
Product Documentation
DB Optimizer™
User’s Guide

Version 2.0.1

Published November 27, 2009

Copyright © 1994-2009 Embarcadero Technologies, Inc.

Embarcadero Technologies, Inc.
100 California Street, 12th Floor
San Francisco, CA 94111 U.S.A.
All rights reserved.

All brands and product names are trademarks or registered trademarks of their respective owners.
This software/documentation contains proprietary information of Embarcadero Technologies, Inc.; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright law. Reverse engineering of the software
is prohibited.

If this software/documentation is delivered to a U.S. Government Agency of the Department of Defense, then it is delivered with
Restricted Rights and the following legend is applicable:

Restricted Rights Legend Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of DFARS 252.227-7013, Rights in Technical Data and Computer Software (October 1988).

If this software/documentation is delivered to a U.S. Government Agency not within the Department of Defense, then it is delivered
with Restricted Rights, as defined in FAR 552.227-14, Rights in Data-General, including Alternate III (June 1987).

Information in this document is subject to change without notice. Revisions may be issued to advise of such changes and additions.
Embarcadero Technologies, Inc. does not warrant that this documentation is error-free.

Contents

Welcome to Embarcadero DB Optimizer . 7

Technical Requirements . 7

Additional Product Information . 8

Using DB Optimizer . 9

Working with Data Sources. 9

Register Data Sources . 9

Browse a Data Source . 11

View Database Object Properties . 12

Search for Database Objects . 14

Filter Database Objects. 15

Define Data Source-Specific Object Filters . 16

Define Global Database Object Filters . 16

Drop a Database Object . 17

Working with Projects . 17

Create a New Project . 18

Open an Existing Project. 18

Search a Project . 19

Add Files to a Project . 19

Delete a Project. 20

Creating and Editing SQL Files (SQL Editor) . 21

Create an SQL File . 22

Open an Existing SQL File . 22

Working in SQL Editor. 22

Understanding Automatic Error Detection. 24

Understanding Code Assist. 25

Understanding Hyperlinks . 29

Understanding Code Formatting . 29

Understanding Code Folding. 34

Understanding Code Quality Checks . 34

Understanding SQL Templates . 37

View Change History. 38

Revert to an Old Version of a File . 39

Delete an SQL File . 39

Executing SQL Files . 39

Associate an SQL File with a Data Source . 40

Configure a SQL Session . 42
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 3

CONTENTS
Execute SQL Code . 42

View and Save Results . 43

Troubleshooting . 44

View Log Details . 46

Maintain Logs . 46

Filter Logs . 47

Import and Export Error Logs . 49

Find and Fix SQL Code Errors . 50

Find and Fix Other Problems . 50

Configuring DB Optimizer™ . 52

Initial Setup . 52

Specify a Workspace . 53

License DB Optimizer™ . 53

Customizing DB Optimizer™ (Preferences) . 53

Set Index Configuration Preferences . 53

Set SQL Editor Preferences . 55

Set SQL Execution Preferences . 55

Set Code Assist Preferences . 55

Set Code Formatter Preferences . 56

Set Results View Preferences. 56

Set Syntax Coloring Preferences . 56

Set SQL Code Template Preferences. 56

Set File Encoding Preferences . 58

Using Profiling . 59

Understanding the Interface . 59

Running a Profiling Session . 60

Execute a Profiling Session . 61

Working with Session Results. 62

Analyzing the Load Chart . 63

Analyzing the Top Activity Section . 64

Analyzing Profiling Details. 67

Save Profiling Sessions . 76

Import Statements to Tuning. 77

Using Other Profiling Commands . 77

Zooming In and Out. 77

Filtering Results. 78

Configuring Profiling . 78

Configuring DBMS Properties and Permissions . 79

Configuring IBM DB/2 for Windows, Unix, and Linux . 79
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 4

CONTENTS
Configuring Microsoft SQL Server. 81

Configuring Oracle . 81

Configuring Sybase . 81

Building Launch Configurations . 82

Using Load Editor . 85

Using Tuning. 87

Overview. 87

Understanding the Input Tab. 88

Understanding the Overview Tab . 88

Understanding the Analysis Tab . 90

Tuning SQL Statements . 92

Create a New Tuning Job . 93

Specify a Data Source . 94

Add SQL Statements . 95

Run a Tuning Job . 97

Analyze Tuning Results . 100

Compare Cases . 102

Filter and Delete Cases. 102

Create an Outline . 103

Modify Tuning Results. 103

Using the Analysis Tab . 105

Visual SQL Tuning . 106

Changing Diagram Detail Display . 106

Interpreting the VST Diagram Graphics . 113

Implementing Index Analysis Recommendations . 118

Using Oracle-Specific Features . 119

Using the Table Statistics Tab. 119

Using the Column Statistics And Histograms Tab. 120

Using the Outlines Tab . 121

Tuning SQL Statements in the System Global Area (SGA) . 122

Additional Tuning Commands . 123

View the Source Code of Tuning Candidates . 123

View Statement or Case Code in SQL Viewer . 123

Open an Explain Plan for a Statement or Case . 124

Executing a Session from the Command Line . 125

Configuring Tuning . 125

Set Roles and Permissions on Data Sources . 126

Index Required Object Definitions. 127

Set Tuning Job Editor Preferences . 128

Set Generated Case Preferences . 129
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 5

CONTENTS
DBMS Hints . 130

Oracle Hints . 131

SQL Server Hints . 137

DB2 Hints . 138

Sybase Hints . 139

Reference . 141

Database Objects . 141

DBMS Connection Parameters by Platform . 149

IBM DB2 LUW. 150

Microsoft SQL Server . 150

JDBC Connection Parameters . 152

Oracle Connection Parameters. 152

Sybase Connection Parameters . 152
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 6

Welcome to Embarcadero DB Optimizer
Embarcadero DB Optimizer simplifies SQL optimization and development for application developers with many
features for improving productivity and reducing errors. A rich SQL IDE with statement tuning, data source profiling,
code completion, real-time error checking, code formatting and sophisticated object validation tools helps streamline
coding tasks. DB Optimizer’s user interface helps improve overall productivity with integrated development,
monitoring, and tuning components. DB Optimizer offers native support for IBM® DB2® for LUW, Oracle®, Microsoft®
SQL Server and Sybase® as well as JDBC support for other DBMS.

Technical Requirements
Before installing DB Optimizer, verify that your environment meets the following requirements.

Hardware Requirements

The following minimum hardware requirements are required to run DB Optimizer:

• Pentium 4-Level Processor

• 1024 MB of memory

• 500 MB of disk space

• 1024 x 768 screen resolution

Operating System Requirements

DB Optimizer supports the following operating systems:

• Microsoft Windows XP (x86-32, Win32)

• Microsoft Vista (x86-32, Win32)

• Microsoft Windows Server 2003

• Red Hat Enterprise Linux 5.0, x86-32, GTK 2

• SuSe Linux Enterprise Server (x86) GTK+ 2.x

DBMS Support

DB Optimizer provides native support for the following platforms (no additional DBMS client software is required):

• Generic JDBC

• IBM DB2 LUW 8.2 - 9.5

• Microsoft SQL Server 2000, 2005, and 2008

• Oracle 8i - 11g

• Sybase 12.5 - 15.0
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 7

WELCOME TO EMBARCADERO DB OPTIMIZER > ADDITIONAL PRODUCT INFORMATION
Additional Product Information
The Embarcadero Web site is an excellent source for additional product information, including white papers, articles,
FAQs, discussion groups, and the Embarcadero Knowledge Base.

Go to www.embarcadero.com/support, or click any of the links below, to find:

• Documentation

• Online Demos

• Technical Papers

• Discussion Forums

• Knowledge Base
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 8

http://www.embarcadero.com/support/
http://www.embarcadero.com/resources/documentation.php
http://www.embarcadero.com/resources/demos.php
http://www.embarcadero.com/resources/technical_papers.php
http://www.embarcadero.com/resources/discussion_groups.html
http://www.embarcadero.com/jive/index.jspa

USING DB OPTIMIZER > WORKING WITH DATA SOURCES
Using DB Optimizer
This section contains detailed instructions for Working with Data Sources, Working with Projects, Creating and Editing
SQL Files (SQL Editor), Executing SQL Files, and Troubleshooting.

Working with Data Sources
The Data Source Explorer provides a tree view of all registered data sources and associated database objects.
When you first start DB Optimizer, a prompt appears and offers to populate Data Source Explorer from multiple
sources on the system. This includes previously-registered data sources on other Embarcadero products, and
third-party DBMS clients such as TOAD. If DB Optimizer cannot detect a data source, you can register it manually.

Additionally, you can initiate this feature by clicking the Auto-Discovery button on the Toolbar or via the File > Import
> Embarcadero > Data Sources > Previously Registered Embarcadero Data Sources (Registry) command from
the Main Menu.

Register Data Sources
When DB Optimizer is started, it prompts you to discover data source catalogs that have been created by any
previously installed Embarcadero products (DBArtisan, Rapid SQL, DB Optimizer), or other instances of DB
Optimizer.

Additionally, the system scans your machine for the client software of all supported third-party DBMS platforms
(TOAD, Eclipse Data Tools Platform, etc.). These data sources are automatically added to the data source catalog.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 9

USING DB OPTIMIZER > WORKING WITH DATA SOURCES
To manually initiate the scan later, click the Discover Data Sources icon at the top of Data Source Explorer. The
Discover Data Sources dialog appears.

1 Choose the type of data sources you want to scan for and click Next. The wizard automatically returns all data
sources it finds on your machine based on the criteria you specified.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 10

USING DB OPTIMIZER > WORKING WITH DATA SOURCES
2 Choose the data sources you want to add to the DB Optimizer environment and click Finish. Data Source
Explorer automatically populates with the new data source selections.

TIP: To add data sources manually, right-click Managed Data Sources in the Data Source Explorer
tree, select New > Data Source, and enter the connectivity parameters as prompted.

For additional information on data source connection parameters, see DBMS Connection Parameters by
Platform.

Once registered, the data source appears in the Data Source Explorer view. If you have created more than one
workspace, they all share the same data source catalog.

Once a data source has been registered, the connection parameters are stored locally. In some cases, a user ID
and password are required to connect to a registered data source. DB Optimizer™ can encrypt and save user
IDs and passwords to connect automatically.

NOTE: In some cases, older versions of DB Optimizer and DB Artisan/Rapid SQL are not compatible with
this version of DB Optimizer, and the methods listed above will not import these older data source
catalogs. If you are experiencing difficulties, you can import the old data sources via the Windows
registry by selecting File > Import... > Embarcadero > Data Sources > Previously Registered
Embarcadero Data Sources (Windows Registry).

Browse a Data Source
You can drill down in the Data Source Explorer tree to view registered databases on a server, and view tables, and
other objects in a database. Additionally, you can view the structure of individual objects such as the columns and
indexes of a table. Right-click the object for a menu of available commands, such as Extract to Project, which
creates a new SQL file containing the object’s DDL.

In most cases, whenever you browse a data source, DB Optimizer requires login information in order to connect with
the data source. Enter a valid user name and password in the fields provided. The Auto Connect option retains your
login credentials for future connections to the same data source.

You can turn off the Auto Connect feature by right-clicking on a specified data source and toggling the Connect on
Expand option. By default, when Connect on Expand is active, DB Optimizer automatically attempts to connect to the
server each time you browse a data source.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 11

USING DB OPTIMIZER > WORKING WITH DATA SOURCES
View Database Object Properties
All objects in Data Source Explorer contain properties as they relate to the DB Optimizer application.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 12

USING DB OPTIMIZER > WORKING WITH DATA SOURCES
DB Optimizer Object Properties are viewed via the Properties dialog. The dialog is accessed by right-clicking the
object in Data Source Explorer.

To view Data Source Explorer object properties:

The Info properties node is accessed by right-clicking a data source in Data Source Explorer.

The dialog displays properties with regards to Configuration, Data Source Indexing, and SQL Filters.

As well, each node representing the actual data source connection (the uppermost parent in a list of data source
objects), contains additional properties in addition to the Info node and its respective properties. With the exception of
the Configuration node, these values can be modified in the Properties dialog.

The Configuration node is composed of:

• Data Source Name

• Data Source Type

• and three subnodes: Connection Information, Data Source Information, and Security Parameters.

These nodes are identical to the parameters used to initially define the data source during the data source registration
process. For more information on these values and how to modify them, see Register Data Sources.

The SQL Filter node enables a developer to place filters on data source objects that appear in the Database Explorer.
For more information, see Filter Database Objects.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 13

USING DB OPTIMIZER > WORKING WITH DATA SOURCES
Search for Database Objects
Database object searches rely on the Object Index when returning results. By default, caching is set to configure only
parts of a database. To configure the Index to expand object searches, see Set Index Configuration Preferences.

1 Select Search > Database. By default, the search scope is all currently connected databases. Under Specify
the scope for the search, clear any databases or server check boxes you do not want to search.

2 Specify the search criteria:

• Type the value to search for in the Search String field. Use the * character to indicate wildcard string values and
the ? character to indicate wildcard character values.

• Select Case Sensitive to indicate to the search function that you want case sensitivity to be a factor when
searching for appropriate string matches.

• Select Search Indexed Data to indicate that the search function should read the Index. This increases the
performance of the search function and will typically result in faster returns on any hits the search might make.

• Select Apply SQL Filters to apply any relevant database or vendor filters to the search.

• Choose Declarations, References, or All Occurrences to specify what the search is restricted to in terms of
database objects.

• A Declaration is an instance where an object is declared. For example, an object is declared in a CREATE
table.

• A Reference is an instance where an object is used or referred to. For example, an object is referred to in a
procedure or as a foreign key in a table.

• Choose All Occurrences to return both declarations and references in the search results.

• Use the check boxes beside the database object panel to select and deselect the specific database objects that
you want to be included in the search process.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 14

USING DB OPTIMIZER > WORKING WITH DATA SOURCES
3 Click Search.

The results of your search are generated in the Search view. When you open a matched file, references to the
keyword are flagged with yellow arrow icons that appear in the left-hand column of the editor.

You can navigate between keywords within all returned files using the yellow “up” and “down” arrows that appear
at the top of the Search view.

Filter Database Objects
Filters can be placed on data sources and corresponding data source objects to restrict their display in Data Source
Explorer. This feature is useful if you have data sources that contain large numbers of database objects. You can
apply filters to view only the schema objects you need for the development process.

There are two types of data source filters available:

• Global filters that affect all registered data sources in the DB Optimizer™ development environment.

• Data Source specific filters affect only the specified data source for which they are defined.

• On Sybase and SQL Server platforms, you can apply database filters, which enables you to set different filters
on different databases within the same source.

In both cases, data source object filters are defined via the Object Filter Manager, through the development of filter
templates. Once defined, filter templates can be activated and deactivated as you need them.

Several filter templates can be combined at a global level or applied to a specific data source.

See also:

Define Global Database Object Filters

Define Data Source-Specific Object Filters
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 15

USING DB OPTIMIZER > WORKING WITH DATA SOURCES
Define Data Source-Specific Object Filters
Data source-specific object filters affect only the specified data source.

To define data source-specific filters:

1 In Data Source Explorer, right-click the data source and select Properties.

The Properties dialog appears.

2 Select the SQL Filters node and select Enable data source specific settings. The other controls on the dialog
become enabled.

3 Click New. The Filter Template dialog appears.

4 Specify the parameters of the filter.

• In the Name field, enter the name of the filter as you want it to appear in the selection window on the SQL
Filter node.

• The Database Type pane provides a list of data source objects. Uncheck the data source objects that this
template filters so that they do not appear in Database Explorer when displaying data source objects for the
data source.

• Click New to add filter parameters for data source object properties. The New SQL Filter Predicate dialog
appears.

• Use the Property and Operator fields to supply the filter criteria. Property specifies whether the value is a
Name or Schema, and Operator specifies the matching type of the filter syntax. (Equals, Not Equals, Like,
Not Like, In, Not In)

• In the Value field, enter the full or partial syntax of the property or properties you want to filter in Data Source
Explorer.

Click OK. The filter property specification is added to the Filter Template.

5 When you have finished defining the filter template, click OK. The template name is added to the Properties
dialog. It can be enabled and disabled by selecting or deselecting the check box beside its name, respectively.

Define Global Database Object Filters
Global filters affect all registered data sources in the DB Optimizer™ development environment. When you create and
apply a global filter to a platform vendor in DB Optimizer™, all databases associated with that vendor are affected by
the filter, as defined.

Individual global filter templates are separated, by supported data source platform, on tabs in the SQL Filter window.
Select the appropriate tab to view existing filter templates or add new ones, as needed.

To define a global filter:

1 Select Window > Preferences from the Main Menu. The Preferences dialog appears.

2 Expand the SQL Development node and select the SQL Filter subnode. The SQL Filter pane appears.

3 Click New. The Filter Template dialog appears.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 16

USING DB OPTIMIZER > WORKING WITH PROJECTS
4 Specify the parameters of the filter template:

• In the Name field, enter the name of the filter as you want it to appear in the selection window on the SQL
Filter node.

• The Database Type pane provides a list of data source objects. Deselect the data source objects that this
template filters so that they do not appear in Database Explorer when displaying data source objects for the
data source.

• Click New to add filter parameters for data source objects properties. The New SQL Filter Predicate dialog
appears.

• Use the Property and Operator fields to supply the filter criteria. Property specifies whether the value is a
Name or Schema, and Operator specifies the matching type of the filter syntax. (Equals, Not Equals, Like,
Not Like, In, Not In)

• In the Value field, enter the full or partial syntax of the property or properties you want the template to filter in
data source Explorer.

5 Click OK. The filter property specification is added to the Filter Template.

6 When you have finished defining the filter template, click OK. The template name is added to the Properties
dialog. It can be enabled and disabled by selecting or de-selecting the check box beside its name, respectively.

TIP: Data Source object filters are added and removed from the development environment by selecting
and de-selecting the checkboxes associated with each filter template on both the global and data
source-specific dialogs.

Drop a Database Object
To delete an object permanently from a database, right-click the object in Data Source Explorer and choose Drop from
the menu. The Drop Wizard asks you to confirm removal of the object and provides a DDL preview of the deletion
code.

Working with Projects
You create projects to organize and store SQL development files. The purpose of projects is to keep your
work-in-progress files organized, as well as maintain a common directory structure when developing code and
executing files on registered data sources. Once a file has been developed and is ready for deployment, that file can
then be executed on a registered data source.

SQL Project Explorer is used to view and access files. It uses a tree view to display the project as a series of folder
directories with a folder labeled with the project name as the parent directory, and with project categories, and
associated project files as its children.

All files in a project are organized under the following categories:

• Connections: List the connections of any given SQL file of a data source associated with the project.

• Creation Scripts: Provide DDL statements and statements that define database objects.

• General SQL: Provide a category for all other SQL files that are not used in database object creation. This
includes DML files, and so on.

• Large Scripts: Contain all files larger than the currently set SQL Editor preference. The file size limit can be
modified on the Preferences panel by selecting Window > Preferences in the Main Menu.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 17

USING DB OPTIMIZER > WORKING WITH PROJECTS
Physically, the projects and files you create as you work in DB Optimizer™ are stored under the Workspace directory
you specified at the prompt when DB Optimizer™ was started. The directory and files can be shared, and other tools
may be used to work on the files, outside the DB Optimizer™ development environment.

You can move existing files within a project by clicking and dragging the file you want to move in the Project Explorer
from one node to another, or via the File > Move command.

Create a New Project
1 Select File > New > SQL Project from the DB Optimizer™ Main Menu. The New Project Wizard appears.

2 Enter the appropriate information in the fields provided:

• Name: Enter the name of the project as you want it to display in the Project Explorer view.

• DBMS Platform: Select the data source platform to which the new project will be associated. This enables DB
Optimizer™ to properly parse SQL development code for project files.

• Location: When selected, the Use Default Location check box indicates the project is to be created under
the currently selected Workspace. Deselect the check box and specify a new folder path if you do not want to
create the project in the currently selected Workspace.

3 Click Finish. The new project icon appears in the Project Explorer view under the name that you specified. If
you did not select Use Default Location, the project will appear in the appropriate Workspace when you open it in
DB Optimizer™.

NOTE: Alternatively, you can select New > SQL Project from the Main Menu or click the New Project
icon in the Tool Bar to create a new project.

Open an Existing Project
You can open projects by navigating to SQL Project Explorer and expanding the node of the project that contains the
files you want to access.

Below each project name are a series of nodes that categorize any existing SQL files by development type:

• Connections: Lists the connections of any given SQL file of a data source associated with the project.

• Creation Scripts: General data source object development scripts. This node contains DDL statements and
statements that define database objects.

• General SQL: Provides a category for all other SQL files that are not used in database object creation. DML files,
etc.

• Large Scripts: Contains all files larger than the currently set SQL Editor preference. The file size limit can be
modified on the Preferences panel. (Choose Window > Preferences in the Main Menu to access the panel.)

NOTE: Physically, the projects and files you create as you work in DB Optimizer™ are stored under the
project directory that you specified at the prompt when the project was created. The directory and
files can be shared, and other tools may be used to work on the files, completely exempt from the
DB Optimizer™ development environment.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 18

USING DB OPTIMIZER > WORKING WITH PROJECTS
Search a Project
1 Select Search > File.

2 Specify the search criteria:

• Type the value to search in the Containing Text field. Use the * character to indicate wildcard string values,
the ? character to indicate wildcard character values, and the \ character to indicate an escape character for
literals (* ? /).

• Select Case Sensitive and indicate to the search function that it should take into account case when
searching for appropriate string matches.

• Select Regular Expression to indicate to the search function that the string is a regular function.

• In the File Name Pattern field, specify the extension name of the files to search for explicitly. If the value in this
field is a * character, the search function searches all files regardless of extension. Manually type in the
extensions to indicate file type (separate multiple file types with commas), or click Choose and use the Select
Types dialog to select the file extensions the process will search for the string by.

• Select Consider Derived Resources to include derived resources in the search.

• Select Workspace or Working Set to choose the scope of the search. If you choose Working Set, specify the
name of the defined working set manually, or click Choose and navigate to the working set you want to search
for in the provided string.

3 Click Search. The results of your search are generated in the Search view on the Workbench.

Add Files to a Project
Existing files that reside in directories outside of the workspace can be added to a project via the following methods:

• Dragging and dropping the file set from a system directory to SQL Project Explorer.

• Copying and pasting the file set from a system directory to SQL Project Explorer.

• Executing the Import command.

To drag/drop or copy/paste files from a system directory to SQL Project Explorer:

1 With the SQL Project Explorer view open, navigate to the directory where the files you want to add to the project
are located on the system.

2 Drag and drop the files you need from Windows Explorer into SQL Project Explorer. The files appear in the tree
view under the appropriate categories.

NOTE: Alternatively, you can use the Copy command on the files you want to add in Windows Explorer,
and then right-click the Project Explorer and select Paste from the menu. The files appear in the
tree view under the appropriate categories.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 19

USING DB OPTIMIZER > WORKING WITH PROJECTS
To use the Import command:

1 Right-click anywhere on the Project Explorer and select Import. The Import dialog appears.

2 Expand the General node and double-click File System. A dialog containing the import specification parameters
appears.

• In the From directory field, manually type the directory location of the files you want to import to Project
Explorer, or click Browse and navigate to the appropriate folder. The panels below the field populate with the
folder selection and a list of suitable files contained in that folder. Use the check boxes beside each folder and
file to specify what folders/files you want the import function to add in Project Explorer.

• In the Into folder field, manually type the name of the folder within Project Explorer where you want to import
the files specified in the panels above, or click Browse and navigate to the appropriate folder.

