EMBARCADERO
TECHNOLOGIES:.

Product Documentation

DB Optimizer™

User’s Guide

Version 2.0.1
Published November 27, 2009

Copyright © 1994-2009 Embarcadero Technologies, Inc.

Embarcadero Technologies, Inc.
100 California Street, 12th Floor
San Francisco, CA 94111 U.S.A.
All rights reserved.

All brands and product names are trademarks or registered trademarks of their respective owners.

This software/documentation contains proprietary information of Embarcadero Technologies, Inc.; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright law. Reverse engineering of the software
is prohibited.

If this software/documentation is delivered to a U.S. Government Agency of the Department of Defense, then it is delivered with
Restricted Rights and the following legend is applicable:

Restricted Rights Legend Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c)(2)(ii) of DFARS 252.227-7013, Rights in Technical Data and Computer Software (October 1988).

If this software/documentation is delivered to a U.S. Government Agency not within the Department of Defense, then it is delivered
with Restricted Rights, as defined in FAR 552.227-14, Rights in Data-General, including Alternate Il (June 1987).

Information in this document is subject to change without notice. Revisions may be issued to advise of such changes and additions.
Embarcadero Technologies, Inc. does not warrant that this documentation is error-free.

Contents

Welcome to Embarcadero DB Optimizer e 7
Technical REQUITEMENTS o e e e e e e e e 7
Additional Product Information 8

USING DB OPtimMizZer . . oottt e e e e e 9
WOorking With Data SOUICES. oottt e e e e e e e e e 9

Register Data SOUICESo e e e e e e e 9
Browse a Data SOUICE 11
View Database Object Propertieso 12
Search for Database ODJECtSo 14
Filter Database ObJeCtS.o 15
Define Data Source-Specific Object Filters. e 16

Define Global Database Object Filters e 16

Drop a Database ObjeCto e e 17
WOrKING WIth PrOJECTS oo e e 17
Create @a NeW ProjeCto 18
Open an EXIiSting Project. e 18
SEArCh @ PrOJECt . . . o 19
Add Files to a Project 19
Delete @ Project. e e 20
Creating and Editing SQL Files (SQL Editor)ttt e e e 21
Create an SQL Fileo e 22
Open an Existing SQL File e 22
Working in SQL EditOr. oo 22
Understanding Automatic Error Detection.t 24
Understanding Code ASSISt. oot 25
Understanding Hyperlinks e 29
Understanding Code FOrmatting oottt e 29
Understanding Code Folding.t e 34
Understanding Code Quality Checks e e 34
Understanding SQL Templatest 37

View Change History. 38
Reverttoan Old Version of a File. 39
Delete an SQL Fileo e 39
EXecuting SQL Files . . . o oo 39
Associate an SQL File with a Data SOUICE e e e e e 40

Configure @ SQL SESSIONttt e 42

EXecUte SQL COeo e e e 42

View and Save ReSUILSo 43
TroublEeShOO NG 44
VIeW LOg Details oo 46
MaINtAIN LOGS . . . o oottt e e e 46
I LOGS et e 47
Import and EXPOrt EFrOr LOGSo oot e e e e 49
Find and FiXx SQL COde EITOrSo e e e e e e e e e e e e 50
Find and Fix Other Problems e 50
Configuring DB OptimizZerT™ . . . e 52
INItAl SO UD . . . o o 52
SpecCify @ WOrKSPaCEo 53
License DB OpPtimizer ™ 53
Customizing DB Optimizer™ (PreferenCes)ottt e e e e 53
Set Index Configuration PreferenCes e e 53
Set SQL Editor Preferenceso e 55
Set SQL EXecution Preferenceso e e e 55
Set Code ASSISt PreferenCes 55
Set Code Formatter Preferences 56
Set ResuUlts VIeW PreferenCes.ot 56
Set Syntax Coloring PreferenCeso e 56
Set SQL Code Template Preferences.o e 56
Set File Encoding PreferencCes e 58
UsiNg Profiling oo 59
Understanding the Interface o 59
Running @ Profiling SESSIONo 60
Execute a Profiling SESSION o 61
Working with Session ResUIS. e 62
Analyzing the Load Chart 63
Analyzing the Top ACtiVity SECHIONo 64
Analyzing Profiling DetailS. e 67

Save Profiling SeSSIONS e 76
Import Statements t0 TUNING. o ottt e e e e e e e 77
Using Other Profiling Commands e 77
Zooming INand OUL.o e 77
FItering ReSUIS.o 78
Configuring Profilingo 78
Configuring DBMS Properties and PermissSionst e 79

Configuring IBM DB/2 for Windows, Unix, and LINUX i 79

Configuring Microsoft SQL SerVer. o 81

Configuring OraCle 81
ConfiguriNg SYbaseo 81
Building Launch Configurations 82
Using Load Editoro 85
USING TUNING. .« oottt e e e et e e e e e e e e e e e e e e e 87
OVBIVIBW . .« o o ottt e e e et e e e e e e e e 87
Understanding the INnput Tab. 88
Understanding the Overview Tab e 88
Understanding the Analysis Tab e 90
TUNING SQL S Al eM NS oo e 92
Create a New TUNING JODo e 93
Specify @ Data SOUICEo e 94
Add SQL StatemMeNtSo e e e 95
RUN & TUNING JODo 97
Analyze Tuning ReSUIS 100
CoMPAre CaASES . . .t ittt ittt 102

Filter and Delete Cases. oottt 102
Create an OULIINE e e e 103
Modify TUNING ReSUILS. e 103
Using the Analysis Tabh o e 105
Visual SQL TUNING . . . oot e e e e e e e 106
Changing Diagram Detail Displayt 106
Interpreting the VST Diagram GraphiCs i e 113
Implementing Index Analysis Recommendationst 118
Using Oracle-Specific FeatUres e 119
Using the Table Statistics Tab. e 119

Using the Column Statistics And Histograms Tab. i 120

Using the OUutlines Tabo e e e 121
Tuning SQL Statements in the System Global Area (SGA) 122
Additional Tuning ComMMaNdS.ot e 123
View the Source Code of Tuning Candidates 123

View Statement or Case Code in SQL VIEWET it e 123

Open an Explain Plan for a Statement or Case i e 124
Executing a Session from the Command Line e 125
CoNfiQUIING TUNING .« .« .ot e e e e e e e e e e e 125
Set Roles and Permissions on Data SOUICESottt e e e 126
Index Required Object Definitions. e 127
Set Tuning Job Editor Preferences 128

Set Generated Case PreferenCeS. 129

DBMS HiNtS . .o o 130

OracCle HiNtS ..o 131
SQL Server HiNS . ..o e e e 137
DB 2 HiNtS . . o e 138
SYbASE HiNtS . . . 139
REfEIENCE . . o 141
Database ObJECtS o e 141
DBMS Connection Parameters by Platform 149
IBM DB 2 LUW . . oo e 150
MiICrOSOft SQL SBIVEr . . . o e e 150
JDBC CoNNection Parametersttt 152
Oracle CoNNECHION Parameters.ottt e e e e 152

Sybase Connection Parameters e 152

Welcome to Embarcadero DB Optimizer

Embarcadero DB Optimizer simplifies SQL optimization and development for application developers with many
features for improving productivity and reducing errors. A rich SQL IDE with statement tuning, data source profiling,
code completion, real-time error checking, code formatting and sophisticated object validation tools helps streamline
coding tasks. DB Optimizer’s user interface helps improve overall productivity with integrated development,
monitoring, and tuning components. DB Optimizer offers native support for IBM® DB2® for LUW, Oracle®, Microsoft®
SQL Server and Sybase® as well as JDBC support for other DBMS.

Technical Requirements

Before installing DB Optimizer, verify that your environment meets the following requirements.

Hardware Requirements
The following minimum hardware requirements are required to run DB Optimizer:

¢ Pentium 4-Level Processor
e 1024 MB of memory
« 500 MB of disk space

¢ 1024 x 768 screen resolution

Operating System Requirements
DB Optimizer supports the following operating systems:

¢ Microsoft Windows XP (x86-32, Win32)

« Microsoft Vista (x86-32, Win32)

¢ Microsoft Windows Server 2003

« Red Hat Enterprise Linux 5.0, x86-32, GTK 2

e SuSe Linux Enterprise Server (x86) GTK+ 2.x

DBMS Support
DB Optimizer provides native support for the following platforms (no additional DBMS client software is required):

* Generic JDBC

e |IBMDB2LUW8.2-9.5

« Microsoft SQL Server 2000, 2005, and 2008
¢ Oracle 8i - 11g

e Sybase 12.5-15.0

Additional Product Information

The Embarcadero Web site is an excellent source for additional product information, including white papers, articles,
FAQs, discussion groups, and the Embarcadero Knowledge Base.

Go to www.embarcadero.com/support, or click any of the links below, to find:

¢ Documentation
¢ Online Demos

¢ Technical Papers

¢ Discussion Forums

Knowledge Base

http://www.embarcadero.com/support/
http://www.embarcadero.com/resources/documentation.php
http://www.embarcadero.com/resources/demos.php
http://www.embarcadero.com/resources/technical_papers.php
http://www.embarcadero.com/resources/discussion_groups.html
http://www.embarcadero.com/jive/index.jspa

Using DB Optimizer

This section contains detailed instructions for Working with Data Sources, Working with Projects, Creating and Editing
SQL Files (SQL Editor), Executing SQL Files, and Troubleshooting.

Working with Data Sources

The Data Source Explorer provides a tree view of all registered data sources and associated database objects.
When you first start DB Optimizer, a prompt appears and offers to populate Data Source Explorer from multiple
sources on the system. This includes previously-registered data sources on other Embarcadero products, and
third-party DBMS clients such as TOAD. If DB Optimizer cannot detect a data source, you can register it manually.

Additionally, you can initiate this feature by clicking the Auto-Discovery button on the Toolbar or via the File > Import
> Embarcadero > Data Sources > Previously Registered Embarcadero Data Sources (Registry) command from
the Main Menu.

Register Data Sources

When DB Optimizer is started, it prompts you to discover data source catalogs that have been created by any
previously installed Embarcadero products (DBArtisan, Rapid SQL, DB Optimizer), or other instances of DB
Optimizer.

Additionally, the system scans your machine for the client software of all supported third-party DBMS platforms
(TOAD, Eclipse Data Tools Platform, etc.). These data sources are automatically added to the data source catalog.

@'l Embarcadero DB Dptimizer Notifications 4

& Welcome to Embarcadero DB Optimizer i

Embarcadero DB Optimizer can discover daka sources residing on wour
syskem ar available on wour netwark, You can s=arch Far daka sources
right niow,

To manually initiate the scan later, click the Discover Data Sources icon at the top of Data Source Explorer. The
Discover Data Sources dialog appears.

[| . .
i Discover Data Sources

Discover Data Sources
Select the locations to search for data sources,

Prewiously registered Embarcadero data sources (Registry)
Fibe system and network

] Quest Softweare (TOAD)

(] z Bach Mesk = Finish Cancel

1 Choose the type of data sources you want to scan for and click Next. The wizard automatically returns all data
sources it finds on your machine based on the criteria you specified.

N
I Discover Data Sources

Discovered Data Sources
Select from the data sources discovered in the specified locations,

=2 ¥ = [
i [Vl 18M DB2 for LUW
[¥] = Grade
= [F]2 Microsoft SQL Server
[¥) 5 Datotbzo
[#]58 ROMLABSGLOO_1
[¥]5a ROMLABSGLOS 1
[+#] 54 TORLABSOLOS 1
B [#]1= Generic JDBC
= File system and network
E []i= D1P

[Selectal | [peselect aa |

@ [<gock][mext> J[Emsh J[conce

2 Choose the data sources you want to add to the DB Optimizer environment and click Finish. Data Source
Explorer automatically populates with the new data source selections.

To add data sources manually, right-click Managed Data Sources in the Data Source Explorer
tree, select New > Data Source, and enter the connectivity parameters as prompted.

For additional information on data source connection parameters, see DBMS Connection Parameters by
Platform.

Once registered, the data source appears in the Data Source Explorer view. If you have created more than one
workspace, they all share the same data source catalog.

Once a data source has been registered, the connection parameters are stored locally. In some cases, a user ID
and password are required to connect to a registered data source. DB Optimizer™ can encrypt and save user
IDs and passwords to connect automatically.

NOTE: Insome cases, older versions of DB Optimizer and DB Artisan/Rapid SQL are not compatible with
this version of DB Optimizer, and the methods listed above will not import these older data source
catalogs. If you are experiencing difficulties, you can import the old data sources via the Windows
registry by selecting File > Import... > Embarcadero > Data Sources > Previously Registered
Embarcadero Data Sources (Windows Registry).

Browse a Data Source

You can drill down in the Data Source Explorer tree to view registered databases on a server, and view tables, and
other objects in a database. Additionally, you can view the structure of individual objects such as the columns and
indexes of a table. Right-click the object for a menu of available commands, such as Extract to Project, which
creates a new SQL file containing the object’s DDL.

In most cases, whenever you browse a data source, DB Optimizer requires login information in order to connect with
the data source. Enter a valid user name and password in the fields provided. The Auto Connect option retains your
login credentials for future connections to the same data source.

You can turn off the Auto Connect feature by right-clicking on a specified data source and toggling the Connect on
Expand option. By default, when Connect on Expand is active, DB Optimizer automatically attempts to connect to the
server each time you browse a data source.

View Database Object Properties
All objects in Data Source Explorer contain properties as they relate to the DB Optimizer application.

f 5oL = h
93 pata Source Expl #2 . = 50L PrujectEqu =
FEEIEEN
| | B

= T=F Managed Data Sources [ﬂ
I& DB2 Servers
1= MS SOL Servers
% datoearl1 (SQL Server)
% datoedwinal (SOL Server 7.0.1094.0)
=5 datotb19 (SQL Server 8.0.818.0)
Eliﬂ Databases (41)
=[] |Applabs
-+ Check Constraints
i Defaults
3% Foreign Keys
f: Functions
Indexes
ﬁ'ﬁ" Primary Keys
;?; Procedures
& Roles
--I'L"J Rules
#-E3 Tables
@ Triggers
l,'P Unigue Keys
‘*EE User Datatypes
ﬂ sers

F-&& Views

DB Optimizer Object Properties are viewed via the Properties dialog. The dialog is accessed by right-clicking the
object in Data Source Explorer.

- Properties for romlabartorcldi (Oracle) |__. rE”Z|
o= fiter tex ! Data Source Configuration
Configuration -
Data Source Indexing Configuration |.ﬂ.duan|:a::|
S0L Fiters —
LIl SO B 2 |_“?'"!J.?.5.‘a_r.!‘?f.‘?f‘?_'...
Orade
(ilUse a TNS name alas
@Usl: a direct connection
HostTnstaroe: _-:rnmld:uarwdﬂu |
Fort: | 1521 |
Type: (%) Zervice name =D
Serviee/SID name: | ORASID |
Security credentials
User name: | |
Password: | |
Cannect as: |nurn'-al |
[Auto-conmect (Saves and encrypis password)
[&low trusted connections
ITEI Connecton] [Apply]
@ [ok || cancel |

To view Data Source Explorer object properties:
The Info properties node is accessed by right-clicking a data source in Data Source Explorer.

The dialog displays properties with regards to Configuration, Data Source Indexing, and SQL Filters.

As well, each node representing the actual data source connection (the uppermost parent in a list of data source
objects), contains additional properties in addition to the Info node and its respective properties. With the exception of
the Configuration node, these values can be modified in the Properties dialog.

The Configuration node is composed of:
« Data Source Name
« Data Source Type
« and three subnodes: Connection Information, Data Source Information, and Security Parameters.

These nodes are identical to the parameters used to initially define the data source during the data source registration
process. For more information on these values and how to modify them, see Register Data Sources.

The SQL Filter node enables a developer to place filters on data source objects that appear in the Database Explorer.
For more information, see Filter Database Objects.

Search for Database Objects

Database object searches rely on the Object Index when returning results. By default, caching is set to configure only
parts of a database. To configure the Index to expand object searches, see Set Index Configuration Preferences.

1

Select Search > Database. By default, the search scope is all currently connected databases. Under Specify
the scope for the search, clear any databases or server check boxes you do not want to search.

Specify the search criteria:

Type the value to search for in the Search String field. Use the * character to indicate wildcard string values and
the ? character to indicate wildcard character values.

Select Case Sensitive to indicate to the search function that you want case sensitivity to be a factor when
searching for appropriate string matches.

Select Search Indexed Data to indicate that the search function should read the Index. This increases the
performance of the search function and will typically result in faster returns on any hits the search might make.

Select Apply SQL Filters to apply any relevant database or vendor filters to the search.

Choose Declarations, References, or All Occurrences to specify what the search is restricted to in terms of
database objects.

« A Declaration is an instance where an object is declared. For example, an object is declared in a CREATE
table.

* A Reference is an instance where an object is used or referred to. For example, an object is referred to in a
procedure or as a foreign key in a table.

¢ Choose All Occurrences to return both declarations and references in the search results.

Use the check boxes beside the database object panel to select and deselect the specific database objects that
you want to be included in the search process.

3 Click Search.

The results of your search are generated in the Search view. When you open a matched file, references to the
keyword are flagged with yellow arrow icons that appear in the left-hand column of the editor.

= DELETE FROM Shape Edge Display Ver
= WHERE Shape Edge Display ID IN
- (SELECT do.Cbject_Table Row ID
FROM Diagram Object do,
Heta Table mt
WHERE mt.Name = 'Shape Edge Display' and
do.Mera Table ID = mt.Meta Table ID and
do.Diagram ID = ADelDliagramIl)

JL

DELETE FROM Shape Edge Display
WHERE Object GUID IN
(SELECT do.0bject_GUID
FROM Diagram Object do,
Heta Table mt
WHERE mt.Name = 'Shape Edge Display' and
do.Heta Table ID = mt.Meta Table ID and
do.Diagram ID = @DelliagramID)

You can navigate between keywords within all returned files using the yellow “up” and “down” arrows that appear
at the top of the Search view.

Filter Database Objects

Filters can be placed on data sources and corresponding data source objects to restrict their display in Data Source
Explorer. This feature is useful if you have data sources that contain large numbers of database objects. You can
apply filters to view only the schema objects you need for the development process.

There are two types of data source filters available:
« Global filters that affect all registered data sources in the DB Optimizer™ development environment.
« Data Source specific filters affect only the specified data source for which they are defined.

« On Sybase and SQL Server platforms, you can apply database filters, which enables you to set different filters
on different databases within the same source.

In both cases, data source object filters are defined via the Object Filter Manager, through the development of filter
templates. Once defined, filter templates can be activated and deactivated as you need them.

Several filter templates can be combined at a global level or applied to a specific data source.

See also:
Define Global Database Object Filters

Define Data Source-Specific Object Filters

Define Data Source-Specific Object Filters
Data source-specific object filters affect only the specified data source.

To define data source-specific filters:
1 In Data Source Explorer, right-click the data source and select Properties.

The Properties dialog appears.

2 Select the SQL Filters node and select Enable data source specific settings. The other controls on the dialog
become enabled.

3 Click New. The Filter Template dialog appears.

4 Specify the parameters of the filter.

In the Name field, enter the name of the filter as you want it to appear in the selection window on the SQL
Filter node.

The Database Type pane provides a list of data source objects. Uncheck the data source objects that this
template filters so that they do not appear in Database Explorer when displaying data source objects for the
data source.

Click New to add filter parameters for data source object properties. The New SQL Filter Predicate dialog
appears.

Use the Property and Operator fields to supply the filter criteria. Property specifies whether the value is a
Name or Schema, and Operator specifies the matching type of the filter syntax. (Equals, Not Equals, Like,
Not Like, In, Not In)

In the Value field, enter the full or partial syntax of the property or properties you want to filter in Data Source
Explorer.

Click OK. The filter property specification is added to the Filter Template.

5 When you have finished defining the filter template, click OK. The template name is added to the Properties
dialog. It can be enabled and disabled by selecting or deselecting the check box beside its name, respectively.

Define Global Database Object Filters

Global filters affect all registered data sources in the DB Optimizer™ development environment. When you create and
apply a global filter to a platform vendor in DB Optimizer™, all databases associated with that vendor are affected by
the filter, as defined.

Individual global filter templates are separated, by supported data source platform, on tabs in the SQL Filter window.
Select the appropriate tab to view existing filter templates or add new ones, as needed.

To define a global filter:
1 Select Window > Preferences from the Main Menu. The Preferences dialog appears.

2 Expand the SQL Development node and select the SQL Filter subnode. The SQL Filter pane appears.

3 Click New. The Filter Template dialog appears.

4 Specify the parameters of the filter template:

« In the Name field, enter the name of the filter as you want it to appear in the selection window on the SQL
Filter node.

« The Database Type pane provides a list of data source objects. Deselect the data source objects that this
template filters so that they do not appear in Database Explorer when displaying data source objects for the
data source.

¢ Click New to add filter parameters for data source objects properties. The New SQL Filter Predicate dialog
appears.

« Use the Property and Operator fields to supply the filter criteria. Property specifies whether the value is a
Name or Schema, and Operator specifies the matching type of the filter syntax. (Equals, Not Equals, Like,
Not Like, In, Not In)

< Inthe Value field, enter the full or partial syntax of the property or properties you want the template to filter in
data source Explorer.

5 Click OK. The filter property specification is added to the Filter Template.

6 When you have finished defining the filter template, click OK. The template name is added to the Properties
dialog. It can be enabled and disabled by selecting or de-selecting the check box beside its name, respectively.

Data Source object filters are added and removed from the development environment by selecting
and de-selecting the checkboxes associated with each filter template on both the global and data
source-specific dialogs.

Drop a Database Object

To delete an object permanently from a database, right-click the object in Data Source Explorer and choose Drop from
the menu. The Drop Wizard asks you to confirm removal of the object and provides a DDL preview of the deletion
code.

Working with Projects

You create projects to organize and store SQL development files. The purpose of projects is to keep your
work-in-progress files organized, as well as maintain a common directory structure when developing code and
executing files on registered data sources. Once a file has been developed and is ready for deployment, that file can
then be executed on a registered data source.

SQL Project Explorer is used to view and access files. It uses a tree view to display the project as a series of folder
directories with a folder labeled with the project name as the parent directory, and with project categories, and
associated project files as its children.

All files in a project are organized under the following categories:
« Connections: List the connections of any given SQL file of a data source associated with the project.
e Creation Scripts: Provide DDL statements and statements that define database objects.

« General SQL: Provide a category for all other SQL files that are not used in database object creation. This
includes DML files, and so on.

e Large Scripts: Contain all files larger than the currently set SQL Editor preference. The file size limit can be
modified on the Preferences panel by selecting Window > Preferences in the Main Menu.

Physically, the projects and files you create as you work in DB Optimizer™ are stored under the Workspace directory
you specified at the prompt when DB Optimizer™ was started. The directory and files can be shared, and other tools
may be used to work on the files, outside the DB Optimizer™ development environment.

You can move existing files within a project by clicking and dragging the file you want to move in the Project Explorer
from one node to another, or via the File > Move command.

Create a New Project

1

2

Select File > New > SQL Project from the DB Optimizer™ Main Menu. The New Project Wizard appears.
Enter the appropriate information in the fields provided:

« Name: Enter the name of the project as you want it to display in the Project Explorer view.

« DBMS Platform: Select the data source platform to which the new project will be associated. This enables DB
Optimizer™ to properly parse SQL development code for project files.

« Location: When selected, the Use Default Location check box indicates the project is to be created under
the currently selected Workspace. Deselect the check box and specify a new folder path if you do not want to
create the project in the currently selected Workspace.

Click Finish. The new project icon appears in the Project Explorer view under the name that you specified. If
you did not select Use Default Location, the project will appear in the appropriate Workspace when you open it in
DB Optimizer™,

NOTE: Alternatively, you can select New > SQL Project from the Main Menu or click the New Project
icon in the Tool Bar to create a new project.

Open an Existing Project
You can open projects by navigating to SQL Project Explorer and expanding the node of the project that contains the
files you want to access.

Below each project name are a series of nodes that categorize any existing SQL files by development type:

Connections: Lists the connections of any given SQL file of a data source associated with the project.

Creation Scripts: General data source object development scripts. This node contains DDL statements and
statements that define database objects.

General SQL: Provides a category for all other SQL files that are not used in database object creation. DML files,
etc.

Large Scripts: Contains all files larger than the currently set SQL Editor preference. The file size limit can be
modified on the Preferences panel. (Choose Window > Preferences in the Main Menu to access the panel.)

NOTE: Physically, the projects and files you create as you work in DB Optimizer™ are stored under the
project directory that you specified at the prompt when the project was created. The directory and
files can be shared, and other tools may be used to work on the files, completely exempt from the
DB Optimizer™ development environment.

Search a Project

1 Select Search > File.
2 Specify the search criteria:

« Type the value to search in the Containing Text field. Use the * character to indicate wildcard string values,
the ? character to indicate wildcard character values, and the \ character to indicate an escape character for
literals (* ? /).

¢ Select Case Sensitive and indicate to the search function that it should take into account case when
searching for appropriate string matches.

» Select Regular Expression to indicate to the search function that the string is a regular function.

« Inthe File Name Pattern field, specify the extension name of the files to search for explicitly. If the value in this
field is a * character, the search function searches all files regardless of extension. Manually type in the
extensions to indicate file type (separate multiple file types with commas), or click Choose and use the Select
Types dialog to select the file extensions the process will search for the string by.

* Select Consider Derived Resources to include derived resources in the search.

« Select Workspace or Working Set to choose the scope of the search. If you choose Working Set, specify the
name of the defined working set manually, or click Choose and navigate to the working set you want to search
for in the provided string.

3 Click Search. The results of your search are generated in the Search view on the Workbench.

Add Files to a Project

Existing files that reside in directories outside of the workspace can be added to a project via the following methods:
« Dragging and dropping the file set from a system directory to SQL Project Explorer.
« Copying and pasting the file set from a system directory to SQL Project Explorer.

« Executing the Import command.

To drag/drop or copy/paste files from a system directory to SQL Project Explorer:

1 With the SQL Project Explorer view open, navigate to the directory where the files you want to add to the project
are located on the system.

2 Drag and drop the files you need from Windows Explorer into SQL Project Explorer. The files appear in the tree
view under the appropriate categories.

NOTE: Alternatively, you can use the Copy command on the files you want to add in Windows Explorer,
and then right-click the Project Explorer and select Paste from the menu. The files appear in the
tree view under the appropriate categories.

To use the Import command:
1 Right-click anywhere on the Project Explorer and select Import. The Import dialog appears.

2 Expand the General node and double-click File System. A dialog containing the import specification parameters
appears.

In the From directory field, manually type the directory location of the files you want to import to Project
Explorer, or click Browse and navigate to the appropriate folder. The panels below the field populate with the
folder selection and a list of suitable files contained in that folder. Use the check boxes beside each folder and
file to specify what folders/files you want the import function to add in Project Explorer.

In the Into folder field, manually type the name of the folder within Project Explorer where you want to import
the files specified in the panels above, or click Browse and navigate to the appropriate folder.

Select the Overwrite existing resources without warning check box if you do not want to be prompted
when the import process overwrites Project Explorer files that contain the same name as the imported files.

Choose Create complete folder structure or Create selected folders only, depending on whether you want
the import process to build the folder structure of the imported directory automatically, or only create those
folders you selected in the panels above, respectively.

3 Click Finish. The import process moves all selected folders and files into Project Explorer and thus into the DB
Optimizer™ development environment.

NOTE: In addition to accessing the Import command via the shortcut menu, you can also access the

Import dialog by choosing File > Import ... from the Main Menu.

Delete a Project

You can delete a project by right-clicking its folder in the SQL Project Explorer and selecting Delete.

When you delete a project, DB Optimizer™ will prompt you with a Confirm Project Delete dialog that asks you to
confirm the deletion of the project, and offers you the option of deleting the project from the DB Optimizer™ interface,
or deleting the project from the system.

If you select Do not delete contents, the files and directory structure will be removed from SQL Project
Explorer, but they will still exist on your machine.

If you select Also delete contents ..., the files and directory structure will be removed from SQL Project
Explorer and deleted from your machine.

Creating and Editing SQL Files (SQL Editor)

The SQL Editor is a Workbench interface component that enables the development, viewing, and formatting of SQL
code.

E@Bensnn.sql &4 |=| sglLeg.log
CREATE TABLE dbo.benson
[
j0b char(g) NOT NULL,
sal numeric(38,0) NOT NULL,
loc numeric(38,0) NOT NULL,
CONSTRAINT pjob
PRIMARY EEY CLUSTERED (job)
)
go
IF OBJECT ID('dbo.benson' IS5 HOT HULL
PRINT '«<«<« CREATED TAEBLE dbo.benson >>>'
ELSE
PRoNT '<<« FAILED CREATING TABLE dbo.benson >>>"
go

SQL Editor contains context-sensitive command menus that are tailored with pertinent functionality for the specified
file format.

If SQL Editor does not recognize a selected file format, DB Optimizer™ automatically launches the file externally in
the system default application. External editors are not embedded in the Workbench. For example, on most machines,
the default editor for HTML files is the system Web browser. SQL Editor does not, by default, recognize HTML files,
and opening an HTML file from the Workbench launches the file in an instance of the Web browser instead of the
Editor.

Any number of instances of SQL Editor can be open on the Workbench at the same time. Multiple instances of SQL
Editor displaying different content may be open in the same Workbench. These instances will be stacked by default,
but can also be tiled side-by-side so the content of various files can be viewed simultaneously for comparison or
multi-tasking purposes. When an instance of SQL Editor is active, the Workbench Main Menu automatically contains
commands applicable to the file format. If a view is active, SQL Editor commands are disabled automatically, except
when commands are still valid between the selected view and the file displayed in the interface.

When working with code in SQL Editor, the window contains a number of features that provide an increase in the
efficiency and accuracy of code development. The following syntax highlighting changes are automatically applied to
code as a user adds lines in the interface.

Code Formatting
Comments Green font, italics
SQL Commands Dark blue font
Coding Errors Red underline
Strings Red font

Code Formatting

Non-Executable Command Line Aqua font
Commands

Single line and multiple line comments appear in different colors.

Furthermore, SQL Editor provides two column bars, one on either side of the code window. The purple change bar in
the left-hand column indicates that the line of code has been modified. Hover over the change bar to display the
original code text. The red square in the right-hand column indicates that there are errors in the code window. Hover
the mouse over the square to view the error count. Click the red bar in this column to navigate directly to the line in
which the SQL Editor detects the error. SQL Editor automatically highlights the appropriate code. Non-executable
command line commands are displayed in a different formatting style than SQL commands. Syntactic and semantic
errors are also highlighted.

SQL Editor also features dynamic error detection, object lookup and suggestion features, code folding, and
auto-formatting. SQL Editor is able to identify different areas in a statement, and enables users to retrieve subclauses,
resolve table aliases, and dynamically return lists of tables, views, and columns, as needed.

See also:

Working in SQL Editor

Create an SQL File

1 Create or open a SQL project.
2 Select File > New > SQL File. A blank instance of SQL Editor appears.

NOTE: If you are not in a SQL project when you create a new SQL file, it will not open in SQL Editor.

Open an Existing SQL File

1 Open the SQL project containing the file, or that you want to contain the file.

2 If necessary, add the file to the project (see Add Files to a Project.)

3 Inthe SQL Project Explorer, double-click the file to open it in SQL Editor.

Working in SQL Editor

SQL Editor handles SQL code formats and contains context-sensitive command menus, tailored with pertinent
functionality for development purposes. Other files may be opened in DB Optimizer™, as well, but these are handled
by other editors.

For example, if a text file is opened in the Workbench, DB Optimizer™ detects and opens the contents of that file in a
text editor viewer with pertinent commands for that file type.

Any number of instances of SQL Editor can be active on the Workbench at the same time. Multiple instances of SQL
Editor displaying different content may be active on the same Workbench. These instances will be stacked, by
default, but can also be tiled side-by-side, so the content of various files can be view simultaneously for comparison or
multi-tasking purposes. When an instance of SQL Editor is active, the Main Menu contains commands applicable to
the file format. If a view is active, SQL Editor commands are disabled automatically, except when commands are still
valid between the selected view and the file displayed in the interface.

s} *Benson.sgl 3

FREATE TABLE dbo.benson
[
job char (8) HOT HULL,
sal numeric(38,0) NOT NULL,
loc numeric({38,0) HOT NULL,
COMSTRATNT pjob
PRIMARY EEY CLUSTERED (job)
!
go
IF CBJECT ID('dbo.benson') I5 NOT HULL
PRINT '«<<« CEEATED TABLE dbo.benson >>>'
ELSE
PRINT '<<< FAILED CREATING TABLE dbo.benson »>>>'
gao

Among the commands SQL Editor supports via the right-click menu:

Revert File: Automatically restores the working file to the original text as it appeared the last time the Save
command was issued.

Shift Right/Shift Left: Indents the line of code in the working file to the right or left, respectively.

Toggle Comments: Hides or displays comments in the code of the working file, depending on the current
hide/show state.

