ﬂﬁ:-_::h'.:-.
[T TABLE ACCESS - 575, LIENT_TRANSACTION T.ATVEsTHERT Type_Reme
I 1B - SSTEM, CLIBNT_Px. FRoN
LEARBACELONE §, ;
alient @
WHERE ©,client_id = g.olienc_id
b
£ » ¢ Bl movE_m: vgER:
“a — W CLIBT_CITY: VARCHAR] —
(5] e anaiws | [Tooie Stacstcs | M Gokemn Suatancs dea ristograms | () Qutiens | Bl ce_cowmry; varouaz
Bl cLieT_cEipeR: CHaR
Colect and reats ndewes Bl e pouserown _ncome: naeer || 2
.| Index Harrs | Todwome | Toetess | Gt g I CLIENT_ID: tasER B
o Oeoumm e ErETEM oLmNT CLENT_JD I CLIBNT_LAST_NAME: VARCHARZ
o CIWESTMENT TP P STSTEM 0EST,.T_Tree trvesTMen _Tvoe_pf I CLIENT MARITAL STATUS: VARCHAR?
8 [CICUBNT_ TRAN... PWVESTMENT SYSTEM o, oo poesteer o | IWICLIENT FrONE_HUMBER: VARCHARZ
@ CIrnestven L. STHENT TPE S1STEM INVESTMENT pvesent_tyee ol I CLIENT POSTAL_CODE: VARCHARY
K Clcuei prosgr SYSTEM QUENT EROVER_ID Bl CLIET _STATE PROVINGE: VARCHARE
W CICLIENT_TRAN.. TION BROSER SrSTEM CLIENT...CTIOH | BROWER: D W CLIET_STREET ADCHIESS: VARCHARD
B Clcuiem TRANSACTION CLENT SraTEM CLENT.. CTION CLEENT ID Bl cuBT B4R _OF_BIRTH: MUMBER
K CICUBT_TRANGACTION PX. SISTEM QUENT. CTIOH _ CLIBNTTRANSACTIG gy e 1 e
H Clevesnen EYSTEM THVESTIENT INVESTMENT 3D
< - o CLIBNT P 3
- PSS R *]
Lpe { Lnkitied Tuning Job ..ok 21 (%) e PDHE

Interpreting the VST Diagram Graphics Conventions
This section will help you understand the following graphic usages:

e Icons

¢ Colors

¢ Connecting Lines/Joins

EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0 EVALUATION GUIDE 40

Icons

The following describes the icons used in tables displayed in Detail Mode.

Table Icon Description
Table Name
g= Field
Iii_.g Field with a filter, used in the WHERE clause
Index
,:;;3 Primary Key
Colors

The color of the index entries in the Collect and Create Indexes table is interpreted as follows:

Text Color

Interpretation

Index is used in the query.

Index is usable but not used by the current execution path.

This index is missing. DB Optimizer recommends that you create this index.

This index exists on the table but not usable in this query as it is written.

Connecting Lines/Joins

Joins are represented with connecting lines between nodes. You can move tables in the diagram by clicking and
dragging them to the desired location. The position of the connecting lines is automatically adjusted. The following
describes when a particular type of connecting line is used and the default positioning of the line.

Connecting Lines

When used

+—+

One-to-One Join relationships are graphed horizontally using blue lines.

Zo—r One-to-Many Join relationships are graphed with the many table above the one table.

Cartesian Join shows the table highlighted in red with no connectors to indicate that it is joined in
via a Cartesian join.
E— Many-to-Many Join relationships are connected by a red line and the relative location is not

restricted.

One-to-One Join
If two tables are joined on their primary key, such as:

SELECT COUNT (*)
FROM
investment type it,
office_location ol
WHERE investment type id = office location id;

Then graphically, these would be laid out side-by-side, with a one-to-one connector:

| B mweSTMENT TvPE H—+ 3 OFFICE_LOCATION

One-to-Many Join
This is the default positioning of a one-to-many relationship, where INVESTMENT_TYPE is the master table and
INVESTMENT is the details table.