• Select the Overwrite existing resources without warning check box if you do not want to be prompted
when the import process overwrites Project Explorer files that contain the same name as the imported files.

• Choose Create complete folder structure or Create selected folders only, depending on whether you want
the import process to build the folder structure of the imported directory automatically, or only create those
folders you selected in the panels above, respectively.

3 Click Finish. The import process moves all selected folders and files into Project Explorer and thus into the DB
Optimizer™ development environment.

NOTE: In addition to accessing the Import command via the shortcut menu, you can also access the
Import dialog by choosing File > Import ... from the Main Menu.

Delete a Project
You can delete a project by right-clicking its folder in the SQL Project Explorer and selecting Delete.

When you delete a project, DB Optimizer™ will prompt you with a Confirm Project Delete dialog that asks you to
confirm the deletion of the project, and offers you the option of deleting the project from the DB Optimizer™ interface,
or deleting the project from the system.

• If you select Do not delete contents, the files and directory structure will be removed from SQL Project
Explorer, but they will still exist on your machine.

• If you select Also delete contents …, the files and directory structure will be removed from SQL Project
Explorer and deleted from your machine.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 20

 > CREATING AND EDITING SQL FILES (SQL EDITOR)
Creating and Editing SQL Files (SQL Editor)
The SQL Editor is a Workbench interface component that enables the development, viewing, and formatting of SQL
code.

SQL Editor contains context-sensitive command menus that are tailored with pertinent functionality for the specified
file format.

If SQL Editor does not recognize a selected file format, DB Optimizer™ automatically launches the file externally in
the system default application. External editors are not embedded in the Workbench. For example, on most machines,
the default editor for HTML files is the system Web browser. SQL Editor does not, by default, recognize HTML files,
and opening an HTML file from the Workbench launches the file in an instance of the Web browser instead of the
Editor.

Any number of instances of SQL Editor can be open on the Workbench at the same time. Multiple instances of SQL
Editor displaying different content may be open in the same Workbench. These instances will be stacked by default,
but can also be tiled side-by-side so the content of various files can be viewed simultaneously for comparison or
multi-tasking purposes. When an instance of SQL Editor is active, the Workbench Main Menu automatically contains
commands applicable to the file format. If a view is active, SQL Editor commands are disabled automatically, except
when commands are still valid between the selected view and the file displayed in the interface.

When working with code in SQL Editor, the window contains a number of features that provide an increase in the
efficiency and accuracy of code development. The following syntax highlighting changes are automatically applied to
code as a user adds lines in the interface.

Code Formatting

Comments Green font, italics

SQL Commands Dark blue font

Coding Errors Red underline

Strings Red font
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 21

 > CREATING AND EDITING SQL FILES (SQL EDITOR)
Single line and multiple line comments appear in different colors.

Furthermore, SQL Editor provides two column bars, one on either side of the code window. The purple change bar in
the left-hand column indicates that the line of code has been modified. Hover over the change bar to display the
original code text. The red square in the right-hand column indicates that there are errors in the code window. Hover
the mouse over the square to view the error count. Click the red bar in this column to navigate directly to the line in
which the SQL Editor detects the error. SQL Editor automatically highlights the appropriate code. Non-executable
command line commands are displayed in a different formatting style than SQL commands. Syntactic and semantic
errors are also highlighted.

SQL Editor also features dynamic error detection, object lookup and suggestion features, code folding, and
auto-formatting. SQL Editor is able to identify different areas in a statement, and enables users to retrieve subclauses,
resolve table aliases, and dynamically return lists of tables, views, and columns, as needed.

See also:

Working in SQL Editor

Create an SQL File
1 Create or open a SQL project.

2 Select File > New > SQL File. A blank instance of SQL Editor appears.

NOTE: If you are not in a SQL project when you create a new SQL file, it will not open in SQL Editor.

Open an Existing SQL File
1 Open the SQL project containing the file, or that you want to contain the file.

2 If necessary, add the file to the project (see Add Files to a Project.)

3 In the SQL Project Explorer, double-click the file to open it in SQL Editor.

Working in SQL Editor
SQL Editor handles SQL code formats and contains context-sensitive command menus, tailored with pertinent
functionality for development purposes. Other files may be opened in DB Optimizer™, as well, but these are handled
by other editors.

For example, if a text file is opened in the Workbench, DB Optimizer™ detects and opens the contents of that file in a
text editor viewer with pertinent commands for that file type.

Non-Executable Command Line
Commands

Aqua font

Code Formatting
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 22

 > CREATING AND EDITING SQL FILES (SQL EDITOR)
Any number of instances of SQL Editor can be active on the Workbench at the same time. Multiple instances of SQL
Editor displaying different content may be active on the same Workbench. These instances will be stacked, by
default, but can also be tiled side-by-side, so the content of various files can be view simultaneously for comparison or
multi-tasking purposes. When an instance of SQL Editor is active, the Main Menu contains commands applicable to
the file format. If a view is active, SQL Editor commands are disabled automatically, except when commands are still
valid between the selected view and the file displayed in the interface.

Among the commands SQL Editor supports via the right-click menu:

• Revert File: Automatically restores the working file to the original text as it appeared the last time the Save
command was issued.

• Shift Right/Shift Left: Indents the line of code in the working file to the right or left, respectively.

• Toggle Comments: Hides or displays comments in the code of the working file, depending on the current
hide/show state.

• Add Block Comment/Remove Block Comment: A block comment is used to insert a comment into SQL code
that spans multiple lines and begins with a forward slash and asterisk. While block comments are typically used
to insert a command that spans multiple lines, some developers find them more useful than line comments,
especially if a development team is using different text editors on an individual basis. Moving code from one text
editor to another often breaks line comments in the middle of a line and causes errors. Block comments can be
broken without causing errors.

NOTE: In addition to editing commands, some commands such as extract, drop, and execute can be
accessed by right-clicking over statements in SQL code that are performed on specific tables,
views, and columns. These commands will appear automatically in the appropriate menu when
the code is highlighted. Full information on using these commands is found elsewhere in this
documentation, based on the task each executable performs.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 23

 > CREATING AND EDITING SQL FILES (SQL EDITOR)
• Explain Plan: An explain plan details the steps that occur in SELECT, UPDATE, INSERT, and DELETE
statements and is primarily used to determine the execution path followed by the database in its SQL execution.

See also:

Understanding Automatic Error Detection

Understanding Code Assist

Understanding Hyperlinks

Understanding Code Formatting

Understanding Code Folding

Understanding Code Quality Checks

Understanding SQL Templates

Understanding Automatic Error Detection
SQL Editor orders and classifies SQL statements. This enables it to edit code as you work within SQL Editor and
highlight errors and typographical errors in “real time”. As you work, SQL Editor examines each clause in a statement
and provides error reporting and other features as required.

SQL Editor identifies the following clauses and elements:

• SELECT: Specifies the field, constants, and expressions to display in the query results.

• FROM: Specifies one or more tables containing the data that the query retrieves from.

• WHERE: Specifies join and filter conditions that determine the rows that query returns. Join operations in a
WHERE clause function in the same manner as JOIN operations in a FROM clause.

• GROUP BY: Specifies one or more columns used to group rows returned by the query. Columns referenced in
the SQL SELECT statement list, except for aggregate expressions, must be included in the GROUP BY clause.
You cannot group by Memo, General or Blob fields.

• HAVING: Specifies conditions that determine the groups included in the query. If the SQL statement does not
contain aggregate functions, you can use the SQL SELECT statement containing a HAVING clause without the
GROUP BY clause.

• ORDER BY: Specifies one or more items used to sort the final query result set and the order for sorting the
results.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 24

 > CREATING AND EDITING SQL FILES (SQL EDITOR)
As you develop code in SQL Editor, it automatically detects semantic errors on a line-by-line basis. Whenever an error
is detected, the line is flagged by an icon located in the left-hand column of the editor.

Additionally, all semantic errors detected in SQL Editor are displayed in the Problems view.

Right-click the an error and select Go To in order to find the error. DB Optimizer™ opens and navigates to the specific
line of code containing the specified error.

Understanding Code Assist
When SQL Editor has finished analyzing a partial piece of code, it displays a list of data source objects for you to
select from.

SQL Editor takes the following into consideration when analyzing code for a list of possible data source objects for
insertion:
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 25

 > CREATING AND EDITING SQL FILES (SQL EDITOR)
• Text to be inserted

• Original text to be replaced

• Content assist request location in original text

• The database object represented by the insertion text

Generally, insertion suggestions use the following format:

<insertion_text > - <qualification_information >

Code assist is available for SELECT, UPDATE, INSERT, and DELETE statements, as well as stored procedures, and
functions (built-in and user defined.)

Additionally, code suggestions can be made for DML statements nestled within DDL statements. This functions in the
same manner as code assist for statements that are not nestled, and applies to CREATE PROCEDURE, FUNCTION,
TRIGGER, TABLE, and VIEW statements.

When the code assist window is open, you can filter out singular object suggestions by pressing (Ctrl + Spacebar).
This removes all objects from the assist window while retaining procedures and functions. To display objects again,
press (Ctrl + Spacebar) again.

The following table displays a list of all possible object suggestions, and the format in which SQL Editor inserts the
suggestions into a statement:
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 26

 > CREATING AND EDITING SQL FILES (SQL EDITOR)
Object and Stored Procedure Suggestions

Function Suggestions

NOTE: Function suggestions are only available for Oracle and DB2 platforms.

SQL Editor detects incomplete or erroneous code, processes the code fragments, and then attempts to apply the
appropriate logic to populate the code.

As code is typed into SQL Editor, the application ‘reads’ the language and returns suggestions based on full or partial
syntax input.

Depending on the exact nature of the code, the automatic object suggestion feature behaves differently; this enables
SQL Editor to provide reasonable and ‘intelligent’ suggestions on coding.

Additionally, semantic validations can be made for DML statements nestled within DDL statements. This functions in
the same manner as validation for top-level statements, and applies to CREATE PROCEDURE, FUNCTION,
TRIGGER, TABLE, and VIEW statements.

Object Suggestion Syntax/Example

Table (TABLE) [catalog].[schema]

EMPLOYEE - (TABLE)HR

Alias Table (TABLE ALIAS)
[catalog].[schema]tableName

EMPLOYEE-(TABLE ALIAS)HRJOBS

Column datatype - (Column)
[catalog].[schema].tableName

JOB_TITLE:
varchar(20)-(Column)HRJOBS

Alias Column datatype - (COLUMN ALIAS)
[catalog].[schema].tableName.
columnName

JOB_TITLE:int-(COLUMN
ALIAS)HR.JOBS.JOB_ID

Schema (SCHEMA) [catalog]

dbo-(SCHEMA)NorthWind

Catalog (CATALOG)

Call Call HR.ADD_JOB_HISTORY

Function Suggestion Syntax/Example

Built-in SELECT A FROM HR.DEPARTMENTS
WHERE HR.DEPARTMENTS AVG

User-Defined SELECT + FROM HR.CLIENTS WHERE
HR.F_PERSONAL
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 27

 > CREATING AND EDITING SQL FILES (SQL EDITOR)
The following chart displays the possible statement fragments that SQL Editor will attempt to suggest/populate with
objects:

In addition to DML statements, SQL Editor also suggests objects based on specific fragmented syntax per line of
code:

To activate code suggestions:

• By default, code suggestions are automatically offered if you stop tying in SQL Editor for one second. You can
turn off the automated suggestion feature on the Code Assist preferences page.

Statement Fragment Elements Object Suggestion Behavior

SELECT A list of tables, when selected
automatically, prompts the user to select
a column.

UPDATE and DELETE A list of tables appears in the FROM
and/or WHERE clause.

INSERT A list of tables and views appears in the
INSERT INTO and OPEN BRACKET
clause prior to values.

A list of columns based on the table or
view name appears in the OPEN
BRACKET or VALUES clause.

Statement Syntax Object Suggestion Behavior

A partial DML statement (for example
SEL ... indicates a fragment of the
SELECT clause)

The keyword is completed automatically,
assuming SQL Editor can match it.
Otherwise, a list of suggested keywords
is displayed.

If the preceding character is a period, and
the word prior is a table or view, a list of
columns appears.

If the word being typed is a part of a table
name (denoted by a schema in front of it)
the table name is autocompleted.

If the word being typed has a part of a
column name (denoted by a table in front
of it) the column name is autocompleted.

Without typing anything. A list of keywords appears.

A period is typed. If the word prior to the period is a name of
a table or view, a list of columns is
displayed.

If the word prior to the period is a schema
name, a list of table names is displayed.

If the word prior to the period is either a
table name or a schema name, then both
a list of columns and a list of table names
is displayed.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 28

 > CREATING AND EDITING SQL FILES (SQL EDITOR)
If automated code suggestion is disabled, you can still access the suggestion window using the following method:

1 Click the line that you want SQL Editor to suggest an object for.

2 Press (CTRL + Spacebar) on your keyboard. SQL Editor ‘reads’ the line and presents a list of tables, views or
columns as appropriate based on statement elements.

NOTE: On a per platform basis, auto-suggestion behavior may vary. (For example, the WITH statement
on DB2 platforms.)

To modify object suggestion parameters, including setting it from automatic to manual, see Set Code Assist
Preferences.

Understanding Hyperlinks
SQL Editor supports hyperlinks that are activated when a user hovers their mouse over a word and presses the CTRL
key. If a hyperlink can be created, it becomes underlined and changes color. When the hyperlink is selected, the
creation script for the hyperlink object is opened in a new editor.

Hyperlinks can be used to link to tables, columns, packages, and other reference objects in development code.
Additionally, hovering over a hyperlink on a procedure or function of a call statement will open it. You can also use the
hyperlink feature on function calls in DML statements.

Clicking a hyperlink performs an action. The text editor provides a default hyperlink capability. It allows a user to click
on a URL (for example, www.embarcadero.com) and database object links.

Hyperlink options (look and feel) can be modified via the Hyperlinking subnode in the Editors > Text Editors node of
the Preferences panel.

NOTE: Hyperlink functionality relies on certain objects being captured in the Object Index. If the index is
turned off, or has been restricted in what information it captures, users will be unable to link them
(as they are non-existent within the Index.) To specify object index types, see Set Index
Configuration Preferences.

Understanding Code Formatting
Code formatting provides automatic code formatting in SQL Editor while you are developing code.

To access the code formatter, select the open editor you want to format and select Ctrl+Shift+F. The code is
formatted automatically based on formatting parameters specified in the Code Formatter subnode of the SQL Editor
node in the Preferences panel.

You can also format an entire group of files from Project Explorer. To do so, select the directory or file and execute
the Format command via the shortcut menu. The files will be formatted automatically based on your formatting
preferences. See Set Code Formatter Preferences for more information.

The following examples display a list of code formatting parameters and the resultant output in SQL Editor, based on
the same set of SQL statements.

Custom Code Formatting Example 1

The following chart indicates a list of custom code formatting parameters and their corresponding values. The chart is
followed by the actual syntax as it would appear in SQL Editor, based on the formatting parameter values. Compare
the parameters and formatted code in Example 2 with this example for a concept of how custom formatting works.

Custom Code Formatting Parameter Value (if applicable)

Stack commas separated by lists? Yes
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 29

 > CREATING AND EDITING SQL FILES (SQL EDITOR)
Stack Lists with ___ or more items. 3

Indent Size? 2

Preceding commas? Yes

Spaces after comma? 1

Trailing commas? --

Spaces before comma? --

Right align FROM and WHERE clauses
with SELECT statement?

Yes

Align initial values for FROM and
WHERE clauses with SELECT list?

Yes

Place SQL keywords on their own line? No

Indent size? --

Indent batch blocks? Yes

Number of new lines to insert 1

Indent Size 5

Right Margin? 80

Stacked parentheses when they contain
multiple items?

No

Stack parentheses when list contains ___
or more items.

--

Indent Size? 5

New line after first parentheses? No

Indent content of conditional and looping
constructs?

Yes

Number of new lines to insert? 1

Indent size? 5

Custom Code Formatting Parameter Value (if applicable)
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 30

 > CREATING AND EDITING SQL FILES (SQL EDITOR)
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 31

 > CREATING AND EDITING SQL FILES (SQL EDITOR)
Custom Code Formatting Example 2

The following chart indicates a list of custom code formatting parameters and corresponding values. The chart is
followed by the actual syntax as it would appear in SQL Editor based on the formatting parameter values. Compare
the parameters and formatted code in Example 1 with this example for a concept of how custom formatting works.

Custom Code Formatting Parameter Value (if applicable)

Stack commas separated by lists? Yes

Stack Lists with ___ or more items. 2

Indent Size? 0

Preceding commas? --

Spaces after comma? Yes

Trailing commas? Yes

Spaces before comma? 2

Right align FROM and WHERE clauses with SELECT statement? No

Align initial values for FROM and WHERE clauses with SELECT list? --

Place SQL keywords on their own line? Yes

Indent size? 4

Indent batch blocks? No

Number of new lines to insert 1

Indent Size 5

Right Margin? 80

Stacked parentheses when they contain multiple items? Yes

Stack parentheses when list contains ___ or more items. 2

Indent Size? 2

New line after first parentheses? Yes

Indent content of conditional and looping constructs? --

Number of new lines to insert? 1

Indent size? 5
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 32

 > CREATING AND EDITING SQL FILES (SQL EDITOR)
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 33

 > CREATING AND EDITING SQL FILES (SQL EDITOR)
Understanding Code Folding
SQL Editor features code folding that automatically sorts code into an outline-like structure within the editor window for
easy navigation and clarity while developing code.

The editor window automatically inserts collapsible nodes in the appropriate lines of code for organizational purposes.
This enables you to expand and collapse statements, as needed, while developing code in particularly large or
complicated files.

Understanding Code Quality Checks
Code quality markers provide annotations that prevent and fix common mistakes in the code.

These notes appear in a window on any line of code where the editor detects an error, and are activated by clicking
the light bulb icon in the margin or by pressing Ctrl + l.

For example, if a statement reads select * from SCOTT.EMP, SCOTT.DEPT, when you click the light bulb icon or
press Ctrl + l, a window appears beneath the line of code that suggests Add join criteria.

When you click on a proposed fix, the statement is automatically updated to reflect your change.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 34

 > CREATING AND EDITING SQL FILES (SQL EDITOR)
The following common errors are detected by the code quality check function in the editor:

Code Quality Check Type Definition

Statement is missing valid JOIN criteria If a SELECT statement contains missing join criteria, when it is executed, it can
produce a Cartesian product between the rows in the referenced tables. This
can be problematic because the statement will return a large number of rows
without returning the proper results.

The code quality check detects missing join criteria between tables in a
statement and suggests join conditions based on existing foreign keys, indexes,
and column name/type compatibility.

Example

The following statement is missing a valid JOIN criteria:

SELECT * FROM employee e,customer c, sales_order s WHERE
e.employee_id = c.salesperson_id

The code quality check fixes the above statement by adding an AND clause:

SELECT * FROM employee e,customer c, sales_order s WHERE
e.employee_id = c.salesperson_id AND s.customer_id = c.customer_id

Note: This code quality check is valid for Oracle, DB2, and Sybase-specific
join conditions.

Invalid or missing outer join operator When an invalid outer join operator exists in a SELECT statement, (or the outer
join operator is missing altogether), the statement can return incorrect results.

The code quality check detects invalid or missing join operators in the code and
suggests fixes with regards to using the proper join operators.

Example

The following statement is missing an outer join operator:

SELECT * FROM employee e, customer c WHERE e.employee_id =
c.salesperson_id (+) AND c.state = ‘CA’

The code quality check fixes the above statement by providing the missing
outer join operator to the statement:

SELECT * FROM employee e,customer c WHERE e.employee_id =
c.salesperson_id(+) AND c.state(+) = ‘CA’

Transitivity issues The performance of statements can sometimes be improved by adding join
criteria, even if a join is fully defined. If this alternate join criteria is missing in a
statement, it can restrict the selection of an index in Oracle’s optimizer and
cause performance problems.

The code quality check detects possible join conditions by analyzing the
existing conditions in a statement and calculating the missing, alternative join
criteria.

Example

The following statement contains a transitivity issue with an index problem:

SELECT * FROM item i, product p, price pr WHERE i.product_id = p.product_id
AND p.product_id = pr.product_id

The code quality check fixes the above statement with a transitivity issue by
adding the missing join condition:

SELECT * FROM item i, product p, price pr WHERE i.product_id = p.product_id
AND p.product_id = pr.product_id AND i.product_id = pr.product_id
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 35

 > CREATING AND EDITING SQL FILES (SQL EDITOR)
Nested query in WHERE clause It is considered bad format to place sub-queries in the WHERE clause of a
statement, and such clauses can typically be corrected by moving the
sub-query to the FROM clause instead, which preserves the meaning of the
statement while providing more efficient code.

The code quality check fixes the placement of sub-queries in a statement,
which can affect performance. It detects the possibility of moving sub-queries
from the FROM clause of the statement.

Example

The following statement contains a sub-query that contains an incorrect
placement of a WHERE statement:

SELECT * FROM employee WHERE employee_id = (SELECT MAX(salary)
FROM employee)

The code quality check fixes the above statement by correcting the sub-query
issue:

SELECT employee.* FROM employee (SELECT DISTINCT MAX(salary) col1
FROM employee) t1 WHERE employee_id = t1.col1

Wrong place for conditions in a HAVING
clause

When utilizing the HAVING clause in a statement

It is recommended to include as few conditions as possible while utilizing the
HAVING clause in a statement. DB Optimizer™ detects all conditions in a given
HAVING statement and suggests equivalent expressions that can benefit from
existing indexes.

Example

The following statement contains a HAVING clause that is in the wrong place:

SELECT col_a, SUM(col_b) FROM table_a GROUP BY col_a HAVING col_a >
100

The code check fixes the above statement by replacing the HAVING clause
with equivalent expressions:

SELECT col_a, SUM(col_b) FROM table_a WHERE col_a > 100 GROUP BY
col_a

Index suppressed by a function or an
arithmetic operator

In a SELECT statement, if an arithmetic operator is used on an indexed column
in the WHERE clause, the operator can suppress the index and result in a
FULL TABLE SCAN that can hinder performance.

The code quality check detects these conditions and suggests equivalent
expressions that benefit from existing indexes.

Example

The following statement includes an indexed column as part of an arithmetic
operator:

SELECT * FROM employee WHERE 1 = employee_id - 5

The code quality check fixes the above statement by reconstructing the
WHERE clause:

SELECT * FROM employee WHERE 6 = employee_id

Code Quality Check Type Definition
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 36

 > CREATING AND EDITING SQL FILES (SQL EDITOR)
Understanding SQL Templates
DB Optimizer provides code templates for DML and DDL statements that can be applied to the Editor via the (Ctrl +
Spacebar) command. When you choose a template from the menu that appears, SQL Editor automatically inserts a
block of code with placeholder symbols that you can modify to customize the code for your own purposes.

Code templates are available for DML, ALTER, DROP, CREATE, and platform specific commands.

There are 267 templates available for all supported platforms and respective versions. You can modify and create new
templates via the SQL Templates panel on the Preferences dialog. See Set SQL Code Template Preferences for
more information on how to create and alter SQL code templates.

Mismatched or incompatible column
types

When the data types of join or parameter declaration columns are mismatched,
the optimizer is limited in its ability to consider all indexes. This can cause a
query to be less efficient as the system might select the wrong index or perform
a table scan, which affects performance.

The code quality check flags mismatched or incompatible column types and
warns that it is not valid code.

Example

Consider the following statement if Table A contains the column col int and
Table B contains the column col 2 varchar(3):

SELECT * FROM a, b WHERE a.col = b.col;

In the above scenario, the code quality check flags the ‘a.col = b.col’ part of the
statement and warns that it is not valid code.