Add Block Comment/Remove Block Comment: A block comment is used to insert a comment into SQL code
that spans multiple lines and begins with a forward slash and asterisk. While block comments are typically used
to insert a command that spans multiple lines, some developers find them more useful than line comments,
especially if a development team is using different text editors on an individual basis. Moving code from one text
editor to another often breaks line comments in the middle of a line and causes errors. Block comments can be
broken without causing errors.

NOTE: In addition to editing commands, some commands such as extract, drop, and execute can be
accessed by right-clicking over statements in SQL code that are performed on specific tables,
views, and columns. These commands will appear automatically in the appropriate menu when
the code is highlighted. Full information on using these commands is found elsewhere in this
documentation, based on the task each executable performs.

Explain Plan: An explain plan details the steps that occur in SELECT, UPDATE, INSERT, and DELETE
statements and is primarily used to determine the execution path followed by the database in its SQL execution.

See also:

Understanding Automatic Error Detection

Understanding Code Assist

Understanding Hyperlinks

Understanding Code Formatting

Understanding Code Folding
Understanding Code Quality Checks

Understanding SQL Templates

Understanding Automatic Error Detection

SQL Editor orders and classifies SQL statements. This enables it to edit code as you work within SQL Editor and
highlight errors and typographical errors in “real time”. As you work, SQL Editor examines each clause in a statement
and provides error reporting and other features as required.

SQL Editor identifies the following clauses and elements:

SELECT: Specifies the field, constants, and expressions to display in the query results.
FROM: Specifies one or more tables containing the data that the query retrieves from.

WHERE: Specifies join and filter conditions that determine the rows that query returns. Join operations in a
WHERE clause function in the same manner as JOIN operations in a FROM clause.

GROUP BY: Specifies one or more columns used to group rows returned by the query. Columns referenced in
the SQL SELECT statement list, except for aggregate expressions, must be included in the GROUP BY clause.
You cannot group by Memo, General or Blob fields.

HAVING: Specifies conditions that determine the groups included in the query. If the SQL statement does not
contain aggregate functions, you can use the SQL SELECT statement containing a HAVING clause without the
GROUP BY clause.

ORDER BY: Specifies one or more items used to sort the final query result set and the order for sorting the
results.

As you develop code in SQL Editor, it automatically detects semantic errors on a line-by-line basis. Whenever an error
is detected, the line is flagged by an icon located in the left-hand column of the editor.

E“} benson E@ *ADDRESS_ROLE |i“} *Benson.sgl &3

“'CEEATE TABLE dbo.benson
|
job CHAR (8) NOT NULL,
szal NUMERIC (38, 0) NOT NULL,
loc NUMERIC (38, 0) NOT NULL,
CONSTRAINT pjob PRIMARY EEY CLUSTERED (job)

go
IF CBJECT ID('dbo.benson' IS5 HOT NULL
PRINT '<<« CREATED TAELE dbo.benson >>>'
ELSE
(%] PRoNT '<<« FAILED CREATING TABLE dbo.benson »>>>!

go
= SELECT *
@ FROM tbo.benson:

Additionally, all semantic errors detected in SQL Editor are displayed in the Problems view.

[L Problems &3

3 errors, 0 warnings, 0 infos

Description Resource Fath Location
= - Errors (3 items)
3 An unexpected token ™< << FAILED CR Benson.sgl SQL Project 1 line 14
3 An unexpected token ™ was found. Exp File.sgl SQL Project 1 line &
3 Table benson cannot be resolved on 'da Benson.sgl SQL Project 1 line 19

Right-click the an error and select Go To in order to find the error. DB Optimizer™ opens and navigates to the specific
line of code containing the specified error.

Understanding Code Assist

When SQL Editor has finished analyzing a partial piece of code, it displays a list of data source objects for you to
select from.

SQL Editor takes the following into consideration when analyzing code for a list of possible data source objects for
insertion:

e Text to be inserted

« Original text to be replaced

« Content assist request location in original text

« The database object represented by the insertion text
Generally, insertion suggestions use the following format:
<insertion_text > - <qualification_information >

Code assist is available for SELECT, UPDATE, INSERT, and DELETE statements, as well as stored procedures, and
functions (built-in and user defined.)

Additionally, code suggestions can be made for DML statements nestled within DDL statements. This functions in the
same manner as code assist for statements that are not nestled, and applies to CREATE PROCEDURE, FUNCTION,
TRIGGER, TABLE, and VIEW statements.

When the code assist window is open, you can filter out singular object suggestions by pressing (Ctrl + Spacebar).
This removes all objects from the assist window while retaining procedures and functions. To display objects again,
press (Ctrl + Spacebar) again.

The following table displays a list of all possible object suggestions, and the format in which SQL Editor inserts the
suggestions into a statement:

Object and Stored Procedure Suggestions

Object Suggestion Syntax/Example

Table (TABLE) [catalog].[schema]
EMPLOYEE - (TABLE)HR

Alias Table (TABLE ALIAS)
[catalog].[schema]tableName

EMPLOYEE-(TABLE ALIAS)HRJOBS

Column datatype - (Column)
[catalog].[schema].tableName

JOB_TITLE:
varchar(20)-(Column)HRJOBS

Alias Column datatype - (COLUMN ALIAS)
[catalog].[schema].tableName.
columnName

JOB_TITLE:int-(COLUMN
ALIAS)HR.JOBS.JOB_ID

Schema (SCHEMA) [catalog]
dbo-(SCHEMA)NorthWind

Catalog (CATALOG)

Call Call HR.ADD_JOB_HISTORY

Function Suggestions

Function Suggestion Syntax/Example

Built-in SELECT A FROM HR.DEPARTMENTS
WHERE HR.DEPARTMENTS AVG

User-Defined SELECT + FROM HR.CLIENTS WHERE
HR.F_PERSONAL

NOTE: Function suggestions are only available for Oracle and DB2 platforms.

SQL Editor detects incomplete or erroneous code, processes the code fragments, and then attempts to apply the
appropriate logic to populate the code.

As code is typed into SQL Editor, the application ‘reads’ the language and returns suggestions based on full or partial
syntax input.

Depending on the exact nature of the code, the automatic object suggestion feature behaves differently; this enables
SQL Editor to provide reasonable and ‘intelligent’ suggestions on coding.

Additionally, semantic validations can be made for DML statements nestled within DDL statements. This functions in
the same manner as validation for top-level statements, and applies to CREATE PROCEDURE, FUNCTION,
TRIGGER, TABLE, and VIEW statements.

The following chart displays the possible statement fragments that SQL Editor will attempt to suggest/populate with
objects:

Statement Fragment Elements Object Suggestion Behavior

SELECT A list of tables, when selected
automatically, prompts the user to select
a column.

UPDATE and DELETE A list of tables appears in the FROM
and/or WHERE clause.

INSERT A list of tables and views appears in the

INSERT INTO and OPEN BRACKET
clause prior to values.

A list of columns based on the table or
view name appears in the OPEN
BRACKET or VALUES clause.

In addition to DML statements, SQL Editor also suggests objects based on specific fragmented syntax per line of
code:

Statement Syntax Object Suggestion Behavior

A partial DML statement (for example The keyword is completed automatically,

SEL ... indicates a fragment of the assuming SQL Editor can match it.

SELECT clause) Otherwise, a list of suggested keywords
is displayed.

If the preceding character is a period, and
the word prior is a table or view, a list of
columns appears.

If the word being typed is a part of a table
name (denoted by a schema in front of it)
the table name is autocompleted.

If the word being typed has a part of a
column name (denoted by a table in front
of it) the column name is autocompleted.

Without typing anything. A list of keywords appears.

A period is typed. If the word prior to the period is a name of
a table or view, a list of columns is
displayed.

If the word prior to the period is a schema
name, a list of table names is displayed.

If the word prior to the period is either a
table name or a schema name, then both
a list of columns and a list of table names
is displayed.

To activate code suggestions:

« By default, code suggestions are automatically offered if you stop tying in SQL Editor for one second. You can
turn off the automated suggestion feature on the Code Assist preferences page.

If automated code suggestion is disabled, you can still access the suggestion window using the following method:
1 Click the line that you want SQL Editor to suggest an object for.

2 Press (CTRL + Spacebar) on your keyboard. SQL Editor ‘reads’ the line and presents a list of tables, views or
columns as appropriate based on statement elements.

NOTE: On a per platform basis, auto-suggestion behavior may vary. (For example, the WITH statement
on DB2 platforms.)

To modify object suggestion parameters, including setting it from automatic to manual, see Set Code Assist
Preferences.

Understanding Hyperlinks

SQL Editor supports hyperlinks that are activated when a user hovers their mouse over a word and presses the CTRL
key. If a hyperlink can be created, it becomes underlined and changes color. When the hyperlink is selected, the
creation script for the hyperlink object is opened in a new editor.

Hyperlinks can be used to link to tables, columns, packages, and other reference objects in development code.
Additionally, hovering over a hyperlink on a procedure or function of a call statement will open it. You can also use the
hyperlink feature on function calls in DML statements.

Clicking a hyperlink performs an action. The text editor provides a default hyperlink capability. It allows a user to click
on a URL (for example, www.embarcadero.com) and database object links.

Hyperlink options (look and feel) can be modified via the Hyperlinking subnode in the Editors > Text Editors node of
the Preferences panel.

NOTE: Hyperlink functionality relies on certain objects being captured in the Object Index. If the index is
turned off, or has been restricted in what information it captures, users will be unable to link them
(as they are non-existent within the Index.) To specify object index types, see Set Index
Configuration Preferences.

Understanding Code Formatting
Code formatting provides automatic code formatting in SQL Editor while you are developing code.

To access the code formatter, select the open editor you want to format and select Ctrl+Shift+F. The code is
formatted automatically based on formatting parameters specified in the Code Formatter subnode of the SQL Editor
node in the Preferences panel.

You can also format an entire group of files from Project Explorer. To do so, select the directory or file and execute
the Format command via the shortcut menu. The files will be formatted automatically based on your formatting
preferences. See Set Code Formatter Preferences for more information.

The following examples display a list of code formatting parameters and the resultant output in SQL Editor, based on
the same set of SQL statements.

Custom Code Formatting Example 1
The following chart indicates a list of custom code formatting parameters and their corresponding values. The chart is

followed by the actual syntax as it would appear in SQL Editor, based on the formatting parameter values. Compare
the parameters and formatted code in Example 2 with this example for a concept of how custom formatting works.

Custom Code Formatting Parameter | Value (if applicable)

Stack commas separated by lists? Yes

Custom Code Formatting Parameter

Value (if applicable)

Stack Lists with ___ or more items. 3
Indent Size? 2
Preceding commas? Yes
Spaces after comma? 1
Trailing commas? --
Spaces before comma? --
Right align FROM and WHERE clauses | Yes
with SELECT statement?

Align initial values for FROM and Yes
WHERE clauses with SELECT list?

Place SQL keywords on their own line? No
Indent size? --
Indent batch blocks? Yes
Number of new lines to insert 1
Indent Size 5
Right Margin? 80
Stacked parentheses when they contain | No
multiple items?

Stack parentheses when list contains ____ | --
or more items.

Indent Size? 5
New line after first parentheses? No
Indent content of conditional and looping | Yes
constructs?

Number of new lines to insert? 1
Indent size? 5

+ File,sgl &3
Begin

I£

x=5

SELECT apple

' pear

' orange “Big Orange”’
' strawberry

' orchard name

' owner

FRCM fruit F, orchard O

WHEERE

Al
Al
Al

Al

fruit region in (*latin america’
‘france”
‘russia”
‘canada”
‘hawaii’)

and orchard not in (=select region

from bad growers bg, (select orchard
from hybrid growers
where us_approved in

Custom Code Formatting Example 2

The following chart indicates a list of custom code formatting parameters and corresponding values. The chart is
followed by the actual syntax as it would appear in SQL Editor based on the formatting parameter values. Compare
the parameters and formatted code in Example 1 with this example for a concept of how custom formatting works.

Custom Code Formatting Parameter Value (if applicable)
Stack commas separated by lists? Yes

Stack Lists with ____ or more items. 2

Indent Size? 0

Preceding commas? -

Spaces after comma? Yes
Trailing commas? Yes
Spaces before comma? 2

Right align FROM and WHERE clauses with SELECT statement? No

Align initial values for FROM and WHERE clauses with SELECT list?

Place SQL keywords on their own line? Yes
Indent size? 4
Indent batch blocks? No
Number of new lines to insert 1
Indent Size 5
Right Margin? 80
Stacked parentheses when they contain multiple items? Yes
Stack parentheses when list contains ____ or more items. 2
Indent Size? 2
New line after first parentheses? Yes

Indent content of conditional and looping constructs? --

Number of new lines to insert? 1

Indent size? 5

*File,sgl &4
Begin
If %=5
SELECT
apple
pear ,
orange 'Big Crange’
strawberry ,
orchard name ,
OWner
FRCM
fruic F ,
orchard ©
WHERE

fruit region in |

r

‘latin america’
‘france’ ,
‘russia’ ,;
‘canada’ ,

r

Understanding Code Folding

SQL Editor features code folding that automatically sorts code into an outline-like structure within the editor window for
easy navigation and clarity while developing code.

s}, *ADDRESS_ROLE £2 . [s9 *Benson.sgl

CREATE DEFAULT ET_ FALSE A5 0O
go
+|IF OBJECT ID('PERFCHNTE K5.ET FALSE') IS5 NHOT NHOLI{]
oo
~CREATE TAELE PERFCNTE KS5.ADDEESS ROLE
{

ADDEESS ROLE TID numeric (10,0) IDENTITY (20000,1),

HAME wvarchar (128) HNOT HULL,

DESCRIPTICHN varchar (255) HNULL,

LIST ORDER int HOT NULL,

I5 DEFAULT bit HOT NULL,

I5 SYSTEM REQUIRED bit HOT NULL,

ROWIIMESTAMP datetime CCHSTRATNT DF__ADDRESS R ROWIT 1EBFI

CONSTRATINT ADDRESSROLEPE
PRIMARY KEY CLUSTERED (ADDRESS ROLE ID)

)

go
EXEC sp_bindefault °'PERFCNTR KE5.ET FALSE', 'ADDEESS ROLE.IS DEFAULT'
go

B EX =p bindrule 'PERFCNTE ES.TREUECEFALSE', K 'ADDEESS RCLE.IS DEFAULT'
(&l . 1 . . |

The editor window automatically inserts collapsible nodes in the appropriate lines of code for organizational purposes.
This enables you to expand and collapse statements, as needed, while developing code in particularly large or
complicated files.

Understanding Code Quality Checks

Code quality markers provide annotations that prevent and fix common mistakes in the code.

These notes appear in a window on any line of code where the editor detects an error, and are activated by clicking
the light bulb icon in the margin or by pressing Ctrl + |.

For example, if a statement reads select * from SCOTT.EMP, SCOTT.DEPT, when you click the light bulb icon or
press Ctrl + |, a window appears beneath the line of code that suggests Add join criteria.

When you click on a proposed fix, the statement is automatically updated to reflect your change.

The following common errors are detected by the code quality check function in the editor:

Code Quality Check Type

Definition

Statement is missing valid JOIN criteria

If a SELECT statement contains missing join criteria, when it is executed, it can
produce a Cartesian product between the rows in the referenced tables. This
can be problematic because the statement will return a large number of rows
without returning the proper results.

The code quality check detects missing join criteria between tables in a
statement and suggests join conditions based on existing foreign keys, indexes,
and column name/type compatibility.

Example
The following statement is missing a valid JOIN criteria:

SELECT * FROM employee e,customer c, sales_order s WHERE
e.employee_id = c.salesperson_id
The code quality check fixes the above statement by adding an AND clause:

SELECT * FROM employee e,customer c, sales_order s WHERE
e.employee_id = c.salesperson_id AND s.customer_id = c.customer_id

Note: This code quality check is valid for Oracle, DB2, and Sybase-specific
join conditions.

Invalid or missing outer join operator

When an invalid outer join operator exists in a SELECT statement, (or the outer
join operator is missing altogether), the statement can return incorrect results.

The code quality check detects invalid or missing join operators in the code and
suggests fixes with regards to using the proper join operators.

Example
The following statement is missing an outer join operator:

SELECT * FROM employee e, customer c WHERE e.employee_id =
c.salesperson_id (+) AND c.state = ‘CA’

The code quality check fixes the above statement by providing the missing
outer join operator to the statement:

SELECT * FROM employee e,customer c WHERE e.employee_id =
c.salesperson_id(+) AND c.state(+) = ‘CA’

Transitivity issues

The performance of statements can sometimes be improved by adding join
criteria, even if a join is fully defined. If this alternate join criteria is missing in a
statement, it can restrict the selection of an index in Oracle’s optimizer and
cause performance problems.

The code quality check detects possible join conditions by analyzing the
existing conditions in a statement and calculating the missing, alternative join
criteria.

Example
The following statement contains a transitivity issue with an index problem:

SELECT * FROM item i, product p, price pr WHERE i.product_id = p.product_id
AND p.product_id = pr.product_id

The code quality check fixes the above statement with a transitivity issue by
adding the missing join condition:

SELECT * FROM item i, product p, price pr WHERE i.product_id = p.product_id
AND p.product_id = pr.product_id AND i.product_id = pr.product_id

Code Quality Check Type

Definition

Nested query in WHERE clause

It is considered bad format to place sub-queries in the WHERE clause of a
statement, and such clauses can typically be corrected by moving the
sub-query to the FROM clause instead, which preserves the meaning of the
statement while providing more efficient code.

The code quality check fixes the placement of sub-queries in a statement,
which can affect performance. It detects the possibility of moving sub-queries
from the FROM clause of the statement.

Example

The following statement contains a sub-query that contains an incorrect
placement of a WHERE statement:

SELECT * FROM employee WHERE employee_id = (SELECT MAX(salary)
FROM employee)

The code quality check fixes the above statement by correcting the sub-query
issue:

SELECT employee.* FROM employee (SELECT DISTINCT MAX(salary) coll
FROM employee) t1 WHERE employee_id = t1.coll

Wrong place for conditions in a HAVING
clause

When utilizing the HAVING clause in a statement

It is recommended to include as few conditions as possible while utilizing the
HAVING clause in a statement. DB Optimizer™ detects all conditions in a given
HAVING statement and suggests equivalent expressions that can benefit from
existing indexes.

Example
The following statement contains a HAVING clause that is in the wrong place:

SELECT col_a, SUM(col_b) FROM table_a GROUP BY col_a HAVING col_a >
100

The code check fixes the above statement by replacing the HAVING clause
with equivalent expressions:

SELECT col_a, SUM(col_b) FROM table_a WHERE col_a > 100 GROUP BY
col_a

Index suppressed by a function or an
arithmetic operator

In a SELECT statement, if an arithmetic operator is used on an indexed column
in the WHERE clause, the operator can suppress the index and result in a
FULL TABLE SCAN that can hinder performance.

The code quality check detects these conditions and suggests equivalent
expressions that benefit from existing indexes.

Example

The following statement includes an indexed column as part of an arithmetic
operator:

SELECT * FROM employee WHERE 1 = employee_id - 5

The code quality check fixes the above statement by reconstructing the
WHERE clause:

SELECT * FROM employee WHERE 6 = employee_id

Code Quality Check Type Definition

Mismatched or incompatible column When the data types of join or parameter declaration columns are mismatched,
types the optimizer is limited in its ability to consider all indexes. This can cause a
query to be less efficient as the system might select the wrong index or perform
a table scan, which affects performance.

The code quality check flags mismatched or incompatible column types and
warns that it is not valid code.

Example

Consider the following statement if Table A contains the column col int and
Table B contains the column col 2 varchar(3):

SELECT * FROM a, b WHERE a.col = b.col;

In the above scenario, the code quality check flags the ‘a.col = b.col’ part of the
statement and warns that it is not valid code.

Null column comparison When comparing a column with NULL, the '=NULL condition may return a
result that is different from the intended command, because col=NULL will
always return a result of false. Instead, the NULL/IS NOT NULL operators
should be used in its place.

The code quality check flags occurrences of the I=NULL condition and replaces
them with the IS NULL operator.

Example
The following statement includes an incorrect col = NULL expression:
SELECT * FROM employee WHERE manager_id = NULL

The code quality check replaces the incorrect expression with an IS NULL
clause:

SELECT * FROM employee WHERE manager_id IS NULL

Understanding SQL Templates

DB Optimizer provides code templates for DML and DDL statements that can be applied to the Editor via the (Ctrl +
Spacebar) command. When you choose a template from the menu that appears, SQL Editor automatically inserts a
block of code with placeholder symbols that you can modify to customize the code for your own purposes.

£ CREATE_TABLE - creates a tabls with 3 columns [CREATE TABLE schemahlame. tableblame

£} CREATE_TABLE - creates and populates a table w Ed_mnmmi dataType! PRIMARY KEY,
E}{ CREATE_TRIGGER - creabes a database trigger columniames dataTypez ,
columiniarme3 dakaTypes

~-define other columns

K

Code templates are available for DML, ALTER, DROP, CREATE, and platform specific commands.

There are 267 templates available for all supported platforms and respective versions. You can modify and create new
templates via the SQL Templates panel on the Preferences dialog. See Set SQL Code Template Preferences for
more information on how to create and alter SQL code templates.

View Change History

Each time an SQL file is saved, the local history of that file is recorded (changes made). Using the Local History
command, you can view all changes made to the file. Local History is accessed via the shortcut menu of SQL Editor
and selecting Compare With > Local History.

o

5
Eensun.sql (test.sqgl (ED Compare Benson.sgl Current and Current Revision &3 = [
TextCnmpare (4] < At P
Local: Benson.sgl
}IZREILTE TABLE dbo.benson CREATE TABLE dbo.ben=on
i |
job char (8) HOT NULL job char(8) NOT 1
zal numeric (38,0} HOT NULL =zal numeric(38,0) NOT]
loc numeric (38,0) HOT NULL loc numeric(38,0) NOT]
COMSTRAINT pick CONSTRRINT pijok
FRIMARY EEY CLUSTERED (job PRIMARY EEY CLUSTERED
))
go go
IF OBJECT ID|('dbo.benson') IS IF CBJECT ID('dbo.benscon')
PRINT '«<<< CEREATED T4iBLE d PRINT '<«<< CREATED TAB
ELSE ELSE
PRoNT '<<< FATLED CREATTHG PRoNT '<<< FATLED CREA]
go gao
(4] 1 |] (%] i | (*]
T i]
SQL Log FSEL SQL Erro ﬂ:ﬁ Problem (z. Tasks (Eu] Bookmar E: CQutline (@ History &3 = O
. = o
Benson.sgl -:éh <~}==E> | 2 ﬂg E||E;|
Revision Time
E 05/02/08 11:45 AM
B 04/02/08 11:43 AM
[i] i] [i]

* The History view displays all recorded times the file was changed since its inception/introduction into the
workspace.

« Double-click a time in the History view to access the Text Compare panel. It displays the text of the file after the
change occurred at the time indicated in the History view.

Revert to an Old Version of a File

The Replace With > Local History command provides you with the ability to revert a SQL file back to a previously

recorded local history.

To replace the contents of a file with the contents of a previously saved version via local history:
1 Right-click the SQL Editor and select Replace With > Local History from the shortcut menu.

The Replace from Local History dialog appears.

p
o=
= Com

pare

=

<]

S50 Project 1/Benson. sql

Revision Time

04/02/08 11:43 AM

7o
iIF Q

[ELSE

[, Texe Compare
EE} Warkspace Fie

COMSTRAINT pich
PRIMARY EEY CLUSTERED (3ob)

[
13 WOT WUl
‘<< CREATED TASLE dr,n.ber.:!

BJECT_ID("dbo.benson’)
PRINT

[B Local Hstory (0402108 11:43 AM]

CONSTRAINT pick
FRIMARY EEY CLUSTERED (3ab)
}

|
PRONI '<<< FAILED CREATING TASLE —
i

],

Foy

1
"1

go |
IF OBJECT_ID("dbo.bensen') I3 NOT
BRINT '<<< CREATED TASLE cho.
ELSE |
PRINT '<<< FAILED CREATING TA||
ga [
[] [

!

L Replace ” Cancel

2 Inthe Local History of
timestamp.
3 Click Replace.

The contents of the currently-opened file revert to the contents of the file at the history point you selected in the

dialog.

Alternatively, from the shortcut menu, select Replace With > Previous from Local History to replace the contents of

the file with DB Optimizer™’s last recorded history point.

Delete an SQL File

To delete a file, right-click its icon in the SQL Project Explorer and select Delete. This will remove the file from both

the SQL project and the file system.

Executing SQL Files

DB Optimizer™ can execute SQL code directly on registered data sources.

... panel, select a previously recorded version of the file by clicking the appropriate

Files are executed via the Execute SQL command in the Run menu, or by clicking the green arrow button on the
toolbar.

When an SQL file is open in the Workspace, select it and choose a database and an associated catalog on which you
want to execute the file via the lists in the Toolbar.

You can click the execute icon to execute code on the specified database and catalog, start a transaction or commit a
transaction, or modify SQL session options prior to execution.

To execute afile:

Open the SQL file you want to run, ensure it is associated with the correct database, and click Execute. DB
Optimizer™ executes the code on the data source you specified. Results are displayed in the Results view and can
be exported into a file via the Data Export wizard, or displayed in multiple file formats (HTML, XML, and TXT formats).

To execute a transaction:

To execute transactions, you need to ensure that the auto commit feature is turned off. See Set SQL Execution
Preferences for more information on how to turn off auto commit.

Open the transaction file you want to run, ensure it is associated with the correct database, and click Start
Transaction. DB Optimizer™ executes the transaction on the data source you specified.

Once the transaction runs, you can execute the file as normal.

NOTE: Click Commit or Rollback to finish or cancel a transaction.

To commit a transaction:

Open the transaction file you want to commit, ensure it is associated with the correct database, and click Commit
Transaction. DB Optimizer™ commits the transaction on the data source you specified.

You can set transactions to auto-commit prior to execution on the SQL Execution node of the
Preferences panel.

See Also:

Associate an SQL File with a Data Source
Configure a SQL Session

Execute SQL Code

View and Save Results

Associate an SQL File with a Data Source

When working with files, SQL Editor enables developers to view and change the data source to which they are
connected.

The bread crumb line in SQL editor is used to display and specify a data source in relation to the specified SQL Editor
file. The menu contains a list of all registered data sources. Additionally, on platforms that support catalogs, these are
displayed as well.

73 *Untitled SOLS () =
b i} Microsoft SGL Server b [ROMLABSCLOS 1 (9.0.3054.00 ¢ [master B .1

select * from dbo.Customers:

Changing a catalog via the drop down lists is the equivalent of issuing a USE DATABASE command on SQL Server,
Sybase, and MySQL platforms. Any change will not affect the current connection, and the list automatically updates to
display the name of the newly selected data source.

If no registered database is associated with a SQL file (as would be the case if a user started a new, unsaved file), the
list is empty. This indicates that the file is not connected to a registered data source.

To change or associate a registered data source with a SQL file:

Click the database list and select the name of a registered database from the list provided. Depending on the state of
the code in SQL Editor, DB Optimizer™'’s behavior differs when the connection is made:

If you are receiving multiple syntax errors, always check that the file is associated with the correct
data source and corresponding database/catalog before troubleshooting further.

Configure a SQL Session

The SQL Session Options dialog provides configuration parameters that indicate to DB Optimizer™ how to execute

code in the development environment.
-\
- \2)es

ﬁﬂ S0L Session Options

SQL Session Options

Spedfy the SQL session options for the current editor,

~

Property Value
[=| Ansi Defaults
Setansi_nulls false
Set ansi_padding false
Set quoted_jdentifier true
Set ansi_warnings false
Set ansi_null_dfit_on false
[=] Arithmetic
Ignore Arithmetic Owverflow false
Abort On Arithmetic Overflow false

[=I Transactions
Isolation Level

Read Committed

Set implicit_transactions false
Set cursor_dose_on_commit false
[=| Result Set
Maximum Rows in Result Set [¥]
Maximum Mumber of Bytesina ... 2048
Query Timeout (seconds) i
':':’:' Finish l [Cancel

To modify SQL session options:
1 Click the SQL Session Options icon in the Toolbar.

The SQL Session Options dialog appears.
2 Click on individual parameters in the Value column to change the configuration of each property, as specified.
3 Click Finish.
The session options will be changed and DB Optimizer™ will execute the code as specified when you execute it.

Session options only apply to the corresponding editor and are not retained when executing multiple SQL files.

Execute SQL Code

Files can be launched from within the DB Optimizer™ development environment for execution on a registered data
source Files are executed via the commands in the Run menu.

When a SQL file is open in the Workspace, select it and choose a database and an associated catalog on which you
want to execute file using the drop down menus in the Toolbar. You can click the execute icon to execute the code on
the specified database and catalog, start a transaction or commit a transaction, or modify the SQL session options
prior to execution.

To execute code:

Open the SQL file you want to run, ensure it is associated with the correct database and click the Execute icon. DB
Optimizer™ executes the code on the data source you specified. Results are displayed in the same tab or in a new
tab.

To execute a transaction:

Open the transaction file you want to run and ensure it is associated with the correct database, and then click the
Start Transaction icon. DB Optimizer™ executes the transaction on the data source you specified.

To commit a transaction:

Open the transaction file you want to commit, ensure it is associated with the correct database, and then click the
Commit Transaction icon. DB Optimizer™ commits the transaction on the data source you specified.

You can set transactions to auto-commit prior to execution on the SQL Execution node of the
Preferences panel in DB Optimizer™.

View and Save Results

Once a file has been executed, the results are displayed in the Results view. Here, you can examine the outcome of
the execution process, as well as save the results in other file formats, as needed.

You can view results in the following formats:
e HTML
e XML

o TXT

To save results:

1 Right-click on the Results view and select Save Data. The Save Data dialog appears.

*F Save Data

Save data to a file
Save data ko a specified file type.

Enter or seleck the parent folder;
. MyProject

=T

@ = MyProject

File nanme: [result

File type: |Delimited bext files (*.csv, *.ppe, *.tab, *.txt)

Delimited text files (*,csv, ™.
Excel files {*.xls)
[inchude apat_files (% i)

2 Select the project name to which you want to save the results, enter a file name, choose the file parameters, and
then choose a file format from the drop down menu. You can select delimited text file, Excel, XML, or HTML file
formats.

3 Click Finish. The results are saved in the directory location and format that you specified.

Troubleshooting

DB Optimizer™ contains a number of views used exclusively to log and monitor the SQL development process.

e The SQL Log captures all SQL commands executed by SQL Editor and the system. SQL Log entries are listed
by SQL Statement name, Date issued, Host/Server, Service, User, Source, and the Time (in milliseconds) it

took to execute the command.

| 501 Log 37 f,f""_:QLErn:rs:' [Problems | 2] Tasks| Clll Bockmarks | S= Cutine | [History =

B Bk E~

S0L Shatement Date HestfServer || DEMS
% €3 ALTER TABLE dbo.testapps ADD COMSTRAIMT C¥_123 CHECk 2008-02-04 11:06:12.656 datotbid SQLServer =
© & CREATE TASLE dha.benson [jab char(3) NOTMNULL, =alm 2008-02-04 11:05:53.00 datath 19 SOLServer &

] IF OBIECT_ID{dbo.benson’) IS MOT MULL PRINT *<<< CREATEL 2008-02-04 11:05:53.171 datoth19 SQLServer €

%]

« The SQL Errors log automatically logs all SQL errors encountered when SQL commands are executed through
DB Optimizer™. Errors are listed by Error Code, SQL State, error Details, Resource, and the Location of the

error in the SQL file.

([l s Log | % squErmors &1 . [21 Problems | v Tasks | Ll Bockmarks | BT outine | & Hetory = = O
Error Code 24l State Datais Resource Location
170 37000 Line % Incorrect symtax near PROMT. Benzon.zql line 13
170 37000 Ling 8: Incorrect syntac near ‘sdasd’, Berson.sql ine 8

* The Problems view captures syntactic and semantic errors and warnings in the files of the workspace. These
entries typically take the form of error messages or warnings issued by the system over the course of a
procedure execution. Problems are organized by Description (which indicates the type of problem logged),
Resource, file Path, and Location. Using the Problems view, you can apply quick fixes to issues that DB
Optimizer detects, as well as locate other problems that have similar attributes.

] 50L Log | % SOu Errors |20 Problems 52 . = Tasks | (Il Backmarke | GF Outine | & History .
0 errars, 0 wernings, 0infos |
Dasoipbon - Resource Path Laocation
See Also:

¢ View Log Details
¢ Maintain Logs

« Filter Logs

¢ |mport and Export Error Logs

¢ Find and Fix SQL Code Errors

¢ Find and Fix Other Problems

View Log Details

The SQL Error Log and Problems views contain functionality that enable you to view details regarding individual log
entries, and in some cases, locate or fix those issues automatically.

To view details about SQL Errors entries:
Right-click the error whose details you want to view and select SQL Error Details.