INVESTMENT

| & mwesTvenT _TveE|

The following is an example of a query that consists of only many-to-one joins, which is more typical:

SELECT
ct.action,
c.client id,
i.investment unit,
it.investment type name

FROM

client transaction ct,
client c,

investment type it,
investment i

WHERE
ct.client_id = c.client_id AND
ct.investment id = i.investment id AND
i.investment_type_ id = it.investment_type_id and
client transaction id=1

| B CLIENT_TRANSACTION |

| B cLenT | | B INvESTMENT |

| B mvesTMENT _TYPE |

Cartesian Join

A Cartesian join is described in the following example where the query is missing join criteria on the table
INVESTMENT:

SELECT

A.BROKER ID BROKER ID,
A.BROKER LAST NAME BROKER_LAST NAME,
A.BROKER_FIRST NAME BROKER FIRST NAME,
A.YEARS WITH FIRM YEARS WITH FIRM,
C.OFFICE_NAME OFFICE_NAME,
SUM (B.BROKER COMMISSION) TOTAL COMMISSIONS

FROM
BROKER A,
CLIENT_TRANSACTION B,
OFFICE_LOCATION C,
INVESTMENT I

WHERE
A.BROKER_ID = B.BROKER ID AND
A.OFFICE_LOCATION ID = C.OFFICE_ LOCATION_ ID

GROUP BY
A.BROKER_ID,
A.BROKER_LAST NAME,
A.BROKER_FIRST NAME,
A.YEARS WITH FIRM,
C.OFFICE_NAME;

Graphically, this looks like:

| & cLEnT _TRANSACTION |

W]

[2 oFFice LocaTion|

INVESTMENT is highlighted in red with no connectors to indicate that it is joined in via a Cartesian join.

Possible missing join conditions are displayed in the Overview tab under Generated Cases in the transformations
area. DB Optimize recommends that you create these joins.

¥ 50U Statements and Cazes | ¥ Cost WExeouii. ishcs | ¥ Orther Exsqulion Stetistics
Mame Text Yalua Elapsad Time {5} = Physical Reads | Logical Reads CH
SELECT 1 select from BROKER, H014.0
Bl [Migzing & valid jain criberia) ransformation 1740 004 a 157
AL 340158.0 6,29 a 173
LEADINGL 3401r.0 5,25 a 192
ALL_RONE 340140 6,35] i
LEADTHES 39017.0 6,41 a 170
INDEX 343=2.0 6,58 a 414
LEADING2 35143.0 7.94 a 17
QRDERED |i4r0 E&1 1] i
LSE_ML IE198.0 9.03 a 37518

NOTE: Transformations are highlighted in yellow.

Implied Cartesian Join
If there are different details for a master without other criteria then a Cartesian-type join is created:

SELECT *

FROM
investment 1,
broker b,
client ¢

WHERE
b.manager id=c.client id and
i.investment type id=c.client id;

| & sroker | | B mwvESTMENT

The result set of BROKER to CLIENT will be multiplied by the result set of INVESTMENT to CLIENT.

Many-to-Many Join
If there is no unique index at either end of a join then it can be assumed that in some or all cases the join is
many-to-many; there are no constraints preventing a many-to-many join. For example, examine the following query:

SELECT *
FROM
client transaction ct,
client c
WHERE
ct.transaction_status=c.client _marital status;

There is no unique index on either of the fields being joined so the optimizer assumes this is a many-to-many join and
the relationship is displayed graphically as:

| E cLEnT TRANSACTION |
Fi

If one of the fields is unique, then the index should be declared as such to help the optimizer.

Finding Problematic SQL or Schema

In the Visual SQL Tuning (VST) diagram, a well-formed query would resemble the following:

| B3 CLIENT_TRANSACTION (ct) |

CLIEMNT {c) | IMVESTMENT (i)

| 3 INVESTMENT _TYPE (it)

Problems such as Cartesian joins, implied cartesian joins, and many-to-many relationship are clearly represented in
the VST. The following describes these potential query problems.