Null column comparison When comparing a column with NULL, the !=NULL condition may return a
result that is different from the intended command, because col=NULL will
always return a result of false. Instead, the NULL/IS NOT NULL operators
should be used in its place.

The code quality check flags occurrences of the !=NULL condition and replaces
them with the IS NULL operator.

Example

The following statement includes an incorrect col = NULL expression:

SELECT * FROM employee WHERE manager_id = NULL

The code quality check replaces the incorrect expression with an IS NULL
clause:

SELECT * FROM employee WHERE manager_id IS NULL

Code Quality Check Type Definition
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 37

 > CREATING AND EDITING SQL FILES (SQL EDITOR)
View Change History
Each time an SQL file is saved, the local history of that file is recorded (changes made). Using the Local History
command, you can view all changes made to the file. Local History is accessed via the shortcut menu of SQL Editor
and selecting Compare With > Local History.

• The History view displays all recorded times the file was changed since its inception/introduction into the
workspace.

• Double-click a time in the History view to access the Text Compare panel. It displays the text of the file after the
change occurred at the time indicated in the History view.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 38

 > EXECUTING SQL FILES
Revert to an Old Version of a File
The Replace With > Local History command provides you with the ability to revert a SQL file back to a previously
recorded local history.

To replace the contents of a file with the contents of a previously saved version via local history:

1 Right-click the SQL Editor and select Replace With > Local History from the shortcut menu.

The Replace from Local History dialog appears.

2 In the Local History of ... panel, select a previously recorded version of the file by clicking the appropriate
timestamp.

3 Click Replace.

The contents of the currently-opened file revert to the contents of the file at the history point you selected in the
dialog.

Alternatively, from the shortcut menu, select Replace With > Previous from Local History to replace the contents of
the file with DB Optimizer™’s last recorded history point.

Delete an SQL File
To delete a file, right-click its icon in the SQL Project Explorer and select Delete. This will remove the file from both
the SQL project and the file system.

Executing SQL Files
DB Optimizer™ can execute SQL code directly on registered data sources.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 39

 > EXECUTING SQL FILES
Files are executed via the Execute SQL command in the Run menu, or by clicking the green arrow button on the
toolbar.

When an SQL file is open in the Workspace, select it and choose a database and an associated catalog on which you
want to execute the file via the lists in the Toolbar.

You can click the execute icon to execute code on the specified database and catalog, start a transaction or commit a
transaction, or modify SQL session options prior to execution.

To execute a file:

Open the SQL file you want to run, ensure it is associated with the correct database, and click Execute. DB
Optimizer™ executes the code on the data source you specified. Results are displayed in the Results view and can
be exported into a file via the Data Export wizard, or displayed in multiple file formats (HTML, XML, and TXT formats).

To execute a transaction:

To execute transactions, you need to ensure that the auto commit feature is turned off. See Set SQL Execution
Preferences for more information on how to turn off auto commit.

Open the transaction file you want to run, ensure it is associated with the correct database, and click Start
Transaction. DB Optimizer™ executes the transaction on the data source you specified.

Once the transaction runs, you can execute the file as normal.

NOTE: Click Commit or Rollback to finish or cancel a transaction.

To commit a transaction:

Open the transaction file you want to commit, ensure it is associated with the correct database, and click Commit
Transaction. DB Optimizer™ commits the transaction on the data source you specified.

TIP: You can set transactions to auto-commit prior to execution on the SQL Execution node of the
Preferences panel.

See Also:

Associate an SQL File with a Data Source

Configure a SQL Session

Execute SQL Code

View and Save Results

Associate an SQL File with a Data Source
When working with files, SQL Editor enables developers to view and change the data source to which they are
connected.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 40

 > EXECUTING SQL FILES
The bread crumb line in SQL editor is used to display and specify a data source in relation to the specified SQL Editor
file. The menu contains a list of all registered data sources. Additionally, on platforms that support catalogs, these are
displayed as well.

Changing a catalog via the drop down lists is the equivalent of issuing a USE DATABASE command on SQL Server,
Sybase, and MySQL platforms. Any change will not affect the current connection, and the list automatically updates to
display the name of the newly selected data source.

If no registered database is associated with a SQL file (as would be the case if a user started a new, unsaved file), the
list is empty. This indicates that the file is not connected to a registered data source.

To change or associate a registered data source with a SQL file:

Click the database list and select the name of a registered database from the list provided. Depending on the state of
the code in SQL Editor, DB Optimizer™’s behavior differs when the connection is made:

TIP: If you are receiving multiple syntax errors, always check that the file is associated with the correct
data source and corresponding database/catalog before troubleshooting further.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 41

 > EXECUTING SQL FILES
Configure a SQL Session
The SQL Session Options dialog provides configuration parameters that indicate to DB Optimizer™ how to execute
code in the development environment.

To modify SQL session options:

1 Click the SQL Session Options icon in the Toolbar.

The SQL Session Options dialog appears.

2 Click on individual parameters in the Value column to change the configuration of each property, as specified.

3 Click Finish.

The session options will be changed and DB Optimizer™ will execute the code as specified when you execute it.

Session options only apply to the corresponding editor and are not retained when executing multiple SQL files.

Execute SQL Code
Files can be launched from within the DB Optimizer™ development environment for execution on a registered data
source Files are executed via the commands in the Run menu.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 42

 > EXECUTING SQL FILES
When a SQL file is open in the Workspace, select it and choose a database and an associated catalog on which you
want to execute file using the drop down menus in the Toolbar. You can click the execute icon to execute the code on
the specified database and catalog, start a transaction or commit a transaction, or modify the SQL session options
prior to execution.

To execute code:

Open the SQL file you want to run, ensure it is associated with the correct database and click the Execute icon. DB
Optimizer™ executes the code on the data source you specified. Results are displayed in the same tab or in a new
tab.

To execute a transaction:

Open the transaction file you want to run and ensure it is associated with the correct database, and then click the
Start Transaction icon. DB Optimizer™ executes the transaction on the data source you specified.

To commit a transaction:

Open the transaction file you want to commit, ensure it is associated with the correct database, and then click the
Commit Transaction icon. DB Optimizer™ commits the transaction on the data source you specified.

TIP: You can set transactions to auto-commit prior to execution on the SQL Execution node of the
Preferences panel in DB Optimizer™.

View and Save Results
Once a file has been executed, the results are displayed in the Results view. Here, you can examine the outcome of
the execution process, as well as save the results in other file formats, as needed.

You can view results in the following formats:

• HTML

• XML

• TXT
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 43

 > TROUBLESHOOTING
To save results:

1 Right-click on the Results view and select Save Data. The Save Data dialog appears.

2 Select the project name to which you want to save the results, enter a file name, choose the file parameters, and
then choose a file format from the drop down menu. You can select delimited text file, Excel, XML, or HTML file
formats.

3 Click Finish. The results are saved in the directory location and format that you specified.

Troubleshooting
DB Optimizer™ contains a number of views used exclusively to log and monitor the SQL development process.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 44

 > TROUBLESHOOTING
• The SQL Log captures all SQL commands executed by SQL Editor and the system. SQL Log entries are listed
by SQL Statement name, Date issued, Host/Server, Service, User, Source, and the Time (in milliseconds) it
took to execute the command.

• The SQL Errors log automatically logs all SQL errors encountered when SQL commands are executed through
DB Optimizer™. Errors are listed by Error Code, SQL State, error Details, Resource, and the Location of the
error in the SQL file.

• The Problems view captures syntactic and semantic errors and warnings in the files of the workspace. These
entries typically take the form of error messages or warnings issued by the system over the course of a
procedure execution. Problems are organized by Description (which indicates the type of problem logged),
Resource, file Path, and Location. Using the Problems view, you can apply quick fixes to issues that DB
Optimizer detects, as well as locate other problems that have similar attributes.

See Also:

• View Log Details

• Maintain Logs
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 45

 > TROUBLESHOOTING
• Filter Logs

• Import and Export Error Logs

• Find and Fix SQL Code Errors

• Find and Fix Other Problems

View Log Details
The SQL Error Log and Problems views contain functionality that enable you to view details regarding individual log
entries, and in some cases, locate or fix those issues automatically.

To view details about SQL Errors entries:

Right-click the error whose details you want to view and select SQL Error Details.

The SQL Error Details dialog provides information about the specified SQL error.

Additionally, you can double-click the error to view the problem code in SQL Editor.

To view details about Problems

• Right-click the entry whose details you want to view and select Properties. The Properties dialog appears,
summarizing the issue.

Maintain Logs
The SQL Log and SQL Errors views both contain commands that enable you to save, restore, or otherwise move log
entries into files outside of DB Optimizer™. Additionally, both views also contain commands that enable the clearing of
the view.

The current editor option will only show users statements as generated by the active editor.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 46

 > TROUBLESHOOTING
To maintain log entries:

All entries automatically captured by the Error Log are written to a file (.log suffix) that resides in the Workspace
.metadata folder.

• From DB Optimizer™, right-click in the SQL Log and select Clear Log Viewer to remove all messages.

• In the shortcut menu, select Delete Log to delete the .log file. If entries are created after the Delete Log
command is issued, DB Optimizer™ will automatically generate a new .log file in the .metadata subfolder.

NOTE: Old Error Log entries cannot be recovered once the .log file is deleted. To prevent data loss,
archive the .log file via the Export command prior to deletion.

• To clear the Error Log view without deleting the .log file, select Clear Log Viewer from the shortcut menu. The
View will be cleared of entries, but these entries will still be contained in the .log file.

• To restore the Error Log view based on the entries contained in the .log file, select Restore Log from the
shortcut menu. The View is restored based on the entries in the .log file.

Filter Logs
Filters can be applied to Problems, SQL Log, and the SQL Error Log to limit searches when troubleshooting and
pinpointing specific processes within the system.

To filter the SQL Log:

• Select the Toolbar Menu icon (the downward-pointing arrow in the right-hand corner of the view) and choose
Filters. The SQL Log Filters dialog appears.

• In the SQL Statement Types frame, select Successful or Failed to filter by the type of Error Log entries.

• Select Limit display statements to indicate a maximum limit of the number of entries displayed in the Error
Log, and enter the maximum entry value in the corresponding field.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 47

 > TROUBLESHOOTING
• Select Show statements with host to indicate that only entries from a specific data source are to be displayed,
then type the name of the data source (as it appears in the Database Explorer) in the corresponding field.

• In the Filter by Source pane, specify User, System Generated, or Unavailable Source to filter statements by
the type of source from where they originated.

To filter the Problems log:

Select the Toolbar Menu icon and choose Configure Filters. The Filters dialog appears.

The Filters dialog enables the creation of multiple filter profiles that can be applied to the log via the Toolbar
Menu. The User Filters panel on the left-hand side of the dialog displays all existing filter profiles stored in the
Workspace. Initially, the Workspace only contains the Default filter profile. Selecting it displays its filter
parameters, and selecting the check box associated with its name enables the filter in the Problems view (only
problems that match the criteria defined in the Filters dialog will appear in the view).

The ability to define different profiles enables the selection of multiple filter profiles. For each profile selected, the
profile criteria is applied to the View, concurrently. You can filter problems by:

• Working Set

• Character String

• Problem Severity

• Problem Type

• A combination of the above four filter options
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 48

 > TROUBLESHOOTING
Once you have defined and/or selected the appropriate filter profiles, the profiles will appear in the Filters
submenu in the Toolbar Menu of the Problems view. Select or deselect the profiles from the submenu, as
needed.

Import and Export Error Logs
Error messages are written to a file named .log located in the Workspace directory .metadata folder. This file can
(and should) be cleared periodically via the Delete Log command to prevent performance issues with regards to
system memory and file size. However, the Export command enables you to archive log files prior to deletion. The
files created by the Export command can then be imported back into the Error Log as needed at a later point in time.

To export the SQL Log:

Right-click the SQL Log view and choose Export Log. The log is saved in the specified directory path with a .log
extension.

To import the Error Log:

Right-click the SQL Log view and choose Import Log. Select the previously exported .log file. The Error Log view is
restored with the entries from the specified export file.

Profile Criteria Description

Working Set The options located in the center of the dialog enable you to filter problems based on defined Working
Sets. A Working Set is a collection of user-defined Project files that you can organize, as needed, in
DB Optimizer™. Select an option, and then click Select to define a Working Set to which the
parameters apply. If no Working Sets exist, you need to define one or more via the New button on the
Select Working Set dialog.

Select one or more Working Sets to which you want the criteria to apply. If no Working Sets exist, or
none suitably match the current filter criteria, click New or Edit to define a new Working Set, or edit
an exist Working Set, respectively.

Character String Use the Description list to select contains or doesn’t contain, as needed, and type the character
string in the field below the list. The Problems view is filtered to only contain, or omit, problem
descriptions that fully or partially match the string value.

Problem Severity Select the Where severity is check box and choose Error, Warning, Info, or some combination of
the three check boxes. Only entries whose severity matches the check boxes you have selected
remain visible in the Problems view.

Problem Type The options in the Show items of type list on the right-hand side of the dialog enable you to filter
problems by type. Deselect Problem to remove any system entries from the view, or deselect SQL
Error Marker to remove any SQL code entries from the view.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 49

 > TROUBLESHOOTING
Find and Fix SQL Code Errors
The SQL Errors view contains an option that enables you to navigate directly to the resource associated with an error
entry.

To navigate to the source of a SQL error entry:

right-click the entry to which you want to navigate and select Go To. The file to which the error applies automatically
opens in a new instance of SQL Editor, and the line is highlighted in the window.

Find and Fix Other Problems
By default, the Problems view organizes problems by severity. You can also group problems by type, or leave them
ungrouped.

The first column of the Problems view displays an icon that denotes the type of line item, the category, and the
description. Click the problem and DB Optimizer™ will open the SQL file and automatically highlight the line that
triggered the issue.

You can filter Problems to view only warnings and errors associated with a particular resource or group of resources.
You can add multiple filters to the view, as well as enable/disable them as required. Filters are additive, so any
problem that satisfies at least one of the filters will appear.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 50

 > TROUBLESHOOTING
Problems can sometimes be fixed via the Quick Fix command in the shortcut menu. The Quick Fix dialog enables
you to apply a fix to a problem detected by the view. The dialog also provides a list of similar problems to the one you
selected, and enables you to apply a fix to multiple problems at the same time.

To apply a quick fix to an issue in the Problem view:

1 Right-click on a problem in the list and select Quick Fix from the menu. The Quick Fix dialog appears.

2 Select a fix from the list provided and click OK. DB Optimizer attempts to resolve the issue.

To find similar issues:

1 In the Quick Fix dialog, click Find Similar Problems. The Problems list populates with all of the issues that are
similar to your initial selection.

2 Use the check boxes beside the problems to select them, and then choose a fix and click OK. DB Optimizer
attempts to resolve all of the specified issues.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 51

Configuring DB Optimizer™
This section contains information on configuring DB Optimizer. It includes information on setting up the system
directory for project files, as well as licensing information. Additionally, this section contains information on setting
preferences within the application for the customization of various features and functionality.

Initial Setup

Customizing DB Optimizer™ (Preferences)

Initial Setup
The following topics provide general help for configuring DB Optimizer:

Specify a Workspace

License DB Optimizer™

Additionally, the following preferences are available to help you customize and tune functions within the application:

Set Index Configuration Preferences

Set SQL Editor Preferences

Set SQL Execution Preferences

Set Code Assist Preferences

Set Code Formatter Preferences

Set Results View Preferences

Set Syntax Coloring Preferences

Set SQL Code Template Preferences

Set File Encoding Preferences
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 52

CONFIGURING DB OPTIMIZER™ > CUSTOMIZING DB OPTIMIZER™ (PREFERENCES)
Specify a Workspace
When you start Eclipse or the DB Optimizer™ standalone application for the first time, you are prompted to create a
workspace.

Click Use this as the default and do not ask again to set the specified folder as the permanent default workspace.
For more information about workspaces, see Help > Help Contents > Workbench User Guide.

License DB Optimizer™
The first time you first launch DB Optimizer™, you will be prompted to activate the product. Choose to activate by
Internet and follow the prompts. During the activation process you will receive an email with an activation key; after
you enter that key into the License Setup dialog, you will receive a free 14-day evaluation license.

If due to firewall or other restrictions you cannot use Internet activation, select the E-mail alternative. If that does not
work either, select the Phone alternative.

To continue using DB Optimizer™ after the evaluation period, select Help > Embarcadero Licensing > License
Registration and follow the prompts, or visit the Embarcadero online store at
http://www.embarcadero.com/store.html.

Customizing DB Optimizer™ (Preferences)
To customize various aspects of DB Optimizer™, select Window > Preferences > SQL Development. For
information on categories that may not be covered in this section, see Help > Help Contents > Workbench User
Guide or Help > Help Contents > Debugger, respectively.

Set Index Configuration Preferences
The Data Source Index is a local repository that stores the schema of registered data sources in DB Optimizer™. It is
automatically set to index information about data sources registered in the development environment.

By default, the Data Source Index captures all catalogs, functions, procedures, tables, and views. Additionally, after
the initial index, the index performs incremental captures of information.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 53

http://www.embarcadero.com/store.html

CONFIGURING DB OPTIMIZER™ > CUSTOMIZING DB OPTIMIZER™ (PREFERENCES)
However, there is a definitive trade-off when indexing a full database schema. The time it takes to fully capture a large
schema and logical space considerations on local workstations, often makes it inefficient for DB Optimizer™ to
perform this task each time a new data source is registered in DB Optimizer™. Thus, the Index can be configured via
the DB Optimizer™ Preferences dialog to accommodate machine processing ability and speed.

By default, when a data source connects to DB Optimizer™, the Index automatically begins indexing its schema.

Index Configuration parameters enable you to indicate how schema caching behaves by specifying at what level
data source objects will be indexed, the specific catalogs, schemas, and data source objects to index, and other
factors that speed up the indexing process at a cost of slower retrieval for those objects not indexed by the process.

Additionally, over the course of a DB Optimizer™ session, index information is periodically updated by DB
Optimizer™. The index refresh process uses the same specified parameters as the initial indexing process and
therefore can cause application slowdown and performance issues if the index behavior has not been configured in an
efficient manner.

DB Optimizer also provides the ability to index at the individual data source level. In Data Source Explorer, right-click
on a data source and select Properties, then on the Properties dialog, choose Data Source Indexing to access
index options for the specified data source.

To configure the global index:

1 Select Window > Preferences > SQL Development > Data Source Indexing. Change the settings as
appropriate:

• The tree view displays a list of database objects as they are organized in the Database Explorer view. Use the
check boxes beside each object to specify the data sources that are to be included in the indexing process.

• Select Clear Index to delete the Object Index each time the application is started.

• Select the Apply SQL Filters tab if you want to apply any pre-defined filters to the index.

• If you are having performance problems due to a caching issue (such as a configuration error), the Stop
Indexing, Clear Indexing, and Start Indexing buttons enable you to stop, clear, and/or restart the index
process, respectively.

• The Max. number of objects to index field indicates how many logical data source objects can be indexed
before the Index has reached maximum size.

• The Objects to include in index pane contains a list of data source objects. Select or clear the check boxes
beside each data source object to indicate the specific data source objects that are included and excluded,
respectively, from the indexing process.

• The Index Expiration Time (hours) setting indicates that an index job will not start automatically until the
specified number of hours have passed. The index can also be started manually via Start Indexing.

2 When you are finished configuring the Index, click Apply to save your changes.

To configure individual data source indexing:

1 In Data Source Explorer, right-click on the data source you want to specify indexing, and select Properties. The
Properties dialog appears.

2 Choose Data Source Indexing and modify the properties, as required:

• Choose Enable Data Source Specific Settings to indicate to DB Optimizer that you want to specify individual
indexing properties for this data source. Data sources that do not have this option selected will index under global
indexing parameters.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 54

CONFIGURING DB OPTIMIZER™ > CUSTOMIZING DB OPTIMIZER™ (PREFERENCES)
• The tree view displays a list of database objects as they are organized in the Database Explorer view. Use the
check boxes beside each object to specify the data sources that are to be included in the indexing process.

• Select Clear Index to delete the Object Index each time the application is started.

• Select the Apply SQL Filters tab if you want to apply any pre-defined filters to the index.

• If you are having performance problems due to a caching issue (such as a configuration error), the Stop
Indexing, Clear Indexing, and Start Indexing buttons enable you to stop, clear, and/or restart the index
process, respectively.

• The Objects to include in index pane contains a list of data source objects. Select or clear the check boxes
beside each data source object to indicate the specific data source objects that are included and excluded,
respectively, from the indexing process.

• The Index Expiration Time (hours) setting indicates that an indexing job will not start automatically until the
specified number of hours have passed. The index can also be started manually via Start Indexing.

Set SQL Editor Preferences
1 Select Window > Preferences > SQL Development > SQL Editor.

2 Change the settings as appropriate in each section and then click Apply.

• Severity Level for Semantic Validation Problems determines how semantic code errors are flagged in the
editor and the Problems view.

• The link to specify hyperlinks takes you to the Text Editors preference page.

NOTE: Clearing Enable SQL Parser will disable many of the “smart” SQL editor features, including code
formatting, auto completion, semantic validation, and hyperlinks. For better performance, you
may disable the parser for files above a specified size.

Set SQL Execution Preferences
Select Window > Preferences > SQL Development > SQL Editor.

NOTE: If you disable auto-commit for a platform, you must use SQL Editor’s transaction features to
execute code on that platform.

Set Code Assist Preferences
The Code Assist panel is used to specify configuration parameters that determine how code completion features in
SQL Editor behave.

Select Window > Preferences > SQL Development > Code Assist.

• Enable Auto Activation enables or disables code assist functionality with the Ctrl + Space command. If this
option is selected, the code assist window automatically appears when you stop typing. Specify the amount of
time in milliseconds that the window automatically appears in the Auto Activation Delay field beneath the
option.

• Insert Single Proposals Automatically specifies if only a single code completion suggestion is returned, it is
inserted automatically.

• Fully Qualified Completions Automatically specifies if code completion results are returned specific (fully
qualified), rather than the minimum required to identify the object.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 55

CONFIGURING DB OPTIMIZER™ > CUSTOMIZING DB OPTIMIZER™ (PREFERENCES)
• Code Assist Color Options specifies the color formatting of code completion proposals. Select background or
foreground options from the menu and modify them as appropriate.

Set Code Formatter Preferences
The Code Formatter pane provides configuration options for code formatting functionality in SQL Editor.

Select Window > Preferences > SQL Development > Code Formatter.

The panel provides a drop down list of formatting profiles and a preview window that displays how each profile formats
code.

• Click New to define additional code formatting profiles.

• Click Edit to modify existing profiles. You can modify how code characters appear in the interface and how SQL
Editor determines line breaks.

• Click Rename to change the name of an existing profile. The new name cannot be the same as another existing
profile.

NOTE: If you create a new profile with a name that already exists in the system, a prompt will appear
asking you to change the name of the new code formatting template.

Set Results View Preferences
The Results Viewer pane provides configuration options that specify how the Results view displays results.

Select Window > Preferences > SQL Development > Results Viewer.

• Grid Refresh Interval indicates the speed in milliseconds that the Results view refreshes.

• Stripe the Rows of the Results Table adds intermittent highlighted bars in the Results view.

• Display Results in Separate Tab in SQL Editor opens the Results view in a separate window on the
Workbench.

Set Syntax Coloring Preferences
The Syntax Coloring panel provides configuration options that change the look and feel of code syntax in SQL Editor.

• Select Window > Preferences > SQL Development > Syntax Coloring.