&4 SQL Error Details

@ Line 4: Incorrect syntax near 'PRoMT',

Reason:
Batch: 2

Line: 12

Position: 0

Error Code: 170
S0L State: 37000

Details: Line 4 Incorrect syntax near 'FPRoMT'.

The SQL Error Details dialog provides information about the specified SQL error.

Additionally, you can double-click the error to view the problem code in SQL Editor.

To view details about Problems

« Right-click the entry whose details you want to view and select Properties. The Properties dialog appears,
summarizing the issue.

Maintain Logs

The SQL Log and SQL Errors views both contain commands that enable you to save, restore, or otherwise move log
entries into files outside of DB Optimizer™. Additionally, both views also contain commands that enable the clearing of
the view.

The current editor option will only show users statements as generated by the active editor.

To maintain log entries:
All entries automatically captured by the Error Log are written to a file (.log suffix) that resides in the Workspace

.metadata folder.
* From DB Optimizer™, right-click in the SQL Log and select Clear Log Viewer to remove all messages.

< In the shortcut menu, select Delete Log to delete the .log file. If entries are created after the Delete Log
command is issued, DB Optimizer™ will automatically generate a new .log file in the .metadata subfolder.

NOTE: Old Error Log entries cannot be recovered once the .log file is deleted. To prevent data loss,
archive the .log file via the Export command prior to deletion.

« To clear the Error Log view without deleting the .log file, select Clear Log Viewer from the shortcut menu. The
View will be cleared of entries, but these entries will still be contained in the .log file.

« To restore the Error Log view based on the entries contained in the .log file, select Restore Log from the
shortcut menu. The View is restored based on the entries in the .log file.

Filter Logs

Filters can be applied to Problems, SQL Log, and the SQL Error Log to limit searches when troubleshooting and
pinpointing specific processes within the system.

To filter the SQL Log:
¢ Select the Toolbar Menu icon (the downward-pointing arrow in the right-hand corner of the view) and choose
Filters. The SQL Log Filters dialog appears.

-

&1 SOL Log Filters

S0L statement types
Successful

Failed

Limit display statements to: | 100

<]

[] show statements with host:

Filter by source

User

[|By current editor
] system generated
Unavailable source

QK l [Cancel

« Inthe SQL Statement Types frame, select Successful or Failed to filter by the type of Error Log entries.

e Select Limit display statements to indicate a maximum limit of the number of entries displayed in the Error
Log, and enter the maximum entry value in the corresponding field.

« Select Show statements with host to indicate that only entries from a specific data source are to be displayed,
then type the name of the data source (as it appears in the Database Explorer) in the corresponding field.

« Inthe Filter by Source pane, specify User, System Generated, or Unavailable Source to filter statements by

the type of source from where they originated.

To filter the Problems log:

Select the Toolbar Menu icon and choose Configure Filters. The Filters dialog appears.

&4 Filters

[X]

Wger filkers:
|+ Defautt

(%) On any elemant

O Cm any elemant in same project

{7 On sefactad alement anhy

{1 0 selacted alement and its childran

() On working setz «<no working set selected >

Description n:untans ;_VJ

e

Remave

[t v e smvemily i

[sectal || oessiectal |

®

Showe items of byae:

Problem
|w] SQL Errar Marker

|4.] ' [

| seectan || vessectan |

Restore Defaults

[ox J[conce |

The Filters dialog enables the creation of multiple filter profiles that can be applied to the log via the Toolbar
Menu. The User Filters panel on the left-hand side of the dialog displays all existing filter profiles stored in the
Workspace. Initially, the Workspace only contains the Default filter profile. Selecting it displays its filter
parameters, and selecting the check box associated with its name enables the filter in the Problems view (only
problems that match the criteria defined in the Filters dialog will appear in the view).

The ability to define different profiles enables the selection of multiple filter profiles. For each profile selected, the
profile criteria is applied to the View, concurrently. You can filter problems by:

* Working Set

« Character String
« Problem Severity
¢ Problem Type

« A combination of the above four filter options

Profile Criteria Description

Working Set The options located in the center of the dialog enable you to filter problems based on defined Working
Sets. A Working Set is a collection of user-defined Project files that you can organize, as needed, in
DB Optimizer™. Select an option, and then click Select to define a Working Set to which the
parameters apply. If no Working Sets exist, you need to define one or more via the New button on the
Select Working Set dialog.

Select one or more Working Sets to which you want the criteria to apply. If no Working Sets exist, or
none suitably match the current filter criteria, click New or Edit to define a new Working Set, or edit
an exist Working Set, respectively.

Character String Use the Description list to select contains or doesn’t contain, as needed, and type the character
string in the field below the list. The Problems view is filtered to only contain, or omit, problem
descriptions that fully or partially match the string value.

Problem Severity | Select the Where severity is check box and choose Error, Warning, Info, or some combination of
the three check boxes. Only entries whose severity matches the check boxes you have selected
remain visible in the Problems view.

Problem Type The options in the Show items of type list on the right-hand side of the dialog enable you to filter
problems by type. Deselect Problem to remove any system entries from the view, or deselect SQL
Error Marker to remove any SQL code entries from the view.

Once you have defined and/or selected the appropriate filter profiles, the profiles will appear in the Filters
submenu in the Toolbar Menu of the Problems view. Select or deselect the profiles from the submenu, as
needed.

Import and Export Error Logs

Error messages are written to a file named .log located in the Workspace directory .metadata folder. This file can
(and should) be cleared periodically via the Delete Log command to prevent performance issues with regards to
system memory and file size. However, the Export command enables you to archive log files prior to deletion. The
files created by the Export command can then be imported back into the Error Log as needed at a later point in time.

To export the SQL Log:

Right-click the SQL Log view and choose Export Log. The log is saved in the specified directory path with a .log
extension.

To import the Error Log:

Right-click the SQL Log view and choose Import Log. Select the previously exported .log file. The Error Log view is
restored with the entries from the specified export file.

Find and Fix SQL Code Errors

The SQL Errors view contains an option that enables you to navigate directly to the resource associated with an error
entry.

E‘ﬂ Benson.sgl &4 D sglLog.log
CONSTEAINT pjob
PRIMARY EKEY CLUSTERED (job)
)
go
IF CBJECT ID('dbo.benson' IS5 NOT NULL
PRINT '<<« CREATED TAEBLE dbo.benson >>>'
ELSE
b PRoNT '<<«< FAILED CREATING TABLE dbo.benson >>>'
0

To navigate to the source of a SQL error entry:

right-click the entry to which you want to navigate and select Go To. The file to which the error applies automatically
opens in a new instance of SQL Editor, and the line is highlighted in the window.

Find and Fix Other Problems

By default, the Problems view organizes problems by severity. You can also group problems by type, or leave them
ungrouped.

The first column of the Problems view displays an icon that denotes the type of line item, the category, and the
description. Click the problem and DB Optimizer™ will open the SQL file and automatically highlight the line that
triggered the issue.

You can filter Problems to view only warnings and errors associated with a particular resource or group of resources.
You can add multiple filters to the view, as well as enable/disable them as required. Filters are additive, so any
problem that satisfies at least one of the filters will appear.

Problems can sometimes be fixed via the Quick Fix command in the shortcut menu. The Quick Fix dialog enables
you to apply a fix to a problem detected by the view. The dialog also provides a list of similar problems to the one you
selected, and enables you to apply a fix to multiple problems at the same time.

ra

2)

i» 33 warnings, 0 infos
iplion -~

[5]
iy
44
14 4]

iy

4§
il
i

[}
i)

4

s

b Using the CONYERT() Function suppresses index usage

Lisineg the LEMN() function suppresses index usage

 Usineg the LEM() Function suppresses index usage

Lising thee LEM() Funchion suppresses index usage

Lsing the ROUNCY) Function suppresses index usage
Lising the ROUND() Function suppresses index usage
Lisireg thee SUBSTRING() Function suppresses index usage
Using the SUBSTRING() Function suppresses index usage
LUsinig the SUBSTRING() Function suppresses index usage

1 Lsineg thee TRUNCE function suppresses index usage

Lising the TRUNC() Function suppresses indesx usage

& Using the TRUNC() function suppresses index usage
s Lisirng the TRUNC() funckion suppresses index usage
b Using the TRUNC() function suppresses indax usage
) Lising the TRUNC() function suppresses index usage

Sybase.sql
Sybase.sql
Sybase.sql
Syvbase. sql
Sybase sql
Svbase.sql
Sybase.sql
Svbase.sql
Sybase sql
DEZ.sql

DBz2.sql

DE2.sql

DEZ.5ql

MyFile.sql
MyFile. sl

& Quick Fix

Select a fix

Salect the Fix For “Using the TRUNCO
fumction suppresses index usage”.
Salact a Fix:

dii.

—

Problams:

Resource Location |~ Select Al

DEZ.5q fine 151 '

& Sybase.sql line 181
RR i s
& Sybasesgl hne 167

& pB2.sq line 90 '

[+] & pg2.sql line 103

& DB2Z.5ql line 146)

@ ok][concet |

To apply a quick fix to an issue in the Problem view:

1 Right-click on a problem in the list and select Quick Fix from the menu. The Quick Fix dialog appears.

2 Select a fix from the list provided and click OK. DB Optimizer attempts to resolve the issue.

To find similar issues:

1

In the Quick Fix dialog, click Find Similar Problems. The Problems list populates with all of the issues that are

similar to your initial selection.

Use the check boxes beside the problems to select them, and then choose a fix and click OK. DB Optimizer

attempts to resolve all of the specified issues.

Configuring DB Optimizer™

This section contains information on configuring DB Optimizer. It includes information on setting up the system
directory for project files, as well as licensing information. Additionally, this section contains information on setting
preferences within the application for the customization of various features and functionality.

Initial Setup
Customizing DB Optimizer™ (Preferences)

Initial Setup
The following topics provide general help for configuring DB Optimizer:
Specify a Workspace

License DB Optimizer™

Additionally, the following preferences are available to help you customize and tune functions within the application:
Set Index Configuration Preferences

Set SQL Editor Preferences

Set SQL Execution Preferences

Set Code Assist Preferences

Set Code Formatter Preferences

Set Results View Preferences

Set Syntax Coloring Preferences

Set SQL Code Template Preferences
Set File Encoding Preferences

Specify a Workspace

When you start Eclipse or the DB Optimizer™ standalone application for the first time, you are prompted to create a
workspace.

-

#- Workspace Launcher

Select a workspace

Embarcadera DB Opkimizer stores your prajects in a Falder called a warkspace,
Choose a waorkspace Folder ko use Faor this session,

Wirkspace: : Ci\Documents and Settingstalinacidboptimizeriworkspace] v

[Juse this as the default and do not ask again

(0]4 l [Cancel

Click Use this as the default and do not ask again to set the specified folder as the permanent default workspace.
For more information about workspaces, see Help > Help Contents > Workbench User Guide.

License DB Optimizer™

The first time you first launch DB Optimizer™, you will be prompted to activate the product. Choose to activate by
Internet and follow the prompts. During the activation process you will receive an email with an activation key; after
you enter that key into the License Setup dialog, you will receive a free 14-day evaluation license.

If due to firewall or other restrictions you cannot use Internet activation, select the E-mail alternative. If that does not
work either, select the Phone alternative.

To continue using DB Optimizer™ after the evaluation period, select Help > Embarcadero Licensing > License
Registration and follow the prompts, or visit the Embarcadero online store at

http://www.embarcadero.com/store.html.

Customizing DB Optimizer™ (Preferences)

To customize various aspects of DB Optimizer™, select Window > Preferences > SQL Development. For
information on categories that may not be covered in this section, see Help > Help Contents > Workbench User
Guide or Help > Help Contents > Debugger, respectively.

Set Index Configuration Preferences
The Data Source Index is a local repository that stores the schema of registered data sources in DB Optimizer™. It is
automatically set to index information about data sources registered in the development environment.

By default, the Data Source Index captures all catalogs, functions, procedures, tables, and views. Additionally, after
the initial index, the index performs incremental captures of information.

http://www.embarcadero.com/store.html

However, there is a definitive trade-off when indexing a full database schema. The time it takes to fully capture a large
schema and logical space considerations on local workstations, often makes it inefficient for DB Optimizer™ to
perform this task each time a new data source is registered in DB Optimizer™. Thus, the Index can be configured via
the DB Optimizer™ Preferences dialog to accommodate machine processing ability and speed.

By default, when a data source connects to DB Optimizer™, the Index automatically begins indexing its schema.

Index Configuration parameters enable you to indicate how schema caching behaves by specifying at what level
data source objects will be indexed, the specific catalogs, schemas, and data source objects to index, and other
factors that speed up the indexing process at a cost of slower retrieval for those objects not indexed by the process.

Additionally, over the course of a DB Optimizer™ session, index information is periodically updated by DB
Optimizer™. The index refresh process uses the same specified parameters as the initial indexing process and
therefore can cause application slowdown and performance issues if the index behavior has not been configured in an
efficient manner.

DB Optimizer also provides the ability to index at the individual data source level. In Data Source Explorer, right-click
on a data source and select Properties, then on the Properties dialog, choose Data Source Indexing to access
index options for the specified data source.

To configure the global index:
1 Select Window > Preferences > SQL Development > Data Source Indexing. Change the settings as
appropriate:

« The tree view displays a list of database objects as they are organized in the Database Explorer view. Use the
check boxes beside each object to specify the data sources that are to be included in the indexing process.

« Select Clear Index to delete the Object Index each time the application is started.
« Select the Apply SQL Filters tab if you want to apply any pre-defined filters to the index.

« If you are having performance problems due to a caching issue (such as a configuration error), the Stop
Indexing, Clear Indexing, and Start Indexing buttons enable you to stop, clear, and/or restart the index
process, respectively.

« The Max. number of objects to index field indicates how many logical data source objects can be indexed
before the Index has reached maximum size.

« The Objects to include in index pane contains a list of data source objects. Select or clear the check boxes
beside each data source object to indicate the specific data source objects that are included and excluded,
respectively, from the indexing process.

¢ The Index Expiration Time (hours) setting indicates that an index job will not start automatically until the
specified number of hours have passed. The index can also be started manually via Start Indexing.

2 When you are finished configuring the Index, click Apply to save your changes.

To configure individual data source indexing:
1 In Data Source Explorer, right-click on the data source you want to specify indexing, and select Properties. The
Properties dialog appears.

2 Choose Data Source Indexing and modify the properties, as required:

e Choose Enable Data Source Specific Settings to indicate to DB Optimizer that you want to specify individual
indexing properties for this data source. Data sources that do not have this option selected will index under global
indexing parameters.

The tree view displays a list of database objects as they are organized in the Database Explorer view. Use the
check boxes beside each object to specify the data sources that are to be included in the indexing process.

« Select Clear Index to delete the Object Index each time the application is started.
« Select the Apply SQL Filters tab if you want to apply any pre-defined filters to the index.

« If you are having performance problems due to a caching issue (such as a configuration error), the Stop
Indexing, Clear Indexing, and Start Indexing buttons enable you to stop, clear, and/or restart the index
process, respectively.

« The Objects to include in index pane contains a list of data source objects. Select or clear the check boxes
beside each data source object to indicate the specific data source objects that are included and excluded,
respectively, from the indexing process.

* The Index Expiration Time (hours) setting indicates that an indexing job will not start automatically until the
specified number of hours have passed. The index can also be started manually via Start Indexing.

Set SQL Editor Preferences

1

2

Select Window > Preferences > SQL Development > SQL Editor.
Change the settings as appropriate in each section and then click Apply.

e Severity Level for Semantic Validation Problems determines how semantic code errors are flagged in the
editor and the Problems view.

¢ The link to specify hyperlinks takes you to the Text Editors preference page.

NOTE: Clearing Enable SQL Parser will disable many of the “smart” SQL editor features, including code
formatting, auto completion, semantic validation, and hyperlinks. For better performance, you
may disable the parser for files above a specified size.

Set SQL Execution Preferences
Select Window > Preferences > SQL Development > SQL Editor.

NOTE: If you disable auto-commit for a platform, you must use SQL Editor’s transaction features to
execute code on that platform.

Set Code Assist Preferences

The Code Assist panel is used to specify configuration parameters that determine how code completion features in
SQL Editor behave.

Select Window > Preferences > SQL Development > Code Assist.

Enable Auto Activation enables or disables code assist functionality with the Ctrl + Space command. If this
option is selected, the code assist window automatically appears when you stop typing. Specify the amount of
time in milliseconds that the window automatically appears in the Auto Activation Delay field beneath the
option.

Insert Single Proposals Automatically specifies if only a single code completion suggestion is returned, it is
inserted automatically.

Fully Qualified Completions Automatically specifies if code completion results are returned specific (fully
qualified), rather than the minimum required to identify the object.

« Code Assist Color Options specifies the color formatting of code completion proposals. Select background or
foreground options from the menu and modify them as appropriate.

Set Code Formatter Preferences
The Code Formatter pane provides configuration options for code formatting functionality in SQL Editor.

Select Window > Preferences > SQL Development > Code Formatter.

The panel provides a drop down list of formatting profiles and a preview window that displays how each profile formats
code.

* Click New to define additional code formatting profiles.

« Click Edit to modify existing profiles. You can modify how code characters appear in the interface and how SQL
Editor determines line breaks.

* Click Rename to change the name of an existing profile. The new name cannot be the same as another existing
profile.

NOTE: If you create a new profile with a name that already exists in the system, a prompt will appear
asking you to change the name of the new code formatting template.

Set Results View Preferences
The Results Viewer pane provides configuration options that specify how the Results view displays results.

Select Window > Preferences > SQL Development > Results Viewer.
« Grid Refresh Interval indicates the speed in milliseconds that the Results view refreshes.
« Stripe the Rows of the Results Table adds intermittent highlighted bars in the Results view.

« Display Results in Separate Tab in SQL Editor opens the Results view in a separate window on the
Workbench.

Set Syntax Coloring Preferences
The Syntax Coloring panel provides configuration options that change the look and feel of code syntax in SQL Editor.

e Select Window > Preferences > SQL Development > Syntax Coloring.

Use the tree view provided in the Element window to select the comment type or code element you want to modify.
Select the options to the right-hand side of the window to modify it. The Preview window shows a piece of sample
code that updates according to the changes you made.

Set SQL Code Template Preferences

The SQL Templates panel provides customization options for creating and modifying SQL code templates.

¢ Select Window > Preferences > SQL Development >SQL Editor > SQL Templates

The SQL Templates panel displays a list of all SQL code templates currently available. Additionally, when you select
a template from the list, the Preview section displays the code block as it will appear when the template is selected in
SQL Editor.

Templates L=l
Create, edit or remove templates:
Marme Context Description Auto In.,. |
ALLOCATE_CU... DB2(3, 9) sllocates a cursor For the result .. an 3
ALTER_TABLE DEZ (8, 9) alters a table on
ALTER. TABLES... | DBZ (3, 9) alters a tablespace on
ALTER_VWIEW DeZ (8, 9) alters a view on =
ALTER_FUNCTION DEZ (3, 9) alkers a Function on
ALTER_METHOD DBZ (8, 9) alters a method on Restore Removed
ALTER,_PROCE... DBZ (S, 9) alters a procedure on
ALTER_SEQUEN... DEZ (3, 9) alters a sequence on Reyert to Default
CALL DBZ (8, 9) calls a procedure on
COMMIT DB2 (8, 9) commits the database changes ... on
DECLARE_GLOB... DBZ (5, 9) defines a temporary table for t... on
DISCOMNECT DBZ (5, 9) destroys one or more conneckions on
L&l mocvn B3 IMcTIOM REs fe ah Arnire = Fairurkion nn hd
Preview:

ALTER TABLESPACE #{tablespacelName}
ADD (DEVICE 'i{container3tring}’ f{integervalue) M |
ADD (FILE '§{containerStcring}’ f{numberOfPages))

E:lm code Formatter]

[Restore Eefa:.tsl [Bpply

Click on the check box beside each template to specify if it is included in the code assist check or not, within SQL
Editor. Use the buttons on the right-hand side of the panel to create, edit, or delete SQL templates, as needed.

When you create or edit a template, the Edit SQL Template dialog appears.

*¥ Edit SOL Template

MNaime: | ALTER_TABLESPACE | Eddit context V] Automatically insert
Description: | adds a datafile to tablespace '

Pattern: Al TER TABLESPACE ${tablespoehlame}
ADD DATAFILE “${fileName}’
AUTOEXTEND OM NEXT $4{autoE:dendvalus} MAKSIZE ${maxSizevalus);

[Cracle (i, 9, 109, 11g) |

@ o J[conca]

Enter a Name, Description, and Pattern in the fields provided, and click OK. If the template name doesn’t match an
existing SQL code template, your new template is added to the list, and will automatically be considered when the
code assist function is executed in SQL Editor.

Select the Use Code Formatter check box to apply code formatting preferences to the specified template. See Set
Code Formatter Preferences for more information about setting code formatter preferences.

Set File Encoding Preferences
The Workspace panel provides options for unicode support in SQL files.

¢ Select Window > Preferences > General > Workspace

* Preferences

type Filter bext . Workspace e
& General See "Startup and Shutdown’ For workspace startup and shutdown preferences,
B Appearance
Compare/Patch))
& Ediors [Refresh sutomatically
Keys [J5ave automatically before buid
B Metwark Conrections
Perspectives
Search Workspace save interval (in minutes): | S
Starbup and Shutdown
::b] Cpen referenced projects when a project is opened
Come
& wm D_N“'ﬂ's G_w“'ﬁf E}I_‘:"'?:
Diata Sources p -
[+ Help Text file encoding New bext fils ine delimter
i InstallfUpdate) Defaulk (Cp1252) () Def auk
B Model Yalidation [1
Run/Debug ¥ O Otper:
[+ SOL Developevent “‘
- SOL Visualization
 Team [Restore Defauits | | apply |
W
&
@ | ok [concel |

The default encoding for text files on Windows platforms is Cp1252. You can change unicode support in from file to
file using the Text File Encoding options available on the Workspace panel.

To change text file encoding in the development environment:
1 Select Window > Preferences > General > Workspace and click the Other option under Text File Encoding.
2 Use the drop down menu and select an encoding mode from the list provided. Click Apply to keep your changes.
To change text file encoding on a specific, folder, or project in:
1 Right-click on the file, folder or project that you want to modify and choose Properties.

2 Modify the encoding selection on the Resource properties page that appears.

Using Profiling

Profiling continuously samples the data source to build a statistical model of the load on the database. Profiling can be
used to locate and diagnose problematic SQL code and event-based bottlenecks. Additionally, profiling enables you to
investigate execution and wait time event details for individual stored routines. Results are presented in the profiling
editor, which enables users to identify problem areas and subsequently drill down to individual, problematic SQL
statements.

For details on working with profiling, see the following topics:

* Understanding the Interface

¢ Running a Profiling Session

« Configuring Profiling
¢ Using Load Editor

Understanding the Interface

The profiling interface is divided into three major parts:

ET10A~ Em:'-u- v H:arhg:_-m- ¥ < | D
Frofile Session B g
E BONCPL B Systam B W Usar U0 0 Clushar B Apphication B Conhguratan B Commid B Matwok BAdminisiative BConcumancy [Schadular 1§ Othar
-
s
¥
2
-1
£,
E

BB overven| B 50| @ mvens |7 sessons|

50L Statements Events Setgiong |
e achity(w) | A et | Achey () <| A Liter F Program SIDjseel | Mctery(%) ~| &
m OV [[EE OHORU — 55,13 SFETEM [Exaoutor ang 135, 21553] nm
o SELECT COLL.'SYSTEM 715 jeb stheduer_ . deve wat BN .60 CRACLEENE [CTWR) 1563 1 2542
#3 DEERT T, OAECT D W B0E || e sequentisl read] .44 ORACLE.ENE (C304) 162, 1 = .67
i e [3393152364) | 1.4% ok B papiberad read i 13 CRACLE.EVE (ralblil]) 1it, X540 3,43
i wegun [146 10393 PR garitngd S pednnbal read 0.3 SYETEM [Snedctoreae 143, 2554) in
@E“{SE.TI‘II’...E"E.LEES 05F o file paradsl perite 0.23 ORACLE.ENE [SMON) 164, 1 I 3
B TRUBWZATE .5 BATa_t [Lath; lrary cache .12 SYETEM [Exeastor.exe | 111, Z3ERY) L3
+5 PEEAT D . Fres, LR L] o e paealad wrife L5 SYITEM [Enetutorene | 47, 43203 I 185
B o pebent caumt . rin g ” LA o[el et 008 | STSTEM [Exeodorene | 1, 59959 | L8
ol B S iy ey .| I T T T A LA & S el] A8_as ki
- -
I @ Profing Detals 21 =0
[SOL: SELECT COUNT(™) FROM (SILECT USLRIAME FROM SYS084_USIRS WHERL DIFAULT_TABLESPACE="SYSTEM' OR TEMPO..
| B 50u Tews) Ereres | 7 Sessors | T80 Cricren Detwis | fa 501 Detwin |
| SOL Identdfication Optenizer and Jwthne Parsing Statistics Execution Statestics (total) Boecubion Statetics [per execution) """
S0L D S14S21RNS Ceaterhir Mgade 3L RAGAWS Hermey TTRIIEG Fabches QU0 Fetakes D00
E08 Address KSRTTRDS ParangUsér [D % Losds 4 Eodoubions 1 Egbaufons 1LOG
Chilyt Adress S9850558 Qutirs Category [evepbelations Sty Saets QDD
Chidren 1 Outine SI0 0 Digk Rimads. © ik Fpads: 000
Flan Hazh Tslue 2069026503 Buffer Gets @ Suffer Gets LLOG

Maduly Sopdoier Rewes Proceieed 0
Pragean 10 10MAS
ProgramLines 58 w |

« The Load Graph is located on the top section of the editor and provides a display of the overall load on the
system. The bars represent individual aspects of the enterprise, and the view can be used to find bottlenecks.

« Top Activity is located on the middle section of the editor and displays where the load originates. Specifically,
the top SQL statements, top events that the database spends time in, as well as the top activity sessions.

e The Profiling Details View is located on the bottom section of the editor and displays detailed information on
any item selected in the middle section. For example, a SQL statement, an Event, or a Session.

The graphical portion of the profiling editor presents the distribution of sessions executed over the length of the
profiling process, and those that were waiting in DBMS-specific events. It provides a first and most important step in
identifying problem areas. Results can be viewed in real-time.

The Load Graph and Top Activity Section compose one view in the editor, while the Profiling Details view is a
separate interface component that only activates when an item in the Top Activity Section is specified.

NOTE: Use a 1280 x 1024 monitor resolution when viewing profiling information. Smaller resolution sizes
can obscure details in the view.

Running a Profiling Session

Profiling provides the continuous monitoring of a data source and builds a statistical model based of database load
based on the users state every second. The created profile can then be saved to file, and the data can be saved,
analyzed, and optimized by importing statements into the tuning component and running a tuning job.

The following list provides the general workflow and overhead tasks, when attempting to monitor data sources and
store query information.

1 Execute a Profiling Session
2 Working with Session Results

3 Save Profiling Sessions

4 |mport Statements to Tuning

In addition to the workflow tasks outlined above, the profiling interface also enables a number of important functions to
help in statement analysis and diagnosis. This additional, or extra, functionality can be found in Using Other Profiling
Commands.

Furthermore, in some cases you will need to configure system variables and parameters in order to get the results you
need from the application. See Configuring DBMS Properties and Permissions for more information on how to
configure profiling and your registered data sources prior to running a session.

Execute a Profiling Session

Profiling is monitored and managed via profiling’s three major interface components: the Load Chart, Top Activity
Section, and Profiling Details view.

fa T10A - Provesses: [-Al- | st b [1iee-]]
Profile Session &g
= HOM CPU B System U0 BUsr W0 1 Clustar B Applicadon B Confiqueation B Conmit BN abesrk BAIminksiraive BConcuemancy 0 Schadular B Qther
=
-]
£
= d
4
o2
20
£ ‘..,1"“:' \‘ﬁ,‘nﬂ'
EE vervew B so | B !mt:ﬂ‘m.
S Statements Ewents Sessions
Stabenent actiny () < | & Event Mty () | A Liser [Progran R Gerial Adhity() < | =&
QELI\N‘J:I'HI‘J i -t o fu] [____§ 55.23 SYSTEM [Ewecuter.gwe 126, 13%2 HE .19
oF SEECT COU..STSTEN I el #0b scheduber. . sve wast Il 200 ORAOE BE FTTWR] 155, 3 L] 542
+3 IHEERT INT...08ECT 20 I 504 b file sequensal read - 2044 CRACLEEXE 1C308) w1] 2047
LRNONN [3303150264]) L 42 o Mg poasiaend ramd L 13 QRADLE 23S el HLIMs 0 14
LPETOVT EI!&E-'J:IEQT.‘! (18} ool fl seguential read LIS SYSTEM | Exequlor gxe 41, 25654 | 73
1‘3 INSERT BT STSUSERS 53 dh file parald write .y CRLACTE G oha) Y L 1 2.
B TRUBCATE . R_DATA 1 0,47 Labck: Brbry chche 12 SHETEM [Enchiutor ok | 111, 22883 | 237
4-3 INSERT INTO .. Frew’, LR, 0.34 kg fie pavrade v o1l SYSTEM [Exwcutor ane | 97, 45338 1 =]

o pelect count . rsien B " i nul gvent g . SYSTEM [Extuler.exe | 120,599 | L 2
Lok e o .| P ———r— | skt A4S ke =
(@ protogDetnis 13 = g
Sl SELECT COUNT(™) FROM [SELECT USERNAHE FROM SY5.0BA_USERS WHERE DEFALILT_TABLESPACE="SYSTEN OR TEHPO..
| B 5cs et |) svents | £ sessions |0 chikren Detsits | o 500 Detas | |

SO Tdentification Optimazer and Outline Parging Statistics Execulion Statistics (total] Execution Statistics (per execution) &
SOL M 15433219105 Dptreter Mode ALL_ROWS Marmery J793096 Felches 0.00 Figtches 0.00
0L Address GOETIRDS i Lser I § Load: 4 Exscutors 1 Exegtars 0,00
nld Address SRBE0BRS Onsline Category Irvabdabore Sorts Sorts 000
Chidran] Ot 5200 Dk Reas O Dl Rady 0,00
Bl sk Viahes MBS Buffer St 0 Buffer Gets 0,00
Hodule Exsoutor.exs Rowg Processed 0 Roews Processed 0.00
hetisn CPU Time 0,00 CPUTime 0,00
551 Operabon Code 3 Sapged Tme 0.00 Bapsed Tme 0,00
Prograe D 1015485
Pragram Line = 3§ e

To execute a profiling session:

In Data Source Explorer, right click on the data source you want to profile and select Profile As from the menu,
and then choose Data Source. The profiling session begins. Additionally, clicking the Profiling icon on the
Toolbar automatically runs a profiling session for the last data source you selected.

Once a profiling session launches, it runs until you stop it. When a session has run for a length of time, you can then
interpret and analyze the results. See Working with Session Results.

To stop a profiling session:
You can stop a profiling session at any time by clicking the Stop icon in the upper left-hand side of the screen.

Wi B Qe

g3 pata &3 % sap|— B ff} db2_gpu.sgl (= db2_jo.sql I_F_l_l,;l UOWWAILT _small.oar
DT -
i

=3

Sk

Profile Session

type filter text - ™

Executing a Session from the Command Line
You can launch a profiling session from the command line using the following syntax:
dboptimizer.exe profile ds:ROM*L*ABORCL10G_1 duration:20 tofile:c:\testprofile.oar

In the above command, the user has specified ROM*L*ABORCL10G_1 as the data source, and indicates a profiling
session of 20 minutes. The tofile variable specifies the directory and name of the file to which the profiling session will
be saved.

Working with Session Results

Results are displayed in the editor whenever a profiling session is executed. Results can appear in real time (if real
time profiling is enabled) or once a session as finished its execution.

Results are displayed in the three major interface components of the editor, which you can use to analyze the overall
efficiency and capacity of queries running on the data source, to various levels of detail:

The Profiling Ul has three correlated sections:
« Selection in Chart will fill the top activity section data, distributed in Overview/SQL/Events/Sessions/Object 1/0.
« Selection in any tab of Top Activity will fill the Profiling Details with top selection type related data

For more information, see:

* Analyzing the Load Chart
* Analyzing the Top Activity Section

¢ Analyzing Profiling Details

Analyzing the Load Chart

The Load Chart is located on the top section of the editor and provides a display of the overall load on the system.
The bars represent individual aspects of the enterprise, and the view is used to discover bottlenecks.

Profile Session & g

NONCPU B Syslem U0 B Use ¥ | Custar B Applicadon B Corfiguration B Commit B Hatwark BAdminisiraive B Concusrancy 0 Schadular B Other

ra ' =

Attive Sesslons (avg)
E=]

o
\
wt

The graph is designed as a high level entry point to profile session results. Subsequently, you can use the Top Activity
and Details views to examine more detailed information on waiting and executing sessions over the length of the
session. Alternatively, you can select one or more bars on the graph to populate the Top Activity section (and
subsequently, the Details View) with information on a specific subset of the graph.