¢ Cartesian Join

¢ |Implied Cartesian Join

« Many-to-Many Relationships

Cartesian Join

The diagram on the Analysis tab can help identify SQL problems such as missing or cartesian joins. For example, you
might see a table or view marked in red as in the following diagram.

| & cLEnT_TRANSACTION |

[B9 oFFice LocaTion|

A red table or view indicates that here is Cartesian join that could be resolved by implementing a rewrite suggestion
shown in the Generated Cases area of the Overview tab.

Possible missing join conditions are displayed in the Overview tab under Generated Cases in the transformations
area. DB Optimize recommends that you create these joins.

* 50U Statements and Cazss | ¥ Cost WExmouti. ishcs | ¥ Crther Exsculion Stetistics
Mame Terr Value Elapsed Time {5} = Physical Rea.,s Logical Reads CAL
+ 'Ms.ange valid jain eriberia) transformatiaon 1740 o I:H |:|
FULL 3401180 L] a 173
LEADINGL 34017.0 8,25 a 1492
ALL_ROANE 390140 6,35 1] 170
LEADIHES 390170 6,41 a 170
IKDEX 343520 6,358 a 414
LEADING2 38143.0 794 a 170
QRDERED |40 B4l]]
LISE_HML IB153.0 .03 a 3751B
£

NOTE: Transformations are highlighted in yellow.

Implied Cartesian Join

In a well-formed query, there should only be at most one detail table above any master table.The following diagram
shows an implied Cartesian join, here we have two details tables above the BROKER table. When there can be more
than one row that satisfies the join between the first join CLIENT and BROKER and the second join BROKER and
CLIENT_TRANSACTION, DB Optimizer presents an implied Cartesian Join. This could signify a flaw in the query or a
flaw in the schema design.

In the following case, the result set of BROKER to CLIENT will be multiplied by the result set of INVESTMENT to
CLIENT.

SELECT *
FROM
investment 1,
broker b,
client ¢
WHERE
b.manager id=c.client id AND
i.investment_type_id=c.client_id;

| B eroker | | B IvESTMENT

Many-to-Many Relationships
If master detail information is missing then the VST diagram will have many-to-many connectors:

SELECT COUNT ()
FROM
bl B, %
el e, q
b.valZ = 100 AND |
a.wvall = k. 3id ARND ¢
B.vall = o.id;

SELECT COUNT (*)

FRCH
k2 b,
c2 o,
as =

WHERE
b.wal2 = 100 AMND |
a.vall = b.id AND <
b.vall = c.id;

The optimizer can more consistently optimize a well-formed query, so the query will run faster.

Applying Tuner Results to the Data Source

Once Tuner has generated cases and statement results and analyzed the indexes, you can apply the suggested
changes to the data source from the Generated Cases area of the Overview tab. You can create any recommended
indexes from the Index Analysis area of the Analysis tab.

Implementing Recommendations on the Overview Tab

To change an SQL statement based on a transformation or hint-based case:

1 Inthe Generated Cases area, right-click the Name field of the case you want to modify the original statement
with and choose Apply Change.

The Apply Change dialog appears.
2 Choose Execute to apply the change to the statement automatically.

TIP: Alternatively, you can select Open in New SQL Editor to make manual changes or save it to a
file.

S0L Stabements and Cases ¥ | Cost ¥+ | Elapsed Time ¥ Other Execution Skakistics
M Yalkie Yalue (g} Physical Reads Logicsl Reads | Consistent Gets
-l 5 statement 1
+ B [l column comparison]
T4 Statemert 2
" Statemert 3 e
#1[A Ty Statement 4 ™ Transformation-based case
E Er:!ll' Slalemei. 5
4[4 Ty Statement 11 . Hint-based casas
| [&a statement 13 R
w1 & Sretament 14 e n il a a
El FIFIRST_RCiws 2.0
E NG PARALLEL 2.0

[1)

Cases can be selected and applied on the data source where the statement originated. This process improves the former
statement’s execution path and therefore lessens overall data source load.