Use the tree view provided in the Element window to select the comment type or code element you want to modify.
Select the options to the right-hand side of the window to modify it. The Preview window shows a piece of sample
code that updates according to the changes you made.

Set SQL Code Template Preferences
The SQL Templates panel provides customization options for creating and modifying SQL code templates.

• Select Window > Preferences > SQL Development >SQL Editor > SQL Templates
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 56

CONFIGURING DB OPTIMIZER™ > CUSTOMIZING DB OPTIMIZER™ (PREFERENCES)
The SQL Templates panel displays a list of all SQL code templates currently available. Additionally, when you select
a template from the list, the Preview section displays the code block as it will appear when the template is selected in
SQL Editor.

Click on the check box beside each template to specify if it is included in the code assist check or not, within SQL
Editor. Use the buttons on the right-hand side of the panel to create, edit, or delete SQL templates, as needed.

When you create or edit a template, the Edit SQL Template dialog appears.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 57

CONFIGURING DB OPTIMIZER™ > CUSTOMIZING DB OPTIMIZER™ (PREFERENCES)
Enter a Name, Description, and Pattern in the fields provided, and click OK. If the template name doesn’t match an
existing SQL code template, your new template is added to the list, and will automatically be considered when the
code assist function is executed in SQL Editor.

Select the Use Code Formatter check box to apply code formatting preferences to the specified template. See Set
Code Formatter Preferences for more information about setting code formatter preferences.

Set File Encoding Preferences
The Workspace panel provides options for unicode support in SQL files.

• Select Window > Preferences > General > Workspace

The default encoding for text files on Windows platforms is Cp1252. You can change unicode support in from file to
file using the Text File Encoding options available on the Workspace panel.

To change text file encoding in the development environment:

1 Select Window > Preferences > General > Workspace and click the Other option under Text File Encoding.

2 Use the drop down menu and select an encoding mode from the list provided. Click Apply to keep your changes.

To change text file encoding on a specific, folder, or project in:

1 Right-click on the file, folder or project that you want to modify and choose Properties.

2 Modify the encoding selection on the Resource properties page that appears.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 58

Using Profiling
Profiling continuously samples the data source to build a statistical model of the load on the database. Profiling can be
used to locate and diagnose problematic SQL code and event-based bottlenecks. Additionally, profiling enables you to
investigate execution and wait time event details for individual stored routines. Results are presented in the profiling
editor, which enables users to identify problem areas and subsequently drill down to individual, problematic SQL
statements.

For details on working with profiling, see the following topics:

• Understanding the Interface

• Running a Profiling Session

• Configuring Profiling

• Using Load Editor

Understanding the Interface
The profiling interface is divided into three major parts:
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 59

USING PROFILING > RUNNING A PROFILING SESSION
• The Load Graph is located on the top section of the editor and provides a display of the overall load on the
system. The bars represent individual aspects of the enterprise, and the view can be used to find bottlenecks.

• Top Activity is located on the middle section of the editor and displays where the load originates. Specifically,
the top SQL statements, top events that the database spends time in, as well as the top activity sessions.

• The Profiling Details View is located on the bottom section of the editor and displays detailed information on
any item selected in the middle section. For example, a SQL statement, an Event, or a Session.

The graphical portion of the profiling editor presents the distribution of sessions executed over the length of the
profiling process, and those that were waiting in DBMS-specific events. It provides a first and most important step in
identifying problem areas. Results can be viewed in real-time.

The Load Graph and Top Activity Section compose one view in the editor, while the Profiling Details view is a
separate interface component that only activates when an item in the Top Activity Section is specified.

NOTE: Use a 1280 x 1024 monitor resolution when viewing profiling information. Smaller resolution sizes
can obscure details in the view.

Running a Profiling Session
Profiling provides the continuous monitoring of a data source and builds a statistical model based of database load
based on the users state every second. The created profile can then be saved to file, and the data can be saved,
analyzed, and optimized by importing statements into the tuning component and running a tuning job.

The following list provides the general workflow and overhead tasks, when attempting to monitor data sources and
store query information.

1 Execute a Profiling Session

2 Working with Session Results

3 Save Profiling Sessions

4 Import Statements to Tuning

In addition to the workflow tasks outlined above, the profiling interface also enables a number of important functions to
help in statement analysis and diagnosis. This additional, or extra, functionality can be found in Using Other Profiling
Commands.

Furthermore, in some cases you will need to configure system variables and parameters in order to get the results you
need from the application. See Configuring DBMS Properties and Permissions for more information on how to
configure profiling and your registered data sources prior to running a session.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 60

USING PROFILING > RUNNING A PROFILING SESSION
Execute a Profiling Session
Profiling is monitored and managed via profiling’s three major interface components: the Load Chart, Top Activity
Section, and Profiling Details view.

To execute a profiling session:

In Data Source Explorer, right click on the data source you want to profile and select Profile As from the menu,
and then choose Data Source. The profiling session begins. Additionally, clicking the Profiling icon on the
Toolbar automatically runs a profiling session for the last data source you selected.

Once a profiling session launches, it runs until you stop it. When a session has run for a length of time, you can then
interpret and analyze the results. See Working with Session Results.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 61

USING PROFILING > RUNNING A PROFILING SESSION
To stop a profiling session:

You can stop a profiling session at any time by clicking the Stop icon in the upper left-hand side of the screen.

Executing a Session from the Command Line

You can launch a profiling session from the command line using the following syntax:

dboptimizer.exe profile ds:ROM*L*ABORCL10G_1 duration:20 tofile:c:\testprofile.oar

In the above command, the user has specified ROM*L*ABORCL10G_1 as the data source, and indicates a profiling
session of 20 minutes. The tofile variable specifies the directory and name of the file to which the profiling session will
be saved.

Working with Session Results
Results are displayed in the editor whenever a profiling session is executed. Results can appear in real time (if real
time profiling is enabled) or once a session as finished its execution.

Results are displayed in the three major interface components of the editor, which you can use to analyze the overall
efficiency and capacity of queries running on the data source, to various levels of detail:

The Profiling UI has three correlated sections:

• Selection in Chart will fill the top activity section data, distributed in Overview/SQL/Events/Sessions/Object I/O.

• Selection in any tab of Top Activity will fill the Profiling Details with top selection type related data

For more information, see:

• Analyzing the Load Chart

• Analyzing the Top Activity Section

• Analyzing Profiling Details
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 62

USING PROFILING > RUNNING A PROFILING SESSION
Analyzing the Load Chart
The Load Chart is located on the top section of the editor and provides a display of the overall load on the system.
The bars represent individual aspects of the enterprise, and the view is used to discover bottlenecks.

The graph is designed as a high level entry point to profile session results. Subsequently, you can use the Top Activity
and Details views to examine more detailed information on waiting and executing sessions over the length of the
session. Alternatively, you can select one or more bars on the graph to populate the Top Activity section (and
subsequently, the Details View) with information on a specific subset of the graph.

The Load Chart displays the distribution of waiting and executing sessions over the length of a profiling session.

• Time is displayed on the X axis. You can zoom in and zoom out on the graph via the icons in the upper right hand
corner of the graph, once a profiling session is stopped.

• The Y axis shows the average number of sessions waiting or executing. Each supported platform has a specific
set of wait event times.

• A chart legend displays a color and code scheme for executing and waiting session categories, in the upper
right-hand corner of the view.

DBMS Wait Event Category

IBM DB2 Fetch, Cursor, Execution, Operation,
Transaction, Connectivity, Lock, Other

Oracle On CPU, System I/O, User I/O, Cluster,
Application, Configuration, Commit,
Other

SQL Server CPU, Lock, Memory, Buffer, I/O, Other

Sybase CPU, Lock, Memory, I/O, Network, Other
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 63

USING PROFILING > RUNNING A PROFILING SESSION
Analyzing the Top Activity Section
The Top Activity Section is located in the middle section of the editor and displays where the load originates.
Specifically, the top SQL statements, top events that the database spends time in, as well as the top activity sessions.

The Top Activity Section is composed of a series of tabs that provide detailed statistics on individual SQL statements
and sessions that were waiting or executing over the length of a profiling session.

• The SQL Tab provides more detailed information than provided on the Input tab, in terms of executing SQL
statements and procedures.

• The Events Tab displays information about wait events profiled by the execution process.

• The Sessions Tab displays information about sessions profiled by the execution process.

• The I/O Tab is Oracle-specific and will not appear in the Top Activity Section unless the data source being
profiled is an Oracle platform. This tab displays information about the I/O profiled by the execution process.

When you select any item from the Top Activity tabs, details are displayed in the Profiling Details view. The tabs that
appear in Profiling Details will be different depending on the database platform and whether you selected a
statement, session, or an event. This is to accommodate the parameter specifics of the item you selected.

This section also addresses the following topics:

• Top SQL Tab

• Top Events Tab

• Top Sessions Tab

• Top Object I/O Tab (Oracle-Specific)

Top SQL Tab
The Profile editor’s SQL tab shows a representation of all SQL statements that are executing or waiting to execute
over the length of the profiling session or within the currently selected graph bars.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 64

USING PROFILING > RUNNING A PROFILING SESSION
Statements can be grouped by type by right-clicking the view and selecting Organize > By Type. The following
statement types are organized:

INSERT, SELECT, DELETE, and UPDATE

TIP: Statements are grouped when they differ only by their clause values. This enables the roll-up of
SQL statements that only differ by a variable value. For example: select * from emp where
empno=1; and select * from emp where empno=2. A ‘+’ symbol appears beside rollup statements.
You can click the symbol to expand and view the different statement predicates.

Additionally, the SQL tab displays two other groupings:

All statements are displayed in a tree structure with the following statement components:

For example, all statements with common subjects are shown as a single entry with multiple children; one child for
each unique predicate. Predicates are similarly broken down by remainders.

NOTE: Right-clicking the SQL tab and selecting Organize By lets you choose between Statement Type
grouping and None. The None option disables grouping by statement.

Statistics are provided at each level of the tree structure. This lets you evaluate costs and spot wait event problems
not just at the level of entire SQL statements, but also at the level of statement components. For each subject,
predicate or remainder entry, the following statistics are provided:

Other values displayed on this tab differ depending on the data source platform. For example, the tab displays the
values SQL ID, Child Number, Parsing User ID, and Plan Hash Value when analyzing a data source.

Group Description

OTHER Includes all recognized statements other than INSERT, SELECT, UPDATE, and
DELETE statements.

UNKNOWN Statements that are not recognized by the application.

Statement Component Description

Subject The DML statement type (and FROM clause, as appropriate).

Predicate The WHERE clause.

Remainder Any statement component following the WHERE clause.

Statistic Notes

Executions The number of active executions for the statement or statement component
over the length of the profiling session or the selected graph bars.

Activity (%) A graphical representation of the distribution of execution and wait time for the
statement or statement component.

SQL ID The ID value of the SQL statement. This statistic only appears on Oracle data
sources.

Child Number The child number in the database. This statistic only appears on Oracle data
sources.

Parsing User ID The ID of the user who parsed the statement. This statist only appears on
Oracle data sources.

Plan Hash Value The execution value of the statement. This statistic only appears on Oracle data
sources.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 65

USING PROFILING > RUNNING A PROFILING SESSION
Additionally, DB2 platforms have an additional tab named Execution Activity, which contains the following statistical
rows: Rows Read, Rows Written, Fetch Count, Statement Sorts, Sort Time, and Sort Overflows.

Top Events Tab
The Events tab displays information about wait events on the resources involved in the profiling process. This display
is used to tune at the application or database configuration level. For example, if the top events are locks, then
application logic needs to be examined. If top events are related to database configuration, then database setup
should be investigated.

Top Sessions Tab
The Sessions Tab provides information about individual sessions. This tab provides information about sessions that
are very active or bottlenecked.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 66

USING PROFILING > RUNNING A PROFILING SESSION
Top Object I/O Tab (Oracle-Specific)
The Object I/O Tab is specific to the Oracle data source platform, and displays information about Oracle I/O loads on
the profiled data source.

The following parameters are displayed on the I/O tab:

Analyzing Profiling Details
The Profiling Details view displays detailed information on any item selected in the Top Section View. For example,
an SQL statement, an Event, or a Session.

Depending on the data source platform you have specified, the tabs that appear in the view will be different, in order to
accommodate the parameter specifics of the statement you have selected.

Depending on the top activity selected and the profiled platform types, some tabs may not be available.

Value Description

Object The name of the data source object affecting the Oracle I/O.

Type The object type. For example, table, partition, or index.

DB Activity (%) Use the color chart on the right-hand side of the I/O tab to view the I/O load on
the data source during the profiling session.

Tablespace The name of the tablespace where the object resides.

File ID The unique ID value of the file from where specified object resides.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 67

USING PROFILING > RUNNING A PROFILING SESSION
Statement Selected

When a Statement is selected the following Profile Detail tabs are available.

Event Selected

When an Event is selected the following Profile Detail tabs are available.

Tab Name Description Supported Platform

Oracle Sybase DB2 SQL
Server

SQL Text Displays the full code of the selected SQL statement. yes yes yes yes

SQL Details Provides details on statement, like execution statistics. yes yes

Events Provides database activity details about events the statement is
associated with.

yes yes yes yes

Sessions Shows which sessions executed this statement. yes yes yes yes

Children
Details

Lists all copies of the cursor or sql query, if Oracle has cached
multiple copies of the same statement.

yes

Object I/O If the SQL query has done physical I/O, then these are the objects,
such as tables, and indexes that were read to satisfy the query.
Temporary objects with not have values in Object and Type
columns.

yes

Tab Name Description Supported Platform

Oracle Sybase DB2 SQL
Server

SQL Shows which SQL statements waited on this event. yes yes yes yes

Sessions Provides information about the sessions associated with the event. yes yes yes yes

Raw Data Raw data that was sampled from the database, specifically the
following:
• Sample time
• SID
• Serial #
• User name
• Program
• Sql ID
• P1
• P2
• P3

yes

Analysis Displays for “buffer busy waits” and “cache buffer chains latch”
waits. The analysis shows data and documentation to assist in
solving these bottlenecks.

yes
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 68

USING PROFILING > RUNNING A PROFILING SESSION
Session Selected

When a Session is selected the following Profile Detail tabs are available.

NOTE: When right-clicking on a SQL statement in the Top Activity Section in Profiling, if the SQL
statement is run by a different user than the user who is running DBO, than the User Mismatch
dialog appears, with an example of the following message: “This query was executed by [SOE]
and you are currently connected as [system]. We recommend you reconnect as [SOE] to tune the
SQL. Would you like to continue anyway?” This message indicates that the statement is being
tuned by a user other than the user who originally ran the query, and tables may be missing based
on the different schemas. Click OK to run the query, or click Cancel and run tuning under the
original user.

This section also addresses the following topics:

• Viewing Details on the SQL Tab

• Viewing Details on the Sessions Tab

• Viewing Details on the Events Tab

Viewing Details on the SQL Tab
In the Top Activity Session, selecting a statement entry on the SQL tab displays information in the Details view. The
graph portion and details on the event category tabs on the new editor pertain only to the selected statement.
Additionally, new tabs become available:

• The SQL Text tab shows the full code of the SQL statement.

• The SQL Details tab displays execution details. This tab is only displayed for Oracle data sources.

• The Events tab displays information about the events the selected statement is associated with.

• The Sessions tab displays information about the sessions that the selected statement is associated with. This tab
is only displayed for Oracle data sources.

Tab Name Description Supported Platform

Oracle Sybase DB2 SQL
Server

Session
Details

Provides parameters regarding the session. For example, database
server connection information, and data regarding the client tool and
application.

yes yes yes

SQL Shows which SQL statements this session ran. yes yes yes yes

Events Shows which events this session waited on. yes yes yes yes
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 69

USING PROFILING > RUNNING A PROFILING SESSION
SQL Text

The SQL Text tab displays the full code of the SQL statement.

SQL Details

The SQL Details tab provides information and the execution of the statement and other information related to how it is
running. It is only applicable to Oracle data sources:

SQL Details include:

Parameters Description

SQL Identification Values The SQL ID value of the statement.

Optimizer and Outline Values Optimizer-specific values pertaining to the parsing user ID value and outline
SID.

Parsing Statistics Information regarding memory, loads, and invalidation values.

Execution Statistics The execution statistics of the statement. This category includes disk reads,
buffer gets, rows, and values that represent CPU and elapsed time.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 70

USING PROFILING > RUNNING A PROFILING SESSION
Events

The Events tab provides details about the events that the statement is associated with.

Sessions

The Sessions tab provides information about any sessions the statement is associated with:

Session details include information on different parameters, depending on the platform. For example, on Oracle
platforms, the following parameters are displayed: User Name, Program, SID, Serial #, Activity (%), Network
Machine Name, and Session Type.

To select a SQL tab statement entry:

• On the SQL tab, click on a statement with no child nodes or on a leaf node in the statement structure.

The new profiling editor page opens, as reflected by the breadcrumb trail at the top left of the editor. You can continue
to drill down into the statement, as needed.

Viewing Details on the Sessions Tab
In the Top Activities Section, selecting a statement entry on the Sessions tab displays information in the Details
view. The graph portion and details on the event category tabs on the new editor pertain only to the selected
statement. Additionally, new tabs become available.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 71

USING PROFILING > RUNNING A PROFILING SESSION
Selecting an event type entry on an event category tab opens a new profiling editor page. The graph portion and
details on the Sessions tab and event category tabs on the new editor page pertain only to the selected wait event
and to SQL statements that waited in that event.

• The Sessions tab shows system details about the selected session.

• The SQL tab displays information about the SQL files that the selected session is associated with. This tab only
appears on Oracle platforms.

• The Events tab displays the time and parameter information about the selected session.

Session Details

The Session Details tab provides further information about the selected session.

NOTE: The fields that display vary depending on the database platform.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 72

USING PROFILING > RUNNING A PROFILING SESSION
Oracle Profiling Details

Microsoft SQL Server

SQL

The SQL tab displays information about the statements associated with the session.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 73

USING PROFILING > RUNNING A PROFILING SESSION
SQL statements are listed by the following parameters:

Events

The Events tab provides details about the events that the session is associated with.

Events are listed by the following values:

Viewing Details on the Events Tab

In the Top Activities Section, selecting a statement entry on the Event tab displays information in the Details view.
The graph portion and details on the event category tabs on the new editor pertain only to the selected statement.
Additionally, new tabs become available.

Value Notes

Statement The name of the statement.

Executions The number of times the statement was executed during the session.

Activity (%) A graphical representation of the distribution of execution and wait time for the
statement or statement component.

SQL ID The SQL ID value of the statement.

Child Number The child number in the database.

Parsing User ID The ID of the user who parsed the statement.

Plan Hash Value The execution value of the statement.

Value Notes

Event Name The name of the event.

Activity (%) A graphical representation of the distribution of execution and wait time for the
statement or statement component.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 74

USING PROFILING > RUNNING A PROFILING SESSION
Selecting an event type entry on an event category tab opens a new profiling editor page. The graph portion and
details on the Event tab and event category tabs on the new editor page pertain only to the selected wait event and to
SQL statements that waited in that event.

• The SQL tab shows the statements involved in the selected event.

• The Sessions tab displays information about the sessions that the selected event is associated with.

SQL tab

The SQL tab displays information about the SQL statements involved in the selected event.

The SQL tab displays the following parameters:

Sessions tab

The Sessions tab displays the sessions and related information regarding those that were associated with the
selected event.

Value Notes

Statement The name of the statement.

Executions The number of times the statement was executed.

Activity (%) A graphical representation of the distribution of execution and wait time for the
statement or statement component.

SQL ID The ID value of the SQL statement.

Child Number The child number in the database.

Parsing User ID The ID of the user who parsed the statement.

Plan Hash Value The execution value of the statement.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 75

USING PROFILING > RUNNING A PROFILING SESSION
The following parameters are displayed on the Sessions tab:

Save Profiling Sessions
A profiling session can be saved in the current workspace in an archive file with a .oar suffix and with a default file
name of:

• The name of the data source if the session was not initiated from a named launch configuration

• The name of the launch configuration if the session was initiated from a named launch configuration

The time period of the saved session is the amount of data on the chart. The maximum amount of data on the chart is
determined when profiling is started (1 hour default).

This lets you open the archive at a later time for subsequent analysis. Use standard DB Optimizer file techniques to
save, open, or close SQL Profiling archives.

If you open a profiling archive on a machine on which the associated data source is not registered, a Data source not
available warning appears in the profiling editor header. Use the associated control to specify a data source already
defined on the machine or to register a new data source.

Value Notes

User Name The user name under which the session was run.

Program The name of the executable under which the session was run.

SID The SID value of the session.

Serial Number The serial number of the machine from which the session executed.

Activity (%) A graphical representation of the distribution of execution and wait time for the
statement or statement component.

Machine The machine name and network location of the machine from which the session
executed.

Session Type The type of session.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 76

USING PROFILING > RUNNING A PROFILING SESSION
Import Statements to Tuning
The profiling feature lets you submit one or more SQL tab statements for tuning by the tuning feature. This lets you
take advantage of tuning’s hint-based and transformation-based suggestions, detailed execution statistics, and
explain plan costing, in tuning a statement.

To open a tuning job on a statement appearing on the SQL tab of the profiling editor:

• Select one or more statements, right-click and select Tune from the context menu. Tuning opens on the selected
statement.

NOTE: The SQL will be tuned as the user/schema that profiling was running under. If the query being
tuned was run by another user/schema, it is recommended to connect to the database as that
user/schema and copy/paste the query into tuning, rather than import the statement directly from
profiling.

For more information, see “Tuning SQL Statements” in the SQL Tuner help.

Using Other Profiling Commands
In addition to the default viewing options provided by the views, profiling also provides the following features and
functionality:

• Zooming In and Out

• Filtering Results

Zooming In and Out

To zoom in or out on the Load Graph:

• In the upper right-hand corner of the Load graph, click the Zoom In or Zoom Out icons, respectively.

NOTE: The Zoom In and Zoom Out commands are only available when a session has been stopped.

By default, the information contained on the Load Chart spans the entire length of the profiling session. You can select
one or more bars of the graph to have the tabbed view populated with statistics for only the selected subset of the
graph.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 77

USING PROFILING > CONFIGURING PROFILING
To display statistics for one or more bars on the graph, use one of the following methods:

• Click-drag across one or more bars.

Filtering Results
You can display filtered subsets of the original profiling results set for each section of profiling based on DBMS
platform type:

• IBM DB/2 for WIndows, Unix, and Linux - Creator ID, Cursor Name, Package Name, and Statement Type

• Microsoft SQL Server - Application Name, Command, Database Name, and Hostname

• Oracle - Action Hash, Module Hash, and Program

• Sybase - Application, Database ID, Host, IP Address, and Process priority

You filter results using the filter controls in the upper, right-hand part of the profiling editor.

Additionally, on Oracle platforms, you can filter results by user, or foreground, or background activity. Select All, User
(Foreground), or Background to filter out the specified process activity, respectively.

To filter profile editor results:

1 Use the Filter By menu to select a filter type. The second menu becomes active based on your selection in the
first menu.

2 Use the second menu to specify a value.

The profiling editor is updated to show only results associated with your choice.

TIP: Select -None- from the Filter by dropdown to restore the unfiltered results.