The Load Chart displays the distribution of waiting and executing sessions over the length of a profiling session.

« Time is displayed on the X axis. You can zoom in and zoom out on the graph via the icons in the upper right hand
corner of the graph, once a profiling session is stopped.

« The Y axis shows the average number of sessions waiting or executing. Each supported platform has a specific
set of wait event times.

DBMS Wait Event Category

IBM DB2 Fetch, Cursor, Execution, Operation,
Transaction, Connectivity, Lock, Other

Oracle On CPU, System 1/O, User 1/O, Cluster,
Application, Configuration, Commit,
Other

SQL Server CPU, Lock, Memory, Buffer, I/O, Other

Sybase CPU, Lock, Memory, I/O, Network, Other

¢ A chart legend displays a color and code scheme for executing and waiting session categories, in the upper
right-hand corner of the view.

Analyzing the Top Activity Section
The Top Activity Section is located in the middle section of the editor and displays where the load originates.
Specifically, the top SQL statements, top events that the database spends time in, as well as the top activity sessions.

The Top Activity Section is composed of a series of tabs that provide detailed statistics on individual SQL statements
and sessions that were waiting or executing over the length of a profiling session.

== Overview | 0y S0L {-___"‘:]' Events E"‘kﬂﬁ:l‘ﬁ-
SOL Skatements Events Sessions
StEterent Activity (0} = | Ewent Rictivity (90) | User [Frogram Actvity (¥} * |
P13 Lahonh [7] SYSTEM (Executor_exe HEEL 2748
T 7 1ob scheduer, . slave wait 20.80 ||| ORACLEENE (CTWR) e 25,43
1% IMSERT INT....OBIECT I H 3.06 b filz sequentia reas | 20.44 CRACLE.ENE {C1Q0)] 20.67
,LE LEHOWHN [3393182264] | 1.43 ch fil= scattered read | Pl | ORACLE.EXE {mO0d) 1 123
E"ﬂ LEHOWH [2345103937] 082 control fle sequential read 0.35 EYSTE [/ Emecutor.cxe | 472
1% IMSERT INT...5YS.USERS 0.53 dh fle parel e write .23 CRACLE.ENE (SMON) L Al
L3 TRUNGATE ...R_DATA 1 Q.47 abch: Worary cache Q.12 SYSTEM fExeoutorexe | .37
+5 TNSERT INTO .. Free, LR 0,14 o7 fie paralel write 0.12 EYETEM [Eneoubor.exg | L.36
il -:-_;': select countrsion lke .14 3 null syent 0.09 B SYSTEM f Exscutbor.exs | 1.59 -
" e T B — e e 1 o b [| —_ B AR (e BN —]

¢ The SQL Tab provides more detailed information than provided on the Input tab, in terms of executing SQL
statements and procedures.

« The Events Tab displays information about wait events profiled by the execution process.
* The Sessions Tab displays information about sessions profiled by the execution process.

« The I/O Tab is Oracle-specific and will not appear in the Top Activity Section unless the data source being
profiled is an Oracle platform. This tab displays information about the I/O profiled by the execution process.

When you select any item from the Top Activity tabs, details are displayed in the Profiling Details view. The tabs that
appear in Profiling Details will be different depending on the database platform and whether you selected a
statement, session, or an event. This is to accommodate the parameter specifics of the item you selected.

This section also addresses the following topics:
e Top SQL Tab
Top Events Tab

e Top Sessions Tab
* Top Object I/O Tab (Oracle-Specific)

Top SQL Tab

The Profile editor’s SQL tab shows a representation of all SQL statements that are executing or waiting to execute
over the length of the profiling session or within the currently selected graph bars.

A9 smsmions

=2 vervien | 1 590 | €5 svenss

Child mumber |
=l : .'_'
27,19 2243218105 [u] 5

£ PUSERT THT FERSCITR D, ANDL.TD =0, 08FCT I i 3,06 1135785985 o 5 3E9P757503

:-'ELKTJS-'.-'."'J [33a3152264] RN | 1,43 33583252 u} 18, M3

Tk LRKNOVIN [2398105935] n.z 0,62 2348103837 =] M. na

*3 PMEERT THTQ PERFINTR ... LEER = FROM 5Y5.LSER § 2 Q.53 53002544 Q 3 AOTEREEETL

:-'ETQJ_HCI'J.TE'.&EEPERFC‘FR_DATLI i 2,47 3440472121 a 5 37REBSO225

#55 SSERT IHTO PERFIINTR _DWAT . ODE{STATE, O, Free', 1R 1 0.14 1785240857 o 5 254924551
M« seleact count () from product_, 8] e ® and version ke 2 0.14 0 5 SMGA026SE

wF SELECT COUMT[™) FA0M 5¥., HERE STATIUS = "OHLINE i D12 2545848752 a 5 3510734404

A =T s nprm e s mpp sianes ek Rleod o . SpegancegT - £ 1z ammmemee r

Statements can be grouped by type by right-clicking the view and selecting Organize > By Type. The following

statement types are organized:

INSERT, SELECT, DELETE, and UPDATE

Statements are grouped when they differ only by their clause values. This enables the roll-up of
SQL statements that only differ by a variable value. For example: select * from emp where
empno=1; and select * from emp where empno=2. A ‘+’ symbol appears beside rollup statements.
You can click the symbol to expand and view the different statement predicates.

Additionally, the SQL tab displays two other groupings:

Group Description

OTHER Includes all recognized statements other than INSERT, SELECT, UPDATE, and
DELETE statements.

UNKNOWN Statements that are not recognized by the application.

All statements are displayed in a tree structure with the following statement components:

Statement Component

Description

Subject The DML statement type (and FROM clause, as appropriate).
Predicate The WHERE clause.
Remainder Any statement component following the WHERE clause.

For example, all statements with common subjects are shown as a single entry with multiple children; one child for
each unique predicate. Predicates are similarly broken down by remainders.

NOTE: Right-clicking the SQL tab and selecting Organize By lets you choose between Statement Type
grouping and None. The None option disables grouping by statement.

Statistics are provided at each level of the tree structure. This lets you evaluate costs and spot wait event problems
not just at the level of entire SQL statements, but also at the level of statement components. For each subject,
predicate or remainder entry, the following statistics are provided:

Statistic Notes

Executions The number of active executions for the statement or statement component
over the length of the profiling session or the selected graph bars.

Activity (%) A graphical representation of the distribution of execution and wait time for the
statement or statement component.

SQL ID The ID value of the SQL statement. This statistic only appears on Oracle data
sources.

Child Number The child number in the database. This statistic only appears on Oracle data

sources.

Parsing User ID

The ID of the user who parsed the statement. This statist only appears on
Oracle data sources.

Plan Hash Value

The execution value of the statement. This statistic only appears on Oracle data
sources.

Other values displayed on this tab differ depending on the data source platform. For example, the tab displays the
values SQL ID, Child Number, Parsing User ID, and Plan Hash Value when analyzing a data source.

Additionally, DB2 platforms have an additional tab named Execution Activity, which contains the following statistical
rows: Rows Read, Rows Written, Fetch Count, Statement Sorts, Sort Time, and Sort Overflows.

Top Events Tab

The Events tab displays information about wait events on the resources involved in the profiling process. This display
is used to tune at the application or database configuration level. For example, if the top events are locks, then
application logic needs to be examined. If top events are related to database configuration, then database setup
should be investigated.

£E Overview | 'ra" 0L I{B Events l iﬂ Sessinnsl
Event | Actvity (%)~ |
OM CPU I 55,23
job scheduler coordinator slave wait | 20.60
db file sequential read || 20.44
db file scattered read | 2.28
control file sequential read 0,35
db file parallel write 0.23
latch: library cache 0.12
log file parallel write 0.12
null event 0.09
library cache load lock 0.07

Top Sessions Tab
The Sessions Tab provides information about individual sessions. This tab provides information about sessions that
are very active or bottlenecked.

ZE Overview E’ SqL 'EB Events 5.'1' 5E5‘5~UI‘IS|
Usar Name Program 51D Senals Activity (%) Madhine Eession Type
SYSTEM Execulor.exe 125 32563 NN 27.19 EMBARCADERO\ROWEBITADL LSER
ORACLE.EXE (C330) 162 iy 20.67 TORLABORCL10G_1 BACKIGROLMND
ORACLE.EXE (maao) 111 229521 3.43 TORLABORCLIOG_1 BACHGROLMD
EYSTEM Exacufor.exe 143 2685941 2.72 EMBARCACERC\ROVEANITUCADL IUSER
QRACLE.EXE (SMON) 64 il 1-70 TORLABORCLI0G_] BACKGROLMND
SYSTEM Executor.exe 111 228231 2,37 EMBARCADERONROVIENCVALCEL IUSER
SYSTEM Evecutor.exe 97 82281 1.86 EMBARCADERC\ROV/SNOVACTI USER
SYSTEM ExErUtDr.exe 120 === | 1.59 EMBARCADERONROVISNOVACOL USER
ORACLE.EXE (m001) 97 45155 1 1.54 TORLABORCL10G_1 BACHGROLMD
AN Aas S ove fusankn s a T ADANGTT 805 8 L it U T]

Top Object I/O Tab (Oracle-Specific)

The Object I/O Tab is specific to the Oracle data source platform, and displays information about Oracle 1/O loads on
the profiled data source.

Eé Qwervien E.:ull S0QL ‘.:::' Events fzjf'tiii:l"f #0 Object [JO

Chogect
S

Type CH Actiwity [Yh) Teblesoace File ID | I=1T

TAELE [10000 SYSTER 1 Boreadb

B db il
B db fil=
O drect;
0 direct;
W direct
0 drect;
 Unco

B Other

The following parameters are displayed on the I/O tab:

Value Description
Object The name of the data source object affecting the Oracle /0.
Type The object type. For example, table, partition, or index.

DB Activity (%)

Use the color chart on the right-hand side of the I/O tab to view the 1/O load on
the data source during the profiling session.

Tablespace

The name of the tablespace where the object resides.

File ID

The unique ID value of the file from where specified object resides.

Analyzing Profiling Details

The Profiling Details view displays detailed information on any item selected in the Top Section View. For example,
an SQL statement, an Event, or a Session.

(@ Prafiing Cetails %

53 s Test | @@ sqmetans_{'f: Events | &7 Sessions | FBT Children Detsls

= =

SOL: INSERT INTO PERFCHTR_DATA_1(QUERYID, WALUEL) SELECT 951, COUNT(™) FROM SY5.Y_SLOCK LSS DEA_OBIECT..

Frogram Line=

SOL Tdentification optimizer and Quthne Eecution Skatistics (tobal) perexeculion Perrow
Oplimizer Mode ALL_ROWS Fatches 0,00 .00 0,00
Farsng Lkser ID 5 Execubons 1 1.00 1.00
Child Address SBBAASED Qutline Categary Sorte 0 .00 0.00
Children 1 Culline 51D 0O Disk Reads 1004 1,006,080 1,004,000
Blan Hagh Value 3582252508 Buffer G=b= 13261 13, 26100 13,26 .00
Parsing Statisbcs 2
Matuls Exeoubor exs 2 Rows Praoessad 1 1.0 100
ACtion Memary 152+33 CPU Time 93, 750,00 &3, 750.00 &3, 750,00
5L Op=ration Code 2 Loacs 134 Slapaed Tme 0,278, 820,00 70,273,820.00 0,278, 820,00
Program 1D 10 1644 Invalidabors 132

195

Depending on the data source platform you have specified, the tabs that appear in the view will be different, in order to
accommodate the parameter specifics of the statement you have selected.

Depending on the t

op activity selected and the profiled platform types, some tabs may not be available.

Statement Selected

When a Statement is selected the following Profile Detail tabs are available.

such as tables, and indexes that were read to satisfy the query.
Temporary objects with not have values in Object and Type
columns.

Tab Name | Description Supported Platform
Oracle | Sybase | DB2 | SQL
Server
SQL Text Displays the full code of the selected SQL statement. yes yes yes yes
SQL Details | Provides details on statement, like execution statistics. yes yes
Events Provides database activity details about events the statement is yes yes yes yes
associated with.
Sessions Shows which sessions executed this statement. yes yes yes yes
Children Lists all copies of the cursor or sql query, if Oracle has cached yes
Details multiple copies of the same statement.
Object I/0 If the SQL query has done physical I/O, then these are the objects, | yes

Event Selected

When an Event is selected the following Profile Detail tabs are available.

Tab Name

Description

Supported Platform

Oracle

Sybase

DB2

SQL
Server

SQL

Shows which SQL statements waited on this event.

yes

yes

yes

yes

Sessions

Provides information about the sessions associated with the event.

yes

yes

yes

yes

Raw Data

Raw data that was sampled from the database, specifically the
following:

« Sample time
*SID

* Serial #

* User name

* Program

* Sql ID

*P1

P2

*P3

yes

Analysis

Displays for “buffer busy waits” and “cache buffer chains latch”
waits. The analysis shows data and documentation to assist in
solving these bottlenecks.

yes

Session Selected

When a Session is selected the following Profile Detail tabs are available.

Tab Name | Description Supported Platform
Oracle | Sybase | DB2 | SQL
Server
Session Provides parameters regarding the session. For example, database yes yes yes
Details server connection information, and data regarding the client tool and
application.

SQL Shows which SQL statements this session ran. yes yes yes |yes
Events Shows which events this session waited on. yes yes yes |yes

NOTE: When right-clicking on a SQL statement in the Top Activity Section in Profiling, if the SQL
statement is run by a different user than the user who is running DBO, than the User Mismatch
dialog appears, with an example of the following message: “This query was executed by [SOE]
and you are currently connected as [system]. We recommend you reconnect as [SOE] to tune the
SQL. Would you like to continue anyway?” This message indicates that the statement is being
tuned by a user other than the user who originally ran the query, and tables may be missing based
on the different schemas. Click OK to run the query, or click Cancel and run tuning under the
original user.

This section also addresses the following topics:

¢ Viewing Details on the SQL Tab

* Viewing Details on the Sessions Tab

¢ Viewing Details on the Events Tab

Viewing Details on the SQL Tab

In the Top Activity Session, selecting a statement entry on the SQL tab displays information in the Details view. The
graph portion and details on the event category tabs on the new editor pertain only to the selected statement.
Additionally, new tabs become available:

¢ The SQL Text tab shows the full code of the SQL statement.
« The SQL Details tab displays execution details. This tab is only displayed for Oracle data sources.
* The Events tab displays information about the events the selected statement is associated with.

« The Sessions tab displays information about the sessions that the selected statement is associated with. This tab
is only displayed for Oracle data sources.

SQL Text

The SQL Text tab displays the full code of the SQL statement.

i Brofing Detsls 53

S0 SELECT COUNT(™

£t sl Tews | €5 Events | @7 sesskans | TH Chicren Detais | o 5L Detals

=08
VFROM (SELECT USERNAME FROM SYS.DEA_USERS WHERE DEFAULT_TABLESPACE="SYSTEM' OR TEMPO...

THICH

RIVLLEGE

5Y53.D0D0A 535 PRIV3

%E PRIVILEGE =

"THNZIMEITED TABLESPACE'

SQL Details

The SQL Details tab provides information and the execution of the statement and other information related to how it is
running. It is only applicable to Oracle data sources:

| @ Prosing Detak 22
|

=0

S0L: THSERT TNTO PERFCHTR_DATA_1(QUERYID, VALUEL) SELECT 954, COUNT(*) FROM SYSW_6LOCK LSVS.DBA_ORIECT...

' B 5oL Ten: _a"'n st petak: | €5 Everts A7 sezgors | D Children Datals

SO Tdentification Qptmizer and Qutline Execution Statistics (total) — per execution perrow |
SOL I 1155755565 Dpfmizer Made ALl _ROWS Fetdes 0,00 0.00 0,00
SO Agores: G999CESD Parsing User 10 5 Ex=cubons 1 1.0 1.00
Child & s GEEAASAD Outine Cab=gory Sorta O 0.00 000
Children ¢ Quing SID D Cisk Rzacs 1004 1,004,00 1,004,008
Flan Hagh Vslue 31852282208 . . Buffer Cals 13261 15,261.00 13,262.00
Module Executar.exe Pﬂ"u..lg.sutlﬂlu Rorss Processed 1 1.00 1.0
Actian Memary 162433 CPU Tim= 93, 750.00 ©3,750.00 93, 750,00
50L Op=raton Code 2 Loads 134 Elapsed Time 70,279,420.00 70,279,320.00 70,279.420,00
Program 10 S0 1644 Irreslidabions 132
Frogram Line= 185
|
SQL Details include:
Parameters Description

SQL Identification Values

The SQL ID value of the statement.

Optimizer and Outline Values

Optimizer-specific values pertaining to the parsing user ID value and outline
SID.

Parsing Statistics

Information regarding memory, loads, and invalidation values.

Execution Statistics

The execution statistics of the statement. This category includes disk reads,
buffer gets, rows, and values that represent CPU and elapsed time.

Events
The Events tab provides details about the events that the statement is associated with.

@ Frofiing Detals 51 = A
SOL: THSERT INTO PERFCNTR_DATA_1{QUERYID, VALUWEL) SELECT 951, COUNT(™) FROM SY5.N_$LOCK LSYS.DEA_OBIECT...
D oo Tewt | ol SO Detals |0 Bvemte | 47 sessions | 050 Children Detsis

Event Activity (%)
db file s=quental read 1 349
dbx file scattered reacd 0.50

Sessions
The Sessions tab provides information about any sessions the statement is associated with:

i@ Profing Detals b =5
S0L: INSERT INTO PERFCNTR_DATA_1(QUERYID, VALUEL) SELECT 951, COUNT[®) FROM SYS._SLOCK LSYS.D8A_DBIECT..,

| Bt s met | o 500 Detats €5 Events | £7 sessians | B chiidven Detals

smr e Pragram =10 Sanals Actrty (%) Machine Sezzon Type
SYETEM Exmcubarsus 145 IR0 312 EMBARCADERDAGWENDVACDL LIEER,
SYETEM Executornena 145 2242 1 0.35 EMBARCADERQRCWERCVACDL LR,

Session details include information on different parameters, depending on the platform. For example, on Oracle
platforms, the following parameters are displayed: User Name, Program, SID, Serial #, Activity (%), Network
Machine Name, and Session Type.

To select a SQL tab statement entry:
« On the SQL tab, click on a statement with no child nodes or on a leaf node in the statement structure.

The new profiling editor page opens, as reflected by the breadcrumb trail at the top left of the editor. You can continue
to drill down into the statement, as needed.

Viewing Details on the Sessions Tab

In the Top Activities Section, selecting a statement entry on the Sessions tab displays information in the Details
view. The graph portion and details on the event category tabs on the new editor pertain only to the selected
statement. Additionally, new tabs become available.

Selecting an event type entry on an event category tab opens a new profiling editor page. The graph portion and
details on the Sessions tab and event category tabs on the new editor page pertain only to the selected wait event
and to SQL statements that waited in that event.

* The Sessions tab shows system details about the selected session.

« The SQL tab displays information about the SQL files that the selected session is associated with. This tab only
appears on Oracle platforms.

« The Events tab displays the time and parameter information about the selected session.

Session Details
The Session Details tab provides further information about the selected session.

NOTE: The fields that display vary depending on the database platform.

USING PROFILING > RUNNING A PROFILING SESSION

Oracle Profiling Details

i~ = E

Session: 145, 9180

£ secsion Detals | B squ (3 evenns |

Database Server Connection Client Taol Application
S0 145 Frogram Exepuior.exns S0 ID 1545343752
Serg2 01E0 05 User WNT AUTHORITTANCHYMOUS LOGON SOL Operation Code 3
Liser Mame SYSTEM 05 Process 1D TBY2: 1676 Last Cal Blapsed Time 96

Progess OS5 PID 142532 Host EMEARCADERCROWSMOVACDL Module Exsoutor.exs
Logged On Time 2003-12-19 17:25:08.0 Terminal ROWSMOVALZDL Action

Logged On For 00=01:27.0 Clent ID S0 Trace DISABLED
Connection Type DEDICATED Client Infa

Sasson Type USER,
Riesguroe COrsuUmer Group

Microsoft SQL Server

= session Detais | 55 501 | €5 Everss |

Session: 55_2009-09-30 09:40:34.940 (sa / Executor Module)

Database Server Connection Client Application
SPID 55 Appicakion neme Executor Madule
KPID 4,048 WT domain
Databass 10 109 NT usermame
User ID O Host process 10 3952
Login kime 2009-09-30 05:40:34.94 Hostrame TORLABDEMOO1

Met address Q0BCZI592136
Met fbrary TCR/IP

SQL
The SQL tab displays information about the statements associated with the session.

= i L]

Session: 145, 9180

=z

EE SEsmon Ceieils [[u R @ Events
Sletement | Eweostors | aetiwiby () 7| S0 | Chidhmbe | ParsnplserID | Plan Hesh Vel

L FPRSLATICERSNIA L. M0 D1=0005CT D | SEe— s eSS 0 8 Memsam
MEERT INTD FERFCNTA _D.. . LIEER.= FROM SY5 . USERS LB [0.20 53000254 a 5 #007535571
- o SELECT COUNT{™) FROM SV, HERS STATUS = 'DhLINE' Pl 0.05 1545343752 a § 3530734404
- LNz LE . 005 3440472LR1 0 0

EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER’S GUIDE 73

SQL statements are listed by the following parameters:

Value Notes
Statement The name of the statement.
Executions The number of times the statement was executed during the session.

Activity (%)

A graphical representation of the distribution of execution and wait time for the
statement or statement component.

SQL ID

The SQL ID value of the statement.

Child Number

The child number in the database.

Parsing User ID

The ID of the user who parsed the statement.

Plan Hash Value

The execution value of the statement.

Events

The Events tab provides details about the events that the session is associated with.

i Profiing Details &3

-E.-E. Seszzion Details EEL SoL {P‘ Events

Session: 145, 9180

Event Activity (%6)
i db file sequential read 1 2.79
db file scattered read 0,60
local write wait 0,05

Events are listed by the following values:

Value

Notes

Event Name

The name of the event.

Activity (%)

A graphical representation of the distribution of execution and wait time for the
statement or statement component.

Viewing Details on the Events Tab

In the Top Activities Section, selecting a statement entry on the Event tab displays information in the Details view.
The graph portion and details on the event category tabs on the new editor pertain only to the selected statement.

Additionally, new tabs become available.

Selecting an event type entry on an event category tab opens a new profiling editor page. The graph portion and
details on the Event tab and event category tabs on the new editor page pertain only to the selected wait event and to
SQL statements that waited in that event.

¢ The SQL tab shows the statements involved in the selected event.

e The Sessions tab displays information about the sessions that the selected event is associated with.

SQL tab
The SQL tab displays information about the SQL statements involved in the selected event.

i@ Prafilng Desals 23

H‘ 50L Il\;li’:l':%--!-s:::rs ._:.J Raw Data

EventOH CPU

Clatamenl | | Child Hurmber Parsirg User I Sz Hesh Value
: |- WP SELECT COUNTC)FROM (5., (ESPACE NAME=SISTEM 1N e 5 WAO0ZTI
+ il] ao
T INTO PERFCONTR, _D... WHERE QUERYID = 1046 1 0.05 1B01117589 a 5 1350F1R522

The SQL tab displays the following parameters:

Value Notes
Statement The name of the statement.
Executions The number of times the statement was executed.

Activity (%)

A graphical representation of the distribution of execution and wait time for the
statement or statement component.

SQL ID

The ID value of the SQL statement.

Child Number

The child number in the database.

Parsing User ID

The ID of the user who parsed the statement.

Plan Hash Value

The execution value of the statement.

Sessions tab

The Sessions tab displays the sessions and related information regarding those that were associated with the

selected event.

13 Profiing Datals

B 5oL | 47 sessions |] Raw Data

E Llzar [ams Frogram 1] Serml= Actvrty {35 [Madine Sazoon Typs

[BSTEN_ Beeoibme L] e— 31,42 EBARCADEROIRDWESITAD: e T N

| QRACLEENE [CTWR) & 29,43 TORLAFCRCL I GROUND
GRAGE EXE (DRG] 1e? 1 0.5 TOALASORCL1OG 1 GRACLUND
QRACLEZXE (MMIOR) 161 1 0,45 TORLAIORCL10G_1 RIUHD

| TGNITE QRACLEEXE (3002} e 26503 0,10 TORLASOACL10G_1

| QRACLEENE {SMTH) 184 1 0.10 TORLABORCL 10G_1 GROUND

| QRACLE EXE (PSR 168 1 0,10 TORLASORCL10G_ 1 CEERIUND

IGNITE QRACLEZXE (0L5) L 1 0,05 TORLAIORCL10G_1 USER

| Fra QRACLEEXE (3007}] Q.05 TORLAGORCL 10G_1 USER

| SHSTEM Eweruitor =i -l ka2 0.08 EMBARCADEROIROGSMOUACD LISER

| IEMITE QRACLE.SXE (M000) L) 5 0,05 TORLA3CRCL DG 2 USER

|

Event: O CFU

The following parameters are displayed on the Sessions tab:

Value Notes

User Name The user name under which the session was run.

Program The name of the executable under which the session was run.

SID The SID value of the session.

Serial Number The serial number of the machine from which the session executed.

Activity (%) A graphical representation of the distribution of execution and wait time for the
statement or statement component.

Machine The machine name and network location of the machine from which the session
executed.

Session Type The type of session.

Save Profiling Sessions

A profiling session can be saved in the current workspace in an archive file with a .oar suffix and with a default file
name of:

« The name of the data source if the session was not initiated from a named launch configuration
* The name of the launch configuration if the session was initiated from a named launch configuration

The time period of the saved session is the amount of data on the chart. The maximum amount of data on the chart is
determined when profiling is started (1 hour default).

This lets you open the archive at a later time for subsequent analysis. Use standard DB Optimizer file techniques to
save, open, or close SQL Profiling archives.

If you open a profiling archive on a machine on which the associated data source is not registered, a Data source not
available warning appears in the profiling editor header. Use the associated control to specify a data source already
defined on the machine or to register a new data source.

b EXTOVMHHBO02 % nacacn s aiaishia

Aktach Existing Daka Source .,

Profile Session Aktach Mew Daka Source ..

Import Statements to Tuning

The profiling feature lets you submit one or more SQL tab statements for tuning by the tuning feature. This lets you
take advantage of tuning’s hint-based and transformation-based suggestions, detailed execution statistics, and
explain plan costing, in tuning a statement.

= =1r]8

£E overview | &3 5QL D Events Ffj Sessions | %0 CObject /0

SOL Statements
Statement DB Activity (%)
=Tyt N

0% nor Organize By r m 3567
i3 gec 333
5; SEE <9z Explain Plan : 1 ==

N-7)

J‘-‘ Tune

To open atuning job on a statement appearing on the SQL tab of the profiling editor:

« Select one or more statements, right-click and select Tune from the context menu. Tuning opens on the selected
statement.

NOTE: The SQL will be tuned as the user/schema that profiling was running under. If the query being
tuned was run by another user/schema, it is recommended to connect to the database as that
user/schema and copy/paste the query into tuning, rather than import the statement directly from
profiling.

For more information, see “Tuning SQL Statements” in the SQL Tuner help.

Using Other Profiling Commands

In addition to the default viewing options provided by the views, profiling also provides the following features and
functionality:

e Zooming In and Out

* Filtering Results

Zooming In and Out

To zoom in or out on the Load Graph:
« In the upper right-hand corner of the Load graph, click the Zoom In or Zoom Out icons, respectively.

NOTE: The Zoom In and Zoom Out commands are only available when a session has been stopped.
By default, the information contained on the Load Chart spans the entire length of the profiling session. You can select

one or more bars of the graph to have the tabbed view populated with statistics for only the selected subset of the
graph.

To display statistics for one or more bars on the graph, use one of the following methods:
* Click-drag across one or more bars.

I

Filtering Results

You can display filtered subsets of the original profiling results set for each section of profiling based on DBMS
platform type:

¢ IBM DB/2 for Windows, Unix, and Linux - Creator ID, Cursor Name, Package Name, and Statement Type
* Microsoft SQL Server - Application Name, Command, Database Name, and Hostname

¢ Oracle - Action Hash, Module Hash, and Program

* Sybase - Application, Database ID, Host, IP Address, and Process priority

You filter results using the filter controls in the upper, right-hand part of the profiling editor.

1,

Fiter by: | MNone- W i

Additionally, on Oracle platforms, you can filter results by user, or foreground, or background activity. Select All, User
(Foreground), or Background to filter out the specified process activity, respectively.

To filter profile editor results:

1 Use the Filter By menu to select a filter type. The second menu becomes active based on your selection in the
first menu.

2 Use the second menu to specify a value.
The profiling editor is updated to show only results associated with your choice.

Select -None- from the Filter by dropdown to restore the unfiltered results.

Configuring Profiling
This section addresses the following topics:

¢ Configuring DBMS Properties and Permissions

< Building Launch Configurations

Configuring DBMS Properties and Permissions
Profiling supports the following DBMS platforms:

« |BM DB/2 for Windows, Unix, and Linux
¢ Microsoft SQL Server
* Oracle
* Sybase
Select a platform below for more information regarding how to set up a platform to utilize Optimizer:

« Configuring IBM DB/2 for Windows, Unix, and Linux

¢ Configuring Microsoft SQL Server

¢ Configuring Oracle

* Configuring Sybase

Configuring IBM DB/2 for Windows, Unix, and Linux

By default, DB2 Monitor flags are set to OFF. As a result, when attempting to launch a Profile job on a DB2 data
source, users may encounter the following message: “One or more errors have occurred that prevent session profiling
against this data source. Examine the details below and consult your data source administrator and/or the data source
documentation to resolve the problem(s).”

You can resolve this error using one of two methods:
« Enabling DB2 Monitor Flags via Embarcadero DBArtisan

e Command Line Option

To resolve the error through DBArtisan:
1 Ensure the following DB2 Monitor Flags are turned on in DB2:

e dft_mon_uow
e dft_ mon_uow
e dft_ mon_stmt
e dft_mon_timestamp
e dft_mon_lock

e dft_mon_bufpool

e dft_mon_table

You can set view and set Monitor Flags via DBArtisan. Ensure that the New Value field for each variable is set to
Yes, as shown below.

Edit Configuration for TCPT1ESE

Parameter: | dft_mor_bufpool |

Current ' alue: |EIFF |

MNew Walue:

[1] 4 | |% Cancel | | 2 Help |

2 Restart the DB2 data source to enable the changes, then launch DB Optimizer and begin profiling.

To resolve the error through the command line:

This solution must be performed from DB2 CLP, on the DB2 server. If you attempt to perform these tasks through a
client, an error message will result.

1 Navigate to START/PROGRAMS/IBM DB2/COMMAND LINE TOOLS/COMMAND LINE PROCESSOR
2 Turn the monitor switches on using the following commands:
db2 update dbm cfg using dft_mon_lock on dft_mon_bufpool on dft_mon_sort on
dft_mon_stmt on dft_mon_table on dft_mon_uow on
db2stop
db2start
3 Ensure that the switches are turned on by connecting to the server with the following command:
Db2 connect to database username password password

The following screen provides an example of the input and output from the server:

dbZ => connect to gim user dblZadmin
Enter current password for dblZadmin
dbZ2 => get monitor switches

Monitor Recording Switches
Switch list for db partition number 0

Buffer Pool Activity Information (BUFFERPOOL) = ON 03052009 19:14:06.61257
Lock Information (LOCE) ON O03/05/2009 19:14:06.61257

Sorting Information (S0RT) = ON 03052009 19:14:06.61257
SQL Statement Information (STATEMENT) = ON O03/05/2009 19:14:06.61257
Table Activity Information (TRBLE) = ON 03052009 19:14:06.61257
Take Timestamp Information (TIMESTAMP) = ON O03/05/2009 18:50:44.00034

Unit of Work Information (UOW) = ON 03/05/2009 19:14:06.61257

Configuring Microsoft SQL Server

Perform the following tasks to ensure that SQL Server is compatible with Optimizer:
« If you are setting up SQL Server 2000 or 2005, ensure the current user is a member of sysadmin.
« If you are setting up later versions of SQL Server, the current user must meet one of the following requirements:

* Be a member of sysadmin, or have the VIEW SERVER STATE permission enabled.

« Be a member of sysadmin, or have the SELECT permission enabled.

On SQL Server 2000 only:
You can enable profiling to capture more SQL by adding the following flag:

DBCC TRACEON(2861)

Trace flag 2861 instructs SQL Server to keep zero cost plans in cache, which SQL Server would typically not cache
(such as simple ad-hoc queries, set statements, commit transaction, and others). In other words, the number of
objects in the procedure cache increases when trace flag 2861 is turned on because the additional objects are so
small, there is a slight increase in memory that is taken up by the procedure cache.

Ensure you restart the server for your changes to take affect.

Configuring Oracle
Oracle users need access to V$ views. In order to configure Oracle to provide users with these privileges:

« If you are setting up Oracle 10 or later, ensure you are logged in as sys or system with the sysdba role, or the
SELECT_CATALOG_ROLE has been granted to user_name.