Implementing Recommendations on the Index Analysis Tab

Once you have added tuning candidates to a tuning job, DB Optimizer can analyze the effectiveness of the indexes in
the database and recommend the creation of new indexes where the new indexes can increase performance.

In the Collect and create indexes table, any indexes DB Optimizer recommends you create are marked in orange

and have the little create index.

Index Analysis Table Statistics | E£ Column Statistics And Histograms Cutlines

Collect and create indexes i .E.D

Index Mamne Table Cwner Table Marne Calurnn Marne Index

‘.ED M ID®_CLIENT_TRANSACTION_O S¥STEM CLIEMT_TRAMSACTION TRAMSACTIOMN_STATUS Morrnal

® [JCLENT_MULTI SYSTEM CLIENT CLIEMT_FIRST.. MT_LAST_MAME Mormal

[OcuEnT_BROKER SYSTEM CLIEMT BROKER_ID Morrnal

[OcuEnT _IncomE 3YSTEM CLIEMT CLIENT _HOUSEHOLD _INCOME Morrnal L

3 [JcLEnT PE SYSTEM CLIEMT CLIEMT_ID Unique

3 [JCLIENT_TRAMSACTION_BROKER SYSTEM CLIEMT_TRAMSACTION BROKER_ID Morrnal

{u C1 TFMT TRAMSACTTOR CTFMT SYETEM CLTFRIT TRAMSACTTOM I TEMT T | Mrwrroal 5 N

To accept the suggestion and have tuning automatically generate an index:
1 For any recommended index, click the checkbox to the left of the index you want to create.

For a selected index you can modify the Index type by clicking in the Index Type column and then selecting a
type from the list: Normal, Bitmap, Reverse Key, Reverse Key Unique, or Unique.

Index Analysis Table Statistics | EE Column Statistics And Histograms Cutlines

Collect and create indexes

i

Index Mame
B[[DX_CLIENT_TRANSACTION 0|
® [JcoLENT_MULTI
[JcCLIENT _BROKER
3 [OJcLEnT INCOME
3 [OJcLenT FE

3 [CLIENT_TRANSACTION_BROKER

W T TFMT TRANSACTTOR O TFRIT
£

Ta...er
SYSTEM

SYSTEM
SYSTEM
SYSTEM
SYSTEM

SY¥STEM
SHETFM

Ta...e CC

CLI..

JOM | TRAMSACTI

CLIENT CLIEMNT_FIR:
CLIENT BROKER_ID
CLIENT CLIEMNT_HOL
CLIENT CLIEMT_ID

CLI..

T

J2OM BROKER_ID

kL CLTRRIT T
>

Ead

hd

Table SYSTEM.CLIENT_TRAMNSACTION is
scanned via full table scan but it has a Filker
ct.transackion_status = c.client_marital_status

&

Create

In

ex

on it and we created a wirtual index

ID¥ _CLIEMT _TRAMSACTION O which the
opkimizer picked up, so we suggest implementing
khis indes:,

2 Click the Create Indexes button.

The Index Analysis dialog appears.

3 To view the index SQL in an editor for later implementation, click the statement and then click Open in a SQL

editor.

4 To run the index SQL and create the index on the selected database, click Execute.

Session 5: SQL Code Assist and Execution

SQL Code Assist is an interface component that enables the development and formatting of SQL code for the
purposes of creating and modifying database objects. It provides a front end application for the delivery of code
through its object code extraction capabilities.

Code Assist provides a number of key features that assist in the coding process, ensuring greater accuracy in coding,
faster development cycles, and a general increase in efficiency overall.