Configuring Profiling
This section addresses the following topics:

• Configuring DBMS Properties and Permissions

• Building Launch Configurations
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 78

USING PROFILING > CONFIGURING PROFILING
Configuring DBMS Properties and Permissions
Profiling supports the following DBMS platforms:

• IBM DB/2 for WIndows, Unix, and Linux

• Microsoft SQL Server

• Oracle

• Sybase

Select a platform below for more information regarding how to set up a platform to utilize Optimizer:

• Configuring IBM DB/2 for Windows, Unix, and Linux

• Configuring Microsoft SQL Server

• Configuring Oracle

• Configuring Sybase

Configuring IBM DB/2 for Windows, Unix, and Linux
By default, DB2 Monitor flags are set to OFF. As a result, when attempting to launch a Profile job on a DB2 data
source, users may encounter the following message: “One or more errors have occurred that prevent session profiling
against this data source. Examine the details below and consult your data source administrator and/or the data source
documentation to resolve the problem(s).”

You can resolve this error using one of two methods:

• Enabling DB2 Monitor Flags via Embarcadero DBArtisan

• Command Line Option

To resolve the error through DBArtisan:

1 Ensure the following DB2 Monitor Flags are turned on in DB2:

• dft_mon_uow

• dft_mon_uow

• dft_mon_stmt

• dft_mon_timestamp

• dft_mon_lock

• dft_mon_bufpool
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 79

USING PROFILING > CONFIGURING PROFILING
• dft_mon_table

You can set view and set Monitor Flags via DBArtisan. Ensure that the New Value field for each variable is set to
Yes, as shown below.

2 Restart the DB2 data source to enable the changes, then launch DB Optimizer and begin profiling.

To resolve the error through the command line:

This solution must be performed from DB2 CLP, on the DB2 server. If you attempt to perform these tasks through a
client, an error message will result.

1 Navigate to START/PROGRAMS/IBM DB2/COMMAND LINE TOOLS/COMMAND LINE PROCESSOR

2 Turn the monitor switches on using the following commands:

db2 update dbm cfg using dft_mon_lock on dft_mon_bufpool on dft_mon_sort on
dft_mon_stmt on dft_mon_table on dft_mon_uow on
db2stop
db2start

3 Ensure that the switches are turned on by connecting to the server with the following command:

Db2 connect to database username password password

The following screen provides an example of the input and output from the server:
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 80

USING PROFILING > CONFIGURING PROFILING
Configuring Microsoft SQL Server
Perform the following tasks to ensure that SQL Server is compatible with Optimizer:

• If you are setting up SQL Server 2000 or 2005, ensure the current user is a member of sysadmin.

• If you are setting up later versions of SQL Server, the current user must meet one of the following requirements:

• Be a member of sysadmin, or have the VIEW SERVER STATE permission enabled.

• Be a member of sysadmin, or have the SELECT permission enabled.

On SQL Server 2000 only:

You can enable profiling to capture more SQL by adding the following flag:

DBCC TRACEON(2861)

Trace flag 2861 instructs SQL Server to keep zero cost plans in cache, which SQL Server would typically not cache
(such as simple ad-hoc queries, set statements, commit transaction, and others). In other words, the number of
objects in the procedure cache increases when trace flag 2861 is turned on because the additional objects are so
small, there is a slight increase in memory that is taken up by the procedure cache.

Ensure you restart the server for your changes to take affect.

Configuring Oracle
Oracle users need access to V$ views. In order to configure Oracle to provide users with these privileges:

• If you are setting up Oracle 10 or later, ensure you are logged in as sys or system with the sysdba role, or the
SELECT_CATALOG_ROLE has been granted to user_name.

• If you are setting up an earlier version of Oracle, ensure you are logged in as sys or system with the sysdba
role.

Configuring Sybase
Perform the following tasks to ensure that Sybase is compatible with Optimizer:

• Ensure the following system configuration properties are activated:

• Enabling Monitoring (sp_configure “enable monitoring”, 1)

• Wait Event Timing (sp_configure “wait event timing”, 1)

• Max SQL Text Monitored (sp_configure “SQL batch capture”, 1)

• SQL Batch Capture (sp_configure “max SQL text monitored”, 4096)

Additionally, perform the following tasks, as necessary:

• If a user does not have mon_role enabled, the user will not be able to access Adaptive Server’s monitoring
tables.

• If the monProcess table is missing, the user will not be able to view currently connected sessions.

• If the sysprocesses table is missing, the user will not be able to view information about Adaptive Server
processes.

• If the monWaitEventInfo table is missing, the user will not be able to view information about wait events.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 81

USING PROFILING > CONFIGURING PROFILING
• If the monProcessSQLText table is missing, the user will not be able to view currently executing SQL
statements.

NOTE: These packages should only be installed by the DBA.

Profiling enables you to create a set of launch configurations to store the basic properties for each profiling session
that you run on a regular basis. A launch configuration enables you to start profiling sessions from a single menu
command, rather than re-define configuration parameters each time you want to run one.

Building Launch Configurations
Profiling enables you to store parameters related to specific profiling sessions, in a launch configuration for stored
routines. Multiple configurations can be created for each data source in your enterprise and saved with unique names
that identify them in the application.

NOTE: On all supported platforms, support for stored routines includes functions and procedures. On
Oracle, stored routine support also includes package functions and package procedures.

• Data Source indicates the name of the data source to which the profile applies.

• Time Interval Length indicates how long the session profiles the data source term, in the format of hours and
minutes. This parameter also indicates the total width of the time load graph. The longer a profile is, the larger the
saved file will be. It is not recommended to make the time interval length value beyond eight hours.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 82

USING PROFILING > CONFIGURING PROFILING
• The Show Data While Profile Session is in Progress check box enables “real time” profiling, which refreshes
the data of the session as profiling runs. The Refresh Interval specifies how often profiling updates this data in
seconds

NOTE: Profiling can run sessions based on ad hoc parameters you designate before executing the
profiling process. However, by building profile launch profiles, it is a much more efficient method
of managing standard, frequent, or common profiling sessions.

To create a launch configuration:

1 Right-click on the data source you want to build a configuration for and select Profile As from the menu, then
choose Open Profile Dialog. The Profile dialog appears.

2 Select the name of the data source and modify the parameters on the Profile tab, as needed.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 83

USING PROFILING > CONFIGURING PROFILING
3 In the left pane, select the name of the data source, and click the New Launch Configuration icon. The right
pane of the dialog populates with the parameters needed to define the launch configuration of the type that you
specified.

4 In the Name field, provide a name for the launch configuration. You should select a name that will make the
launch configuration unique and easily identified once it is saved in the application.

5 Ensure that the selected value in the Data Source is accurate. If it is not, then use the drop down menu to select
the proper data source.

6 Use the Browse button to specify the stored routine. Depending on the specified stored routine, profiling will
populate the fields of the Parameters table with the specified input parameters. These parameters will be used
when executing the stored routine when running a session from the launch configuration.

7 Click Apply. The launch configuration is stored in the application.

Once a launch configuration is defined, you can execute it in profiling. For more information, see Running a Profiling
Session

NOTE: The parameters provided when you select the data source name in the left pane control session
parameters for the specified data source. To set these controls, see Configuring DBMS Properties
and Permissions.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 84

USING PROFILING > USING LOAD EDITOR
Using Load Editor
SQL Load Editor enables you to configure and execute SQL code against a data source.

This feature enables you to specify a data source against which the code will be executed, and then provides options
that enable you to choose a period of time that you want the script to execute for, and at what intervals the execution
“loop” occurs.

On execution, SQL Load Editor runs in the background. It can therefore be run in conjunction with a profiling session
in order to analyze the effects of the executing load against the specified data source. Once you run a SQL script via
Load Editor, you can start the SQL Profiling function and analyze the results of the load.

The Load Editor is accessed via the Load Editor icon on the Toolbar:

When you open Load Editor, click Select Data Source to specify the data source against which you want the SQL
script to run.

Choose Ad hoc SQL and manually type (or copy/paste) the SQL code into the window provided, or select SQL file
and navigate to the SQL file you want to run. The window populates with the code from the selected file.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 85

USING PROFILING > USING LOAD EDITOR
The following configuration parameters are set with Load Editor prior to executing the SQL script:

To run Load Editor:

1 Access Load Editor by selecting the icon on the Toolbar. Load Editor opens.

2 Click Select Data Source and choose a data source you want to run the SQL code against.

3 Choose Ad hoc SQL or SQL file, and then copy/paste or manually type the code you want to execute in the
window provided, or navigate to the location of the file, respectively.

4 In the right-hand panel, choose the execution configuration parameters to specify how you want Load Editor to
handle the script.

5 Click the Execute icon in the lower right-hand corner of the screen. The script starts to execute against the
specified data source, using the configuration parameters you selected.

6 If you are profiling a data source, start and run a new profiling session on the data source you specified in Load
Editor. The session will reflect how your SQL script executes against the specified data source.

Configuration Parameter Description

Number of Parallel Sessions Specifies the number of jobs that the
execution script will operate on.

Execution End Condition Specifies if the script execution process
runs for a set amount of time or script
executions.

Choose Time if you want the script to
execute over a specific period of time, or
Number of Executions if you want the
script to execute a specific number of
times.

Sleep Between Executions Specifies if Load Editor will wait before
running the execution script again. Select
the check box and choose Fixed Delay or
Random Interval, depending on whether
you want the script to execute at a
specific time, or at random intervals
within a specified range of time.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 86

Using Tuning
This section provides information on tuning, its functionality, and is structured so a user can follow the information
provided to fully tune their enterprise in terms of more efficient query paths at the SQL statement level of individual
data sources.

This guide contains the following topics:

• Overview

• Tuning SQL Statements

• Using Oracle-Specific Features

• Additional Tuning Commands

• Configuring Tuning

• DBMS Hints

Overview
Tuning provides an easy and optimal way to discover efficient paths for queries that may not be performing as quickly
or as efficiently as they could be.

The application enables the optimization of poorly-performing SQL code through the detection and modification of
execution paths used in data retrieval. This process is performed through the following functions:

• Hint Injection

• Index Analysis

• Statistic Analysis (Oracle only)

• Query re-writes such as suggesting joins to eliminate Cartesian joins, adding transitivity predicates, and
unnesting subqueries in the WHERE claus.

Tuning analyzes an SQL statement and supplies execution path directives to the application that encourage the
database to use different paths.

For example, if tuning is selecting from two tables (A and B), it will enable the joining of A to B, or B to A as well as the
join form. Additionally, different joining methods such as nested loops or hash joins can be used and will be tested, as
appropriate. Tuning will select alternate paths, and enable you to change the original path to one of the alternates.
Execution paths slower than the original are eliminated, which enables you to select the quickest of the returned
selections and improve query times, overall.

This enables the DBA to correctly optimize queries in the cases where the native optimizer failed.

In the application interface, tuning is composed of three tabs:

• Input

• Overview

• Analysis

NOTE: When using tuning on Oracle sources, several additional tabs appear on the Analysis and
Outlines tabs. For more information on utilizing these extra features, see Using Oracle-Specific
Features.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 87

USING TUNING > OVERVIEW
Understanding the Input Tab
Use the Input tab to specify which SQL statements to tune.

• Ad hoc SQL: Copy/paste SQL statements to the Ad hoc SQL tab or write queries by hand.

• Database Objects: Drag and drop data base objects from the Data Source Explorer to the Database Objects
tab.

• SQL Files: Browse the workspace or file system and select SQL files.

• Active SQL in SGA: For the Oracle platform only, you can also scan the System Global Area (SGA) for
statements to tune.

Understanding the Overview Tab
Once you click the Run Job icon on the top right-hand side of the Overview tab, the Overview tab provides the list of
statements that were analyzed by the Tuner, as well as the cases suggested by the execution process to improve
them. Additional information may include statement Name, Text, Source, Cost, and Elapsed Time values, depending
on the platform.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 88

USING TUNING > OVERVIEW
Only the Elapsed Time statistic, appears on all supported platforms. On Oracle platforms, Execution Statistics and
Other Execution Statistics columns will appear. When determining the best possible path using the Overview tab, it is
best to use the Elapsed Time value as the guideline. The faster the path, the more optimized the query will
become.There are three tuning options to choose from before clicking Run Job:

To analyze the SQL statement, click Generate cases

To perform the analysis that populates the Analysis tab now, click Perform detail analysis. Otherwise, the analysis
tab is populated when you click the Analysis tab.

To have the system generate execution statistics, click Execute each generate case and then select the number of
time the system should execute each generated case. Multiple executions can verify that the case results are not
skewed by caching. For example, the first time a query is run, data might be read off of disk, which is slow, and the
second time the data might be in cache and run faster. Thus, one case might seem faster than another but it could be
just benefiting from the effects of caching. Generally, you only need to execute the cases once, but it may be
beneficial to execute the cases multiple times to see if the response times and statistics stay the same.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 89

USING TUNING > OVERVIEW

5

Understanding the Analysis Tab
Index analysis is started when you either generate cases with Perform detail analysis selected on the Overview tab,
or when you click the Analysis tab. If any columns referenced in the WHERE clause of the tuning candidate are not
the first column of an index, tuning will recommend that you create an index on that column.

The color-coded Index Analysis feature highlights missing indexes as well as shows which indexes are used and
which are not used in the default execution path. The Index Analysis feature highlights issues where the database
optimizer might not be using the preferred indexes. DB Optimizer also lists indexes on the tables that do not have
fields in the WHERE clause helping the designer to see if adding an additional predicate in the WHERE clause might
make use of an existing index.

The layout of the Analysis tab shows the SQL text and Visual SQL Tuning (VST) diagram on the top, and the indexes
on the tables in the query below.

The Analysis tab has five important components as depicted in the previous illustration:

1 Statement selector, if there are multiple statements in the tuning set.

2 Statement text for selected statement.

3 Graphical diagram of the SQL statement.

4 Index analysis of the SQL statement.

1

2 3

4

EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 90

USING TUNING > OVERVIEW
5 Description of the selected index, including the reasoning behind DB Optimizer recommendations.

NOTE: For the Oracle platform, there are several other tabs available, including Table Statistics, Column
Statistics And Histograms, and Outlines. For more information, see Using Oracle-Specific
Features.

TIP: The text, diagram, and analysis sections can be resized or expanded to take up the whole page.

The Analysis tab suggests missing indexes, indicates which indexes are used in the execution path and lists all
indexes that exist on all the tables in the query. Indexes on the table are listed on the Analysis tab and color coded as
follows:

From the example illustrated above, we can see the following:

SELECT *
 FROM
 client_transaction ct,
 client c
 WHERE
 ct.transaction_status = c.client_marital_status AND
 c.client_first_name = 'Brad'

Since there is no index on CLIENT.CLIENT_FIRST_NAME and there are 5600 records in CLIENT, DB Optimizer
proposes creating an index:

Text Color Interpretation

Index is used in the query

Index is usable but not used in the current execution path.

This index is missing. DB Optimizer recommends that you create this index.

This index exists on the table but not usable in this query as it is written.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 91

USING TUNING > TUNING SQL STATEMENTS
In the Collect and Create Indexes table, orange-highlighted entries indicate missing indexes that DB Optimizer
recommends be created to improve performance. Clicking on that index, as shown in the illustration that follows,
displays text to the right outlining the rational behind this recommendation.

For more information on using the Analysis tab, see Using the Analysis Tab.

Tuning SQL Statements
A tuning job enables you to view the cost details of SQL statements on a registered data source and then select the
best, or most efficient, array of execution path directives in order to make query execution faster, therefore improving
the entire enterprise, overall.

There are four methods through which statement tuning can be activated:

• Ad hoc statement tuning via manual entry, or cutting and pasting into the tuning window.

• Database object selection, by selecting stored packages from a list on the registered data source.

• SQL file selection, by choosing an SQL file saved on the system.

• Importing statements directly from profiling.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 92

USING TUNING > TUNING SQL STATEMENTS
A tuning job consists of a set of SQL statements and any analysis results you generate against a data source using
tuning. The SQL statements and analysis results that compose a tuning job can be saved in a tuning file (.tun). This
enables you to open a tuning job at a later time for inspection and analysis, to add, delete, or modify the SQL
statements, or generate new execution statistics.

The following tasks provide a high-level overview of the tuning process:

1 Create a New Tuning Job

2 Specify a Data Source

3 Add SQL Statements

4 Run a Tuning Job

5 Analyze Tuning Results

6 Modify Tuning Results

NOTE: For additional commands that fall outside the general tuning workflow, but may still be helpful, see
Additional Tuning Commands.

Create a New Tuning Job
New tuning jobs can be created via the File > New > Tuning Job command, or by importing statements directly from
profiling. A New Tuning Job icon is also available on the Toolbar.

To create a new tuning job via the Menu or Icon command:

Select File > New > Tuning Job, or click the New Tuning Job icon on the Toolbar. Tuning opens.

You can now proceed to set up the parameters of the new job.

To create a new tuning job from profiling:

After you have run a profiling session, in profiling’s Profiling Details tab, select one or more statements,
right-click, and select Tune from the context menu. Tuning opens, pre-populated with parameters based on the
statements you selected.

To open an existing tuning job:

Navigate to the SQL Project tab and double-click the name of the existing tuning job.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 93

USING TUNING > TUNING SQL STATEMENTS
To name a job, save it:

Ensure you specify a meaningful name that identifies the job in other views and dialogs. You can save the job by
selecting File > Save or File > Save All from the Menu bar. Once a job is saved, it is added to the SQL Project
view.

Specify a Data Source
The bread crumbs at the top of the tuning job window identify the data source where the SQL statements to be tuned
reside.The default data source is the one that was selected when the new tuning job was initiated. For example in the
following image, we see that the data source is Sfvpclb01.embarcadero.com., which is part of the Oracle data source
group.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 94

USING TUNING > TUNING SQL STATEMENTS
You can change the data source of a tuning job by clicking a breadcrumb triangle and then navigating to the
datasource or using the filter to locate and then select a data source. In the following screenshot, Microsoft SQL
Server was clicked and T was entered in the filter text area, which resulted in several matches.

Click the name of the desired data source to affect the change.

NOTE: Multiple tuning jobs can be saved against the same data source. You can therefore set up your
tuning jobs organizationally. You might for example, set up a tuning job to tune only SQL
associated with procedures or a set of SQL sources that are functionally related. Alternatively,
your tuning jobs may be organized by application.

Add SQL Statements
Once you have created a tuning job and named it, using File > Save As, you need to add SQL statements to the job
that are to be tuned. All standard DML statements can be tuned (SELECT, INSERT, DELETE, and UPDATE).
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 95

USING TUNING > TUNING SQL STATEMENTS
Statements are added to tuning via the Tuning Candidates pane.

There are several different methods for adding SQL statements to a job, as reflected by the tabs in the Tuning
Candidates box:

• The Ad hoc SQL tab enables tuning via manual entry, or cutting and pasting into the tuning window.

• The Database Objects tab enables you to select stored SQL from the data source to which you are connected.
You can either drag and drop objects from the Data Source Explorer or you can add database objects matching
specified filers. For example, entering t in the filter area of the Data Source Objects Selection dialog, can match
functions, views, and procedures, whose name begins with t.

• The SQL FIles tab enables you to choose an SQL file saved on the system.

• The Active SQL in SGA tab is available for the Oracle platform only. It enables you to scan for and select active
SQL in the System Global Area (SGA). For more information, see Tuning SQL Statements in the System Global
Area (SGA)

To add an ad hoc SQL statement:

Select the Ad hoc SQL tab and manually type an SQL statement in the window, or copy/paste the statement
from another source.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 96

USING TUNING > TUNING SQL STATEMENTS
To add a database object:

1 Select the Database Objects and click Add. The Data Source Object Selection dialog appears.

2 Type an object name prefix or pattern in the field provided. The window below automatically populates with all
statements residing on the specified data source that match your criteria. Database objects include functions,
materialized views, packages, package bodies, procedures, stored outlines, triggers, and views.

3 Double-click on the statement you want to add. You can click Add again to repeat the process and add more
objects to the job.

NOTE: Alternatively, after clicking the Database Objects tab, you can drag and drop objects from Data
Source Explorer into the Database Objects window. As long as the dragged object is a valid object
type, it will be added to the Database Objects tab.

To add an SQL file:

1 Select SQL Files and click Workspace or File System, depending on where the file you want to add is stored:

• Workspace files are files that reside in the application, meaning project files or other objects generated or
stored in the system.

• File System files are files that reside on your machine or the network.

2 Select a file from the dialog that appears. It is automatically added to the job.

Run a Tuning Job
As you add SQL statements to the job on the Input tab of the tuner, tuning-supported DML statements (SELECT,
INSERT, DELETE, and UPDATE) are parsed from the statements and added to the Overview tab in preparation for
the tuning function execution.

Each tuning source statement is listed by Name, Schema, Text, Tables and Views. For SQL Server and Sybase
platforms, there is also a Catalog column. Additionally, each statement will have Time and Analysis values that
approximate how efficiently they execute on the specified data source.

In the Generated Cases area of the Overview tab of a tuning job, the Cost and Execution Statistics columns let you
compare the relative efficiency of SQL statements or statement cases. While the explain plan Cost for a statement or
case is calculated when you add SQL to a tuning job, the Elapsed Time and Execution Statistics columns are not
populated until you execute that statement or case.

If the Tuning Status Indicator indicates that a statement or case is ready to execute, you can execute one or more
statements on the Overview tab. Alternatively, the Tuning Status Indicator may show that you have to correct the SQL
or set bind variables before you can execute.

Once the tuning job has run, the Overview tab provides a series of cases, per statement, that you can select and
modify based on your results.

In some cases, automatic case generation might be disabled (via the Preferences panel). If this is true, or if you have
otherwise modified the Generated Cases table and can no longer generate a specific case, you can instead explicitly
generate a case for specific statements.

To execute a tuning job:

1 Ensure you have registered and selected a data source. For more information, see “Register Data Sources” in
the DBOptimizer User Guide and Specify a Data Source.

2 Ensure you are connected to the database by double clicking the database name in the Data Source Explorer.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 97

USING TUNING > TUNING SQL STATEMENTS
3 Click the tuning icon on the toolbar, or click File > New > Tuning Job.

4 On the Input tab, specify the SQL you want to tune:

• On the Ad hoc SQL tab, enter SQL statements of copy/paste SQL statements from another source.

• Click the Database Objects tab and then click and drag database objects, such as Procedures, from the Data
Source Explorer to the Database Object tab.

• Click the Database Objects tab and then click Add to choose database objects matching the filter you
provide.

• Click the SQL Files tab and navigate to the SQL file you want to tune.

5 Navigate to the Overview tab and modify the number of times to execute each statement in the Execute each
generated case field, as needed.

6 Click the execution icon to the right side of the case generation field.

The tuning job runs, exacting and analyzing each statement and providing values in the appropriate columns.

To explicitly generate a case for a specific statement:

1 Ensure you are connected to the database by double clicking the database name in the Data Source Explorer.

2 Navigate to the Overview tab.

3 In the Generated Cases area, right-click in the Name field of a statement or transformation case and select
Generate Cases from the context menu, or click the Overview Run Job icon. The specified case is generated.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 98

USING TUNING > TUNING SQL STATEMENTS
To view the generated cases for a specific source statement

1 In the Tuning Source Statement area, click the checkbox to the left of the tuning source statement name.

A check mark appears in the checkbox and the cases displayed in the Generated Cases area are filtered to
display only those cases related to the selected source statement.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 99

USING TUNING > TUNING SQL STATEMENTS
Analyze Tuning Results
Once you have executed a tuning job, the Overview tab reflects tuning analysis of the specified statements. The
Analysis tab also shows the resulting analysis of the query, including indexes used, not used, and missing (or
suggested to create). For more information on using the Analysis tab, see Understanding the Analysis Tab

• The Generated case Expand/Collapse control lets you hide or display the hint-based cases and
transformation-based case generated for a statement.

• The Enable Execution check boxes let you enable multiple statements or cases for simultaneous execution while
the Run/Cancel Job controls let you start and stop simultaneous execution.