« If you are setting up an earlier version of Oracle, ensure you are logged in as sys or system with the sysdba
role.

Configuring Sybase

Perform the following tasks to ensure that Sybase is compatible with Optimizer:
« Ensure the following system configuration properties are activated:

« Enabling Monitoring (sp_configure “enable monitoring”, 1)

« Wait Event Timing (sp_configure “wait event timing”, 1)

* Max SQL Text Monitored (sp_configure “SQL batch capture”, 1)

¢ SQL Batch Capture (sp_configure “max SQL text monitored”, 4096)

Additionally, perform the following tasks, as necessary:

« If a user does not have mon_role enabled, the user will not be able to access Adaptive Server's monitoring
tables.

« If the monProcess table is missing, the user will not be able to view currently connected sessions.

« If the sysprocesses table is missing, the user will not be able to view information about Adaptive Server
processes.

< If the monWaitEventinfo table is missing, the user will not be able to view information about wait events.

If the monProcessSQLText table is missing, the user will not be able to view currently executing SQL
statements.

NOTE: These packages should only be installed by the DBA.

Profiling enables you to create a set of launch configurations to store the basic properties for each profiling session
that you run on a regular basis. A launch configuration enables you to start profiling sessions from a single menu
command, rather than re-define configuration parameters each time you want to run one.

Building Launch Configurations

Profiling enables you to store parameters related to specific profiling sessions, in a launch configuration for stored

routines. Multiple configurations can be created for each data source in your enterprise and saved with unique names
that identify them in the application.

NOTE: On all supported platforms, support for stored routines includes functions and procedures. On

Oracle, stored routine support also includes package functions and package procedures.

Create, manage, and run configurations

YR RS Mames | torlabsgion_z

e filter text = =
| | E.," Frofle . [Common
=} I.d.l.l Data Source - - -
| tortatscioo_2 Dt starce: lierlabieqin_2 (50 Server] b
- |yl 5L Stared Routine i w =
il Mew_confipuration T [u—‘-’. haurs lﬂ"l IR

Real-tme profilng
shaw data while profiing session is in progress
Refresh interval: |_5_$J Se00ncs

Fiter matched 4 of 4items

@

Profie | [clme

Data Source indicates the name of the data source to which the profile applies.

Time Interval Length indicates how long the session profiles the data source term, in the format of hours and
minutes. This parameter also indicates the total width of the time load graph. The longer a profile is, the larger the
saved file will be. It is not recommended to make the time interval length value beyond eight hours.

« The Show Data While Profile Session is in Progress check box enables “real time” profiling, which refreshes
the data of the session as profiling runs. The Refresh Interval specifies how often profiling updates this data in
seconds

2 Profile

Create, manage, and run configurations

I LU e -
R NCEE: Mame: | Mew_configuration |
[t fitter test | :
[Main . =] Comman
= I_d]l Data Source
o mm— Dala source: | tordabagldl_2 (SQLServer) vl
el SOi. Shared Routine Stored foutine: g5 | TESTGETPROPVALLE - PERFCNTR_REPO_ESILPERFCNTR_REPO_ESTZ |
i _u_|]] P _camfiguration
Parameabang:
Hame Tpe MLLL Cefast Vabe
Fiter matched 4 of Sitems
(vl | Frafie ” Claze |
NOTE:

Profiling can run sessions based on ad hoc parameters you designate before executing the

profiling process. However, by building profile launch profiles, it is a much more efficient method
of managing standard, frequent, or common profiling sessions.

To create a launch configuration:

1 Right-click on the data source you want to build a configuration for and select Profile As from the menu, then
choose Open Profile Dialog. The Profile dialog appears.

2 Select the name of the data source and modify the parameters on the Profile tab, as needed.

3 Inthe left pane, select the name of the data source, and click the New Launch Configuration icon. The right
pane of the dialog populates with the parameters needed to define the launch configuration of the type that you
specified.

LG Profile £ Commoan
| Diata source: ETDRLABORCLIDQ_E (Cracle) [
| Session length: | 0 : hours | 2 : minutes | 0 : seconds

Real-time prafiling
Show data while profiling session is in progress

Refresh intersal; | 2 : seconds E’ﬂ Main - [} Common

Datasource: | ROMLABORCL1OG_L (Oracle) vl
. Stared routine: [B]

Parameters:

. Mame Tvpe MLILL Default | value

...

4 In the Name field, provide a name for the launch configuration. You should select a name that will make the
launch configuration unique and easily identified once it is saved in the application.

5 Ensure that the selected value in the Data Source is accurate. If it is not, then use the drop down menu to select
the proper data source.

6 Use the Browse button to specify the stored routine. Depending on the specified stored routine, profiling will
populate the fields of the Parameters table with the specified input parameters. These parameters will be used
when executing the stored routine when running a session from the launch configuration.

7 Click Apply. The launch configuration is stored in the application.

Once a launch configuration is defined, you can execute it in profiling. For more information, see Running a Profiling
Session

NOTE: The parameters provided when you select the data source name in the left pane control session
parameters for the specified data source. To set these controls, see Configuring DBMS Properties
and Permissions.

Using Load Editor

SQL Load Editor enables you to configure and execute SQL code against a data source.

g lab_system Chacgedatssousce

@adhocsq OsQL fie

b of naralel sagenra: 5 B
SETELT
A COMPRITY [+] Exmemae mme somctan:
¢ A.FRAYGROUP S
. E.OFF_CYCIE e
, E.SERCHR FLAG
B A,
- :"'::‘:':—:-'E.:’j":_ @) Nuber of euesytions: |25 =
2 ._.;.-J':_FEH..SE.:F
, C.RETROPAY ERMCD
. Bum(C.AMOUNT_DIFF) SUM_AMOUNT () Sieep between excatons
fzom FS FAY CALENDAR A (=) Fced delay: 000 o
, W3 Jem 8
. WB_BETROPAY_EARMS © Ohencen vk
« FS RETROPAY RQST D
, ES_RETROPAYPGM TBL E
neze A.FUH ID = “"FD2°
and A.FARY CCHFIRM RUN =
ard B.COMPANY = A,COMBANY
and B.PAYGROUF = A.FAYGRCUP
ard E.OFF CYCLE = X.PAY OFF CYCLF CAL
and B.EFFDT = (SEIECT N
*+ gb Rame 'r'-’.'_."i-:' "
G (F.EFTFDT) *y -
from WS JoB F

This feature enables you to specify a data source against which the code will be executed, and then provides options
that enable you to choose a period of time that you want the script to execute for, and at what intervals the execution
“loop” occurs.

On execution, SQL Load Editor runs in the background. It can therefore be run in conjunction with a profiling session
in order to analyze the effects of the executing load against the specified data source. Once you run a SQL script via
Load Editor, you can start the SQL Profiling function and analyze the results of the load.

The Load Editor is accessed via the Load Editor icon on the Toolbar:

2 sQL Optimization - Untitled SQL Load - Embarcadero DB Optimizer - C:\Documents
File Edit Mavigate Search Project Run Window Help

i EE'_]

When you open Load Editor, click Select Data Source to specify the data source against which you want the SQL
script to run.

Choose Ad hoc SQL and manually type (or copy/paste) the SQL code into the window provided, or select SQL file
and navigate to the SQL file you want to run. The window populates with the code from the selected file.

The following configuration parameters are set with Load Editor prior to executing the SQL script:

Configuration Parameter Description

Number of Parallel Sessions Specifies the number of jobs that the
execution script will operate on.

Execution End Condition Specifies if the script execution process
runs for a set amount of time or script
executions.

Choose Time if you want the script to
execute over a specific period of time, or
Number of Executions if you want the
script to execute a specific number of
times.

Sleep Between Executions Specifies if Load Editor will wait before
running the execution script again. Select
the check box and choose Fixed Delay or
Random Interval, depending on whether
you want the script to execute at a
specific time, or at random intervals
within a specified range of time.

To run Load Editor:
1 Access Load Editor by selecting the icon on the Toolbar. Load Editor opens.

2 Click Select Data Source and choose a data source you want to run the SQL code against.

3 Choose Ad hoc SQL or SQL file, and then copy/paste or manually type the code you want to execute in the
window provided, or navigate to the location of the file, respectively.

4 In the right-hand panel, choose the execution configuration parameters to specify how you want Load Editor to
handle the script.

5 Click the Execute icon in the lower right-hand corner of the screen. The script starts to execute against the
specified data source, using the configuration parameters you selected.

6 If you are profiling a data source, start and run a new profiling session on the data source you specified in Load
Editor. The session will reflect how your SQL script executes against the specified data source.

Using Tuning

This section provides information on tuning, its functionality, and is structured so a user can follow the information
provided to fully tune their enterprise in terms of more efficient query paths at the SQL statement level of individual
data sources.

This guide contains the following topics:
e Overview
e Tuning SQL Statements
* Using Oracle-Specific Features

¢ Additional Tuning Commands

¢ Configuring Tuning

« DBMS Hints

Overview

Tuning provides an easy and optimal way to discover efficient paths for queries that may not be performing as quickly
or as efficiently as they could be.

The application enables the optimization of poorly-performing SQL code through the detection and modification of
execution paths used in data retrieval. This process is performed through the following functions:

¢ Hint Injection
¢ Index Analysis
« Statistic Analysis (Oracle only)

* Query re-writes such as suggesting joins to eliminate Cartesian joins, adding transitivity predicates, and
unnesting subqueries in the WHERE claus.

Tuning analyzes an SQL statement and supplies execution path directives to the application that encourage the
database to use different paths.

For example, if tuning is selecting from two tables (A and B), it will enable the joining of A to B, or B to A as well as the
join form. Additionally, different joining methods such as nested loops or hash joins can be used and will be tested, as
appropriate. Tuning will select alternate paths, and enable you to change the original path to one of the alternates.
Execution paths slower than the original are eliminated, which enables you to select the quickest of the returned
selections and improve query times, overall.

This enables the DBA to correctly optimize queries in the cases where the native optimizer failed.
In the application interface, tuning is composed of three tabs:

* Input

e Overview

¢ Analysis

NOTE: When using tuning on Oracle sources, several additional tabs appear on the Analysis and
Outlines tabs. For more information on utilizing these extra features, see Using Oracle-Specific
Features.

Understanding the Input Tab

Use the Input tab to specify which SQL statements to tune.

« Ad hoc SQL: Copy/paste SQL statements to the Ad hoc SQL tab or write queries by hand.

« Database Objects: Drag and drop data base objects from the Data Source Explorer to the Database Objects

tab.

* SQL Files: Browse the workspace or file system and select SQL files.

¢ Active SQL in SGA: For the Oracle platform only, you can also scan the System Global Area (SGA) for

statements to tune.

LQI *AdHoc SOL Tuning Job.tun 3 LQI *Untitled Tuning Job 7.tun

Py oracle b jgﬂSFVpu:II::EIl.embarcadern.cum (10.2.0.1)
b P P
Input

Tuning Candidates
Gather the S0L skakements o be tuned,

% Adhoc 0L | [Database Objects | |51 SQL Files | % Active SGL in 5GA

Input S0L skakements ko be tuned,

R AR W w wa &

WHEEE
F.EMFLID = BE.EMNFLID AND
F.EMPL RCD# = E.EMPL RCD# AND
F.EFFDT < = A.PAY END DT) ALND
E.EFF3EQ = (SELECT Mi¥X¥ (G.EFF3IEQ)

TSR TTT T o

Understanding the Overview Tab

=08

Once you click the Run Job icon on the top right-hand side of the Overview tab, the Overview tab provides the list of
statements that were analyzed by the Tuner, as well as the cases suggested by the execution process to improve
them. Additional information may include statement Name, Text, Source, Cost, and Elapsed Time values, depending

on the platform.

Only the Elapsed Time statistic, appears on all supported platforms. On Oracle platforms, Execution Statistics and
Other Execution Statistics columns will appear. When determining the best possible path using the Overview tab, it is

best to use the Elapsed Time value as the guideline. The faster the path, the more optimized the query will

become.There are three tuning options to choose from before clicking Run Job:

P’-" Inpauk = Overview ;-“-' Analysis

@ Overview 1 eror detected @
Tuning Statements Generate cases [#]Perform detail anahysis [#lExecute each generated case | 1 = | times kd '{fj
Statement | Tirme Andlysis |
_ Mame Schema Text Tables Wigws Elapsed (s} | Improved (s) Cases Indexes
" [seEcT 1 SYSTEM select from SH.SALES, SH.TIMES z] 5 0 0 1
¥ DOsmecrz SYSTEM select from < Joined Tables: 1 o i o o 1
T SELECT 3 SYSTEM select from SH.SALES, SH.TIMES, 5 o 0.00 0.00 18 1 3 6
T Bseecr4 SYSTEM select From CATAINVOICE_LINES, 4 o 0.00 0.00 13 3 1 0
Generated Cases £-
0L Statements and Cases ¥ Cost | %6 Execution Statistics [» Other Execution Statistics | &
. . Wame Text Yaluz | Elapsed Time(s) Result R.. Physical Reads | Logical Reads | CPU Time (=)
" SELECT 1 select from SH.SALES, 8839300
gel =5y SELECT3 sedect fram SH.SALES, 858.0 0.00 o 0 60 0.00
el PARALLELZ 125.0 0.9 EE— () 1462 2047 .01
el PARALLELL 2420 0.5¢ EE— () 1454 1574 0.01
MO _INDEX 859.0
Ei
= LEADINGZ &81.0
LEADIMGS 8610
[El LEADINGS 875,0
El MO_LISE_HASH 10820
LEADING] 2178.0
ezl ORDERED 2419,0 0.00 1 0 0 4 0,00
=] INDEY,_COMEINE 4233.0
LISE_MERGE 72160
INDEX_S5_ASC 13353.0
E INDEY_S5_DESC 13353.0 3
|| T P ——— i

To analyze the SQL statement, click Generate cases

To perform the analysis that populates the Analysis tab now, click Perform detail analysis. Otherwise, the analysis

tab is populated when you click the Analysis tab.

To have the system generate execution statistics, click Execute each generate case and then select the number of

time the system should execute each generated case. Multiple executions can verify that the case results are not
skewed by caching. For example, the first time a query is run, data might be read off of disk, which is slow, and the
second time the data might be in cache and run faster. Thus, one case might seem faster than another but it could be

just benefiting from the effects of caching. Generally, you only need to execute the cases once, but it may be

beneficial to execute the cases multiple times to see if the response times and statistics stay the same.

Understanding the Analysis Tab

Index analysis is started when you either generate cases with Perform detail analysis selected on the Overview tab,
or when you click the Analysis tab. If any columns referenced in the WHERE clause of the tuning candidate are not
the first column of an index, tuning will recommend that you create an index on that column.

The color-coded Index Analysis feature highlights missing indexes as well as shows which indexes are used and
which are not used in the default execution path. The Index Analysis feature highlights issues where the database
optimizer might not be using the preferred indexes. DB Optimizer also lists indexes on the tables that do not have
fields in the WHERE clause helping the designer to see if adding an additional predicate in the WHERE clause might
make use of an existing index.

The layout of the Analysis tab shows the SQL text and Visual SQL Tuning (VST) diagram on the top, and the indexes
on the tables in the query below.

FF' Input P’ Overview L-P Analysis

SQL Analysis 1 Select statement of inkerest: |SELECT 1 V| wR | (3
SELECT ¥
FROM sh.countries COUMTRIES
WHERE country region id = 1 2 52 COUNTRY_REGION_ID: NUMEBER. 3

YR COUNTRIES_PE
1D _COUNTRIES_O

o

Index Analysis Table Statistics | E£ Column Statistics and Histograms Cutlines

&

Collect and create indexes ,:_:)'ih
Index Mame Tal:ule Owner | Table Mame Calumn Mame Index Type Table SH, COUNTRIES is scanned

.| 7 IDX_COUNTRIES O COUNTRIES | COUNTRY REGION_ID [ormal Qi otltabiescan bikichasis
= = —'|| Filter country_reqgion_id = 1 an it

[OcouNTRIES_PK SH COUNTRIES COUNTRY_ID Unique SRR Nt R
1D _COUMTRIES_Q which the
opkimizer picked up, sowe
suggest implementing this inde:x.

S

The Analysis tab has five important components as depicted in the previous illustration:
1 Statement selector, if there are multiple statements in the tuning set.
2 Statement text for selected statement.
3 Graphical diagram of the SQL statement.

4 Index analysis of the SQL statement.

5 Description of the selected index, including the reasoning behind DB Optimizer recommendations.

NOTE:

For the Oracle platform, there are several other tabs available, including Table Statistics, Column
Statistics And Histograms, and Outlines. For more information, see Using Oracle-Specific

Features.

The text, diagram, and analysis sections can be resized or expanded to take up the whole page.

The Analysis tab suggests missing indexes, indicates which indexes are used in the execution path and lists all
indexes that exist on all the tables in the query. Indexes on the table are listed on the Analysis tab and color coded as

follows:

Text Color

Interpretation

Index is used in the query

Index is usable but not used in the current execution path.

This index is missing. DB Optimizer recommends that you create this index.

This index exists on the table but not usable in this query as it is written.

From the example illustrated above, we can see the following:

SELECT *

FROM

client_transaction ct,
client c

WHERE

ct.transaction_status = c.client_marital_status AND
c.client_first_name = "Brad”

Since there is no index on CLIENT.CLIENT_FIRST_NAME and there are 5600 records in CLIENT, DB Optimizer
proposes creating an index:

In the Collect and Create Indexes table, orange-highlighted entries indicate missing indexes that DB Optimizer
recommends be created to improve performance. Clicking on that index, as shown in the illustration that follows,
displays text to the right outlining the rational behind this recommendation.

P‘ Input P" Overview L-?' Analysis

SQL Analysis Select statement of inkerest: |SELECT1 vl R | (@) 4
SELECT * o |)
FROM | B2l CLIENT_TRANSACTION (ct)]
client transaction ct, o
client o -
WHEERE

il
CLIEMT fic)

Ct.transaction status
c.client first nawme =

¢ |

|l

LE RS

Index Analysis Table Statistics | E£ Column Statiskics And Histograms Outlines

Collect and create indexes t;')-{h ﬂ:l
Index Mame Table Crwner Table Marne e
&D O ID%_CLIENT..SACTION_O S¥STEM CLIEMT_.. . ACTION TRAMNSE
& [JoLIENT MULTI SYSTEM CLIEMT CLIEMT —
3 [CLIENT_BROKER SYITEM CLIEMT BROKER
3 [OJCLENT INCOME SYSTEM CLIEMT CLIENT (o
< i >

E

For more information on using the Analysis tab, see Using the Analysis Tab.

Tuning SQL Statements

A tuning job enables you to view the cost details of SQL statements on a registered data source and then select the
best, or most efficient, array of execution path directives in order to make query execution faster, therefore improving
the entire enterprise, overall.

There are four methods through which statement tuning can be activated:
* Ad hoc statement tuning via manual entry, or cutting and pasting into the tuning window.
« Database object selection, by selecting stored packages from a list on the registered data source.
« SQL file selection, by choosing an SQL file saved on the system.

« Importing statements directly from profiling.

A tuning job consists of a set of SQL statements and any analysis results you generate against a data source using
tuning. The SQL statements and analysis results that compose a tuning job can be saved in a tuning file (.tun). This
enables you to open a tuning job at a later time for inspection and analysis, to add, delete, or modify the SQL
statements, or generate new execution statistics.

The following tasks provide a high-level overview of the tuning process:

1 Create a New Tuning Job

2 Specify a Data Source

Add SQL Statements

Run a Tuning Job

g b~ W

Analyze Tuning Results

6 Modify Tuning Results

NOTE: For additional commands that fall outside the general tuning workflow, but may still be helpful, see
Additional Tuning Commands.

Create a New Tuning Job

New tuning jobs can be created via the File > New > Tuning Job command, or by importing statements directly from
profiling. A New Tuning Job icon is also available on the Toolbar.

To create a new tuning job via the Menu or Icon command:
Select File > New > Tuning Job, or click the New Tuning Job icon on the Toolbar. Tuning opens.
You can now proceed to set up the parameters of the new job.

To create a new tuning job from profiling:

After you have run a profiling session, in profiling’s Profiling Details tab, select one or more statements,
right-click, and select Tune from the context menu. Tuning opens, pre-populated with parameters based on the
statements you selected.

To open an existing tuning job:

Navigate to the SQL Project tab and double-click the name of the existing tuning job.

To name a job, saveit:

Ensure you specify a meaningful name that identifies the job in other views and dialogs. You can save the job by
selecting File > Save or File > Save All from the Menu bar. Once a job is saved, it is added to the SQL Project

view.
Y patas fHsoier 22 T O [l TORLABORCLEI 22.0ar L#| Untitled Tuning Jobwe.un 52 =0
2% 7y fforade b S TORLABORCLEI_2 (8.1.7.4)
saL .
= = SQLProject ‘ Lp’ Input ‘ P‘ Overview Fﬂ’ Analysis
+ fv Comnections
) [2l) Crestion Scripks :
] ip # Input @
11 General SQL
Il TORLABORCLSI_22,car Tuning Candidates
E TORLABSQLOO_1 _#2.0ar Gather the SOL statements to be tuned,
42| Untitled Turing Job.bun “sar ' =
-) Ad hoc SQL Database Objects | 50 SQL Files | % Active S0L in 5GA
8] Untitked Turing Jobi2.tury - a 5] =
jﬁ]] Uit Tink Jokc2. bun Tnput 5QL statements to be tuned.
Unkitled Tuning Jobw.tun 1
= - SELECT /*+ RULE #/ A
I.TAELE_OWNER,
I.TAELE NAME,
IC.INDEX OWMER,
IC.INDEX MAME,
IC. INDEX OWNER,
IC.COLUMN NANE,
. I.TABLE_TYPE,
@ progress 0 %~ =0 IC.COLUMN_POSITICH,
_ _ e IC.DESCEND,
Mo operations bo display at this bime c.cOLUMN EXPRESS TON v
S
< | B

Specify a Data Source

The bread crumbs at the top of the tuning job window identify the data source where the SQL statements to be tuned
reside.The default data source is the one that was selected when the new tuning job was initiated. For example in the
following image, we see that the data source is Sfvpclb0O1.embarcadero.com., which is part of the Oracle data source

group.
b [_'E;Oracle b ﬁvapcll:ulill.embarcaderu.cnm{1[!.2.[!.1}

L,-?' Input P‘ Overview Fﬁ' Analysis

Input

You can change the data source of a tuning job by clicking a breadcrumb triangle and then navigating to the
datasource or using the filter to locate and then select a data source. In the following screenshot, Microsoft SQL
Server was clicked and T was entered in the filter text area, which resulted in several matches.

=l l=F Daka Saurce Group
=I-1=F Microsoft SQL Server
=I-1=F Microsoft SGL Server
S
58] TORLAESQLOO_1
=I-1=F Cracle
jFE Sfvpclb0l. embarcadero. com

Click the name of the desired data source to affect the change.

NOTE: Multiple tuning jobs can be saved against the same data source. You can therefore set up your
tuning jobs organizationally. You might for example, set up a tuning job to tune only SQL
associated with procedures or a set of SQL sources that are functionally related. Alternatively,
your tuning jobs may be organized by application.

Add SQL Statements

Once you have created a tuning job and named it, using File > Save As, you need to add SQL statements to the job
that are to be tuned. All standard DML statements can be tuned (SELECT, INSERT, DELETE, and UPDATE).

Statements are added to tuning via the Tuning Candidates pane.

F' Analysis

I# Input B’ v Ery s
Input

Tuning Candidates
ather the SJL staterments bo be tuned,

B Adboc 50U | [] Database Objects 59 SGL Files | % Active SOL in SGA

Imput SOL stabements to be buned,

SELECT
ct.action,
c.olient id,
i.investment unit,
it.ilnvesStmeEnt CYpe nsine

FROH
client transaction ct,
client o,
investment type ic,
investment i

WHERE
ct.client_id = o.clienc_id AND
ct.investment id = i.ipvestment id AND
i.investment_type id = it.investment type id and
client_transaction_ id=1

There are several different methods for adding SQL statements to a job, as reflected by the tabs in the Tuning
Candidates box:

« The Ad hoc SQL tab enables tuning via manual entry, or cutting and pasting into the tuning window.

« The Database Objects tab enables you to select stored SQL from the data source to which you are connected.
You can either drag and drop objects from the Data Source Explorer or you can add database objects matching
specified filers. For example, entering t in the filter area of the Data Source Objects Selection dialog, can match
functions, views, and procedures, whose name begins with t.

e The SQL Flles tab enables you to choose an SQL file saved on the system.

¢ The Active SQL in SGA tab is available for the Oracle platform only. It enables you to scan for and select active

SQL in the System Global Area (SGA). For more information, see Tuning SQL Statements in the System Global

Area (SGA)

To add an ad hoc SQL statement:

Select the Ad hoc SQL tab and manually type an SQL statement in the window, or copy/paste the statement
from another source.

To add a database object:
1 Select the Database Objects and click Add. The Data Source Object Selection dialog appears.

2 Type an object name prefix or pattern in the field provided. The window below automatically populates with all
statements residing on the specified data source that match your criteria. Database objects include functions,
materialized views, packages, package bodies, procedures, stored outlines, triggers, and views.

3 Double-click on the statement you want to add. You can click Add again to repeat the process and add more
objects to the job.

NOTE: Alternatively, after clicking the Database Objects tab, you can drag and drop objects from Data
Source Explorer into the Database Objects window. As long as the dragged object is a valid object
type, it will be added to the Database Objects tab.

To add an SQL file:
1 Select SQL Files and click Workspace or File System, depending on where the file you want to add is stored:

« Workspace files are files that reside in the application, meaning project files or other objects generated or
stored in the system.

« File System files are files that reside on your machine or the network.

2 Select a file from the dialog that appears. It is automatically added to the job.

Run a Tuning Job

As you add SQL statements to the job on the Input tab of the tuner, tuning-supported DML statements (SELECT,
INSERT, DELETE, and UPDATE) are parsed from the statements and added to the Overview tab in preparation for
the tuning function execution.

Each tuning source statement is listed by Name, Schema, Text, Tables and Views. For SQL Server and Sybase
platforms, there is also a Catalog column. Additionally, each statement will have Time and Analysis values that
approximate how efficiently they execute on the specified data source.

In the Generated Cases area of the Overview tab of a tuning job, the Cost and Execution Statistics columns let you
compare the relative efficiency of SQL statements or statement cases. While the explain plan Cost for a statement or
case is calculated when you add SQL to a tuning job, the Elapsed Time and Execution Statistics columns are not
populated until you execute that statement or case.

If the Tuning Status Indicator indicates that a statement or case is ready to execute, you can execute one or more
statements on the Overview tab. Alternatively, the Tuning Status Indicator may show that you have to correct the SQL
or set bind variables before you can execute.

Once the tuning job has run, the Overview tab provides a series of cases, per statement, that you can select and
modify based on your results.

In some cases, automatic case generation might be disabled (via the Preferences panel). If this is true, or if you have
otherwise modified the Generated Cases table and can no longer generate a specific case, you can instead explicitly
generate a case for specific statements.

Execute each generated case | 1 = | times b f/j L))

To execute a tuning job:

1 Ensure you have registered and selected a data source. For more information, see “Register Data Sources” in
the DBOptimizer User Guide and Specify a Data Source.

2 Ensure you are connected to the database by double clicking the database name in the Data Source Explorer.

Click the tuning icon on the toolbar, or click File > New > Tuning Job.
On the Input tab, specify the SQL you want to tune:

« Onthe Ad hoc SQL tab, enter SQL statements of copy/paste SQL statements from another source.

« Click the Database Objects tab and then click and drag database objects, such as Procedures, from the Data
Source Explorer to the Database Object tab.

« Click the Database Objects tab and then click Add to choose database objects matching the filter you
provide.

¢ Click the SQL Files tab and navigate to the SQL file you want to tune.

Navigate to the Overview tab and modify the number of times to execute each statement in the Execute each
generated case field, as needed.

Click the execution icon to the right side of the case generation field.

The tuning job runs, exacting and analyzing each statement and providing values in the appropriate columns.

To explicitly generate a case for a specific statement:

1

2

Ensure you are connected to the database by double clicking the database name in the Data Source Explorer.
Navigate to the Overview tab.

In the Generated Cases area, right-click in the Name field of a statement or transformation case and select
Generate Cases from the context menu, or click the Overview Run Job icon. The specified case is generated.

To view the generated cases for a specific source statement
1 Inthe Tuning Source Statement area, click the checkbox to the left of the tuning source statement name.

A check mark appears in the checkbox and the cases displayed in the Generated Cases area are filtered to
display only those cases related to the selected source statement.

F-‘ Input P Analysis

= Dverview

@ Overview | emor detected

Tl_,mhg Statements Generate cases |E|Ferﬁ:|rm detail analysis EIE':I.ﬁs each generated case | 1

;]I kimes @ ty

@

Statement Tirn= Anadysis
I Mame Schema Text | Tables | Views Elapsed (s) | Improved(s) | Cases | Indexes
% MISELECT 1 SYSTEM select from SH,SALES, SH.TIMES 2 0 5 0 0 1
¥ DOseecrz SYSTEM selact from < Joined Tables: 1 0 1 o0 1
T BseEcTs SYSTEM seleck From SH.SALES, SH.TIMES, 5 0 0.00 0.00 181 3 6
T [dseecr 4 SYSTEM select from CATA.INVOICE_LINES, 4 0 0.00 0.00 13)3 1 0
Generated Cases £
50OL Statements and Cases » Cost | 4 Execubion Statistics [Gther Execution Statistics |~
i Name | Text Value Elapsed Time(s) FResut R.. Physical Reads | Logical Reads | CPU Time (s)
+ Ty SELECT L select from SH.SALES, 8539300
gl =55 SELECT 3 select Frorm SH.SALES, B58.0 0.00 1] o &0 10,000
| PARALLELZ 125.0 0.04 — [1462 2047 .01
ge] - PARALLELL 2420 0.5¢ E— () 1454 1874 0.01
i NO_THDEX £59.0
Bl o LEADINGZ 841.0 B
[LEADIMGS B61.0
El - LEADMG3 875.0
El - mo_USE_HASH 1082.0
o LEADINGL 2178.0
ﬂ:'—_l i ORDERED 2419.0 0,00 0 u] o 4 0,00
[E] - INDEX_COMBINE 4233.0
LISE_MERGE 7216.0 —
i INDEN_SS_ASC 13353.0
[E] - INDEX_SS_DESC 13353.0 3
1

L

T]

Analyze Tuning Results

Once you have executed a tuning job, the Overview tab reflects tuning analysis of the specified statements. The
Analysis tab also shows the resulting analysis of the query, including indexes used, not used, and missing (or
suggested to create). For more information on using the Analysis tab, see Understanding the Analysis Tab

Tuning Status Indicator Column Set Run/Cancel Job
Enable Execution Expand/Collapse Controls
Check Box Control
Increase/Decrease

Pane Size Control

F‘ Input l L-* verview FP AnalySis l

| o

[cenerae Cazes [rerform detai analysis Exefute each cenerated case | @- ‘rfj

Statement Time | An
Text Thbles Viswe Elapsad (5) Irmproved (5} Cases Inds:
o BseEcT2 SYSTEM select from BROKER,, £.32 6.32 0
T BsSELECT ! SYSTEM select from .00 .00 10
S | ¥
Generated Base i
Generated Cases Expand/Collapse Control Filter Control £
/ SQL Statements and Casss ¥ Cost #Exgouil...istics] bl Qther
e B & Text | Vale | ElapsedTime(s) | PhyscalReads | Lo
EE zelect from BROKER, CLIENT TRAMSACTION, 340140 6.32 2
e rmation 274.0 0.03 0
= gelect from chent_transaction, dient, 4.0 0.00 i}
] USE_HASH 14.0 0.00 o
e ORDERED 2.0 0.00 i
el NO_USE_MNL 5.0 0.00 1]
= LEADING4 _ Extracted SQL 4 4 0.00 0
S| \Faomics Transformation Case Statements %0 001 3
eEl LEADING2 Hint-Based 70 001 0
3 e Cases 4.0 0.00 0
e INDEX_FFS 2.0 0.00 o
o FULL 4.0 0.00 0
&= - FIRST_ROWS 40 0.00 0
< b

« The Generated case Expand/Collapse control lets you hide or display the hint-based cases and
transformation-based case generated for a statement.

¢ The Enable Execution check boxes let you enable multiple statements or cases for simultaneous execution while
the Run/Cancel Job controls let you start and stop simultaneous execution.

¢ The Column set Expand/Collapse controls let you expand a column set to display more of the columns within the
table.

« The Tuning Status Indicator indicates whether a statement or case is ready to execute or has successfully
executed. The following table provides information on the Tuning Status Indicator states:

Icon Description

E The case has not been executed. There are no errors or warnings and the case is ready to be executed.
= The case has been successfully executed.

E Execution for this case failed or was cancelled due to execution time exceeding 1.5 of original case time.