éﬂE&HDﬁQﬂ:{
CEEATE TABLE dbo.benson Ladll
{
jokb CHAR (8) WOT MULL,
sal NOMERIC (38, O0) HOT NULL,
loc WUMERIC (38, 0O) NWOT NULL,
COMSTRAINT pijob PRIMARY EEY CLUSTERED (job)

go

'y I5 NOT NULL

EATED TABLE dbo.benson >»>»"

SQL Editor provides key features to ensure an increase in code accuracy and overall development efficiency.

The following key features are provided with SQL Code Assist:

« Code Extraction

« Code Highlighting

« Automatic Error Detection

¢ Code Complete

e Hyperlinks

¢ Code Formatting

¢ Code Folding

¢ Code Quality Checks

In order to access SQL Editor, you need to create a new file or edit existing code from Data Source Explorer.

Additionally, SQL Project Explorer provides a tree structure for all files created in DB Optimizer. You can access files
from here by double-clicking the file name you want to open as well.

23 Data Source Explarer E SQL Project Explorer 27 = H

= fi3 50L Project 1
4 Connections
= E Creation Sopts
= [Zd] Tables
[5 dbo.benson (Benson,sql) [datotb15]
E: =|:']" General 30L
+ | l' Large Scripts
+ i Linknown Files
"F!r Benson.sql
% Fie, s
ii“} test.sgl

SQL Project Explorer provides a tree of all files developed and saved in DB Optimizer.

To create a new file:
Choose File > New > SQL File.

A blank instance of SQL Editor appears in the Workbench. If you save this file, it is automatically added to the SQL
Project Explorer.

To edit an existing file:
Use Data Source Explorer or Project Explorer to navigate to the code you want to modify and double-click it.

An instance of SQL Editor appears in the Workbench, populated with the extracted code of the specified object or SQL
project file.

Code Extraction

SQL Editor provides the ability to extract the underlying SQL code of database objects registered in DB Optimizer to
provide a front end application for the development and modification of data sources in your enterprise.

To extract underlying SQL code:
« Navigate to a database object in Data Source Explorer and select Extract via the right-click menu.

The object’s underlying SQL code appears in SQL Editor and is ready for editing and further modification.

Code Highlighting

SQL Editor identifies commands and provides syntax highlighting changes that are automatically added to the code as
you add lines, which enables you to clearly and quickly understand code when you read it in the interface.

The following syntax highlighting is automatically added to lines of code in SQL Editor:

Code

Formatting

Comments

Green italic font

SQL Commands

Dark blue font

Syntax Errors

Red underlined font

Coding Errors

Red font

« Comments: green italics

¢ SQL Commands: dark blue

e Syntax Errors: red underline

e Coding Errors: red

Additionally, SQL Editor provides a purple change bar in the left-hand column that indicates if a line of
code has been modified from the original text. You can hover over this change bar to view the original
code line. A red square icon in the right-hand column indicates that there are errors in the code line. You
can hover over the icon to view the error count.

=]

CREATE TABLE

dbo . benson

job CHAR (8) NMOT NULL,

sal NUMERIC

loc HUMERIC

(38, 0) NOT NULL,

38, 0) NOT WULL,

CONSTRAINT pjobk PRIMARY FEY CLUSTERED (job)

['e]
]

%: IF OBJECTI_ID('dbo.benson') IS NOT NULL

The purple change bar indicates if a line of code has been changed from its original text. Hover your mouse over the change bar to

view the original text.

Automatic Error Detection

The automatic error detection functionality of the editor highlights errors and typos in the code as you work in “real

time”.

Automatic error detection automatically identifies and analyzes SELECT, FROM, WHERE, GROUP BY, HAVING, and
ORDER BY statements. If it detects any syntax errors while you type these statements, the line is automatically

flagged by the error icon in the left-hand column of SQL Editor. You can hover your mouse over the icon to view any
errors.