• The Column set Expand/Collapse controls let you expand a column set to display more of the columns within the
table.

Tuning Status Indicator
Enable Execution
Check Box

Column Set
Expand/Collapse
Control

Run/Cancel Job
Controls

Generated Base
Expand/Collapse Control Filter Control

Hint-Based
Cases

Transformation Case
Extracted SQL
Statements

Increase/Decrease
Pane Size Control
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 100

USING TUNING > TUNING SQL STATEMENTS
• The Tuning Status Indicator indicates whether a statement or case is ready to execute or has successfully
executed. The following table provides information on the Tuning Status Indicator states:

Hovering the mouse over the Tuning Status Indicator displays a tip that notes the nature of a warning or error.

NOTE: If a warning indicates that one or more tables do not have statistics, you can right-click the
statement and select Analyze Tables to gather statistics.

A warning can indicate an object caching error. For example, a table may not exist or not be fully qualified.
Cases cannot be generated for the associated statement.

• The explain plan-based Cost field can be expended to display a graphical representation of the values for
statements or cases. Similarly, after executing a statement or case, the Elapsed Time field can be expanded to
display a graphical representation. The bar length and colors used in the representation are intended as an aid in
comparing values, particularly among cases. For example:

In the case of both Cost and Elapsed Time, the values for the original statement are considered the baseline
values. With respect to color-coding for individual case variants, values within a degradation threshold (default
10%) and improvement threshold (default 10%) are represented with a neutral color (default light blue). Values
less than the improvement threshold are represented with a distinctive color (default green). Values greater than
the degradation threshold are shown with their own distinctive color (default red).

With respect to bar length, the baseline value of the original statement spans half the width of the column. For
child-cases of the original statement, if one or more cases show a degradation value, the largest degradation
value spans the width of the column. Bar length for all other children cases is a function of the value for that case
in comparison to the highest degradation value.

NOTE: For information on specifying colors, and the improvement threshold and degradation threshold
values used in these graphical representations, see Set Tuning Job Editor Preferences.

Additionally, once results have been generated you can:

• Compare Cases

• Filter and Delete Cases

• Visual SQL Tuning

• Create an Outline

Icon Description

The case has not been executed. There are no errors or warnings and the case is ready to be executed.

The case has been successfully executed.

Execution for this case failed or was cancelled due to execution time exceeding 1.5 of original case time.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 101

USING TUNING > TUNING SQL STATEMENTS
Compare Cases
You can compare cases between an original statement and one of its tuning-generated statements, or another
statement case via the Compare to Parent and Compare Selected commands, respectively

To compare a case side-by-side with its parent:

RIght-click in the Name field of a case and select Compare to Parent from the context menu.

To compare two cases:

Select the two cases then rIght-click in the Name field of either case and select Compare Selected from the
context menu.

Filter and Delete Cases
You filter cases from the Generated Cases table via the Filter icons on the Generated Cases Toolbar of the
Overview tab.

Filter the cases on the Overview tab so that hints that are not improvements on the original statement are not
displayed. You can filter:

• Non-optimizable statements

• Optimized statements

• Worst cost cases
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 102

USING TUNING > TUNING SQL STATEMENTS
• Worst elapsed time cases

When filtering, the criteria remain in effect until you change the criteria. That is, as new cases are generated, only
those cases that do not satisfy the filtering criteria are displayed. To restore an unfiltered set of cases, open the Filter
dialog and deselect the filtering options.

When removing cases, the criteria you set has no effect on cases subsequently generated.

To filter cases from the Overview table:

1 Click the Filter button, respectively. A Filters dialog opens.

2 Use the check boxes to select your filtering and then click OK.

To delete cases from the Overview table:

1 Right-click on the row of the case you want to delete and select Delete. A Delete dialog opens.

2 Use the check boxes to select your filtering and then click OK.

When removing cases, the criteria you set has no effect on cases subsequently generated.

Create an Outline
If SQL is executed by an external application or If you cannot directly modify the SQL being executed but would like to
improve the execution performance, you can create an outline on the Oracle platform. An outline instructs the Oracle
database on the execution path that should be taken for a particular statement.

To create an outline for a change suggested by a case:

1 On the Overview tab of a tuning job, rIght-click in the Name field of a case and select Create Outline from the
context menu.

A New Outline wizard opens.

2 On the first panel, provide an Outline name, select an Outline category, and then click Next.

A Preview Outline panel opens previewing the SQL code to create the outline.

3 Select an Action to take option of Execute or Open in new SQL editor and then click Finish.

For more information, see Using the Outlines Tab.

Modify Tuning Results
As you add SQL source to the Input tab of a tuning job, the supported DML statements are automatically parsed out
and a numbered statement record for each statement is added to the Overview tab.

Cases generated from tuning candidates are alternative forms of the original statement that have been optimized or
otherwise “fixed” by the tuning function. Once you have executed a tuning job, tuning automatically generates all SQL
optimizer hint-based variations that can be applied to the statement:

• All SQL Optimizer hint-based variations that can be applied to a statement.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 103

USING TUNING > TUNING SQL STATEMENTS
• A transformation-based case, if any of the eight common quick fixes can be applied to an SQL statement. This
feature leverages the DB Optimizer Code Quality Check fuctionality. See Understanding Code Quality Checks for
more information on the eight quick fixes. A transformation case, in turn, has its own set of SQL Optimizer hint
cases.

Hint-based cases and the transformation-based case are a special case of the statement records added to the
Overview tab as you add candidates to a tuning job. With the exception of the Text, Source, and Index Analysis fields,
cases are identical to the standard statement record. Similarly, execution, statistics collection, and other options
available for basic statement records are available for individual cases.

Once cases have been generated, if you have the required permissions on the specified data source, you can apply
the changes suggested by hint and transformation based cases in the Overview table.

To apply a change:

1 Right-click on the Name field of the case that you want to use to modify the original statement and select Apply
Change.

The Apply Change dialog appears.

2 Choose Execute to apply the change to the statement automatically.

TIP: Alternatively, select Open in New SQL Editor to open the modified statement in SQL Editor for
manual changes or to save it to a file.

Transformation-based case

Hint-based cases
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 104

USING TUNING > TUNING SQL STATEMENTS
Using the Analysis Tab
The Analysis tab provides detailed information about statements and cases selected from the Overview tab, after a
tuning job has been executed.

The Analysis tab contains information about the statement or case, its full SQL code, a diagram of the SQL
statement, and Index Analysis.

Additionally, for the Oracle platform there are Table Statistics, Column Statistics and Histograms, and Outlines tabs.
For more information, see Using Oracle-Specific Features.

Statement analysis is performed when you click Perform detail analysis on the Overview tab and then click Run
Job or when you click the Analysis tab. In order to view and analyze statement statistics, select the tab (Index
Analysis, Table Statistics, Column Statistics and Histograms, or Outline) and the statements whose statistics you want
to analyze.

For more information, see Visual SQL Tuning.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 105

USING TUNING > TUNING SQL STATEMENTS
Visual SQL Tuning
DB Optimizer can now parse an SQL query and analyze the indexes and constraints on the tables in the query and
display the query in graphical format on The Visual SQL Tuning (VST) diagram, which can be displayed in either
Summary Mode or Detail Mode, helps developers, designers and DBAs see flaws in the schema design such as
Cartesians joins, implied Cartesians joins and many-to-many relationships. The VST diagram also helps the user to
more quickly understand the components of an SQL query, thus accelerating trouble-shooting and analysis.

This section is comprised of the following topics:

• Changing Diagram Detail Display

• Interpreting the VST Diagram Graphics

• Implementing Index Analysis Recommendations

Changing Diagram Detail Display
This section is comprised of the following topics:

• Viewing the VST Diagram in Summary Mode

• Viewing the VST Diagram in Detail Mode

• Changing Detail Level for a Specific Table

• Viewing All Table Fields

• Viewing Diagram Object SQL

• Expanding Views in the VST Diagram

Viewing the VST Diagram in Summary Mode
By default the diagram displays Summary Mode, showing only table names and joins, as seen in the following
illustration.

Viewing the VST Diagram in Detail Mode
By default, the VST diagram displays in Summary Mode, but by clicking the Detail Mode/Summary Mode switch.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 106

USING TUNING > TUNING SQL STATEMENTS
.

additional details of the tables display, including table columns and indexes.

Changing Detail Level for a Specific Table
You can also switch between Summary Mode and Detail Mode for a specific table or view, by double-clicking the
object name.

Detail Mode/ Summary Mode
Switch
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 107

USING TUNING > TUNING SQL STATEMENTS
Viewing All Table Fields
By default, only fields that are used in the WHERE clause are displayed in detail mode; however, all fields in the table
can be seen in a pop-up window when, while in Summary Mode, you hover the mouse over the table. The illustration
below shows an example of a pop-up window that appears when hovering the mouse over a table.

However, if you right-click the table you can choose to display even unused columns as follows:
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 108

USING TUNING > TUNING SQL STATEMENTS
All the columns in the table are shown, and not just the ones used in the WHERE clause of the SQL statement.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 109

USING TUNING > TUNING SQL STATEMENTS
Viewing Diagram Object SQL
While in Detail Mode, hovering the mouse over the table name, field, or index displays the SQL required to create that
object.

Hovering over the join between two tables displays the relationship between the two tables.

Expanding Views in the VST Diagram
If there are views in the Visual SQL Tuning diagram, they can be expanded by right clicking the view name and
choosing Expand View:
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 110

USING TUNING > TUNING SQL STATEMENTS
For example, the following is the default layout from query join table CLIENT (c) to view TRANSACTIONS (t):

Right click on the view, TRANSACTION (t) and choose Expand View

Now we can see the objects in the view:
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 111

USING TUNING > TUNING SQL STATEMENTS
We can further expand the sub-view within the original view:

The following is an example of view expansion along with the Explain Plan to the left.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 112

USING TUNING > TUNING SQL STATEMENTS
Notice in the view expansion a list of all the indexes on all the underlying tables in the views and sub views and which
of those indexes is used in the default execution plan.

Interpreting the VST Diagram Graphics
This section will help you understand the following graphic usages:

• Icons

• Colors

• Connecting Lines/Joins
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 113

USING TUNING > TUNING SQL STATEMENTS
Icons
The following describes the icons used in tables displayed in Detail Mode.

Colors
The color of the index entries in the Collect and Create Indexes table is interpreted as follows:

Connecting Lines/Joins
Joins are represented with connecting lines between nodes. You can move tables in the diagram by clicking and
dragging them to the desired location. The position of the connecting lines is automatically adjusted. The following
describes when a particular type of connecting line is used and the default positioning of the line.

One-to-One Join
If two tables are joined on their primary key, such as:

SELECT COUNT (*)
 FROM
 investment_type it,
 office_location ol
 WHERE investment_type_id = office_location_id;

Table Icon Description

Table Name

Field

Field with a filter, used in the WHERE clause

Index

Primary Key

Text Color Interpretation

Index is used in the query.

Index is usable but not used by the current execution path.

This index is missing. DB Optimizer recommends that you create this index.

This index exists on the table but not usable in this query as it is written.

Connecting Lines When used

One-to-One Join relationships are graphed horizontally using blue lines.

One-to-Many Join relationships are graphed with the many table above the one table.

Cartesian Join shows the table highlighted in red with no connectors to indicate that it is joined in
via a Cartesian join.

Many-to-Many Join relationships are connected by a red line and the relative location is not
restricted.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 114

USING TUNING > TUNING SQL STATEMENTS
Then graphically, these would be laid out side-by-side, with a one-to-one connector:

One-to-Many Join
This is the default positioning of a one-to-many relationship, where INVESTMENT_TYPE is the master table and
INVESTMENT is the details table.

The following is an example of a query that consists of only many-to-one joins, which is more typical:

SELECT
ct.action,
c.client_id,
i.investment_unit,
it.investment_type_name

FROM
client_transaction ct,
client c,
investment_type it,
investment i

WHERE
ct.client_id = c.client_id AND
ct.investment_id = i.investment_id AND
i.investment_type_id = it.investment_type_id and
client_transaction_id=1
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 115

USING TUNING > TUNING SQL STATEMENTS
Cartesian Join
A Cartesian join is described in the following example where the query is missing join criteria on the table
INVESTMENT:

SELECT
A.BROKER_ID BROKER_ID,
A.BROKER_LAST_NAME BROKER_LAST_NAME,
A.BROKER_FIRST_NAME BROKER_FIRST_NAME,
A.YEARS_WITH_FIRM YEARS_WITH_FIRM,
C.OFFICE_NAME OFFICE_NAME,
SUM (B.BROKER_COMMISSION) TOTAL_COMMISSIONS

FROM
BROKER A,
CLIENT_TRANSACTION B,
OFFICE_LOCATION C,
INVESTMENT I

WHERE
A.BROKER_ID = B.BROKER_ID AND
A.OFFICE_LOCATION_ID = C.OFFICE_LOCATION_ID

GROUP BY
A.BROKER_ID,
A.BROKER_LAST_NAME,
A.BROKER_FIRST_NAME,
A.YEARS_WITH_FIRM,
C.OFFICE_NAME;

Graphically, this looks like:

INVESTMENT is highlighted in red with no connectors to indicate that it is joined in via a Cartesian join.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 116

USING TUNING > TUNING SQL STATEMENTS
Possible missing join conditions are displayed in the Overview tab under Generated Cases in the transformations
area. DB Optimize recommends that you create these joins.

NOTE: Transformations are highlighted in yellow.

Implied Cartesian Join
If there are different details for a master without other criteria then a Cartesian-type join is created:

SELECT *
FROM

investment i,
broker b,

 client c
WHERE

b.manager_id=c.client_id and
i.investment_type_id=c.client_id;

The result set of BROKER to CLIENT will be multiplied by the result set of INVESTMENT to CLIENT.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 117

USING TUNING > TUNING SQL STATEMENTS

ate
ex
Many-to-Many Join
If there is no unique index at either end of a join then it can be assumed that in some or all cases the join is
many-to-many; there are no constraints preventing a many-to-many join. For example, examine the following query:

SELECT *
 FROM

client_transaction ct,
client c

 WHERE
ct.transaction_status=c.client_marital_status;

There is no unique index on either of the fields being joined so the optimizer assumes this is a many-to-many join and
the relationship is displayed graphically as:

If one of the fields is unique, then the index should be declared as such to help the optimizer.

Implementing Index Analysis Recommendations
Once you have added tuning candidates to a tuning job, DB Optimizer can analyze the effectiveness of the indexes in
the database and recommend the creation of new indexes where the new indexes can increase performance.

In the Collect and create indexes table, any indexes DB Optimizer recommends you create are marked in orange.

To accept the suggestion and have tuning automatically generate an index:

1 For any recommended index, click the checkbox to the left of the index.

Optionally, modify the Index type by clicking in the Index Type column and then selecting a type from the list.

2 Click the Create Indexes button.

The Index Analysis dialog appears.

Cre
 Ind
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 118

USING TUNING > TUNING SQL STATEMENTS
3 To view the index SQL in an editor for later implementation, click the statement and then click Open in a SQL
editor.

4 To run the index SQL and create the index on the selected database, click Execute.

Using Oracle-Specific Features
This section describes the tuning features available for the Oracle platform. These features are not available for other
database platforms.

• Using the Table Statistics Tab

• Using the Column Statistics And Histograms Tab

• Using the Outlines Tab

• Tuning SQL Statements in the System Global Area (SGA)

Using the Table Statistics Tab
The Table Statistics area of the Analysis tab indicates when and if table statistics were last taken. Using the Table
Statistics you can view the information the optimizer uses to choose a path and assess the validity of the various hints
presented on the Overview tab.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 119

USING TUNING > TUNING SQL STATEMENTS
This table draws attention to:

• Missing statistics: Missing statistics can cause the optimizer to choose the wrong path because the optimizer
uses table statistics to make decisions. If the statistics are missing, you can click the select a table and then click

Collect Statistics on the far right of the tab. This sends a request to the database to analyze the table and

calculate the statistics.

• Out-of-date statistics: Like missing statistics, out-of-date statistics can also cause the optimizer to choose the

wrong path. You can update the statistics by selecting a table, and then clicking Display Statistics , which

refreshes the statistics from the database or by clicking Collect Statistics , which requests the database to

analyze the table and calculate the statistics.

NOTE: Collecting Statistics may be time-consuming, depending on how many tables the database is
analyzing and the number of rows in each table.

• Useful statistics: The number of rows in a table and whether the table has been modified since the statistics
were last collected can help you to determine which hints you should implement in the SQL code. These statistics
can help the DB Administrator to better understand the database.

TIP: You can right-click anywhere in a row and choose options such as Collect Statistics, Display
Statistics, and Copy from the short-cut menu.

Using the Column Statistics And Histograms Tab
Histograms are special statistics that exist for a limited number of columns and are created by the database
administrator. Column histograms should be created only when there are highly-skewed values in a column, such as
is the case of an order details table with an Order Status column where the number of closed orders for a business
operating for several years is far greater than the number of open orders. The Order Status column therefore meets
the criteria of a useful target for a histogram because the data is highly skewed. Using histograms the optimizer
determines that a full-scan is recommended when searching for closed orders, but an index scan is more useful when
searching for open orders.

DBOptimizer looks at the columns that have histograms and using statistics tries to determine whether the column is a
good or bad candidate for a histogram and presents this information on the Column Statistics And Histograms tab.

The row shading indicates the following:

• Green: Good histogram candidate

• Red: Bad histogram candidate

• No shading: Not determined to be a good or bad histogram candidate
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 120

USING TUNING > TUNING SQL STATEMENTS
Median Value Deviation

For columns that have histograms, the median value deviation is presented. Understanding the median value
deviation can help you determine whether an index scan or a full-table scan would be more efficient.

The median value deviation represents the number of values that have duplicates away from the median. In the case
or the Order Status column, there are only three possible values, open, processing, and closed. Consider the
following:

10 open orders

100, 000 closed orders

1 order in processing

In this case the median is the middle value, 10. The number of closed orders is 10,000 times the median which
indicates that the column data is highly skewed. In this case the value in the Median Value Deviation column would be
presented as

1, 0, 0, 0, 1, 0, 0, 0

There are 1's at the first and 5th spot in the median value deviation field indicating one column value (value of orders
in the processing state which appears once) is 1 factor of 10 away from the median and there is a 1 at the 5th position
indicating there is a column value (orders in the closed state) that appears 5 factors of 10 more often (10,000) than the
median value of 10.

A column with a median value deviation of 0, 0, 0, 0, 0, 0, 0, 0 indicates that the column data is not skewed and it is a
bad candidate for a histogram, and therefore a full scan of the table would more efficiently satisfy a query than an
index scan.

To update the statistics of any object, you can select Gather for that column and then click Display Statistics or
Collect Statistics.

To stop gathering statistics for an object, such as a bad candidate for a histogram, select Drop for that column and
then click Display Statistics or Collect Statistics.

TIP: If you are gathering statistics for a column for which the statistics were missing or out-of-date, then
once the statistics collection is complete, you should return to the Overview tab and rerun the
cases, because the characteristics of the column may have changed, so the hints to improve
performance would also change.

Using the Outlines Tab
The Outlines tab provides detailed information about outlines created by the query during the statement execution
process on the Overview tab.

It provides information including the SQL statement name, if the outline is enabled or not, and the Name, Category,
and Hints associated with the outline. Additionally, the Drop parameter specifies if it is dropped or not at execution
time.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 121

USING TUNING > TUNING SQL STATEMENTS
In order to view outlines, the session needs to have USE_STORED_OUTLINES set prior to execution. Outlines in
tuning are created for the DEFAULT category, by default. Use the following commands to enable outlines with the
default settings:

alter system set USE_STORED_OUTILNES=true;
alter system set USE_STORED_OUTLINES=‘DEFAULT’;
alter session set USE_STORED_OUTLINES=true;

Additionally, in order for a session to USE_STORED_OUTLINES, the user requires the create any outline role. Use
the following command to set up the proper permissions:

grant create any outline to [user];

Tuning SQL Statements in the System Global Area (SGA)
On Oracle platforms, SQL statements that reside in the SGA can also be tuned. When you create a tuning job and
specify an Oracle source, an additional tab appears in the Tuning Candidates section of tuning, named Active SQL
in SGA.

The SGA contains all the SQL since the database has been started up, except for those that have been purged when
the system runs out of memory. When analyzing the causes of a database bottleneck, it is perhaps more useful to
view and tune the SQL statements most recently run, than those that have run in the last month, for example.
DBOptimizer cannot tell you which statements have most recently run by looking in the SGA. However, by profiling the
database using DBOptimizer Profiling and then optimizing the code by executing and running the generated cases,
you will be able to see which paths are most likely causing a bottleneck and can be altered to enhance performance.
Also, you can use Embarcadero Performance Center to continually monitor a database over a longer period of time to
help you analyze and optimize database performance.

To add a statement active in the SGA:

1 Select the Active SQL in SGA tab and then click Scan. The Scan SGA wizard appears.

2 Set the filtering criteria for an SGA scan and then run the wizard. It returns all active statements on the Oracle
source.

3 Choose the specific statements and add them to the tuning job.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 122

USING TUNING > TUNING SQL STATEMENTS
Additional Tuning Commands
In addition to tuning, the interface provides additional commands and functionality that enables you to view source
code, statements, and other information regarding the data source.

• View the Source Code of Tuning Candidates

• View Statement or Case Code in SQL Viewer

• Open an Explain Plan for a Statement or Case

• Executing a Session from the Command Line

View the Source Code of Tuning Candidates
You can view the source code of a tuning candidate as follows:

• On the Ad hoc SQL tab of the Input tab, you can see the SQL statements you typed or pasted into that tab.

• On the Database objects, SQL Files, and Active SQL in SGA tabs of the Input tab, you can double-click the
name of any object added to that tab and an SQL session will open that displays the SQL of that database
Object. The SQL editor in use is actually Rapid SQL, an Embarcadero product that is integrated with DB
Optimizer.

View Statement or Case Code in SQL Viewer
The Tuning job’s Overview tab let you open a statement in an SQL Viewer if you want to perform either of the
following tasks:

• View the entire SQL statement.

• Set bind variables. If the Tuning Status Indicator indicates a statement or case has invalid bind variables, you
must set those variables before executing the statement or case.

To view or set bind variables in a statement or case:

1 Click in the Text field of a statement or case.

an SQL Viewer opens on the statement or case. A set of controls for working with the statement or case bind
variables appears at the bottom of the window.

2 Use the Data Type and Value (or NULL) controls to specify the type and value for each bind variable.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 123

USING TUNING > TUNING SQL STATEMENTS
3 Close the window by clicking the collapse control in the Text field of the statement record, above the SQL Viewer.

After setting bind variables, you can execute a case.

NOTE: Setting the bind variables in a parent statement sets the bind variables in all generated cases for
that statement.

Open an Explain Plan for a Statement or Case
Any valid SQL statement added to the Overview tab shows a calculated explain plan cost in the Cost field of the
statement or case record. You can open an explain plan on these statements to view the sequence of operations used
to execute the statement and the costs and other explain plan details for each operation.

To initially open an explain plan on a valid SQL statement on the Overview tab:

1 Right-click in the Name field of any statement record showing a value in the Cost field.

2 Select Explain Plan from the context menu.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 124

USING TUNING > CONFIGURING TUNING
An Explain Plan tab opens below the Overview tab.

Explain plan operations are shown in a typical tree structure showing parent-child relationships. The following table
describes the column groups shown for each operation on the Explain Plan tab:

With the Explain Plan tab open, you can quickly switch the view to an explain plan for another SQL statement.