Hovering the mouse over the Tuning Status Indicator displays a tip that notes the nature of a warning or error.

NOTE: If a warning indicates that one or more tables do not have statistics, you can right-click the
statement and select Analyze Tables to gather statistics.

A warning can indicate an object caching error. For example, a table may not exist or not be fully qualified.
Cases cannot be generated for the associated statement.

« The explain plan-based Cost field can be expended to display a graphical representation of the values for
statements or cases. Similarly, after executing a statement or case, the Elapsed Time field can be expanded to
display a graphical representation. The bar length and colors used in the representation are intended as an aid in
comparing values, particularly among cases. For example:

0,78 R

1,543 I
0,685 R

0,499 E

I:Il?g? —

0.828 L

In the case of both Cost and Elapsed Time, the values for the original statement are considered the baseline
values. With respect to color-coding for individual case variants, values within a degradation threshold (default
10%) and improvement threshold (default 10%) are represented with a neutral color (default light blue). Values
less than the improvement threshold are represented with a distinctive color (default green). Values greater than
the degradation threshold are shown with their own distinctive color (default red).

With respect to bar length, the baseline value of the original statement spans half the width of the column. For
child-cases of the original statement, if one or more cases show a degradation value, the largest degradation
value spans the width of the column. Bar length for all other children cases is a function of the value for that case
in comparison to the highest degradation value.

NOTE: Forinformation on specifying colors, and the improvement threshold and degradation threshold
values used in these graphical representations, see Set Tuning Job Editor Preferences.

Additionally, once results have been generated you can:

* Compare Cases

Filter and Delete Cases

Visual SQL Tuning

Create an QOutline

Compare Cases

You can compare cases between an original statement and one of its tuning-generated statements, or another
statement case via the Compare to Parent and Compare Selected commands, respectively

e O i
& AR
D selECT 2: DB Transformation (SELECT 2):
FRgrR = ey
BROXKEFR L Fa
BROKER A, P o =
CLIENT TRANSACTION B, “—‘“"—:E"“‘M:TE;‘H‘ =
OFFICE_LOCATION C, =
INVESTMENT I RS S
WHERE HEEES
L BROEFE TD = B _BROFFR T
.BROXER ID = B.BROXER ID AN A-BROKER ID = B.BROKER If

.OFFICE LOCATICH ID = C.

e I
A.OFFICE LOCATION ID = C.CE‘E‘:I—'— -

B.INVESTMENT ID = I.INVEE
E

GROUF BY
I GROUF BY
L.BRCOEER ID,
A BROKER ID
- e - 4. OBRVOLLR L
A.BRCEER LAST NAME, -
— — L mmewEn taeT WmMT
2 BROFER FIRST NLME A.BROFER LAST NAME,
= L% £4 - - r . T = Fp e -
. .YEFARS .-_1:-.-.-._, T B A.BROFER FIRST HAME,
A YEARS WITH FIRM, = -
— _ W wmrme mem Em—mar
C.OFFICE NAME; Ao ILARS_NLIA_ELES, v

@

To compare a case side-by-side with its parent:
Rlght-click in the Name field of a case and select Compare to Parent from the context menu.

To compare two cases:

Select the two cases then right-click in the Name field of either case and select Compare Selected from the
context menu.

Filter and Delete Cases

You filter cases from the Generated Cases table via the Filter icons on the Generated Cases Toolbar of the
Overview tab.

-+l
e

Filter the cases on the Overview tab so that hints that are not improvements on the original statement are not
displayed. You can filter:

« Non-optimizable statements
¢ Optimized statements

* Worst cost cases

* Worst elapsed time cases

When filtering, the criteria remain in effect until you change the criteria. That is, as new cases are generated, only
those cases that do not satisfy the filtering criteria are displayed. To restore an unfiltered set of cases, open the Filter
dialog and deselect the filtering options.

When removing cases, the criteria you set has no effect on cases subsequently generated.

To filter cases from the Overview table:
1 Click the Filter button, respectively. A Filters dialog opens.

2 Use the check boxes to select your filtering and then click OK.

To delete cases from the Overview table:
1 Right-click on the row of the case you want to delete and select Delete. A Delete dialog opens.

2 Use the check boxes to select your filtering and then click OK.

When removing cases, the criteria you set has no effect on cases subsequently generated.

Create an Outline

If SQL is executed by an external application or If you cannot directly modify the SQL being executed but would like to
improve the execution performance, you can create an outline on the Oracle platform. An outline instructs the Oracle
database on the execution path that should be taken for a particular statement.

To create an outline for a change suggested by a case:

1 Onthe Overview tab of a tuning job, right-click in the Name field of a case and select Create Outline from the
context menu.

A New Outline wizard opens.

2 On the first panel, provide an Outline name, select an Outline category, and then click Next.
A Preview Outline panel opens previewing the SQL code to create the outline.

3 Select an Action to take option of Execute or Open in new SQL editor and then click Finish.

For more information, see Using the Outlines Tab.

Modify Tuning Results

As you add SQL source to the Input tab of a tuning job, the supported DML statements are automatically parsed out
and a numbered statement record for each statement is added to the Overview tab.

Cases generated from tuning candidates are alternative forms of the original statement that have been optimized or
otherwise “fixed” by the tuning function. Once you have executed a tuning job, tuning automatically generates all SQL
optimizer hint-based variations that can be applied to the statement:

« All SQL Optimizer hint-based variations that can be applied to a statement.

« A transformation-based case, if any of the eight common quick fixes can be applied to an SQL statement. This
feature leverages the DB Optimizer Code Quality Check fuctionality. See Understanding Code Quality Checks for
more information on the eight quick fixes. A transformation case, in turn, has its own set of SQL Optimizer hint

cases.
| P Input 1,,-' Overview | P- Analysis
Ay Overview 1 wsming detected %
Tuning Source State [Generate Casss [] Perform detal znalysis [#] Execute each generated case @ -
Statement | Time | An
Mame Text Tables Views Elapsed (=) Improved (s) Cases Inde:
T EssEcT 2 select from BROKER, 6.32 6.32 0
T BssEcT select from 0.00 0.00 10
< >
Generated Cases Transformation-based case &
nts and Cases ¥ Cost | SExecuti...istics | 3 Other
Mame Text Value Elapsed Time (s) | Physical Reads | Lo
eE Iy SRLECT2 select from BR.OKER, CLIENT_TRANSACTION, 34014.0 £.32 2
ek | [Migsing a ...sformation 2740 0,03 a
gel By SRECT1 select from chent_transaction, dient, 4.0 .00 i}
el USE_HASH 14,0 0,00 o
=l ORDERED Hint-based cases 2.0 0,00 0
el MO_USE_NL 16.0 0.00 0
ﬂ_:J LEADINGS 8.0 0.00 a0
EFJ LEADING3 10.0 0.01 g
o LEADINGZ 7 0.01 0
eEl LEADING1 4.0 0.00 0
el INDEY_FFS 9.0 0,00 i
EE FULL &40 0.00 0
el FIRST_ROWS 4.0 .00 i
4 *

Hint-based cases and the transformation-based case are a special case of the statement records added to the
Overview tab as you add candidates to a tuning job. With the exception of the Text, Source, and Index Analysis fields,
cases are identical to the standard statement record. Similarly, execution, statistics collection, and other options
available for basic statement records are available for individual cases.

Once cases have been generated, if you have the required permissions on the specified data source, you can apply
the changes suggested by hint and transformation based cases in the Overview table.

To apply a change:

1 Right-click on the Name field of the case that you want to use to modify the original statement and select Apply
Change.

The Apply Change dialog appears.
2 Choose Execute to apply the change to the statement automatically.

TIP: Alternatively, select Open in New SQL Editor to open the modified statement in SQL Editor for
manual changes or to save it to a file.

Using the Analysis Tab

The Analysis tab provides detailed information about statements and cases selected from the Overview tab, after a

tuning job has been executed.

The Analysis tab contains information about the statement or case, its full SQL code, a diagram of the SQL

statement, and Index Analysis.

P‘ Input

F‘ Overview l;' Analysis

£ SQL Analysis

SELECT -
ct.action,
c.olient id,
i.investment unic,
it.invesSCMENT TYpPEe_name
FROM
client transaction ct,
client e,
invescmant Type it
invegtment i
WHERE
ct.client id = c.client
ct.inveastman :_id = i, investr
i.investment_type id = it.ir—
client transaction id = 1; &

&

[

-

Select statemant of interest: |SELECT 1

| il CLIENT_TRANSACTION (et) |

v

| B3 cLEnT ()|

| = mvesTmenT ()|

w o

| EQ mvesTMENT_TYPE Gt) |

[indlex Analysis | [Table Statistics | X Column Statistics And Histograms | [Outines

Collect and create indexes

- Index Name Table Owreer Table Name | Column Name #
o [JCLIENT PK SYSTEM CLIENT CLIENT_ID
" [JCUENT TRAMSACTION PK SYSTEM CLIENT ... ACTION | CLIENT TRANSACTION_ =
" []TMvESTMENT PK SYSTEM THVESTMENT INVESTMENT_ID i
& []IMVESTMENT TYPE_PK SYSTEM INVESTMENT _TYPE INVESTMENT _TYPE_ID

® [lcuent Tra...I0M CLIENT SYSTEM CLIENT .. ACTION CLIENT ID s
£ [»

Additionally, for the Oracle platform there are Table Statistics, Column Statistics and Histograms, and Outlines tabs.
For more information, see Using Oracle-Specific Features.

Statement analysis is performed when you click Perform detail analysis on the Overview tab and then click Run
Job or when you click the Analysis tab. In order to view and analyze statement statistics, select the tab (Index
Analysis, Table Statistics, Column Statistics and Histograms, or Outline) and the statements whose statistics you want

to analyze.

For more information, see Visual SQL Tuning.

Visual SQL Tuning

DB Optimizer can now parse an SQL query and analyze the indexes and constraints on the tables in the query and
display the query in graphical format on The Visual SQL Tuning (VST) diagram, which can be displayed in either
Summary Mode or Detail Mode, helps developers, designers and DBAs see flaws in the schema design such as
Cartesians joins, implied Cartesians joins and many-to-many relationships. The VST diagram also helps the user to
more quickly understand the components of an SQL query, thus accelerating trouble-shooting and analysis.

This section is comprised of the following topics:
¢ Changing Diagram Detail Display
« Interpreting the VST Diagram Graphics

« Implementing Index Analysis Recommendations

Changing Diagram Detail Display

This section is comprised of the following topics:

¢ Viewing the VST Diagram in Summary Mode

¢ Viewing the VST Diagram in Detail Mode

¢ Changing Detail Level for a Specific Table

« Viewing All Table Fields
« Viewing Diagram Object SQL

« Expanding Views in the VST Diagram

Viewing the VST Diagram in Summary Mode

By default the diagram displays Summary Mode, showing only table names and joins, as seen in the following
illustration.

B @

| AEl CLIENT_TRANSACTION (ct) |

| B cuEnT (©

| & mwesTvenT ()

| 3 INVESTMENT _TYPE (it)

Viewing the VST Diagram in Detail Mode
By default, the VST diagram displays in Summary Mode, but by clicking the Detail Mode/Summary Mode switch.

| K]

CLIENT_TRANSACTION {ct)
5 A

Detail Mode/ Summary Mode
Switch

CLIENT (c) | B INVESTMENT ()

| B mvESTMENT TYPE (t) |

additional details of the tables display, including table columns and indexes.

fu_
AR

CLIENT_TRANSACTION {ct)

CLIEMT_ID: MUMBER
@= CLIEMT_TRAMSACTION_ID: NUMBER
== INVESTMENT_ID: MUMBER.

CLIENT_TRAMSACTION_BROKER
CLIENT_TRAMSACTION_CLIENT
CLIEMT_TRAMSACTION_INVESTMENT
B CLIENT_TRANSACTION_PK

VAR

CLIENT (c) INVESTMENT i)

= CLIENT_ID: NUMBER
CLIENT_BROKER

£ INVESTMENT _ID: NUMBER
== INVESTMENT_TYPE_ID: MUMBER

CLIENT_MULTI INYESTMENT _INVESTMENT_TYPE
%R CLIENT_PK R INVESTMENT _PK

i

INVESTMEMT_TYPE (it)
£E INVESTMENT _TYPE_ID: NUMBER
%P INVESTMENT _TYPE_PK

Changing Detail Level for a Specific Table

You can also switch between Summary Mode and Detail Mode for a specific table or view, by double-clicking the
object name.

Viewing All Table Fields

By default, only fields that are used in the WHERE clause are displayed in detail mode; however, all fields in the table
can be seen in a pop-up window when, while in Summary Mode, you hover the mouse over the table. The illustration
below shows an example of a pop-up window that appears when hovering the mouse over a table.

| CLIENF, TRANSACTION (k) |

CLIENT_TRAMSACTION (ct)

ES ACTION: YARCHARZ

ERCKER. _COMMISSTON: MUMEBER.

BROKER_ID: MUMBER.

LIEMT_IC:: MUMBER.

5= CLIEMT_TRANSACTION_ID: NUMBER
DESCRIPTION: VARCHAR:Z

INVESTMEMT_ID: MUMEER.

IIMEER._OF _LIMITS: MUMEER.

PRICE: MUMEER.
TRAMNSACTION_COMP_TIMESTAMP: TIMESTAMP
TRAMIACTION_STATUS: WARCHARZ
RAMSACTION_SUE_TIMESTAMP: TIMESTAMP

CLIENT (c)

CLIEMT_TRAMNSACTION_BROKER
CLIEMT_TRANSACTION_CLIEMT
CLIEMT_TRAMNSACTION_INVESTMEMT
ﬂ‘b CLIEMT_TRAMNSACTION_PE

However, if you right-click the table you can choose to display even unused columns as follows:

CLIENT_TRAMSACTION (k)

== CLIEMT_ID: NUMBER.
= CLIENT_TRAMSACTI
= 1 Reset Layaut

S INVESTMEMT _ID: ML l?_
= ++ Layout Direction 4

CLIENT_TRANSACTI
CLIENT_TRANSACTI =i Summary Mode
CLIENT_TRAMSACTI JEE
[7% CLIENT_TRANSACTI]

jeck Chwiners

TIENT ic) [—— |

All the columns in the table are shown, and not just the ones used in the WHERE clause of the SQL statement.

CLIENT_TRAMSACTION (ct)

ES ACTION: YARCHARZ

ROKER_COMMISSTION: NUMEER.

BROKER _IC: MUMEER.

CLIENT_ID: MUMBER
CLIENT_TRAMSACTION_ID: MUMBER.
DESCRIPTION: WARCHARE

INYESTMENT _ID: NUMEER.

MUMEBER. _COF_UMITS: MUMEER.

RICE: MUMBER

RANSACTION _COMP_TIMESTAMP: TIMESTAMP
TRAMSACTION_STATUS: YARCHARZ

== TRAMSACTION_SUE_TIMESTAMP: TIMESTAMP

CLIENT _TRAMSACTION_BROKER.
CLIENT_TRAMSSCTION_CLIEMT
CLIENT_TRAMSSCTION_INVESTMEMT
ﬁa“ CLIENT _TRAMNSACTION_PE

Viewing Diagram Object SQL
While in Detail Mode, hovering the mouse over the table name, field, or index displays the SQL required to create that
object.

CLIEMT_TRAMSACTION {ct)
CLIENT_ID: MUMEBER

CLIENT _TRAMSACTION_ID: MUMEER
= INVESTMENT _ID: NUMEER.

CLIENT _TRAMSACTION_BROKER
CLIENT_TRAMSACTION_CLIEMT

CLIENT_TPﬁACTION_INVESTMENT
R

B CLIENT_T ACTION BE
t CREATE INDEX SYETEM.CLIENT TRAMNSACTION TNWESTHMENT

%2¥; OM ZYETEM.CLIENT TDANSACTION (INVESTMENT ID;

TAELESPACE STS3TEM

LOGGING
CLIENT (c) PCTFREE 10

= CLIENT_ID: NUMEER, | |INITRANS 2
MiKTRANS EEBL

CLIEMT_BROKER NOPARALLEL
CLIEMT _INCOME NOCOMPRESS
CLIEMT_MULTI B IMVESTMENT _PK

¥R CLIENT _PK

INVESTMENT _TYPE (it)
INVESTMENT _TYPE_ID: NUMBER.

B INVESTMENT _TYPE_PK

Hovering over the join between two tables displays the relationship between the two tables.

| B CLIENT _TRANSACTION (ct) |

CLIEMT { [sewiesrracer o

ct.client _id = c.client_id
Columns=s
CLIEMT.CLIENT_ID
CLIENT TRANSACTION.CLIENT_ID
Bow count ratio:
CLIENT LE&00
CLIENT TRANSACTION 18675

Expanding Views in the VST Diagram
If there are views in the Visual SQL Tuning diagram, they can be expanded by right clicking the view name and
choosing Expand View:

For example, the following is the default layout from query join table CLIENT (c) to view TRANSACTIONS (t):

&3 TRANSACTIONS (1)

CLIENT (0

Right click on the view, TRANSACTION (t) and choose Expand View

&3 TRANSACTIC peeg
% Expand View

,céh Reset Layout
CLIENT ¢ +I+ Layout Direction r

A .
., Detail Mode
Ol Show Object Owners

E"l Zoom In

Now we can see the objects in the view:

&3 TRANSACTIONS (1)

& INVESTMENTS (i)
(0)

| CLIENT_TRANSACTION {ct)

L -

CLIENT (0

We can further expand the sub-view within the original view:

&3 TRANSACTIONS (1)

&3 INVESTMENTS ()

| B vESTMENT ()

i

| B mvESTMENT _TYPE (t) |
W

| CLIENT_TRANSACTION (ct)

" -

CLIENT {c)

The following is an example of view expansion along with the Explain Plan to the left.

Fie Edt Havigete Sesrch

USING TUNING > TUNING SQL STATEMENTS

Notice in the view expansion a list of all the indexes on all the underlying tables in the views and sub views and which
of those indexes is used in the default execution plan.

il Optimization

Project foun Window Help

M HE IR BN B0 A B e

-"-Limﬁ;ém\x me*=0
B [voe e et |
N Operaten
& = o SELECT STATEMENT
B |f soaT
= {3} HESTEDLOGRS
= 1} NESTED LOOPS
[TT TABUE AGCESS - SYSTEM.INVESTMENT
5] INDEX, « SYSTEM, INYESTMENT _TePE_PY.
[T TABLE A2CBES - 478, LIBNT_TRANSACTDON
[TNDEX, « SYSTEM.CLIENT Y.
i

B[5. covmant.. |
| JI‘ =
& sQL Analysis @
Salect staternant of twrest; |SELECT ~ o
SILECT COUNT () A mMaq -~
FRCH
i
SELECT
& MERLEN,
a.elienc_id,
-1 1r.'.res:=er.=_ur.'.:.
% ARVEITEANS_SYPe_RARe
FROM
SEARBASTLORE §, Ik
olisne @
WHERE t.client_id = o.cliess_id
i
b nu‘ {I'.:l W
L ¥ ; Tl moER _n: veeR:
. Wl CLIBT_COTY: VARCHAR] —
() indes vty | [T Statates | I Giokenn Statatics ded Histograms | (] Outives | I CLIBNT_COUNTRY: VARCHARS
Bl cue_ceoer: ok
Colest and create ndeaes Bl e _pousenown_Jnoome: e || £
Al Index Haene | Tieoww | Tabwtase | Column tipe I CLIENT_ID: HUAEER a
¥ [l £TSTEM CLENT CLEENT JD Il CLIENT LAST puave: vaROHAR
o CIoesTenT e SPSTEM thovest,, 7 rveg nvestvent rvoe gl I CLIBNT MARITAL STATUS: VARCHARZ
@ CICLIENT TRAN.., PIVESTMENT SrSTEM amr.cnon paesmvem e | [ICUBT ProtE vEER: VARCHARD
§ [IomESTEENT 1., STMENT TYRE SYSTEM THVESTMENT povesnaenT_myee_p| [CLIENT POSTAL COOE: VARCHARY
K [ClcuenT prosgr SYSTEM CLIENT EROSER_ID Bl cLmm_sTame_pRovINGE: vaRCHAR:
3 CICLIENT TRAN,. TION_ BROKER SrSTEM CLENT, CTICH ER(SER D I CLIENT_STREET_ADCRESS: VARCHAR]
M I CLIENT TRANSACTION CLIENT STSTEM CLENT., CTION CLEEMT JD Bl cLIBNT YEAR _OF BIRTH: MUMBER
X CcuBi_TRANSACTION PX SPSTEM QUBNT.. CTIOH CLIBT_TRMSACTI o ¢ 0 e e
B [Clrnesmeent px SYSTEM IMESTMENT INVESTMENT ID
& — o CLIBNT Py .
. ________________Iam
| Untitied Tuning Job ... Job 2t (%) lap@E

Interpreting the VST Diagram Graphics

This section will help you understand the following graphic usages:

e |cons

¢ Colors

¢ Connecting Lines/Joins

EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER’S GUIDE

113

Icons

The following describes the icons used in tables displayed in Detail Mode.

Table Icon Description
Table Name
== Field
ﬁé Field with a filter, used in the WHERE clause
Index
.\;53 Primary Key
Colors

The color of the index entries in the Collect and Create Indexes table is interpreted as follows:

Text Color

Interpretation

Index is used in the query.

Index is usable but not used by the current execution path.

This index is missing. DB Optimizer recommends that you create this index.

This index exists on the table but not usable in this query as it is written.

Connecting Lines/Joins

Joins are represented with connecting lines between nodes. You can move tables in the diagram by clicking and
dragging them to the desired location. The position of the connecting lines is automatically adjusted. The following
describes when a particular type of connecting line is used and the default positioning of the line.

Connecting Lines

When used

—

One-to-One Join relationships are graphed horizontally using blue lines.

Zo—b One-to-Many Join relationships are graphed with the many table above the one table.

Cartesian Join shows the table highlighted in red with no connectors to indicate that it is joined in
via a Cartesian join.
e Many-to-Many Join relationships are connected by a red line and the relative location is not

restricted.

One-to-One Join

If two tables are joined on their primary key, such as:

SELECT COUNT (*)
FROM

investment_type it,
office_location ol
WHERE investment_type id = office_location_id;

Then graphically, these would be laid out side-by-side, with a one-to-one connector:

| B mweSTMENT TvPE H—+ E3 OFFICE_LOCATION

One-to-Many Join
This is the default positioning of a one-to-many relationship, where INVESTMENT_TYPE is the master table and
INVESTMENT is the details table.

INVESTMENT

| & mwesTvenT _TveE|

The following is an example of a query that consists of only many-to-one joins, which is more typical:

SELECT
ct.action,
c.client_id,
i.investment_unit,
it.investment_type_name

FROM

client_transaction ct,
client c,

investment_type it,
investment i
WHERE
ct_client_id = c
ct.investment_id
i.investment_typ it.investment_type_id and
i

n
.investment_id AND
client_transact =

i
i
e_id
i

| B CLIENT_TRANSACTION |

| B cLenT | | B INvESTMENT |

| B mvesTMENT _TYPE |

Cartesian Join

A Cartesian join is described in the following example where the query is missing join criteria on the table
INVESTMENT:

SELECT
A_BROKER_ID BROKER_ID,
A_BROKER_LAST_NAME BROKER_LAST_NAME,
A_BROKER_FIRST_NAME BROKER_FIRST_NAME,
A_YEARS_WITH_FIRM YEARS_WITH_FIRM,
C.OFFICE_NAME OFFICE_NAME,
SUM (B.BROKER_COMMISSION) TOTAL_COMMISSIONS
FROM
BROKER A,
CLIENT_TRANSACTION B,
OFFICE_LOCATION C,
INVESTMENT 1
WHERE
A_BROKER_ID = B.BROKER_ID AND
A_OFFICE_LOCATION_ID = C.OFFICE_LOCATION_ID
GROUP BY
A_BROKER_ID,
A_BROKER_LAST_NAME,
A_BROKER_FIRST_NAME,
A_YEARS_WITH_FIRM,
C.OFFICE_NAME;

Graphically, this looks like:

| B cLIENT_TRANSACTION |

[E3 oFFice_LocaTion|

INVESTMENT is highlighted in red with no connectors to indicate that it is joined in via a Cartesian join.

Possible missing join conditions are displayed in the Overview tab under Generated Cases in the transformations
area. DB Optimize recommends that you create these joins.

Ll 501 Statements and Cazss | ¥ Cost WeExmouti, isbcs | 2 Orther Exsqution Stetislics
Mame Text Yalua Elapsad Time {5} = Physical Reads | Logical Reads CH
select from BRORER,
Bl [Migzing & valid jain criberia) ransformation 1740 004 a 157
AL 340158.0 6,29 a 173
LEADINGL 3401r.0 5,25 a 192
ALL_ROWE 40140 6,35] i
LEADTHES 39017.0 6,41 a 170
IRDEX 34322.D .58 a 414
LEADING2 35143.0 7.94 a 17
QRDERED |i4r0 E&1 1] i
LSE_ML IE198.0 9.03 a 37518

NOTE: Transformations are highlighted in yellow.

Implied Cartesian Join
If there are different details for a master without other criteria then a Cartesian-type join is created:

SELECT *

FROM
investment i,
broker b,
client c

WHERE
b_manager_id=c.client_id and
i.investment_type_id=c.client_id;

| E sroxer | | B INvESTMENT

The result set of BROKER to CLIENT will be multiplied by the result set of INVESTMENT to CLIENT.

Many-to-Many Join
If there is no unique index at either end of a join then it can be assumed that in some or all cases the join is
many-to-many; there are no constraints preventing a many-to-many join. For example, examine the following query:

SELECT *
FROM
client_transaction ct,
client c
WHERE
ct.transaction_status=c.client_marital_status;

There is no unique index on either of the fields being joined so the optimizer assumes this is a many-to-many join and
the relationship is displayed graphically as:

| E CLIENT_TRANSACTION |

If one of the fields is unique, then the index should be declared as such to help the optimizer.

Implementing Index Analysis Recommendations

Once you have added tuning candidates to a tuning job, DB Optimizer can analyze the effectiveness of the indexes in
the database and recommend the creation of new indexes where the new indexes can increase performance.

In the Collect and create indexes table, any indexes DB Optimizer recommends you create are marked in orange.

Index Analysis Table Statistics | EE Column Statistics And Histograms | [E Cutlines

Collect and create indexes '2‘.'}@ E
Index Mame Ta...er Ta...e ||| Table S¥STEM,CLIEMT_TRANSACTION is
E ™ IDX_CLIENT TRANSACTION O |SYSTEM |CLIL..OM | TRAMSACTI ||| scanned via Full table scan bot it has a Filker Create
- — S ct.transaction_status = c.client_marital_statug Index
D CLIENT_MULTI SYSTEM CLIEMT CLIEMT_FIR: on it and we created a virkual indesx
,;l,';",i, D CLIEMT_BROKER SYSTEM CLIEMT BROKER_ID ID _CLIEMT _TRAMSACTION O which the
3 O CLENT INCOME SYSTEM CLIENT CLIENT_HOLL[{f oPtimizer picked up, 50 we suggest implementing
- - — || Ehis indexx.
3 [JcLEenT P SYSTEM CLIENT CLIENT_ID
F 4 DCLIENT_TF‘J:'.NSF'.CTION_BRDKEF{ SYSTEM CLIL...OM BROKER _ID
% 1 TFMT TRANSACTTON O TFRT SWSTEM 1T bl CLTEMT TR o
L4 | ¥

To accept the suggestion and have tuning automatically generate an index:
1 For any recommended index, click the checkbox to the left of the index.

Optionally, modify the Index type by clicking in the Index Type column and then selecting a type from the list.
2 Click the Create Indexes button.

The Index Analysis dialog appears.

3 To view the index SQL in an editor for later implementation, click the statement and then click Open in a SQL
editor.

4 To run the index SQL and create the index on the selected database, click Execute.

Using Oracle-Specific Features

This section describes the tuning features available for the Oracle platform. These features are not available for other
database platforms.

¢ Using the Table Statistics Tab
e Using the Column Statistics And Histograms Tab

« Using the Outlines Tab
¢ Tuning SQL Statements in the System Global Area (SGA)

Using the Table Statistics Tab

The Table Statistics area of the Analysis tab indicates when and if table statistics were last taken. Using the Table
Statistics you can view the information the optimizer uses to choose a path and assess the validity of the various hints
presented on the Overview tab.

B Inpat I B Dverview
E S0L Analysis

Saladk stzbement of nterask: !SELECT 1 e

= Analysis

@

&,

SELECT -

| ™ ex_nEworar v TECE X wacacr
AL DOHPANY, ; —;_

-

A, PATGROUF, T]

E.OFF CVCLE, [Ewmowoerm | [woacoc |
- = e

E.3EPCHE_FLAG, = P

| — - .
E.TaX HETHOT, [= Tl S =

E. TAX_PEP rons, | S RTRE CELTHDER AL | I [ME_nEnorse_Eaknsic) | | [wE_ioeras

C.RETROPAY ERNCD,

SUM (C.AMGUNT_DIFF) SUN_AMGUNT
FRON

F3 PAY CALENDAR A,

YEB JOB B,

VE_RETROPAY_EARNS C,

PS_RETROPAY_RGST D,

F3 RETROPAYPGH TEL E
VHERE - |

|§| Indax Anakesss | 72 Table Statstics | =2 Column Stabistics And Histograms [2] Cutines

Wi bablke statistics .1,§e £|_|
Chjadt | * Statistics ¥ Moritoring > Aktribites e
Table Coamer Table Name Stakiskics Skatus Crays Since Stats Taen IMariterirg Cache
] D'ﬁ‘l’fﬂ'ff‘"l PS_RETRCPAYRGEM _TEL Stekishcs OF 200 YES V]
Tl B B T B - e
O swsmem WE_IOE Shakistics QK 200 ¥ES]
D‘:’HEJEM WE_RETROPAY EARMS Stelishics Cif 200 YES W'l

CWETERA AS ACTOAAMRY NET b T LR Rl

< *

This table draws attention to:

« Missing statistics: Missing statistics can cause the optimizer to choose the wrong path because the optimizer
uses table statistics to make decisions. If the statistics are missing, you can click the select a table and then click

Collect Statistics ﬂ—l on the far right of the tab. This sends a request to the database to analyze the table and
calculate the statistics.

¢ Out-of-date statistics: Like missing statistics, out-of-date statistics can also cause the optimizer to choose the

wrong path. You can update the statistics by selecting a table, and then clicking Display Statistics ':'.;-(h , which

refreshes the statistics from the database or by clicking Collect Statistics Q—l , Which requests the database to
analyze the table and calculate the statistics.

NOTE: Collecting Statistics may be time-consuming, depending on how many tables the database is
analyzing and the number of rows in each table.

* Useful statistics: The number of rows in a table and whether the table has been modified since the statistics
were last collected can help you to determine which hints you should implement in the SQL code. These statistics
can help the DB Administrator to better understand the database.

You can right-click anywhere in a row and choose options such as Collect Statistics, Display
Statistics, and Copy from the short-cut menu.

Using the Column Statistics And Histograms Tab

Histograms are special statistics that exist for a limited number of columns and are created by the database
administrator. Column histograms should be created only when there are highly-skewed values in a column, such as
is the case of an order details table with an Order Status column where the number of closed orders for a business
operating for several years is far greater than the number of open orders. The Order Status column therefore meets
the criteria of a useful target for a histogram because the data is highly skewed. Using histograms the optimizer
determines that a full-scan is recommended when searching for closed orders, but an index scan is more useful when
searching for open orders.

DBOptimizer looks at the columns that have histograms and using statistics tries to determine whether the column is a
good or bad candidate for a histogram and presents this information on the Column Statistics And Histograms tab.

[E] brockese Anabys's | T3] Tebde Shatistize S Cohumn Statishics Aod Hetograme. [Culines
iz colomn sk atishios | g0
Chysck | e Hetograms -

Sathzr | Drop Teble Hame Codurnin Marnee Histogram £ Euchets Fillcer Tope Ircexed Median Waloe Devation # Dt Walue
(] O PS5 _PAY_CALERNDAR Py CONFIRM _RLUM HOHE L Uteral Equalky L=

a a PS RETROPOY _RIOST RETROFAY SEQ MO HOHE L Jain Equelty s L
(] O PS5 _RETROPAYPE TEL COFF _CWCLE NOHE L Join Equalty Ha

[m] O P5_PaY_CALENDAR PAYGACLF NOHE L JoinEquelty Ve

m [m] nE RETROAANnOTE TE pETRenaw Res . VA Tk s ..
L3 ¥

The row shading indicates the following:
* Green: Good histogram candidate
* Red: Bad histogram candidate

« No shading: Not determined to be a good or bad histogram candidate

Median Value Deviation

For columns that have histograms, the median value deviation is presented. Understanding the median value
deviation can help you determine whether an index scan or a full-table scan would be more efficient.