CREATE TABLE dbo.benson .
{

job CHAR (2) NOT MULL,

=al HUMERIC (38, 0) HOT HULL,

loc NUMERIC (3B, D) NOT NULL,

COMSTRAINT pjob PRIMARY KEY CLUSTERED (Jjob)

go
IF DBE:T_ED['T‘:’I:‘:‘?.E?!‘.F!.“.‘.’] IS5 NOT MULL
PRINT '«<<«< CREARTED TABLE dbo.benson >>>'
| ELsE
@ bn unexpected token ™ < <>>"™ was found. Expected COLON On

Syntax errors are automatically flagged by line as you work with code in SQL Editor. Hover the mouse over the error
icon to view the specific error message.

Additionally, all semantic errors are recorded in the Problems view, an interface component that automatically logs
errors and warnings as you work with files.

(%1 Problems 23 e T
3 errors, 0 warnings, 0 infos
Description Resource Path Locaton
= B Errors (3 items)
@ Anunexpectsd token “< << FAILED CR Benson.sql S0L Project 1 in= 14
@ Anunexpected token ™ was found. Bxg Fie.sd S0L Project 1 ine &
3 Table benson cannot be resolved on 'da Bensan.sql S0L Progect 1 e 19

The Problems view logs errors and warnings as you work with files in SQL Editor.

You can double-click on a line in the Problems view and DB Optimizer will automatically navigate you to that issue in
SQL Editor.

Code Complete

SQL Editor provides suggestion capabilities for both DML statements and objects. It has the ability to look up object
names in order to avoid errors when defining table names, columns, etc. in the development process. This feature
provides lists of object and code suggestions that will make the development process more efficient as you will not be
forced to manually look up object names and other statement values. SQL Editor provides code assist for SELECT,
UPDATE, INSERT, and DELETE statements and object suggestion support for tables, alias tables, columns, alias
columns, schemas, and catalogs.

To activate code assist:
1 Click the line on which you want to activate the code assist feature.

2 Press CTRL + Spacebar on your keyboard. Code assist analyzes the line and presents a list of suggestions as
appropriate based on the elements of the statement.

Hyperlinks

Hyperlinks are used in SQL Editor to provide links to tables, columns, packages and other reference objects. When
you select a hyperlinked object from a piece of code, a new editor opens and displays the source. Additionally,
hyperlinks can be used to link procedures or the function of a call statement, as well as function calls in DML
statements. To enable a hyperlink, hover your mouse over the object name and hold the CTRL key. It becomes
underlined and changes color.

Code Formatting

Code formatting is automatically applied to a file as you develop it in SQL code. This enables you to set global
formatting preferences one time, and then apply it to all code development, saving time and allowing for a more
efficient code development process. The code formatter can be accessed by selecting CTRL + Shift + F in the editor.
All code is automatically formatted based on parameters specified on the Code Formatter node of the Preferences
panel. (Select Window > Preferences in the Main Menu to access this panel.)

type fiter text Code Formatter ik
3 General select & profile:
= Help = -
% InstalUpdate Embarcaders [built-in] _‘_’J
|- License Manager
#- RunDebug b
= 50L Develooment Prewview:
Cache Configuraten CREATE TABLE colTable a|
Looging i
=1~ S0L Editor coll INT
Code Assist 3 1.-. :
o col2 INT,
Riesults Viewsr e _I_}:'____ &
Synitax Coloring cold VARCHAR (30)
S0L Execution b
S0L Fitters
+ Tecn INSERT
INTD colTable
VALUES
{
B ¥
g,
g,
'test |
Restore Defauits | [Apply |
5 [O,] I Cancel J

Code formatting parameters can be globally set and then applied to all development work in SQL Editor.

In addition to formatting code per individual file, you can also format an entire group of files from Project Explorer.
Select the directory of files that you want to apply formatting to and execute the Format command from the right-click
menu. The files will be automatically formatted based on the global preferences.

Code Folding

The code folding feature automatically sorts code into a tree-like outline structure in SQL Editor. This increases
navigation and clarification capacities during the code development process. It ensures that the file will be easily
understood should any future work be required on the code. As you work in SQL Editor, collapsible nodes are
automatically inserted into the appropriate lines of code. Statements can then be expanded or collapsed as needed,
and this feature is especially useful when working on parts of particularly large or complicated files.