To change the Explain Plan tab display to another SQL statement:

1 Click in the Name field of another statement record showing a value in the Cost field.

Executing a Session from the Command Line
You can launch a tuning job from the command line using the following syntax:

dboptimizer.exe tune ds:ROM*L*ABORCL10G_1 sqlfile: C:\dboptimizer\workspace\test.sql

In the above command, the user has specified ROM*L*ABORCL10G_1 as the data source, and indicates a tuning
session using the test.sql script.

Configuring Tuning
This section contains information on configuring tuning. It provides information on setting up your data sources to work
with tuning functionality, as well as information regarding preferences within the application for the customization of
various features and functionality.

This section is comprised of the following topics:

• Set Roles and Permissions on Data Sources

Column (group) Description

Plan Cost Includes the Name of the operation and the calculated explain plan cost.

Additional Information The default, collapsed view shows the Cardinality, Bytes, CPU Cost, IO Cost, and
Optimizer values. Expanded, the view also displays Access Predicates, Filter Predicates,
QB Lock Name, Distribution, Object Alias, Object Instance, Object Node, Partition ID,
Partition Start, Partition Stop, Position, Projection, Remarks, Search Columns, Temp
Space, Time, Other, and Other Tag values.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 125

USING TUNING > CONFIGURING TUNING
• Index Required Object Definitions

• Set Tuning Job Editor Preferences

• Set Generated Case Preferences

Set Roles and Permissions on Data Sources
In order to take advantage of all tuning features, each user must have a specific set of permissions. The code below
creates a role with all required permissions. To create the required role, execute the SQL against the target data
source, modified according to the specific needs of your site:

/* Create the role */
CREATE ROLE SQLTUNING NOT IDENTIFIED
/
GRANT SQLTUNING TO "CONNECT"
/
GRANT SQLTUNING TO SELECT_CATALOG_ROLE
/
GRANT ANALYZE ANY TO SQLTUNING
/
GRANT CREATE ANY OUTLINE TO SQLTUNING
/
GRANT CREATE ANY PROCEDURE TO SQLTUNING
/
GRANT CREATE ANY TABLE TO SQLTUNING
/
GRANT CREATE ANY TRIGGER TO SQLTUNING
/
GRANT CREATE ANY VIEW TO SQLTUNING
/
GRANT CREATE PROCEDURE TO SQLTUNING
/
GRANT CREATE SESSION TO SQLTUNING
/
GRANT CREATE TRIGGER TO SQLTUNING
/
GRANT CREATE VIEW TO SQLTUNING
/
GRANT DROP ANY OUTLINE TO SQLTUNING
/
GRANT DROP ANY PROCEDURE TO SQLTUNING
/
GRANT DROP ANY TRIGGER TO SQLTUNING
/
GRANT DROP ANY VIEW TO SQLTUNING
/
GRANT SELECT ON SYS.V_$SESSION TO SQLTUNING
/
GRANT SELECT ON SYS.V_$SESSTAT TO SQLTUNING
/
GRANT SELECT ON SYS.V_$SQL TO SQLTUNING
/
GRANT SELECT ON SYS.V_$STATNAME TO SQLTUNING
/

EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 126

USING TUNING > CONFIGURING TUNING
Once complete, you can assign the role to users who will be running tuning jobs:

/* Create a sample user*/
CREATE USER TUNINGUSER IDENTIFIED BY VALUES '05FFD26E95CF4A4B'
 DEFAULT TABLESPACE USERS
 TEMPORARY TABLESPACE TEMP
 QUOTA UNLIMITED ON USERS
 PROFILE DEFAULT
 ACCOUNT UNLOCK
/
GRANT SQLTUNING TO TUNINGUSER
/
ALTER USER TUNINGUSER DEFAULT ROLE SQLTUNING
/

Index Required Object Definitions
When connecting to a data source, the application caches a subset of the object definitions on the data source.
Tuning feature preferences allow you to modify the types of objects for which definitions are cached. To properly
process transformations, a specific set of database object definitions must be cached.

When not running tuning jobs and taking advantage of other tuning functionality, SQL editing for example, you might
disable caching of some object definitions. You may have done this to speed up data source caching for example, or
because some object definitions were not necessary to the task at hand. If you are going to run tuning jobs however,
you must ensure that tuning is indexing required objects when connecting to a data source.

To ensure tuning automatically caches required object definitions when connecting to a data source:

1 On the Window menu, choose Preferences.

A Preferences dialog opens.

2 In the left-hand pane expand the SQL Development item and then click Cache Configuration.

3 Select the check boxes associated with the following list of minimally-required object definitions:

• Foreign keys

• Functions

• Indexes

• Materialized view

• Primary keys

• Procedures

• Stored outline

• Tables

• Unique keys

• Views

4 Click OK.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 127

USING TUNING > CONFIGURING TUNING
Set Tuning Job Editor Preferences
Tuning job editor preferences let you control certain aspects of the appearance of items in the tuning job editor as well
as default behaviors.

Select Window > Preferences > SQL Development > Tuning Job Editor

Option Description

Connect to the tuning source
automatically

When you open a tuning perspective, it automatically opens the last saved tuning jobs
that were open when you closed the application. This option lets you specify whether, in
addition, you want to automatically connect to the data sources associated with these
tuning jobs. If you typically review existing tuning job archives rather than run new tuning
jobs, you may wish to explicitly connect to a data source rather than connect
automatically. The options are:

Always - automatically connects to data sources associated with tuning jobs that were
open last time you shut down tuning.

Never - automatically opens tuning job archives that were open last time you shut down
the application but does not automatically connect to the associated data sources.

Prompt - prompts you to connect to data sources associated with tuning jobs that were
open last time you shut down the application.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 128

USING TUNING > CONFIGURING TUNING
Set Generated Case Preferences
Additionally, the Generated Case preference page lets you enable or disable the automatic generation of SQL
Optimizer hint-based cases of SQL statements added to a tuning job. It also lets you indicate which specific hint types
are generated when the feature is enabled.

Select Window > Preferences > SQL Development > Tuning Job Editor > Case Generation

Color scheme for plan cost In the graphical representations of explain plan cost and elapsed time, tuning uses a color
scheme to highlight differences among generated cases. Values for the original
statement are treated as a baseline, and values for individual cases that are within a
specified threshold range of the baseline value are represented with a Baseline color.
For cases whose values are outside the threshold range, Improvement and
Degradation colors are used to represent values in those cases.

Tip: You can set the threshold in the application preferences, by selecting Window >
Preferences > Tuning Job Editor and then changing the threshold levels as required.

Case execution Lets you dictate how execution statistics are gathered.

Table analysis Lets you specify an estimation sample percentage to be used with the Analyze Tables
function.

Option Description
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 129

USING TUNING > DBMS HINTS
Use the Generate cases automatically after extracting tuning candidates control to enable or disable automatic
generation of hint-based cases, and then select the check boxes to specify the hint-based cases that are generated
for a statement added to a tuning job.

About Statement Records

DBMS Hints
Users can provide hints to a specified platform in order to instruct data source optimizer on the best way to execute
SQL statements. Tuning automatically generates cases using these hints.

Column or column set Description

SQL Statements and Cases Identifiers for the generated statement or case:

Name - Statements are assigned a numbered identifier based on the order in which
they were added to a tuning job.

Text - An excerpt of the statement or case based on the statement type (SELECT,
INSERT, DELETE, and UPDATE). For details on how to view the entire statement or
case.

Cost An explain plan-based cost estimate. This field is populated as soon as the
statement is added to the Overview tab.

This column set can be expanded to display a graphical representation of the cost to
facilitate comparisons among cases.

Index Analysis Tuning automatically detects indexes that require optimization and offers you the
option to automatically optimize the index. For more information, see Implementing
Index Analysis Recommendations.

Elapsed time The execution time during the most recent execution. This column set is not
populated until you execute the statement or case.

This column set can be expanded to display a graphical representation of the
elapsed time to facilitate comparisons among cases.

Other Execution Statistics The default, collapsed view has Physical Reads and Logical Reads columns.
Expanded, there are also Consistent Gets, Block Gets, Rows Returned, CPU
time(s), Parse CPU Time(s), Row Sorts, Memory Sorts, Disk Sorts, and Open
Cursors columns. For details on these statistics, refer to your DBMS
documentation.

This column set is not populated until you execute the statement or case.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 130

USING TUNING > DBMS HINTS
Hints can be enabled or disabled when cases are being generated by tuning on the Window > Preferences > Tuning
Job Editor > Case Generation panel. Choose a tab as it pertains to the platform you want to modify and use the
check boxes to select and de-select the hints you want to enable or disable, respectively.

The following platform hints are packaged in tuning to provide optimal efficiency when executing jobs:

Oracle Hints

SQL Server Hints

DB2 Hints

Sybase Hints

Oracle Hints
The following table highlights Oracle hints based on Oracle hints optimization:

Category Hint Available For Notes

ACC PATH AND_EQUAL /*+ CLUSTER (tablespec) */ -

ACC PATH CLUSTER /*+ FULL (tablespec) */ Use on Clustered Tables only
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 131

USING TUNING > DBMS HINTS
ACC PATH FULL /*+ HASH (tablespec) */ Forces a table scan even if there
are indexes.

ACC PATH HASH /*+ INDEX (tablespec [TAL:
indexspec]) */

Only to tables stored in a table
cluster.

ACC PATH INDEX /*+ INDEX_ASC (tablespec [TAL:
indexspec]) */

If no indexspec is supplied, the
optimizer will try to scan with
each avail index.

ACC PATH INDEX_ASC /*+ INDEX_COMBINE (tablespec
[indexspec [TAL: indexspec]...])
*/

Essentially the same as INDEX.

ACC PATH INDEX_COMBINE /*+ INDEX_DESC (tablespec [
indexspec [TAL: indexspec]...]) */

Forces the optimizer to try
multiple boolean combinations of
indexes.

ACC PATH INDEX_DESC /*+ INDEX_DESC (tablespec [
indexspec [TAL: indexspec]...]) */

Essentially the same as INDEX.

ACC PATH INDEX_FFS /*+ INDEX_FFS (tablespec [
indexspec [TAL: indexspec]...]) */

Forces an index scan using
specified index(es).

ACC PATH INDEX_JOIN /*+ INDEX_JOIN (tablespec [
indexspec [TAL: indexspec]...]) */

Indexes used should be based on
columns in the where clause.

ACC PATH INDEX_SS /*+ INDEX_SS (tablespec [
indexspec [TAL: indexspec]...]) */

Useful with composite indexes
where the first column is not used
in the query, but others are.

ACC PATH INDEX_SS_ASC /*+ INDEX_SS_ASC (tablespec [
indexspec [TAL: indexspec]...]) */

Essentially the same as
INDEX_SS.

ACC PATH INDEX_SS_DESC /*+ INDEX_SS_DESC (tablespec
[indexspec [TAL: indexspec]...])
*/

Essentially the same as
INDEX_SS.

ACC PATH NO_INDEX /*+ NO_INDEX (tablespec [
indexspec [TAL: indexspec]...]) */

Directs the Optimizer not to use
specified index(es).

ACC PATH NO_INDEX_FFS /*+ NO_INDEX_FFS ([tablespec [
indexspec [TAL: indexspec]...]) */

Directs the Optmizer to exclude a
fast full scan of the specified
index(es).

ACC PATH NO_INDEX_SS /*+ NO_INDEX_SS (tablespec [
indexspec [TAL: indexspec]...]) */

Directs the Optmizer to exclude a
skip scan of the specified
index(es).

ACC PATH ROWID - -

JOIN OP HASH_AJ - -

JOIN OP HASH_SJ - -

JOIN OP MERGE_AJ - -

JOIN OP MERGE_SJ - -

JOIN OP NL_AJ - -

JOIN OP NL_SJ - -

JOIN OP NO_USE_HASH /*+ NO_USE_HASH (tablespec
[TAL: tablespec]...) */

Negates the use of hash joins for
the table specified.

JOIN OP NO_USE_MERGE /*+ NO_USE_MERGE (tablespec
[TAL: tablespec]...) */

Negates the use of sort-merge
joins for the table specified.

Category Hint Available For Notes
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 132

USING TUNING > DBMS HINTS
JOIN OP NO_USE_NL /*+ NO_USE_NL (tablespec [TAL:
tablespec]...) */

Negates the use of nested-loop
joins for the table specified.

JOIN OP USE_HASH /*+ USE_HASH (tablespec [TAL:
tablespec]...) */

Directive to join each table
specified using a hash join.

JOIN OP USE_MERGE /*+ NO_USE_MERGE (tablespec
[TAL: tablespec]...) */

Directive to join each table
specified using a sort--merge
join.

JOIN OP USE_NL /*+ NO_USE_NL (tablespec [TAL:
tablespec]...) */

Directive to use a nested-loop
join with the specified tables as
the inner table.

JOIN OP USE_NL_WITH_INDEX /*+ USE_NL_WITH_INDEX (
tablespec [indexspec [TAL:
indexspec]...]) */

Directive to use a nested-loop
join with the specified table as the
inner table using the index
specified to satisfy at least one
predicate.

JOIN
ORDER

LEADING /*+ LEADING (tablespec) */ Directive to join the tables in the
order specified.

JOIN
ORDER

ORDERED /*+ ORDERED */ Directive to join tables in the
order found in the FROM clause.

JOIN
ORDER

STAR - -

OPT
APPROAC
H

ALL_ROWS /*+ ALL_ROWS */ Indicates the goal is overall
throughput.

OPT
APPROAC
H

CHOOSE - -

OPT
APPROAC
H

FIRST_ROWS /*+ FIRST_ROWS (integer) */ The goal is to retrieve the first
row(s) as fast as possible.

OPT
APPROAC
H

RULE /*+ RULE */ Used to disable the COST based
optimizer.

OTHER CACHE /*+ CACHE (tablespec) */ Should be used with the FULL
hint. Places data in the
most-recently used area of the
buffer cache.

OTHER APPEND /*+ APPEND */ Directs the optimizer to INSERT
data at the end of the existing
table data using direct path I/O.

OTHER CURSOR_SHARING_EXACT /*+ CURSOR_SHARING_EXACT
*/

Directs the Optimizer to ignore
previously parsed SQL that
matches, but uses bind variables.
Forces the SQL to be parsed
unless an exact match is found.

Category Hint Available For Notes
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 133

USING TUNING > DBMS HINTS
OTHER DRIVING_SITE /*+ DRIVING_SITE (tablespec) */ Used when data is joined
remotely via DBLink. Normally
data at the remote site is returned
to the local and joined. This hint
directs the optimizer to send the
local data to the remote site for
resolution of the join.

OTHER DYNAMIC_SAMPLING /*+ DYNAMIC_SAMPLING ([TAL:
tablespec] integer) */

Only used in simple SELECT
statements with a single table to
approximate cardinality if there
are no existing statistics on the
table.

OTHER MODEL_MIN_ANALYSIS /*+ MODEL_MIN_ANALYSIS */ Used with spreadsheet and
model analysis to minimize
compile time.

OTHER NO_PUSH_PRED /*+ NO_PUSH_PRED [TAL: (
tablespec)] */

Opposite of PUSH_PRED, it
directs the Optimizer not to try to
push the predicate into the view.

OTHER NO_PUSH_SUBQ /*+ NO_PUSH_SUBQ] */ Opposite of PUSH_SUBQ, it
directs the Optimizer not to try
and evaluate the subquery first.

OTHER NO_UNNEST /*+ NO_UNNEST */ Subqueries in the WHERE clause
are considered nested. A
subquery can be evaluated
several times for multiple results
in the “parent”. Unnesting
evaluates the subquery once and
merges the results with the body
of the “parent”. This hint directs
the Optimizer NOT to unnest.

OTHER NOAPPEND /*+ NOAPPEND */ Directs the Optimizer to utilize
existing space in a table and
negates parallel processing.

OTHER NOCACHE /*+ NOCACHE (tablespec) */ Should be used with the FULL
hint. Places data in the
least-recently used area of the
buffer cache.

OTHER OPT_PARAM - -

OTHER ORDERED_PREDICATES - -

OTHER PUSH_PRED /*+ PUSH_PRED [TAL: (tablespec
)] */

Used when one of the tables in a
join is an in-line view. Forces the
predicate used to join the table
and the view into the view.

OTHER PUSH_SUBQ /*+ PUSH_SUBQ * Used with an EXISTS or IN
subselect to force evaluation of
the subquery rather than the
default behavior of the last.

Category Hint Available For Notes
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 134

USING TUNING > DBMS HINTS
OTHER UNNEST /*+ UNNEST */ Subqueries in the where clause
are considered nested. A
subquery could be evaluated
several times for multiple results
in the “parent”. Unnesting
evaluates the subquery once and
merges results with the body of
the “parent”.

PARALLEL NO_PARALLEL /*+ NO_PARALLEL (tablespec) */ Directs the Optimizer not to
parallel the specified table.

PARALLEL NO_PARALLEL_INDEX /*+ NO_PARALLEL_INDEX (
tablespec [indexspec [TAL:
indexspec]...]) */

Directs the Optimizer not to
parallel the specified index(es).

PARALLEL NO_PX_JOIN_FILTER /*+ NO_PX_JOIN_FILTER
(tablespec) */

Directs the Optimizer not to try
and join bitmap indexes in
parallel.

PARALLEL NOPARALLEL /*+ NOPARALLEL (tablespec) */ Directs the Optimizer not to
parallel the specified table.

PARALLEL NOPAARALLEL_INDEX /*+ NOPARALLEL_INDEX (
tablespec [indexspec [TAL:
indexspec]...]) */

Directs the Optimizer not to
parallel the specified index(es).

PARALLEL PARALLEL /*+ PARALLEL (tablespec [
integer | TAL:DEFAULT]) */

Number specifies degrees of
parallelism (how many
processes).

PARALLEL PARALLEL_INDEX /*+ PARALLEL_INDEX (tablespec
[indexspec [TAL: indexspec]...]
integer | DEFAULT) */

Number specifies degree of
parallelism (how many
processes).

PARALLEL PQ_DISTRIBUTE /*+ PQ_DISTRIBUTE(tablespec
outer_distribution
inner_distribution) */

Used in parallel join operations to
indicate how inner and outer
tables of the joins should be
processed. The values of the
distributions are HASH,
BROADCAST, PARTITION, and
NONE. Only six combinations
table distributions are valid.

PARALLEL PX_JOIN_FILTER /*+ PX_JOIN_FILTER (tablespec)
*/

Directs the Optimizer to try and
join bitmap indexes in parallel.

QUERY
TRANS

EXPAND_GSET_TO_UNION /*+ EXPAND_GSET_TO_UNION
*/

Performs transformations on
queries that have GROUP BY
into Unions.

PARALLEL FACT /*+ FACT (tablespec) */ In the context of STAR
transformation, this table should
be considered a FACT table (as
opposed to a DIMENSION).

PARALLEL MERGE /*+ MERGE ([view | tablespec) */ Use with either an in-line view
that has a Group by or Distinct in
it as a joined table, or with the
use of IN subquery to “merge” the
“view” into the body of the rest of
the query.

Category Hint Available For Notes
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 135

USING TUNING > DBMS HINTS
PARALLEL NO_EXPAND /*+ NO_EXPAND */ Used when OR condition
(including IN lists) is present in
the predicate to not consider
transformation to compound
query.

PARALLEL NO_FACT /*+ NO_FACT (tablespec) */ In the context of STAR
transformation this table should
not be considered a FACT table.

PARALLEL NO_MERGE /*+ NO_MERGE [([view |
TAL:tablespec)] */

Directs the Optimizer not to
“merge” the view into the query.

PARALLEL NO_QUERY_TRANSFORMATION /*+
NO_QUERY_TRANSFORMATIO
N */

Directs the Optimizer not to
transform OR, in-lists, in-line
views, and subqueries. Try it
whenever any of these conditions
are present.

PARALLEL NO_REWRITE /*+ NO_REWRITE */ Directs the Optimizer not to use a
Materialized View, even if one is
available.

PARALLEL NO_STAR_TRANSFORMATION /*+
NO_STAR_TRANSFORMATION
*/

Directs the Optimizer not to try a
Star Transformation.

PARALLEL NO_XML_QUERY_REWRITE /*+ NO_XML_QUERY_REWRITE
*/

Use only if the query is using
XML functionality.

PARALLEL NO_XMLINDEX_REWRITE /*+ NO_XMLINDEX_REWRITE */ Use only if the query is using
XML functionality.

PARALLEL NOFACT /*+ NOFACT (tablespec) */ In the context of STAR
transformation, this table should
not be considered a FACT table.

PARALLEL NOREWRITE /*+ NOREWRITE Directs the Optimizer not to use a
Materialized View, even if one is
available.

PARALLEL REWRITE /*+ REWRITE [(view [TAL: view
]...)] */

Directs the Optimizer to use a
Materialized View instead of the
underlying tables. Specify
REWRITE without additional
parameters. Oracle will
determine if it can us a
Materialized View or not.

PARALLEL STAR_TRANSFORMATION /*+ STAR_TRANSFORMATION */ Directs the Optimizer to try Star
Transformation. Only try with a 3
table or more join.

PARALLEL USE_CONCAT /*+ USE_CONCAT */ Used when the OR condition
(including IN lists) is present in
the predicate to transform the
query into a compound UNION
ALL.

Category Hint Available For Notes
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 136

USING TUNING > DBMS HINTS
SQL Server Hints
The following table highlights SQL hints based on MS SQL Server hints optimization:

REAL TIME MONITOR /*+ MONITOR */ Effective only if
STATSTICS_LEVEL initialization
parameter is either set to ALL or
TYPICAL and
CONTROL_MANAGEMENT_
PACK_ACCESS is set to
DIAGNOSTIC+TUNING. Turns
on features of the Oracle
Database Tuning Pack.

REAL TIME NO_MONITOR /*+ NO_MONITOR */ See MONITOR hint.

Category Hint Available For Notes

JOIN LOOP SELECT/UPDATE/DELETE Not applicable for RIGHT OUTER or FULL
joins.

JOIN HASH SELECT/UPDATE/DELETE -

JOIN MERGE SELECT/UPDATE/DELETE -

JOIN REMOTE SELECT/UPDATE/DELETE Only for INNER JOINs. Not applicable with
COLLATE

SELECT/UPDATE/DELETE -

QUERY RECOMPILE SELECT/UPDATE/DELETE -

QUERY FORCE ORDER SELECT/UPDATE/DELETE -

QUERY ROBUST PLAN SELECT/UPDATE/DELETE -

QUERY KEEP PLAN SELECT/UPDATE/DELETE -

QUERY KEEPFIXED PLAN SELECT/UPDATE/DELETE -

QUERY EXPAND VIEWS DML Statements Only for statement containing views.

QUERY HASH GROUP SELECT Only when GROUP BY, COMPUTE and
DISTINCT clauses are used.

QUERY ORDER GROUP SELECT/UPDATE/DELETE Only when GROUP BY, COMPUTE and
DISTINCT clauses are used.

QUERY MERGE UNION SELECT Only for statements chained using UNION

QUERY HASH UNION SELECT Only for statements chained using UNION

QUERY CONCAT UNION SELECT Only for statements chained using UNION

QUERY LOOP JOIN SELECT/UPDATE/DELETE -

QUERY MERGE JOIN SELECT/UPDATE/DELETE -

QUERY HASH JOIN SELECT/UPDATE/DELETE -

TABLE INDEX() DML Statements Only for tables and views with indexes.

TABLE KEEPIDENTITY INSERT Only for INSERT statements using
OPENROWSET clause with BULK option.