The median value deviation represents the number of values that have duplicates away from the median. In the case
or the Order Status column, there are only three possible values, open, processing, and closed. Consider the
following:

10 open orders
100, 000 closed orders
1 order in processing

In this case the median is the middle value, 10. The number of closed orders is 10,000 times the median which
indicates that the column data is highly skewed. In this case the value in the Median Value Deviation column would be
presented as

1,00,0,1,0,0,0

There are 1's at the first and 5th spot in the median value deviation field indicating one column value (value of orders
in the processing state which appears once) is 1 factor of 10 away from the median and there is a 1 at the 5th position
indicating there is a column value (orders in the closed state) that appears 5 factors of 10 more often (10,000) than the
median value of 10.

A column with a median value deviation of 0, 0, 0, 0, O, 0, 0, O indicates that the column data is not skewed and it is a
bad candidate for a histogram, and therefore a full scan of the table would more efficiently satisfy a query than an
index scan.

To update the statistics of any object, you can select Gather for that column and then click Display Statistics or
Collect Statistics.

To stop gathering statistics for an object, such as a bad candidate for a histogram, select Drop for that column and
then click Display Statistics or Collect Statistics.

If you are gathering statistics for a column for which the statistics were missing or out-of-date, then
once the statistics collection is complete, you should return to the Overview tab and rerun the
cases, because the characteristics of the column may have changed, so the hints to improve
performance would also change.

Using the Outlines Tab
The Outlines tab provides detailed information about outlines created by the query during the statement execution
process on the Overview tab.

It provides information including the SQL statement name, if the outline is enabled or not, and the Name, Category,
and Hints associated with the outline. Additionally, the Drop parameter specifies if it is dropped or not at execution
time.

E Index Analysis | 5] Table Statistics | 2 Calumn Statistics and Hiskograms D Outlnes

Visw authnes
. Enabled Drom Tlame Catagory Hirks
o o 55 0., 20684 DEFALLT FULL(@ SELS2”

o FLLL TEST SWAP JOIN_INPUTS({:@ "SEL$1"

In order to view outlines, the session needs to have USE_STORED_OUTLINES set prior to execution. Outlines in
tuning are created for the DEFAULT category, by default. Use the following commands to enable outlines with the
default settings:

alter system set USE_STORED_OUTILNES=true;
alter system set USE_STORED_OUTLINES=“DEFAULT”;
alter session set USE_STORED OUTLINES=true;

Additionally, in order for a session to USE_STORED_OUTLINES, the user requires the create any outline role. Use
the following command to set up the proper permissions:

grant create any outline to [user];

Tuning SQL Statements in the System Global Area (SGA)

On Oracle platforms, SQL statements that reside in the SGA can also be tuned. When you create a tuning job and
specify an Oracle source, an additional tab appears in the Tuning Candidates section of tuning, named Active SQL
in SGA.

The SGA contains all the SQL since the database has been started up, except for those that have been purged when
the system runs out of memory. When analyzing the causes of a database bottleneck, it is perhaps more useful to
view and tune the SQL statements most recently run, than those that have run in the last month, for example.
DBOptimizer cannot tell you which statements have most recently run by looking in the SGA. However, by profiling the
database using DBOptimizer Profiling and then optimizing the code by executing and running the generated cases,
you will be able to see which paths are most likely causing a bottleneck and can be altered to enhance performance.
Also, you can use Embarcadero Performance Center to continually monitor a database over a longer period of time to
help you analyze and optimize database performance.

Tuning Candidates
Gather the SQL statements to be tuned,

=ik Adhoc SQL | [Database Objects | [SQL Files | % Active SQL in SGA

Select statements for tuning from the active SQU in the System Global Area (5GA).

Scan... I

To add a statement active in the SGA:
1 Select the Active SQL in SGA tab and then click Scan. The Scan SGA wizard appears.

2 Set the filtering criteria for an SGA scan and then run the wizard. It returns all active statements on the Oracle
source.

3 Choose the specific statements and add them to the tuning job.

Additional Tuning Commands

In addition to tuning, the interface provides additional commands and functionality that enables you to view source
code, statements, and other information regarding the data source.

« View the Source Code of Tuning Candidates

* View Statement or Case Code in SQL Viewer

* Open an Explain Plan for a Statement or Case

* Executing a Session from the Command Line

View the Source Code of Tuning Candidates
You can view the source code of a tuning candidate as follows:

¢ Onthe Ad hoc SQL tab of the Input tab, you can see the SQL statements you typed or pasted into that tab.

¢ On the Database objects, SQL Files, and Active SQL in SGA tabs of the Input tab, you can double-click the
name of any object added to that tab and an SQL session will open that displays the SQL of that database

Object. The SQL editor in use is actually Rapid SQL, an Embarcadero product that is integrated with DB
Optimizer.

View Statement or Case Code in SQL Viewer

The Tuning job’s Overview tab let you open a statement in an SQL Viewer if you want to perform either of the
following tasks:

¢ View the entire SQL statement.
« Set bind variables. If the Tuning Status Indicator indicates a statement or case has invalid bind variables, you

must set those variables before executing the statement or case.

To view or set bind variables in a statement or case:
1 Click in the Text field of a statement or case.

an SQL Viewer opens on the statement or case. A set of controls for working with the statement or case bind
variables appears at the bottom of the window.

2 Use the Data Type and Value (or NULL) controls to specify the type and value for each bind variable.

3 Close the window by clicking the collapse control in the Text field of the statement record, above the SQL Viewer.

[F‘ Input L} Overview P‘ -ﬁ.nalfms l
@ Overview jergrgetecid @
Tuning Source State [#]Generate Casee [perform detal analysis | Execute sach generated case &y tﬁ
Statement | Time | an)
Schama Text Tables Visws Elapsed (5) Improved (s) Cases Inicha:

ﬂ_____-il-

FROM hr.employees
WHERE employee id = :1
Qnily one 5QL DML statement allowed

_ Name | mot | Data Type | Value
i1 O number
< 2>
Generated Cases =
SQL Statements and Cases ¥ Cost | ®Execut...istics | ¥ Otf &
Hame Text Value Elapsed Time () | Physical Reads
8 |5, s Cssectombendoess ||

After setting bind variables, you can execute a case.

NOTE: Setting the bind variables in a parent statement sets the bind variables in all generated cases for
that statement.

Open an Explain Plan for a Statement or Case

Any valid SQL statement added to the Overview tab shows a calculated explain plan cost in the Cost field of the
statement or case record. You can open an explain plan on these statements to view the sequence of operations used
to execute the statement and the costs and other explain plan details for each operation.

To initially open an explain plan on a valid SQL statement on the Overview tab:
1 Right-click in the Name field of any statement record showing a value in the Cost field.

2 Select Explain Plan from the context menu.

An Explain Plan tab opens below the Overview tab.

750U Errors| = SQL Lag % Ermor Log -+ Search 5 Explain Plan
sedect from cata.chientil, cata.facturil, cata.linlifctl, < Nested Tables: cata limiifact] =
bype filter baxk .
Flan Cost " Estimated Statistics ® | Actual Statistics® @
Operation Cost Operation Cost Result Candinality Bytes CPUCost [0 Cost Optimizer Starts
+ SELECT STATEMENT 2530 0.0 37 2183 192..107 235 ALL..WW5
Pl COORDIMNATOR
@ P SEND - 5Y5. - TQ10004 2530 0o 37 2163 102...107 235
dH&EH 2530 0.0 i7 FIEY 102..107 238
9P RECEIVE A .0 7 2183 102..107 235
8 P SEND - S5, TQI0003 2530 0.0 Ex 2153 102..107 235
“HASH 2830 1.0 37 2183 102..107 235
FHASH I 252.0 1.0 7981 470879 95195351 235
& P RECEIVE 67.0 0.0 37 TO3 24604129 63
o P SEND -, . TQLO001 &7.0 . 37 TOE 24604129 63
=« P BLOCK &7.0 0.0 7 703 244604129 63
0 TABLE A JENTIL 7.0 570 37 703 24504129 63 ANA.ED
- HASH JOTH 154.0 1.0 11706 465240 ETIETITY 173 et

Explain plan operations are shown in a typical tree structure showing parent-child relationships. The following table
describes the column groups shown for each operation on the Explain Plan tab:

Column (group) Description

Plan Cost Includes the Name of the operation and the calculated explain plan cost.

Additional Information The default, collapsed view shows the Cardinality, Bytes, CPU Cost, 10 Cost, and
Optimizer values. Expanded, the view also displays Access Predicates, Filter Predicates,
QB Lock Name, Distribution, Object Alias, Object Instance, Object Node, Partition ID,
Partition Start, Partition Stop, Position, Projection, Remarks, Search Columns, Temp
Space, Time, Other, and Other Tag values.

With the Explain Plan tab open, you can quickly switch the view to an explain plan for another SQL statement.

To change the Explain Plan tab display to another SQL statement:
1 Click in the Name field of another statement record showing a value in the Cost field.

Executing a Session from the Command Line
You can launch a tuning job from the command line using the following syntax:

dboptimizer.exe tune ds:ROM*L*ABORCL10G_1 sqglfile: C:\dboptimizer\workspace\test.sql

In the above command, the user has specified ROM*L*ABORCL10G_1 as the data source, and indicates a tuning
session using the test.sql script.

Configuring Tuning

This section contains information on configuring tuning. It provides information on setting up your data sources to work
with tuning functionality, as well as information regarding preferences within the application for the customization of
various features and functionality.

This section is comprised of the following topics:

¢ Set Roles and Permissions on Data Sources

» Index Required Object Definitions

¢ Set Tuning Job Editor Preferences

« Set Generated Case Preferences

Set Roles and Permissions on Data Sources

In order to take advantage of all tuning features, each user must have a specific set of permissions. The code below
creates a role with all required permissions. To create the required role, execute the SQL against the target data
source, modified according to the specific needs of your site:

/* Create the role */

CREATE ROLE SQLTUNING NOT IDENTIFIED

éRANT SQLTUNING TO "CONNECT"

éRANT SQLTUNING TO SELECT_CATALOG_ROLE
éRANT ANALYZE ANY TO SQLTUNING

éRANT CREATE ANY OUTLINE TO SQLTUNING

éRANT CREATE ANY PROCEDURE TO SQLTUNING
éRANT CREATE ANY TABLE TO SQLTUNING

éRANT CREATE ANY TRIGGER TO SQLTUNING

éRANT CREATE ANY VIEW TO SQLTUNING

éRANT CREATE PROCEDURE TO SQLTUNING

éRANT CREATE SESSION TO SQLTUNING

éRANT CREATE TRIGGER TO SQLTUNING

éRANT CREATE VIEW TO SQLTUNING

éRANT DROP ANY OUTLINE TO SQLTUNING

éRANT DROP ANY PROCEDURE TO SQLTUNING

éRANT DROP ANY TRIGGER TO SQLTUNING

éRANT DROP ANY VIEW TO SQLTUNING

éRANT SELECT ON SYS.V_$SESSION TO SQLTUNING
éRANT SELECT ON SYS.V_$SESSTAT TO SQLTUNING
éRANT SELECT ON SYS.V_$SQL TO SQLTUNING
éRANT SELECT ON SYS.V_$STATNAME TO SQLTUNING

Once complete, you can assign the role to users who will be running tuning jobs:

/* Create a sample user*/
CREATE USER TUNINGUSER IDENTIFIED BY VALUES "O5FFD26E95CF4A4B*
DEFAULT TABLESPACE USERS
TEMPORARY TABLESPACE TEMP
QUOTA UNLIMITED ON USERS
PROFILE DEFAULT
ACCOUNT UNLOCK
/
GRANT SQLTUNING TO TUNINGUSER
/

ALTER USER TUNINGUSER DEFAULT ROLE SQLTUNING
/

Index Required Object Definitions

When connecting to a data source, the application caches a subset of the object definitions on the data source.
Tuning feature preferences allow you to modify the types of objects for which definitions are cached. To properly
process transformations, a specific set of database object definitions must be cached.

When not running tuning jobs and taking advantage of other tuning functionality, SQL editing for example, you might
disable caching of some object definitions. You may have done this to speed up data source caching for example, or
because some object definitions were not necessary to the task at hand. If you are going to run tuning jobs however,
you must ensure that tuning is indexing required objects when connecting to a data source.

To ensure tuning automatically caches required object definitions when connecting to a data source:
1 Onthe Window menu, choose Preferences.

A Preferences dialog opens.
2 Inthe left-hand pane expand the SQL Development item and then click Cache Configuration.
3 Select the check boxes associated with the following list of minimally-required object definitions:

* Foreign keys

» Functions

¢ Indexes

¢ Materialized view

* Primary keys

e Procedures

» Stored outline

* Tables

* Unique keys

e Views

4 Click OK.

Set Tuning Job Editor Preferences

Tuning job editor preferences let you control certain aspects of the appearance of items in the tuning job editor as well
as default behaviors.

3£ preferences - El rgl

[type filker text Tuning Job Editor Rl
H General
Data Sources Cornect to the Wining source autematically
Embarcadero Licensing C}Hmvs {:}Nuw .@ Prampt
& Help
#- Install Update Colar sdheme for plan cost
& Run/Debug Baseline:
=-3QL Development @
Data Source Indexing Improvement: E] Threshold (%&): | 1 =
el |
- SQL Editor Degradation: [E Threshald (34&): | 0 B
S0 Exmoution
S0L Filters Case execution
=8 Tuning Joby Editor For more reliable results, it s recommended o average the execution statistics over multiple runs,
Case Generation Mumber of iterations: | 1 e
- Team .
Result get fotch size: | 10 |5
Table Analysis
Statistics estimation sample percents | 5 5
[Restore Defaits | | Apply |
@ o J[conce]

Select Window > Preferences > SQL Development > Tuning Job Editor

Option Description

Connectto thetuning source | When you open a tuning perspective, it automatically opens the last saved tuning jobs
automatically that were open when you closed the application. This option lets you specify whether, in
addition, you want to automatically connect to the data sources associated with these
tuning jobs. If you typically review existing tuning job archives rather than run new tuning
jobs, you may wish to explicitly connect to a data source rather than connect
automatically. The options are:

Always - automatically connects to data sources associated with tuning jobs that were
open last time you shut down tuning.

Never - automatically opens tuning job archives that were open last time you shut down
the application but does not automatically connect to the associated data sources.

Prompt - prompts you to connect to data sources associated with tuning jobs that were
open last time you shut down the application.

Option

Description

Color scheme for plan cost

In the graphical representations of explain plan cost and elapsed time, tuning uses a color
scheme to highlight differences among generated cases. Values for the original
statement are treated as a baseline, and values for individual cases that are within a
specified threshold range of the baseline value are represented with a Baseline color.
For cases whose values are outside the threshold range, Improvement and
Degradation colors are used to represent values in those cases.

Tip: You can set the threshold in the application preferences, by selecting Window >
Preferences > Tuning Job Editor and then changing the threshold levels as required.

Case execution

Lets you dictate how execution statistics are gathered.

Table analysis

Lets you specify an estimation sample percentage to be used with the Analyze Tables
function.

Set Generated Case Preferences

Additionally, the Generated Case preference page lets you enable or disable the automatic generation of SQL
Optimizer hint-based cases of SQL statements added to a tuning job. It also lets you indicate which specific hint types
are generated when the feature is enabled.

A
¥ Preferences

bwpe filber teack |

+ General

Data Sources

Embarcadero Licensing

Help

Install Update

Run/Debug

5QL Development
Data Source Indexing
Debug

B SQL Editor
S0L Exeaution
SQL Filters

= Tuning Job Editor

Case Generation

- 6B

H- Team

- BX)

:i:}.

Case Generation

Generate cases automatically after extracting tuning candidates

Generate cases when running
Orade | Mirosoft SQL Server | 8M DB2 for LUW | Sybase ASE |
Select the hints to be considered when generating cases:

o s |
= oracle_access_paTHs -

Bie i

O cuwsTer

[FuLL

OHasA

[l mDEs

Ol inpex_asc

[tHDEx_coMBINE w | 20 out of 80 selectad

Desaiption:

[Rn!sb:lre Deﬁl_i‘ls| [Aoy]

[O H Cancel]

Select Window > Preferences > SQL Development > Tuning Job Editor > Case Generation

Use the Generate cases automatically after extracting tuning candidates control to enable or disable automatic

generation of hint-based cases, and t
for a statement added to a tuning job.

About Statement Records

hen select the check boxes to specify the hint-based cases that are generated

Column or column set

Description

SQL Statements and Cases

Identifiers for the generated statement or case:
Name - Statements are assigned a numbered identifier based on the order in which
they were added to a tuning job.

Text - An excerpt of the statement or case based on the statement type (SELECT,
INSERT, DELETE, and UPDATE). For details on how to view the entire statement or
case.

Cost

An explain plan-based cost estimate. This field is populated as soon as the
statement is added to the Overview tab.

This column set can be expanded to display a graphical representation of the cost to
facilitate comparisons among cases.

Index Analysis

Tuning automatically detects indexes that require optimization and offers you the
option to automatically optimize the index. For more information, see Implementing
Index Analysis Recommendations.

Elapsed time

The execution time during the most recent execution. This column set is not
populated until you execute the statement or case.

This column set can be expanded to display a graphical representation of the
elapsed time to facilitate comparisons among cases.

Other Execution Statistics

The default, collapsed view has Physical Reads and Logical Reads columns.
Expanded, there are also Consistent Gets, Block Gets, Rows Returned, CPU
time(s), Parse CPU Time(s), Row Sorts, Memory Sorts, Disk Sorts, and Open
Cursors columns. For details on these statistics, refer to your DBMS
documentation.

This column set is not populated until you execute the statement or case.

DBMS Hints

Users can provide hints to a specified platform in order to instruct data source optimizer on the best way to execute
SQL statements. Tuning automatically generates cases using these hints.

Hints can be enabled or disabled when cases are being generated by tuning on the Window > Preferences > Tuning
Job Editor > Case Generation panel. Choose a tab as it pertains to the platform you want to modify and use the
check boxes to select and de-select the hints you want to enable or disable, respectively.

B g
Preferences

bype fiter besi] | Case Generation
General :]) 3
v| Generate cases automatically after extracting tuning candidates
Dats Sources = h'r -
Embarcadera Licensing Generate cases when running
- Help HaYys 1EWE Frompt
H- IrgtalljUpdate
& RurDebug Orade | Microsoft SQL Server | I8M DB2 for LUW || Svbase ASE |
= 5QL Development Select the hints to be considered when generating cases:
Diata Sowrce Indexing ;
& 5L Editar Hint |vales | & sglect Al
S4L Bxenution = [CRACLE_ACCESS_PATHS il
SOL Filters Oz squaL Deselegt Al
= Turing Job Editar Ocwster
Case Gensration pt] FLILL
& Team O=as+
7 =y
Oloex_asc
EINDEE_COMB:NE w | 20 aut of 80 selected
Description:
[Restore Qe'l‘aults] | Apply I
@ [ok || caneal |

The following platform hints are packaged in tuning to provide optimal efficiency when executing jobs:

Oracle Hints

SQL Server Hints
DB2 Hints

Sybase Hints

Oracle Hints
The following table highlights Oracle hints based on Oracle hints optimization:

Category | Hint Available For Notes

ACC PATH | AND_EQUAL /*+ CLUSTER (tablespec) */ -

ACC PATH | CLUSTER /*+ FULL (tablespec) */ Use on Clustered Tables only

Category | Hint Available For Notes
ACC PATH | FULL /*+ HASH (tablespec) */ Forces a table scan even if there
are indexes.
ACC PATH | HASH /*+ INDEX (tablespec [TAL: Only to tables stored in a table
indexspec]) */ cluster.
ACC PATH | INDEX /*+ INDEX_ASC (tablespec [TAL: | If no indexspec is supplied, the
indexspec]) */ optimizer will try to scan with
each avail index.
ACC PATH | INDEX_ASC /*+ INDEX_COMBINE (tablespec | Essentially the same as INDEX.
[indexspec [TAL: indexspec]...])
*/
ACC PATH | INDEX_COMBINE /*+ INDEX_DESC (tablespec [Forces the optimizer to try
indexspec [TAL: indexspec]...]) */ | multiple boolean combinations of
indexes.
ACC PATH | INDEX_DESC /*+ INDEX_DESC (tablespec [Essentially the same as INDEX.
indexspec [TAL: indexspec]...]) */
ACC PATH | INDEX_FFS /*+ INDEX_FFS (tablespec [Forces an index scan using
indexspec [TAL: indexspec]...]) */ | specified index(es).
ACC PATH | INDEX_JOIN /*+ INDEX_JOIN (tablespec [Indexes used should be based on
indexspec [TAL: indexspec]...]) */ | columns in the where clause.
ACC PATH | INDEX_SS /*+ INDEX_SS (tablespec [Useful with composite indexes
indexspec [TAL: indexspec]...]) */ | where the first column is not used
in the query, but others are.
ACC PATH | INDEX_SS_ASC /*+ INDEX_SS_ASC (tablespec [| Essentially the same as
indexspec [TAL: indexspec]...]) */ | INDEX_SS.
ACC PATH | INDEX_SS_DESC /*+ INDEX_SS_DESC (tablespec | Essentially the same as
[indexspec [TAL: indexspec]...]) | INDEX_SS.
*
/
ACC PATH | NO_INDEX /*+ NO_INDEX (tablespec [Directs the Optimizer not to use
indexspec [TAL: indexspec]...]) */ | specified index(es).
ACC PATH | NO_INDEX_FFS /*+ NO_INDEX_FFS ([tablespec [| Directs the Optmizer to exclude a
indexspec [TAL: indexspec]...]) */ | fast full scan of the specified
index(es).
ACC PATH | NO_INDEX_SS /*+ NO_INDEX_SS (tablespec [Directs the Optmizer to exclude a
indexspec [TAL: indexspec]... 1) */ | skip scan of the specified
index(es).
ACC PATH | ROWID - -
JOIN OP HASH_AJ - -
JOIN OP HASH_SJ - -
JOIN OP MERGE_AJ - -
JOIN OP MERGE_SJ - -
JOIN OP NL_AJ - -
JOIN OP NL_SJ - -
JOIN OP NO_USE_HASH /*+ NO_USE_HASH (tablespec Negates the use of hash joins for
[TAL: tablespec]...) */ the table specified.
JOIN OP NO_USE_MERGE /*+ NO_USE_MERGE (tablespec | Negates the use of sort-merge

[TAL: tablespec]...) */

joins for the table specified.

Category | Hint Available For Notes

JOIN OP NO_USE_NL /*+ NO_USE_NL (tablespec [TAL: | Negates the use of nested-loop
tablespec]...) */ joins for the table specified.

JOIN OP USE_HASH /*+ USE_HASH (tablespec [TAL: | Directive to join each table
tablespec]...) */ specified using a hash join.

JOIN OP USE_MERGE /*+ NO_USE_MERGE (tablespec | Directive to join each table
[TAL: tablespec ...) */ specified using a sort--merge

join.

JOIN OP USE_NL /*+ NO_USE_NL (tablespec [TAL: | Directive to use a nested-loop
tablespec]...) */ join with the specified tables as

the inner table.

JOIN OP USE_NL_WITH_INDEX /*+ USE_NL_WITH_INDEX (Directive to use a nested-loop
tablespec [indexspec [TAL: join with the specified table as the
indexspec]... 1) */ inner table using the index

specified to satisfy at least one
predicate.

JOIN LEADING /*+ LEADING (tablespec) */ Directive to join the tables in the

ORDER order specified.

JOIN ORDERED /*+ ORDERED */ Directive to join tables in the

ORDER order found in the FROM clause.

JOIN STAR - -

ORDER

OPT ALL_ROWS /*+ ALL_ROWS */ Indicates the goal is overall

APPROAC throughput.

H

OPT CHOOSE - -

APPROAC

H

OPT FIRST_ROWS /*+ FIRST_ROWS (integer) */ The goal is to retrieve the first

APPROAC row(s) as fast as possible.

H

OPT RULE /*+ RULE */ Used to disable the COST based

APPROAC optimizer.

H

OTHER CACHE /*+ CACHE (tablespec) */ Should be used with the FULL

hint. Places data in the
most-recently used area of the
buffer cache.

OTHER APPEND /*+ APPEND */ Directs the optimizer to INSERT

data at the end of the existing
table data using direct path I/O.
OTHER CURSOR_SHARING_EXACT /*+ CURSOR_SHARING_EXACT | Directs the Optimizer to ignore

*/

previously parsed SQL that
matches, but uses bind variables.
Forces the SQL to be parsed
unless an exact match is found.

Category

Hint

Available For

Notes

OTHER

DRIVING_SITE

/*+ DRIVING_SITE (tablespec) */

Used when data is joined
remotely via DBLink. Normally
data at the remote site is returned
to the local and joined. This hint
directs the optimizer to send the
local data to the remote site for
resolution of the join.

OTHER

DYNAMIC_SAMPLING

/*+ DYNAMIC_SAMPLING ([TAL:
tablespec] integer) */

Only used in simple SELECT
statements with a single table to
approximate cardinality if there
are no existing statistics on the
table.

OTHER

MODEL_MIN_ANALYSIS

/*+ MODEL_MIN_ANALYSIS */

Used with spreadsheet and
model analysis to minimize
compile time.

OTHER

NO_PUSH_PRED

/*+ NO_PUSH_PRED [TAL: (
tablespec)] */

Opposite of PUSH_PRED, it
directs the Optimizer not to try to
push the predicate into the view.

OTHER

NO_PUSH_SUBQ

/*+ NO_PUSH_SUBQ] *

Opposite of PUSH_SUBQ, it
directs the Optimizer not to try
and evaluate the subquery first.

OTHER

NO_UNNEST

/*+ NO_UNNEST */

Subqueries in the WHERE clause
are considered nested. A
subquery can be evaluated
several times for multiple results
in the “parent”. Unnesting
evaluates the subquery once and
merges the results with the body
of the “parent”. This hint directs
the Optimizer NOT to unnest.

OTHER

NOAPPEND

/*+ NOAPPEND */

Directs the Optimizer to utilize
existing space in a table and
negates parallel processing.

OTHER

NOCACHE

/*+ NOCACHE (tablespec) */

Should be used with the FULL
hint. Places data in the
least-recently used area of the
buffer cache.

OTHER

OPT_PARAM

OTHER

ORDERED_PREDICATES

OTHER

PUSH_PRED

/*+ PUSH_PRED [TAL: (tablespec
)17

Used when one of the tables in a
join is an in-line view. Forces the
predicate used to join the table
and the view into the view.

OTHER

PUSH_SUBQ

/*+ PUSH_SUBQ *

Used with an EXISTS or IN
subselect to force evaluation of
the subquery rather than the
default behavior of the last.

Category | Hint Available For Notes

OTHER UNNEST /*+ UNNEST */ Subqueries in the where clause
are considered nested. A
subquery could be evaluated
several times for multiple results
in the “parent”. Unnesting
evaluates the subquery once and
merges results with the body of
the “parent”.

PARALLEL | NO_PARALLEL /*+ NO_PARALLEL (tablespec) */ | Directs the Optimizer not to
parallel the specified table.

PARALLEL | NO_PARALLEL_INDEX /*+ NO_PARALLEL_INDEX (Directs the Optimizer not to
tablespec [indexspec [TAL: parallel the specified index(es).
indexspec]... 1) */

PARALLEL | NO_PX_JOIN_FILTER /*+ NO_PX_JOIN_FILTER Directs the Optimizer not to try
(tablespec) */ and join bitmap indexes in

parallel.

PARALLEL | NOPARALLEL /*+ NOPARALLEL (tablespec) */ | Directs the Optimizer not to
parallel the specified table.

PARALLEL | NOPAARALLEL_INDEX /*+ NOPARALLEL_INDEX (Directs the Optimizer not to
tablespec [indexspec [TAL: parallel the specified index(es).
indexspec]... 1) */

PARALLEL | PARALLEL /*+ PARALLEL (tablespec [Number specifies degrees of
integer | TAL:DEFAULT]) */ parallelism (how many

processes).

PARALLEL | PARALLEL_INDEX /*+ PARALLEL_INDEX (tablespec | Number specifies degree of
[indexspec [TAL: indexspec]...] parallelism (how many
integer | DEFAULT) */ processes).

PARALLEL | PQ_DISTRIBUTE /*+ PQ_DISTRIBUTE(tablespec Used in parallel join operations to
outer_distribution indicate how inner and outer
inner_distribution) */ tables of the joins should be

processed. The values of the
distributions are HASH,
BROADCAST, PARTITION, and
NONE. Only six combinations
table distributions are valid.

PARALLEL | PX_JOIN_FILTER /*+ PX_JOIN_FILTER (tablespec) | Directs the Optimizer to try and
*/ join bitmap indexes in parallel.

QUERY EXPAND_GSET_TO_UNION /*+ EXPAND_GSET_TO_UNION Performs transformations on

TRANS */ gueries that have GROUP BY
into Unions.

PARALLEL | FACT /*+ FACT (tablespec) */ In the context of STAR
transformation, this table should
be considered a FACT table (as
opposed to a DIMENSION).

PARALLEL | MERGE I*+ MERGE ([view | tablespec) */ | Use with either an in-line view

that has a Group by or Distinct in
it as a joined table, or with the
use of IN subquery to “merge” the
“view” into the body of the rest of
the query.

Category | Hint Available For Notes

PARALLEL | NO_EXPAND /*+ NO_EXPAND */ Used when OR condition
(including IN lists) is present in
the predicate to not consider
transformation to compound
query.

PARALLEL | NO_FACT /*+ NO_FACT (tablespec) */ In the context of STAR
transformation this table should
not be considered a FACT table.

PARALLEL | NO_MERGE /*+ NO_MERGE [([view | Directs the Optimizer not to

TAL:tablespec)] */ “merge” the view into the query.
PARALLEL | NO_QUERY_TRANSFORMATION | /*+ Directs the Optimizer not to
NO_QUERY_TRANSFORMATIO | transform OR, in-lists, in-line
N */ views, and subqueries. Try it
whenever any of these conditions
are present.
PARALLEL | NO_REWRITE /*+ NO_REWRITE */ Directs the Optimizer not to use a
Materialized View, even if one is
available.
PARALLEL | NO_STAR_TRANSFORMATION [*+ Directs the Optimizer not to try a
NO_STAR_TRANSFORMATION Star Transformation.
*/

PARALLEL | NO_XML_QUERY_REWRITE /*+ NO_XML_QUERY_REWRITE | Use only if the query is using
*/ XML functionality.

PARALLEL | NO_XMLINDEX_REWRITE /*+ NO_XMLINDEX_REWRITE */ | Use only if the query is using
XML functionality.

PARALLEL | NOFACT /*+ NOFACT (tablespec) */ In the context of STAR
transformation, this table should
not be considered a FACT table.

PARALLEL | NOREWRITE /*+ NOREWRITE Directs the Optimizer not to use a
Materialized View, even if one is
available.

PARALLEL | REWRITE /*+ REWRITE [(view [TAL: view Directs the Optimizer to use a

1)1 Materialized View instead of the
underlying tables. Specify
REWRITE without additional
parameters. Oracle will
determine if it can us a
Materialized View or not.

PARALLEL | STAR_TRANSFORMATION /*+ STAR_TRANSFORMATION */ | Directs the Optimizer to try Star
Transformation. Only try with a 3
table or more join.

PARALLEL | USE_CONCAT /*+ USE_CONCAT */ Used when the OR condition

(including IN lists) is present in
the predicate to transform the
query into a compound UNION
ALL.

Category

Hint

Available For

Notes

REAL TIME

MONITOR

/*+ MONITOR */

Effective only if
STATSTICS_LEVEL initialization
parameter is either set to ALL or
TYPICAL and
CONTROL_MANAGEMENT _
PACK_ACCESS is set to
DIAGNOSTIC+TUNING. Turns
on features of the Oracle
Database Tuning Pack.

REAL TIME

NO_MONITOR

/*+ NO_MONITOR */

See MONITOR hint.

SQL Server Hints

The following table highlights SQL hints based on MS SQL Server hints optimization:

Category | Hint Available For Notes

JOIN LOOP SELECT/UPDATE/DELETE Not applicable for RIGHT OUTER or FULL
joins.

JOIN HASH SELECT/UPDATE/DELETE -

JOIN MERGE SELECT/UPDATE/DELETE -

JOIN REMOTE SELECT/UPDATE/DELETE Only for INNER JOINs. Not applicable with
COLLATE

SELECT/UPDATE/DELETE -

QUERY RECOMPILE SELECT/UPDATE/DELETE -

QUERY FORCE ORDER SELECT/UPDATE/DELETE -

QUERY ROBUST PLAN SELECT/UPDATE/DELETE -

QUERY KEEP PLAN SELECT/UPDATE/DELETE -

QUERY KEEPFIXED PLAN SELECT/UPDATE/DELETE -

QUERY EXPAND VIEWS DML Statements Only for statement containing views.

QUERY HASH GROUP SELECT Only when GROUP BY, COMPUTE and
DISTINCT clauses are used.

QUERY ORDER GROUP SELECT/UPDATE/DELETE Only when GROUP BY, COMPUTE and
DISTINCT clauses are used.