Code Quality Checks

On Oracle-based code, the code quality checking feature provides suggestions regarding improved code on a
statement-by-statement basis. As you work in SQL Editor, markers provides annotations that prevent and fix common
mistakes in the code.

Notes regarding code quality suggestions appear in a window on any line of code where the editor detects an error, or
otherwise detects that the code may not be as efficient as it might be. Code quality check annotations are activated by
clicking the light bulb icon in the margin, or by selecting Ctrl + | on your keyboard.

The following common errors are detected by the code quality check function in the editor:
« Statement is missing valid JOIN criteria
¢ Invalid or missing outer join operator
¢ Transitivity issues
¢ Nested query in WHERE clause
« Wrong place for conditions in a HAVING clause
« Index suppressed by a function or an arithmetic operator
* Mismatched or incompatible column types
¢ Null column comparison
To activate code quality checks:
* Click the light bulb icon in the margin of the editor or select Ctrl + | on your keyboard.

The editor suggestions appear in a window beneath the selected statement. When you click a suggested
amendment, the affected code is automatically updated.

SQL Execution

When you have finished developing or modifying code, you can then execute the file from within the DB Optimizer
environment, on the database of your choosing. This enables you to immediately execute code upon completion of its
development. Alternatively, you can save files for execution at a later point in time.

In order to execute a file, you must first associate it with a target database. This is performed by using the drop down
menus located in the Toolbar. When a SQL file is open in the Workbench, the menus are enabled. Select a data
source and a corresponding database to associate the file with and then click the green arrow icon to execute the file.

datoth 19 (SOLServer) w | EMBCM " [}
The pair of drop down menus indicate that the SQL file is associated with the dataotb19 data source and EMBCM database. When

the green arrow icon on the right-hand side of the menus is selected, the file is executed on the specified data source and database.

Additionally, if you have turned off auto-committal in the Preferences panel (Window > Preferences) you can commit
and execute transactions via the Commit Transaction and Start Transaction icons located beside the Execute icon.

To execute a file:

Open the file you want to run and ensure it is associated with the correct database, then click the Execute icon. DB
Optimizer executes the code on the database you specified.

To execute a transaction:

Open the transaction file you want to run and ensure it is associated with the correct database, then click the Start
Transaction icon. DB Optimizer executes the transaction on the database you specified.

To commit a transaction:

Open the transaction file you want to commit, ensure it is associated with the correct database, and click the Commit
Transaction icon. DB Optimizer commits the transaction on the database you specified.

Configuring SQL Execution Parameters

If you do not want to use the default execution options provided by DB Optimizer, use the SQL Session Options
dialog to modify the configuration parameters that determine how DB Optimizer executes code. These options ensure
that code is executed the way you want on a execution-per-execution basis, ensuring accuracy and flexibility when
running new or modified code.

-
&1 SOL Session Options - [o&d
SQL Session Options @

Spedfy the SQL session options for the current editor,
Property Value
|—| Ansi Defaults
Set ansi_nulls false
Set ansi_padding false
Set gquoted_identifier true
Set ansl_warnings falze
Setansi_null_dfit_on false
[—| Arithmetic
Ignore Arithmetic Overflow false
Abort On Arithmetic Overflow false
[=| Transactions
Isolation Level Read Committed
Set impligt_transactions false
Set cursor_dose_on_commit false
[—| Result Set
Maximum Rows in Result Set 0
Maximum Number of Bytesina ... 2048
Query Timeout (seconds) 0
) Fish || cancel |

SQL Sessions Options provide you with the flexibility to adjust execution parameters on a session-by- session basis.

To modify SQL session options:

1 Click the SQL Session Options icon in the Toolbar. The SQL Sessions Options dialog appears.
2 Click on the individual parameters in the Value column to change the configuration of each property, as specified.

3 Click Finish. The session options are changed and DB Optimizer executes the code as specified by your options.

NOTE: Note: SQL Session Options are only applied to the currently-selected code, and are not retained

across different files with regards to execution.