QUERY MERGE UNION SELECT Only for statements chained using UNION

QUERY HASH UNION SELECT Only for statements chained using UNION

QUERY CONCAT UNION SELECT Only for statements chained using UNION

QUERY LOOP JOIN SELECT/UPDATE/DELETE -

QUERY MERGE JOIN SELECT/UPDATE/DELETE -

QUERY HASH JOIN SELECT/UPDATE/DELETE -

TABLE INDEX() DML Statements Only for tables and views with indexes.

TABLE KEEPIDENTITY INSERT Only for INSERT statements using

OPENROWSET clause with BULK option.

Category | Hint Available For Notes

TABLE KEEPDEFAULTS INSERT Only for INSERT statements using
OPENROWSET clause with BULK option.

TABLE HOLDLOCK DML Statements Not applicable for SELECT statements using
FOR BROWSE clause.

TABLE IGNORE_CONSTRAINTS | INSERT Only for INSERT statements using
OPENROWSET clause with BULK option.

TABLE IGNORE_TRIGGERS INSERT Only for INSERT statements using
OPENROWSET clause with BULK option.

TABLE NOLOCK SELECT/UPDATE/COMPLETE | Not applicable for the target table in
UPDATE/DELETE statements.

TABLE NOWAIT DML Statements -

TABLE PAGLOCK DML Statements -

TABLE READCOMMITED DML Statements -

TABLE READCOMMITEDLOCK | SELECT/UPDATE/COMPLETE | -

TABLE READPAST SELECT/UPDATE/COMPLETE | Not applicable for the target table in
UPDATE/DELETE statements.

TABLE READUNCOMMITED SELECT/UPDATE/COMPLETE | Not applicable for the target table in
UPDATE/DELETE statements.

TABLE REPEATEABLEREAD DML Statements -

TABLE ROWLOCK DML Statements -

TABLE SERIALIZABLE DML Statements Not applicable for SELECT statements using
FOR BROWSE clause.

TABLE TABLOCK DML Statements -

TABLE TABLOCKX DML Statements -

TABLE UPDLOCK DML Statements -

TABLE XLOCK DML Statements -

TABLE FASTFIRSTROW DML Statements -

DB2 Hints

The following table highlights SQL hints based on IBM DB2 hints optimization:

Category Hint Notes

Command SET OPTIMIZATION LEVEL For top-level SELECT statements
only

Clause optimize for <n> rows For top-level SELECT statements
only

Clause fetch first <n> rows only For SELECT statements only

Sybase Hints

The following table highlights SQL hints based on Sybase hints optimization:

Category Hint Notes

Logical distinct No explicit implementation

Logical group No explicit implementation

Logical g_join No explicit implementation

Logical nl_g_join Not applicable for: statements with chained

queries; select statements with group by clause
and having clause or group by clause and order
by clause

Logical m_g_join Not applicable for: statements with chained
queries; select statements with group by clause
and having clause or group by clause and order

by clause
Logical join No explicit implementation
Logical nl_join Not applicable for: select statements with group

by clause and having clause or group by clause
and order by clause

Logical m_join Not applicable for: select statements with group
by clause and having clause or group by clause
and order by clause

Logical h_join Not applicable for: select statements with group
by clause and having clause or group by clause
and order by clause

Logical union No explicit implementation
scan No explicit implementation

Logical scalar_agg Only used in combination with other operators.
It does not change the execution plan itself.

Logical sequence Is a keyword that will be used in the
implementation of scalar_agg operator.

Logical hints We don’t support a combination of hints

Logical prop Uses a set of pre-defined values.

Logical table Used only in combination with other operators,

when referring tables from subqueries

Logical work_t This operator is applicable only together with
store operator

Logical in Used only in combination with other operators,
when referring tables from subqueries

Logical subq Used only in combination with other operators,
when referring tables from subqueries

Physical distinct_sorted Only for SELECT statements containing
DISTINCT, and only for tables

Physical distinct_sorting Only for SELECT statements containing
DISTINCT, and only for tables

Physical distinct_hashing Only for SELECT statements containing
DISTINCT, and only for tables

Category

Hint

Notes

Physical

group_sorted

Only for SELECT statements (not working for
views) with no having and no order by clause.

Physical

group_hashing

Only for SELECT statements (not working for
views) with no having and no order by clause.

Physical

group_inserting

Not implemented

Physical

append_union_all

Not applicable for: UNION chained clauses,
nested sub-selects in a from clause, if a group
by clause is present or if scalar aggregation is
present

Physical

merge_union_all

Not applicable for: UNION ALL chained
clauses, nested sub-selects in a from clause, or
if a group by clause is present.

Physical

merge_union_distinct

Not applicable for: UNION ALL chained
clauses, nested sub-selects in a from clause, or
if a group by clause is present.

Physical

hash_union_distinct

Not applicable for: UNION ALL chained
clauses, nested sub-selects in a from clause, if
a group by clause is present, or if scalar
aggregation is present.

Physical

i_scan

Applied to all table references in the from
clause of the main select and of the sub select
statements except: 1. statement has
sub-selects. 2. table references has no indexes.

Physical

t_scan

Applied to all the table references in the from
clause of the main select and of the sub select
statements except: On Sybase 12.5 not applied
for tables in the main query if: 1. statement has
chained queries. 2. Sub queries have group by
and having clauses; and not applied to the
tables in sub selects if: 1. has select statements
in from clause of the main select. 2. sub queries
have group by and having clauses. 3.
statement has select statements in select
clause. 4. statement has parent statement and
insert statement; on Sybase 15 not applied for
tables in sub selects if: 1. has select statements
in from clause of the main select. 2. statement
has chained queries.

Physical

m_scan

Applied for all tables if in the where clause there
is a condition like: tablel.indexedColumnl
condition body OR tablel.indexedColumn2
condition body; Not applied if the LIKE operator
is used. For columns that belong to a primary
key only the first column is considered.

Physical

store

Physical

store_index

Physical

sort

Physical

xchg

Reference

The following topics provide reference details:

« Database Objects
« DBMS Connection Parameters by Platform

Database Objects

The following table describes the database objects displayed in DB Optimizer™ and contains information regarding
each one, including object name, DBMS platform, and any notes pertaining to the specified object.

In DB Optimizer™, database objects are stored in Data Source Explorer as subnodes of individual, pertinent
databases.

Database Object DBMS Platforms Notes

Aliases DB2 An alias is an alternate name that references a table, view, and
other database objects. An alias can also reference another alias
as long as the aliases do not reference one another in a circular or
repetitive manner.

Aliases are used in view or trigger definitions in any SQL
statements except for table check-constraint definitions. (The
table or view name must be referenced in these cases.)

Once defined, an alias is used in query and development
statements to provide greater control when specifying the
referenced object. Aliases can be defined for objects that do not
exist, but the referenced object must exist when a statement
containing the alias is compiled.

Aliases can be specified for tables, views, existing aliases, or
other objects. Create Alias is a command available on the shortcut
menu.

Check Constraints All A check constraint is a search condition applied to a table. When a
check constraint is in place, Insert and Update statements issued
against the table will only complete if the statements pass the
constraint rules.

Check constraints are used to enforce data integrity when it
cannot be defined by key uniqueness or referential integrity
restraints.

A check condition is a logical expression that defines valid data
values for a column.

Clusters Oracle A cluster is a collection of interconnected, physical machines used
as a single resource for failover, scalability, and availability
purposes.

Individual machines in the cluster maintain a physical host name,
but a cluster host name must be specified to define the collective
as a whole.

To create a cluster, you need the CREATE CLUSTER or CREATE
ANY CLUSTER system privilege.

Database Object

DBMS Platforms

Notes

Database Links

Oracle

A database link is a network path stored locally, that provides the
database with the ability to communicate with a remote database.

A database link is composed of the name of the remote database,
a communication path to the database, and a user ID and
password (if required).

Database links cannot be edited or altered. To make changes,
drop and re-create.

Foreign Keys

All

A foreign key references a primary or unique key of a table (the
same table the foreign key is defined on, or another table and is
created as a result of an established relationship). Its purpose is to
indicate that referential integrity is maintained according to the
constraints.

The number of columns in a foreign key must be equal to the
number of columns in the corresponding primary or unique key.
Additionally, the column definitions of the foreign key must have
the same data types and lengths.

Foreign key names are automatically assigned if one is not
specified.

Functions

DB2, Oracle

A function is a relationship between a set of input data values and
a set of result values.

For example, the TIMESTAMP function passes input data values
of type DATE and TIME, and the result is TIMESTAMP.

Functions can be built-in or user-defined. Built-in functions are
provided with the database. They return a single value and are
part of the default database schema. User-defined functions
extend the capabilities of the database system by adding function
definitions (provided by users or third-party vendors) that can be
applied in the database engine itself.

A function is identified by its schema, a function name, the number
of parameters, and the data types of its parameters.

Access to functions is controlled through the EXECUTE privilege.
GRANT and REVOKE statements are used to specify who can or
cannot execute a specific function or set of functions.

Groups

All

Groups are units that contain items. Typically, groups contain the
result of a single business transaction where several items are
involved.

For example, a group is the set of articles bought by a customer
during a visit to the supermarket.

Database Object

DBMS Platforms

Notes

Indexes

All

An index is an ordered set of pointers to rows in a base table.

Each index is based on the values of data in one or more table
columns. An index is an object that is separate from the data in
the table. When an index is created, the database builds and
maintains it automatically.

Indexes are used to improve performance. In most cases, access
to data is faster with an index. Although an index cannot be

created for a view, an index created for the table on which a view
is based can improve the performance of operations on that view.

Indexes are also used to ensure uniqueness. A table with a
unique index cannot have rows with identical keys.

DB2: Allow Reverse Scans, Percent Free (Lets you type or select
the percentage of each index page to leave as free space when
building the index, from 0 to 99), Min Pct Used (Lets you type or
select the minimum percentage of space used on an index leaf
page. If, after a key is removed from an index leaf page, the
percentage of space used on the page is at or below integer
percent, an attempt is made to merge the remaining keys on this
page with those of a neighboring page. If there is sufficient space
on one of these pages, the merge is performed and one of the
pages is deleted. The value of integer can be from 0 to 99.

Oracle: The Logging, No Sort, Degrees, and Instances properties
are documented in the editor.

Java Classes

Oracle

A model or template, written in Java language, used to create
objects with a common definition and common properties,
operations and behavior.

Java classes can be developed in Eclipse (or another Java
development environment such as Oracle JDeveloper) and
moved into an Oracle database to be used as stored procedures.

Java classes must be public and static if they are to be used in this
manner.

When writing a class to be executed within the database, you can
take advantage of a special server-side JDBC driver. This driver
uses the user’s default connection and provides the fastest
access to the database.

Java classes become full-fledged database objects once migrated
into the database via the loadjava command-line utility or the SQL
CREATE JAVA statement.

A Java class is published by creating and compiling a call
specification for it. The call spec maps a Java method’s
parameters and return type to Oracle SQL types.

Once a Java class is developed, loaded, and published -- the final
step is to execute it.

Java Resources

Oracle

A Java resource is a collection of files compressed in a .jar file.

Database Object

DBMS Platforms

Notes

Libraries

Oracle

A library is a configurable folder for storing and sharing content
with an allocated quota. Multiple libraries may exist in the same
database environment.

A library is a special type of folder in Oracle Content Services.
Unlike Containers and regular folders, each library has a Trash
Folder and an allocated amount of disk space.

A library is composed of a name (mandatory), description, quota,
path, and library members.

The library service allows you to create folders, list quotas, and
manage categories, workflow, trash folders, and versioning. The
Library service does not allow you to create or upload files.

Materialized Views

Oracle

A database object that contains the results of a query. They are
local copies of data located remotely, or are used to create
summary tables based on aggregations of table data. Materialized
views are also known as snapshots.

A materialized view can query tables, views, and other
materialized views. Collectively, these are called master tables (a
replication term) or detail tables (a data warehouse term).

For replication purposes, materialized views allow you to maintain
copies of remote data on your local node. These copies are
read-only. If you want to update the local copies, you need to use
the Advanced Replication feature. You can select data from a
materialized view as you would from a table or view.

For data warehousing purposes, the materialized views commonly
created are aggregate views, single-table aggregate views, and
join views.

Materialized View Logs

Oracle

Because Materialized Views are used to return faster queries (a
guery against a materialized view is faster than a query against a
base table because querying the materialized view does not query
the source table), the Materialized View often returns the data at
the time the view was created, not the current table data.

There are two ways to refresh data in Materialized Views,
manually or automatically. In a manual refresh, the Materialized
View is completely wiped clean and then repopulated with data
from the source tables (this is known as a complete refresh). If
source tables have changed very little, however, it is possible to
refresh the Materialized View only for changed records -- this is
known as a fast refresh.

In the case of Materialized Views that are updated via fast refresh,
it is necessary to create Materialized View Logs on the base
tables that compose the Materialized View to reflect the changes.

If the number of entries in this table is too high, it is an indication
that you might need to refresh the Materialized Views more
frequently to ensure that each update does not take longer than it
needs.

Select owner, then select from tables with Materialized Views, etc.

Database Object

DBMS Platforms

Notes

Oracle Job Queue

Oracle

The Oracle Job Queue allows for the scheduling and execution of
PL/SQL stored procedures at predefined times and/or repeated
job execution at regular intervals, as background processes.

For example, you could create a job in the Oracle Job Queue that
processed end-of-day accounting -- a job that must run every
weekday, but can be run unattended, or you could create a series
of jobs that must be run sequentially -- such as jobs that might be
so large, that in order to reduce CPU usage, only one is run at a
time.

Runs PL/SQL code at specified time or on specified schedule, can
enable/disable.

Outlines

Oracle

Oracle preserves the execution plans of “frozen” access paths to
data so that it remains constant despite data changes, schema
changes, and upgrades of the database or application software
through objects named stored outlines.

Outlines are useful for providing stable application performance
and benefit high-end OLTP sites by having SQL execute without
having to invoke the cost-based optimizer at each SQL execution.
This allows complex SQL to be executed without the additional
overhead added by the optimizer when it performs the
calculations necessary to determine the optimal access path to
the data.

Packages

All

A package is a procedural schema object classified as a PL/SQL
program unit that allows the access and manipulation of database
information.

A package is a group of related procedures and functions,
together with the cursors and variables they use, stored together
in the database for continued use as a unit. Similar to standalone
procedures and functions, packaged procedures and functions
can be called explicitly by applications or users.

DB applications explicitly call packaged procedures as necessary
with privileges granted, a user can explicitly execute any of the
procedures contained in it.

Packages provide a method of encapsulating related procedures,
functions, and associated cursors and variables together as a unit
in the database. For example, a single package might contain two
statements that contain several procedures and functions used to
process banking transactions.

Packages allow the database administrator or application
developer to organize similar routines as well as offering
increased functionality and database performance.

Packages provide advantages in the following areas:
encapsulation of related procedures and variables, declaration of
public and private procedures, variables, constraints and cursors,
separation of the package specification and package body, and
better performance.

Encapsulation of procedural constructs in a package also makes
privilege management easier. Granting the privilege to use a
package makes all constructs of the package assessable to the
grantee.

The methods of package definition allow you to specify which
variables, cursors, and procedures are: public, directly accessible
to the users of a package, private, or hidden from the user of the
package.

Database Object

DBMS Platforms

Notes

Package Bodies

Oracle

A package body is a package definition file that states how a
package specification will function.

In contrast to the entities declared in the visible part of a package,
the entities declared in the package body are only visible within
the package body itself. As a consequence, a package with a
package body can be used for the construction of a group of
related subprograms in which the logical operations available to
clients are clearly isolated from the internal entities.

Primary Keys

All

A key is a set of columns used to identify or access a row or rows.
The key is identified in the description of a table, index, or
referential constraint. The same column can be part of more than
one key.

A unique key is a key that is constrained so that no two of its
values are equal. The columns of a unique key cannot contain
NULL values.

The primary key is one of the unique keys defined on a table, but
is selected to be the key of the first importance. There can only be
one primary key on a table.

Oracle: If an index constraint has been defined for a table, the
constraint status for the table’s primary key cannot be set to
Disabled.

Procedures

All

A procedure is an application program that can be started through
the SQL CALL statement. The procedure is specified by a
procedure name, which may be followed by arguments enclosed
within parenthesis.

The argument or arguments of a procedure are individual scalar
values, which can be of different types and can have different
meanings. The arguments can be used to pass values into the
procedure, receive return values from the procedure, or both.

A procedure, also called a stored procedure, is a database object
created via the CREATE PROCEDURE statement that can
encapsulate logic and SQL statements. Procedures are used as
subroutine extensions to applications, and other database objects
that can contain logic.

When a procedure is invoked in SQL and logic within a procedure
is executed on the server, data is only transferred between the
client and the database server in the procedure call and in the
procedure return. If you have a series of SQL statements to
execute within a client application, and the application does not
need to do any processing in between the statements, then this
series of statements would benefit from being included in a
procedure.

Profiles

Oracle

Profiles are a means to limit resources a user can use by
specifying limits on kernel and password elements. Additionally,
Profiles can be used to track password histories and the settings
of specific profiles may be queried.

The following kernel limits may be set: maximum concurrent
sessions for a user, CPU time limit per session, maximum connect
time, maximum idle time, maximum blocks read per session,
maximum blocks read per call, and maximum amount of SGA.

Database Object

DBMS Platforms

Notes

Roles

Oracle

Arole is a set or group of privileges that can be granted to users to
another role.

A privilege is a right to execute a particular type of SQL statement
or to access another user’s object. For example: the right to
connect to a database, the right to create a tale, the right to select
rows from another user’s table, the right to execute another user’s
stored procedure.

System privileges are rights to enable the performance of a
particular action, or to perform a particular action on a particular
type of object.

Roles are named groups of related privileges that you grant users
or other roles. Roles are designed to ease the administration of
end user system and object privileges. However, roles are not
meant to be used for application developers, because the
privileges to access objects within stored progmmatic constructs
needs to be granted directly.

Sequences

DB2, Oracle

A sequence generates unique numbers.

Sequences are special database objects that provide numbers in
sequence for input into a table. They are useful for providing
generated primary key values and for the input of number type
columns such as purchase order, employee number, sample
number, and sales order number.

Sequences are created by use of the CREATE SEQUENCE
command.

Structured Types

DB2

Structured Types are useful for modeling objects that have a
well-defined structure that consists of attributes. Attributes are
properties that describe an instance of the type.

A geometric shape, for example, might have as attributes its list of
Cartesian coordinates. A person might have attributes of name,
address, and so on. A department might have a name or some
other attribute.

Synonyms

Oracle

A synonym is an alternate name for objects such as tables, views,
sequences, stored procedures, and other database objects.

A synonym is an alias for one of the following objects: table, object
table, view, object view, sequence, stored procedure, stored
function, package, materialized view, java class, user-defined
object type or another synonym.

Tables

All

Tables are logical structures maintained by the database
manager. Tables are composed of columns and rows. The rows
are not necessarily ordered within a table.

A base table is used to hold persistent user data.

A result table is a set of rows that the database manager selects
or generates from one or more base tables to satisfy a query.

A summary table is a table defined by a query that is also used to
determine the data in the table.

Tablespaces

DB2, Oracle

A tablespace is a storage structure containing tables, indexes,
large objects, and long data. Tablespaces reside in database
partition groups. They allow you to assign the location of database
and table data directly onto containers. (A container can be a
directory name, a device name, or a file name.) This can provide
improved performance and more flexible configuration.

Database Object

DBMS Platforms

Notes

Triggers

All

A trigger defines a set of actions that are performed when a
specified SQL operation (such as delete, insert, or update) occurs
on a specified table. When the specified SQL operation occurs,
the trigger is activated and starts the defined actions.

Triggers can be used, along with referential constraints and check
constraints, to enforce data integrity rules. Triggers can also be
used to cause updates to other tables, automatically generate or
transform values for inserted or updated rows, or invoke functions
to perform tasks such as issuing alerts.

Undo Segments

Oracle

In an Oracle database, Undo tablespace data is an image or
snapshot of the original contents of a row (or rows) in a table. The
data is stored in Undo segments in the Undo table space.

When a user begins to make a change to the data in a row in an
Oracle table, the original data is first written to Undo segments in
the Undo tablespace. The entire process (including the creation of
the Undo data is recorded in Redo logs before the change is
completed and written in the Database Buffer Cache, and then the
data files via the database writer (DBW) process.)

Unique Keys

All

A unique key is a key that is constrained so that no two of its
values are equal. The columns of a unique key cannot contain null
values. The constraint is enforced by the database manager
during the execution of any operation that changes data values,
such as INSERT or UPDATE. The mechanism used to enforce the
constraint is called a unique index. Thus, every unique key is a
key of a unique index. Such an index is said to have the UNIQUE
attribute.

A primary key is a special case of a unique key. A table cannot
have more than one primary key.

A foreign key is a key that is specified in the definition of a
referential constraint.

A partitioning key is a key that is part of the definition of a table in
a partitioned database. The partitioning key is used to determine
the partition on which the row of data is stored. If a partitioning key
is defined, unique keys and primary keys must include the same
columns as the partitioning key, but can have additional columns.
A table cannot have more than one partitioning key.

Oracle: You cannot drop a unique key constraint that is part of a
referential integrity constraint without also dropping the foreign
key. To drop the referenced key and the foreign key together,
check the Delete Cascade option for the foreign key.

Clustered: A cluster composes of a group of tables that share the
same data blocks, and are grouped together because they share
common columns and are often used together.

Filegroup: Lets you select the filegroup within the database where
the constraint is stored.

Fill Factor: Lets you specify a percentage of how large each
constraint can become.

Database Object DBMS Platforms Notes

Views All A view provides an alternate way of looking at the data in one or
more tables.

A view is a named specification of a result table and can be
thought of as having columns and rows just like a base table. For
retrieval purposes, all views can be used just like base tables.

You can use views to select certain elements of a table and can
present an existing table in a customized table format without
having to create a new table.

DBMS Connection Parameters by Platform
The following topics provide connection details:

* IBM DB2 LUW

* Microsoft SQL Server

« JDBC Connection Parameters

¢ Oracle Connection Parameters

* Sybase Connection Parameters

IBM DB2 LUW

Connection Parameter

Description

Use Alias from IBM Client or Generic
JDBC Configuration

If you choose to use the alias from the IBM client, select the appropriate alias
name. Otherwise, choose Generic JDBC Configuration and enter the
connection parameters, as specified.

Schema ID (Optional)

The name of the database schema.

Function Path

Optional. Enter an ordered list of schema names to restrict the search scope for
unqualified function invocations.

Security Credentials

The log on information required by DB Optimizer™ to connect to the data
source.

Auto Connect

Automatically attempts to connect to the data source when selected in Data
Source Explorer, without prompting the user for connection information.

JDBC Driver (Advanced)

The name of the JDBC Driver utilized by DB Optimizer™ to initiate a JDBC
standard access connection.

Connection URL (Advanced)

Used by the JDBC Driver to connect with a data source. Often contains host
and port numbers, as well as the name of the data source to which it connects.

For example:
jdbc:postgresql://host:port/database

jdbc:derby://host:port/database

Custom JDBC Driver Properties
(Advanced)

The name and property value of any custom JDBC drivers associated with the
data source.

Microsoft SQL Server

Connection Parameter

Description

Use Network Library Configuration

If the data source utilizes a network library, select this parameter. The
corresponding connection parameter fields become available. Otherwise,
choose Generic JDBC Configuration and enter the connection parameters, as
specified.

Host/Instance (JDBC Configuration)

The name of the data source.

Port (JDBC Configuration) (optional)

The listening port used in TCP/IP communications between DB Optimizer™
and the data source.

Protocol (JDBC Configuration)

The communication mechanism between DB Optimizer™ and the data source.
Choose TCP/IP or Named Pipes.

Default Database (Optional)

The default SQL database name, as defined by the schema.

Security Credentials

The log on information required by DB Optimizer™ to connect to the data
source.

Auto Connect

Automatically attempts to connect to the data source when selected in Data
Source Explorer, without prompting the user for connection information.

Allow Trusted Connections

Enables trusted connections to the data source from DB Optimizer™.

JDBC Driver (Advanced)

The name of the JDBC Driver utilized by DB Optimizer™ to connect and
communicate with the database.

Connection Parameter Description

Connection URL (Advanced) Used by the JDBC Driver to connect with a database. Often contains host and
port numbers, as well as the name of the database to which it connects.

For example:
jdbc:postgresql://host:port/database

jdbc:derby://host:port/database

Custom JDBC Driver Properties The name and property value of any custom JDBC drivers associated with the
(Advanced) data source.

JDBC Connection Parameters

Connection Parameter

Description

Connect String

Used by the JDBC Driver to connect with a database. Often contains host and
port numbers, as well as the name of the database to which it connects.

For example:
jdbc:postgresql://host:port/database

jdbc:derby://host:port/database

Data Source Name

The name of the data source to which you want DB Optimizer™ to connect.

Oracle Connection Parameters

Connection Parameter

Description

Use TNS Alias

If the data source is mapped to a net service name via tnsnames.ora, select
this parameter. Otherwise, choose Generic JDBC Configuration and enter the
connection parameters, as specified.

Host/Instance (JDBC Configuration)

The name of the host machine on which the data source resides.

Port (JDBC Connection)

The listening port used in TCP/IP communications between DB Optimizer™
and the data source.

Type (JDBC Configuration)

Indicates if the data source is defined via a system identifier (SID) or a service
name.

Service/SID Name (JDBC Configuration)

The name of the system identifier (SID) or service name that identifies the data
source.

Security Credentials

The log on information required by DB Optimizer™ to connect to the data
source.

Auto Connect

Automatically attempts to connect to the data source when selected in data
source Explorer, without prompting the user for connection information.

Allow Trusted Connections

Enables trusted connections to the data source from DB Optimizer™.

JDBC Driver (Advanced)

The name of the JDBC Driver utilized by DB Optimizer™ to connect and
communicate with the database.

Connection URL (Advanced)

Used by the JDBC Driver to connect with a database. Often contains host and
port numbers, as well as the name of the database to which it connects.

For example:
jdbc:postgresql://host:port/database

jdbc:derby://host:port/database

Custom JDBC Driver Properties
(Advanced)

The name and property value of any custom JDBC drivers associated with the
data source.

Sybase Connection Parameters

Connection Parameter

Description

Use Alias Information from your SQL.INI
File

If the data source is mapped to a name via SQL.INI, select this parameter to
use that name for connection. Otherwise, choose Generic JDBC Configuration
and enter the connection parameters, as specified.

Connection Parameter

Description

Host/Instance (JDBC Connection)

The name of the host machine on which the data source resides.

Port (JDBC Connection)

The listening port used in TCP/IP communications between DB Optimizer™
and the data source.

Default Database (JDBC Connection)
(Optional)

The default database name, as defined by the schema.

JDBC Driver (Advanced)

The name of the JDBC Driver utilized by DB Optimizer™ to connect and
communicate with the database.

Connection URL (Advanced)

Used by the JDBC Driver to connect with a database. Often contains host and
port numbers, as well as the name of the database to which it connects.

For example:
jdbc:postgresql://host:port/database

jdbc:derby://host:port/database

Custom JDBC Driver Properties
(Advanced)

The name and property value of any custom JDBC drivers associated with the
data source.

Index

A

Additional resources 8

archives, profiling
opening/saving 76

associating 40

C

caching, transformations requirements 127
cases, generated
opening in context 123
change history 38
code folding 34
code formatting 29

D

data source 9

database objects 15, 141
DB2 LUW 150

delete 20

Discussion Groups 8
DMBS 7

Documentation 8

E
editing 22
error 50
error detection 24
error logs 49
execute 42
explain plans
opening from tuning job 124
F
FAQs 8
files 19
filtering profile results 78
filters 15
Forums 8

G
global filters 16
H

Hardware 7
hints

opening in context 123
hyperlinks 29

IBM DB2 LUW 150
Import 20
index analysis, SQL Tuner 118

J
JDBC connection 152

K

Knowledge Base 8
L

license 53

local history 39
log 49

N

new_project_wizard_page 18
new_sql_file_wizard_page 22

O

object properties 12
objects 12
opening 18
Operating System 7
Oracle 152

P

permissions, SQL Profiler 79
permissions, SQL Tuner 126
profiling sessions

configuring DBMS for 79

filtering results 78

opening/saving 76

submitting tuning sessions from 77
project_info_page 18
Projects 17

R
roles, SQL Tuner 126
S

SQL

tuning 92
SQL file 22
SQL Server 150
Sybase 152

T

technical Requirements 7
transformations
caching requirement 127
tuning jobs
editor preferences 128
index analysis 118
introduced 92
opening explain plans from 124
roles/permissions required 126
understanding generated statements 130
tuning sessions
opening from profiling session 77

W

workspace 53

	User’s Guide
	Contents
	Welcome to Embarcadero DB Optimizer
	Technical Requirements
	Additional Product Information

	Using DB Optimizer
	Working with Data Sources
	Register Data Sources
	Browse a Data Source
	View Database Object Properties
	Search for Database Objects
	Filter Database Objects
	Define Data Source-Specific Object Filters
	Define Global Database Object Filters

	Drop a Database Object

	Working with Projects
	Create a New Project
	Open an Existing Project
	Search a Project
	Add Files to a Project
	Delete a Project

	Creating and Editing SQL Files (SQL Editor)
	Create an SQL File
	Open an Existing SQL File
	Working in SQL Editor
	Understanding Automatic Error Detection
	Understanding Code Assist
	Understanding Hyperlinks
	Understanding Code Formatting
	Understanding Code Folding
	Understanding Code Quality Checks
	Understanding SQL Templates

	View Change History
	Revert to an Old Version of a File
	Delete an SQL File

	Executing SQL Files
	Associate an SQL File with a Data Source
	Configure a SQL Session
	Execute SQL Code
	View and Save Results

	Troubleshooting
	View Log Details
	Maintain Logs
	Filter Logs
	Import and Export Error Logs
	Find and Fix SQL Code Errors
	Find and Fix Other Problems

	Configuring DB Optimizer™
	Initial Setup
	Specify a Workspace
	License DB Optimizer™

	Customizing DB Optimizer™ (Preferences)
	Set Index Configuration Preferences
	Set SQL Editor Preferences
	Set SQL Execution Preferences
	Set Code Assist Preferences
	Set Code Formatter Preferences
	Set Results View Preferences
	Set Syntax Coloring Preferences
	Set SQL Code Template Preferences
	Set File Encoding Preferences

	Using Profiling
	Understanding the Interface
	Running a Profiling Session
	Execute a Profiling Session
	Working with Session Results
	Analyzing the Load Chart
	Analyzing the Top Activity Section
	Top SQL Tab
	Top Events Tab
	Top Sessions Tab
	Top Object I/O Tab (Oracle-Specific)

	Analyzing Profiling Details
	Viewing Details on the SQL Tab
	Viewing Details on the Sessions Tab

	Save Profiling Sessions
	Import Statements to Tuning
	Using Other Profiling Commands
	Zooming In and Out
	Filtering Results

	Configuring Profiling
	Configuring DBMS Properties and Permissions
	Configuring IBM DB/2 for Windows, Unix, and Linux
	Configuring Microsoft SQL Server
	Configuring Oracle
	Configuring Sybase

	Building Launch Configurations

	Using Load Editor

	Using Tuning
	Overview
	Understanding the Input Tab
	Understanding the Overview Tab
	Understanding the Analysis Tab

	Tuning SQL Statements
	Create a New Tuning Job
	Specify a Data Source
	Add SQL Statements
	Run a Tuning Job
	Analyze Tuning Results
	Compare Cases
	Filter and Delete Cases
	Create an Outline

	Modify Tuning Results
	Using the Analysis Tab
	Visual SQL Tuning
	Changing Diagram Detail Display
	Viewing the VST Diagram in Summary Mode
	Viewing the VST Diagram in Detail Mode
	Changing Detail Level for a Specific Table
	Viewing All Table Fields
	Expanding Views in the VST Diagram

	Interpreting the VST Diagram Graphics
	Icons
	Colors
	Connecting Lines/Joins
	One-to-One Join
	One-to-Many Join
	Cartesian Join
	Implied Cartesian Join
	Many-to-Many Join

	Implementing Index Analysis Recommendations
	Using Oracle-Specific Features
	Using the Table Statistics Tab
	Using the Column Statistics And Histograms Tab
	Using the Outlines Tab
	Tuning SQL Statements in the System Global Area (SGA)

	Additional Tuning Commands
	View the Source Code of Tuning Candidates
	View Statement or Case Code in SQL Viewer
	Open an Explain Plan for a Statement or Case
	Executing a Session from the Command Line

	Configuring Tuning
	Set Roles and Permissions on Data Sources
	Index Required Object Definitions
	Set Tuning Job Editor Preferences
	Set Generated Case Preferences

	DBMS Hints
	Oracle Hints
	SQL Server Hints
	DB2 Hints
	Sybase Hints

	Reference
	Database Objects
	DBMS Connection Parameters by Platform
	IBM DB2 LUW
	Microsoft SQL Server
	JDBC Connection Parameters
	Oracle Connection Parameters
	Sybase Connection Parameters

	Index