Additional Evaluation Resources

Embarcadero Technologies provides a variety of resources to help support your evaluation and selection of a Data
Modeling product for your organization.

Web site

Visit our Web site for current product and company information, educational materials and supporting
information. Visit www.embarcadero.com.

To download an evaluation copy of DB Optimizer, please visit: www.embarcadero.com/downloads

Electronic Documentation

Detailed reference documentation is available on the DB Optimizer Evaluation CD or online at
docs.embarcadero.com

Online FAQ

The DB Optimizer online FAQ provides answers to commonly asked questions regarding licensing,
installation and other helpful topics.

To review the FAQs for DB Optimizer visit: www.embarcadero.com/products/db-optimizer/f

Email Support

You can contact Embarcadero support engineers, consultants and engineers directly by sending inquiries
to:

For North America, Latin America and Asia Pacific:
support@embarcadero.com

For Europe, Africa and the Middle East:
uk.support@embarcadero.com

or log a case through embarcadero.com at: www.embarcadero.com/support/open_case.jsp

Telephone Support
We encourage you to call us anytime you would like help or have questions during your evaluation.
For North America, Latin America and Asia Pacific:
Phone: 415.834.3131 x2
Hours: Monday to Friday, 6:00am - 6:00pm Pacific time
For Europe, Africa and the Middle East
Phone: +44 (0) 1628 684499
Hours: Monday to Friday, 9:00am to 5:30pm UK time

Request a Product Key
For North America, Latin America and Asia Pacific:
key@embarcadero.com
For Europe, Africa and the Middle East:
uk.key@embarcadero.com

www.embarcadero.com
http://www.embarcadero.com/downloads
http://docs.embarcadero.com/
http://www.embarcadero.com/products/db-optimizer/faq
mailto:support@embarcadero.com
mailto:uk.support@embarcadero.com
www.embarcadero.com/support/open_case.jsp
mailto:key@embarcadero.com
mailto:uk.key@embarcadero.com

	Evaluation Guide
	Contents
	Introduction to DB Optimizer
	About This Evaluation Guide
	Session 1: Getting Started with DB Optimizer
	Install DB Optimizer
	User Interface Overview

	Session 2: Working with Data Source Explorer
	Adding Data Sources
	Browsing Data Sources

	Session 3: Profiling a Data Source
	Starting a Profiling Session
	Analyzing Session Data
	Load Chart
	Top Activity
	Profiling Details

	Saving a Profiling Session
	Importing Statements to SQL Tuner

	Session 4: Tuning SQL Statements
	Creating a New Tuning Job
	Adding SQL Statements
	Running a Tuning Job
	Analyzing Tuner Results on the Overview Tab
	Finding Missing Indexes and SQL Problems
	Finding Missing Indexes
	Changing Diagram Detail Display
	Viewing the VST Diagram in Summary Mode
	Viewing the VST Diagram in Detail Mode
	Changing Detail Level for a Specific Table
	Viewing All Table Fields
	Viewing Diagram Object SQL
	Expanding Views in the VST Diagram

	Interpreting the VST Diagram Graphics Conventions
	Icons
	Colors
	Connecting Lines/Joins
	One-to-One Join
	One-to-Many Join
	Cartesian Join
	Implied Cartesian Join
	Many-to-Many Join

	Finding Problematic SQL or Schema
	Cartesian Join
	Implied Cartesian Join
	Many-to-Many Relationships

	Applying Tuner Results to the Data Source
	Implementing Recommendations on the Overview Tab
	Implementing Recommendations on the Index Analysis Tab

	Session 5: SQL Code Assist and Execution
	Code Extraction
	Code Highlighting
	Automatic Error Detection
	Code Complete
	Hyperlinks
	Code Formatting
	Code Folding
	Code Quality Checks
	SQL Execution
	Configuring SQL Execution Parameters

	Additional Evaluation Resources