Category Hint Available For Notes
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 137

USING TUNING > DBMS HINTS
DB2 Hints
The following table highlights SQL hints based on IBM DB2 hints optimization:

TABLE KEEPDEFAULTS INSERT Only for INSERT statements using
OPENROWSET clause with BULK option.

TABLE HOLDLOCK DML Statements Not applicable for SELECT statements using
FOR BROWSE clause.

TABLE IGNORE_CONSTRAINTS INSERT Only for INSERT statements using
OPENROWSET clause with BULK option.

TABLE IGNORE_TRIGGERS INSERT Only for INSERT statements using
OPENROWSET clause with BULK option.

TABLE NOLOCK SELECT/UPDATE/COMPLETE Not applicable for the target table in
UPDATE/DELETE statements.

TABLE NOWAIT DML Statements -

TABLE PAGLOCK DML Statements -

TABLE READCOMMITED DML Statements -

TABLE READCOMMITEDLOCK SELECT/UPDATE/COMPLETE -

TABLE READPAST SELECT/UPDATE/COMPLETE Not applicable for the target table in
UPDATE/DELETE statements.

TABLE READUNCOMMITED SELECT/UPDATE/COMPLETE Not applicable for the target table in
UPDATE/DELETE statements.

TABLE REPEATEABLEREAD DML Statements -

TABLE ROWLOCK DML Statements -

TABLE SERIALIZABLE DML Statements Not applicable for SELECT statements using
FOR BROWSE clause.

TABLE TABLOCK DML Statements -

TABLE TABLOCKX DML Statements -

TABLE UPDLOCK DML Statements -

TABLE XLOCK DML Statements -

TABLE FASTFIRSTROW DML Statements -

Category Hint Notes

Command SET OPTIMIZATION LEVEL For top-level SELECT statements
only

Clause optimize for <n> rows For top-level SELECT statements
only

Clause fetch first <n> rows only For SELECT statements only

Category Hint Available For Notes
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 138

USING TUNING > DBMS HINTS
Sybase Hints
The following table highlights SQL hints based on Sybase hints optimization:

Category Hint Notes

Logical distinct No explicit implementation

Logical group No explicit implementation

Logical g_join No explicit implementation

Logical nl_g_join Not applicable for: statements with chained
queries; select statements with group by clause
and having clause or group by clause and order
by clause

Logical m_g_join Not applicable for: statements with chained
queries; select statements with group by clause
and having clause or group by clause and order
by clause

Logical join No explicit implementation

Logical nl_join Not applicable for: select statements with group
by clause and having clause or group by clause
and order by clause

Logical m_join Not applicable for: select statements with group
by clause and having clause or group by clause
and order by clause

Logical h_join Not applicable for: select statements with group
by clause and having clause or group by clause
and order by clause

Logical union No explicit implementation

scan No explicit implementation

Logical scalar_agg Only used in combination with other operators.
It does not change the execution plan itself.

Logical sequence Is a keyword that will be used in the
implementation of scalar_agg operator.

Logical hints We don’t support a combination of hints

Logical prop Uses a set of pre-defined values.

Logical table Used only in combination with other operators,
when referring tables from subqueries

Logical work_t This operator is applicable only together with
store operator

Logical in Used only in combination with other operators,
when referring tables from subqueries

Logical subq Used only in combination with other operators,
when referring tables from subqueries

Physical distinct_sorted Only for SELECT statements containing
DISTINCT, and only for tables

Physical distinct_sorting Only for SELECT statements containing
DISTINCT, and only for tables

Physical distinct_hashing Only for SELECT statements containing
DISTINCT, and only for tables
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 139

USING TUNING > DBMS HINTS
Physical group_sorted Only for SELECT statements (not working for
views) with no having and no order by clause.

Physical group_hashing Only for SELECT statements (not working for
views) with no having and no order by clause.

Physical group_inserting Not implemented

Physical append_union_all Not applicable for: UNION chained clauses,
nested sub-selects in a from clause, if a group
by clause is present or if scalar aggregation is
present

Physical merge_union_all Not applicable for: UNION ALL chained
clauses, nested sub-selects in a from clause, or
if a group by clause is present.

Physical merge_union_distinct Not applicable for: UNION ALL chained
clauses, nested sub-selects in a from clause, or
if a group by clause is present.

Physical hash_union_distinct Not applicable for: UNION ALL chained
clauses, nested sub-selects in a from clause, if
a group by clause is present, or if scalar
aggregation is present.

Physical i_scan Applied to all table references in the from
clause of the main select and of the sub select
statements except: 1. statement has
sub-selects. 2. table references has no indexes.

Physical t_scan Applied to all the table references in the from
clause of the main select and of the sub select
statements except: On Sybase 12.5 not applied
for tables in the main query if: 1. statement has
chained queries. 2. Sub queries have group by
and having clauses; and not applied to the
tables in sub selects if: 1. has select statements
in from clause of the main select. 2. sub queries
have group by and having clauses. 3.
statement has select statements in select
clause. 4. statement has parent statement and
insert statement; on Sybase 15 not applied for
tables in sub selects if: 1. has select statements
in from clause of the main select. 2. statement
has chained queries.

Physical m_scan Applied for all tables if in the where clause there
is a condition like: table1.indexedColumn1
condition body OR table1.indexedColumn2
condition body; Not applied if the LIKE operator
is used. For columns that belong to a primary
key only the first column is considered.

Physical store -

Physical store_index -

Physical sort -

Physical xchg -

Category Hint Notes
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 140

Reference
The following topics provide reference details:

• Database Objects

• DBMS Connection Parameters by Platform

Database Objects
The following table describes the database objects displayed in DB Optimizer™ and contains information regarding
each one, including object name, DBMS platform, and any notes pertaining to the specified object.

In DB Optimizer™, database objects are stored in Data Source Explorer as subnodes of individual, pertinent
databases.

Database Object DBMS Platforms Notes

Aliases DB2 An alias is an alternate name that references a table, view, and
other database objects. An alias can also reference another alias
as long as the aliases do not reference one another in a circular or
repetitive manner.

Aliases are used in view or trigger definitions in any SQL
statements except for table check-constraint definitions. (The
table or view name must be referenced in these cases.)

Once defined, an alias is used in query and development
statements to provide greater control when specifying the
referenced object. Aliases can be defined for objects that do not
exist, but the referenced object must exist when a statement
containing the alias is compiled.

Aliases can be specified for tables, views, existing aliases, or
other objects. Create Alias is a command available on the shortcut
menu.

Check Constraints All A check constraint is a search condition applied to a table. When a
check constraint is in place, Insert and Update statements issued
against the table will only complete if the statements pass the
constraint rules.

Check constraints are used to enforce data integrity when it
cannot be defined by key uniqueness or referential integrity
restraints.

A check condition is a logical expression that defines valid data
values for a column.

Clusters Oracle A cluster is a collection of interconnected, physical machines used
as a single resource for failover, scalability, and availability
purposes.

Individual machines in the cluster maintain a physical host name,
but a cluster host name must be specified to define the collective
as a whole.

To create a cluster, you need the CREATE CLUSTER or CREATE
ANY CLUSTER system privilege.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 141

REFERENCE > DATABASE OBJECTS
Database Links Oracle A database link is a network path stored locally, that provides the
database with the ability to communicate with a remote database.

A database link is composed of the name of the remote database,
a communication path to the database, and a user ID and
password (if required).

Database links cannot be edited or altered. To make changes,
drop and re-create.

Foreign Keys All A foreign key references a primary or unique key of a table (the
same table the foreign key is defined on, or another table and is
created as a result of an established relationship). Its purpose is to
indicate that referential integrity is maintained according to the
constraints.

The number of columns in a foreign key must be equal to the
number of columns in the corresponding primary or unique key.
Additionally, the column definitions of the foreign key must have
the same data types and lengths.

Foreign key names are automatically assigned if one is not
specified.

Functions DB2, Oracle A function is a relationship between a set of input data values and
a set of result values.

For example, the TIMESTAMP function passes input data values
of type DATE and TIME, and the result is TIMESTAMP.

Functions can be built-in or user-defined. Built-in functions are
provided with the database. They return a single value and are
part of the default database schema. User-defined functions
extend the capabilities of the database system by adding function
definitions (provided by users or third-party vendors) that can be
applied in the database engine itself.

A function is identified by its schema, a function name, the number
of parameters, and the data types of its parameters.

Access to functions is controlled through the EXECUTE privilege.
GRANT and REVOKE statements are used to specify who can or
cannot execute a specific function or set of functions.

Groups All Groups are units that contain items. Typically, groups contain the
result of a single business transaction where several items are
involved.

For example, a group is the set of articles bought by a customer
during a visit to the supermarket.

Database Object DBMS Platforms Notes
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 142

REFERENCE > DATABASE OBJECTS
Indexes All An index is an ordered set of pointers to rows in a base table.

Each index is based on the values of data in one or more table
columns. An index is an object that is separate from the data in
the table. When an index is created, the database builds and
maintains it automatically.

Indexes are used to improve performance. In most cases, access
to data is faster with an index. Although an index cannot be
created for a view, an index created for the table on which a view
is based can improve the performance of operations on that view.

Indexes are also used to ensure uniqueness. A table with a
unique index cannot have rows with identical keys.

DB2: Allow Reverse Scans, Percent Free (Lets you type or select
the percentage of each index page to leave as free space when
building the index, from 0 to 99), Min Pct Used (Lets you type or
select the minimum percentage of space used on an index leaf
page. If, after a key is removed from an index leaf page, the
percentage of space used on the page is at or below integer
percent, an attempt is made to merge the remaining keys on this
page with those of a neighboring page. If there is sufficient space
on one of these pages, the merge is performed and one of the
pages is deleted. The value of integer can be from 0 to 99.

Oracle: The Logging, No Sort, Degrees, and Instances properties
are documented in the editor.

Java Classes Oracle A model or template, written in Java language, used to create
objects with a common definition and common properties,
operations and behavior.

Java classes can be developed in Eclipse (or another Java
development environment such as Oracle JDeveloper) and
moved into an Oracle database to be used as stored procedures.

Java classes must be public and static if they are to be used in this
manner.

When writing a class to be executed within the database, you can
take advantage of a special server-side JDBC driver. This driver
uses the user’s default connection and provides the fastest
access to the database.

Java classes become full-fledged database objects once migrated
into the database via the loadjava command-line utility or the SQL
CREATE JAVA statement.

A Java class is published by creating and compiling a call
specification for it. The call spec maps a Java method’s
parameters and return type to Oracle SQL types.

Once a Java class is developed, loaded, and published -- the final
step is to execute it.

Java Resources Oracle A Java resource is a collection of files compressed in a .jar file.

Database Object DBMS Platforms Notes
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 143

REFERENCE > DATABASE OBJECTS
Libraries Oracle A library is a configurable folder for storing and sharing content
with an allocated quota. Multiple libraries may exist in the same
database environment.

A library is a special type of folder in Oracle Content Services.
Unlike Containers and regular folders, each library has a Trash
Folder and an allocated amount of disk space.

A library is composed of a name (mandatory), description, quota,
path, and library members.

The library service allows you to create folders, list quotas, and
manage categories, workflow, trash folders, and versioning. The
Library service does not allow you to create or upload files.

Materialized Views Oracle A database object that contains the results of a query. They are
local copies of data located remotely, or are used to create
summary tables based on aggregations of table data. Materialized
views are also known as snapshots.

A materialized view can query tables, views, and other
materialized views. Collectively, these are called master tables (a
replication term) or detail tables (a data warehouse term).

For replication purposes, materialized views allow you to maintain
copies of remote data on your local node. These copies are
read-only. If you want to update the local copies, you need to use
the Advanced Replication feature. You can select data from a
materialized view as you would from a table or view.

For data warehousing purposes, the materialized views commonly
created are aggregate views, single-table aggregate views, and
join views.

Materialized View Logs Oracle Because Materialized Views are used to return faster queries (a
query against a materialized view is faster than a query against a
base table because querying the materialized view does not query
the source table), the Materialized View often returns the data at
the time the view was created, not the current table data.

There are two ways to refresh data in Materialized Views,
manually or automatically. In a manual refresh, the Materialized
View is completely wiped clean and then repopulated with data
from the source tables (this is known as a complete refresh). If
source tables have changed very little, however, it is possible to
refresh the Materialized View only for changed records -- this is
known as a fast refresh.

In the case of Materialized Views that are updated via fast refresh,
it is necessary to create Materialized View Logs on the base
tables that compose the Materialized View to reflect the changes.

If the number of entries in this table is too high, it is an indication
that you might need to refresh the Materialized Views more
frequently to ensure that each update does not take longer than it
needs.

Select owner, then select from tables with Materialized Views, etc.

Database Object DBMS Platforms Notes
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 144

REFERENCE > DATABASE OBJECTS
Oracle Job Queue Oracle The Oracle Job Queue allows for the scheduling and execution of
PL/SQL stored procedures at predefined times and/or repeated
job execution at regular intervals, as background processes.

For example, you could create a job in the Oracle Job Queue that
processed end-of-day accounting -- a job that must run every
weekday, but can be run unattended, or you could create a series
of jobs that must be run sequentially -- such as jobs that might be
so large, that in order to reduce CPU usage, only one is run at a
time.

Runs PL/SQL code at specified time or on specified schedule, can
enable/disable.

Outlines Oracle Oracle preserves the execution plans of “frozen” access paths to
data so that it remains constant despite data changes, schema
changes, and upgrades of the database or application software
through objects named stored outlines.

Outlines are useful for providing stable application performance
and benefit high-end OLTP sites by having SQL execute without
having to invoke the cost-based optimizer at each SQL execution.
This allows complex SQL to be executed without the additional
overhead added by the optimizer when it performs the
calculations necessary to determine the optimal access path to
the data.

Packages All A package is a procedural schema object classified as a PL/SQL
program unit that allows the access and manipulation of database
information.

A package is a group of related procedures and functions,
together with the cursors and variables they use, stored together
in the database for continued use as a unit. Similar to standalone
procedures and functions, packaged procedures and functions
can be called explicitly by applications or users.

DB applications explicitly call packaged procedures as necessary
with privileges granted, a user can explicitly execute any of the
procedures contained in it.

Packages provide a method of encapsulating related procedures,
functions, and associated cursors and variables together as a unit
in the database. For example, a single package might contain two
statements that contain several procedures and functions used to
process banking transactions.

Packages allow the database administrator or application
developer to organize similar routines as well as offering
increased functionality and database performance.

Packages provide advantages in the following areas:
encapsulation of related procedures and variables, declaration of
public and private procedures, variables, constraints and cursors,
separation of the package specification and package body, and
better performance.

Encapsulation of procedural constructs in a package also makes
privilege management easier. Granting the privilege to use a
package makes all constructs of the package assessable to the
grantee.

The methods of package definition allow you to specify which
variables, cursors, and procedures are: public, directly accessible
to the users of a package, private, or hidden from the user of the
package.

Database Object DBMS Platforms Notes
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 145

REFERENCE > DATABASE OBJECTS
Package Bodies Oracle A package body is a package definition file that states how a
package specification will function.

In contrast to the entities declared in the visible part of a package,
the entities declared in the package body are only visible within
the package body itself. As a consequence, a package with a
package body can be used for the construction of a group of
related subprograms in which the logical operations available to
clients are clearly isolated from the internal entities.

Primary Keys All A key is a set of columns used to identify or access a row or rows.
The key is identified in the description of a table, index, or
referential constraint. The same column can be part of more than
one key.

A unique key is a key that is constrained so that no two of its
values are equal. The columns of a unique key cannot contain
NULL values.

The primary key is one of the unique keys defined on a table, but
is selected to be the key of the first importance. There can only be
one primary key on a table.

Oracle: If an index constraint has been defined for a table, the
constraint status for the table’s primary key cannot be set to
Disabled.

Procedures All A procedure is an application program that can be started through
the SQL CALL statement. The procedure is specified by a
procedure name, which may be followed by arguments enclosed
within parenthesis.

The argument or arguments of a procedure are individual scalar
values, which can be of different types and can have different
meanings. The arguments can be used to pass values into the
procedure, receive return values from the procedure, or both.

A procedure, also called a stored procedure, is a database object
created via the CREATE PROCEDURE statement that can
encapsulate logic and SQL statements. Procedures are used as
subroutine extensions to applications, and other database objects
that can contain logic.

When a procedure is invoked in SQL and logic within a procedure
is executed on the server, data is only transferred between the
client and the database server in the procedure call and in the
procedure return. If you have a series of SQL statements to
execute within a client application, and the application does not
need to do any processing in between the statements, then this
series of statements would benefit from being included in a
procedure.

Profiles Oracle Profiles are a means to limit resources a user can use by
specifying limits on kernel and password elements. Additionally,
Profiles can be used to track password histories and the settings
of specific profiles may be queried.

The following kernel limits may be set: maximum concurrent
sessions for a user, CPU time limit per session, maximum connect
time, maximum idle time, maximum blocks read per session,
maximum blocks read per call, and maximum amount of SGA.

Database Object DBMS Platforms Notes
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 146

REFERENCE > DATABASE OBJECTS
Roles Oracle A role is a set or group of privileges that can be granted to users to
another role.

A privilege is a right to execute a particular type of SQL statement
or to access another user’s object. For example: the right to
connect to a database, the right to create a tale, the right to select
rows from another user’s table, the right to execute another user’s
stored procedure.

System privileges are rights to enable the performance of a
particular action, or to perform a particular action on a particular
type of object.

Roles are named groups of related privileges that you grant users
or other roles. Roles are designed to ease the administration of
end user system and object privileges. However, roles are not
meant to be used for application developers, because the
privileges to access objects within stored progmmatic constructs
needs to be granted directly.

Sequences DB2, Oracle A sequence generates unique numbers.

Sequences are special database objects that provide numbers in
sequence for input into a table. They are useful for providing
generated primary key values and for the input of number type
columns such as purchase order, employee number, sample
number, and sales order number.

Sequences are created by use of the CREATE SEQUENCE
command.

Structured Types DB2 Structured Types are useful for modeling objects that have a
well-defined structure that consists of attributes. Attributes are
properties that describe an instance of the type.

A geometric shape, for example, might have as attributes its list of
Cartesian coordinates. A person might have attributes of name,
address, and so on. A department might have a name or some
other attribute.

Synonyms Oracle A synonym is an alternate name for objects such as tables, views,
sequences, stored procedures, and other database objects.

A synonym is an alias for one of the following objects: table, object
table, view, object view, sequence, stored procedure, stored
function, package, materialized view, java class, user-defined
object type or another synonym.

Tables All Tables are logical structures maintained by the database
manager. Tables are composed of columns and rows. The rows
are not necessarily ordered within a table.

A base table is used to hold persistent user data.

A result table is a set of rows that the database manager selects
or generates from one or more base tables to satisfy a query.

A summary table is a table defined by a query that is also used to
determine the data in the table.

Tablespaces DB2, Oracle A tablespace is a storage structure containing tables, indexes,
large objects, and long data. Tablespaces reside in database
partition groups. They allow you to assign the location of database
and table data directly onto containers. (A container can be a
directory name, a device name, or a file name.) This can provide
improved performance and more flexible configuration.

Database Object DBMS Platforms Notes
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 147

REFERENCE > DATABASE OBJECTS
Triggers All A trigger defines a set of actions that are performed when a
specified SQL operation (such as delete, insert, or update) occurs
on a specified table. When the specified SQL operation occurs,
the trigger is activated and starts the defined actions.

Triggers can be used, along with referential constraints and check
constraints, to enforce data integrity rules. Triggers can also be
used to cause updates to other tables, automatically generate or
transform values for inserted or updated rows, or invoke functions
to perform tasks such as issuing alerts.

Undo Segments Oracle In an Oracle database, Undo tablespace data is an image or
snapshot of the original contents of a row (or rows) in a table. The
data is stored in Undo segments in the Undo table space.

When a user begins to make a change to the data in a row in an
Oracle table, the original data is first written to Undo segments in
the Undo tablespace. The entire process (including the creation of
the Undo data is recorded in Redo logs before the change is
completed and written in the Database Buffer Cache, and then the
data files via the database writer (DBW) process.)

Unique Keys All A unique key is a key that is constrained so that no two of its
values are equal. The columns of a unique key cannot contain null
values. The constraint is enforced by the database manager
during the execution of any operation that changes data values,
such as INSERT or UPDATE. The mechanism used to enforce the
constraint is called a unique index. Thus, every unique key is a
key of a unique index. Such an index is said to have the UNIQUE
attribute.

A primary key is a special case of a unique key. A table cannot
have more than one primary key.

A foreign key is a key that is specified in the definition of a
referential constraint.

A partitioning key is a key that is part of the definition of a table in
a partitioned database. The partitioning key is used to determine
the partition on which the row of data is stored. If a partitioning key
is defined, unique keys and primary keys must include the same
columns as the partitioning key, but can have additional columns.
A table cannot have more than one partitioning key.

Oracle: You cannot drop a unique key constraint that is part of a
referential integrity constraint without also dropping the foreign
key. To drop the referenced key and the foreign key together,
check the Delete Cascade option for the foreign key.

Clustered: A cluster composes of a group of tables that share the
same data blocks, and are grouped together because they share
common columns and are often used together.

Filegroup: Lets you select the filegroup within the database where
the constraint is stored.

Fill Factor: Lets you specify a percentage of how large each
constraint can become.

Database Object DBMS Platforms Notes
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 148

REFERENCE > DBMS CONNECTION PARAMETERS BY PLATFORM
DBMS Connection Parameters by Platform
The following topics provide connection details:

• IBM DB2 LUW

• Microsoft SQL Server

• JDBC Connection Parameters

• Oracle Connection Parameters

• Sybase Connection Parameters

Views All A view provides an alternate way of looking at the data in one or
more tables.

A view is a named specification of a result table and can be
thought of as having columns and rows just like a base table. For
retrieval purposes, all views can be used just like base tables.

You can use views to select certain elements of a table and can
present an existing table in a customized table format without
having to create a new table.

Database Object DBMS Platforms Notes
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 149

REFERENCE > DBMS CONNECTION PARAMETERS BY PLATFORM
IBM DB2 LUW

Microsoft SQL Server

Connection Parameter Description

Use Alias from IBM Client or Generic
JDBC Configuration

If you choose to use the alias from the IBM client, select the appropriate alias
name. Otherwise, choose Generic JDBC Configuration and enter the
connection parameters, as specified.

Schema ID (Optional) The name of the database schema.

Function Path Optional. Enter an ordered list of schema names to restrict the search scope for
unqualified function invocations.

Security Credentials The log on information required by DB Optimizer™ to connect to the data
source.

Auto Connect Automatically attempts to connect to the data source when selected in Data
Source Explorer, without prompting the user for connection information.

JDBC Driver (Advanced) The name of the JDBC Driver utilized by DB Optimizer™ to initiate a JDBC
standard access connection.

Connection URL (Advanced) Used by the JDBC Driver to connect with a data source. Often contains host
and port numbers, as well as the name of the data source to which it connects.

For example:
jdbc:postgresql://host:port/database

jdbc:derby://host:port/database

Custom JDBC Driver Properties
(Advanced)

The name and property value of any custom JDBC drivers associated with the
data source.

Connection Parameter Description

Use Network Library Configuration If the data source utilizes a network library, select this parameter. The
corresponding connection parameter fields become available. Otherwise,
choose Generic JDBC Configuration and enter the connection parameters, as
specified.

Host/Instance (JDBC Configuration) The name of the data source.

Port (JDBC Configuration) (optional) The listening port used in TCP/IP communications between DB Optimizer™
and the data source.

Protocol (JDBC Configuration) The communication mechanism between DB Optimizer™ and the data source.
Choose TCP/IP or Named Pipes.

Default Database (Optional) The default SQL database name, as defined by the schema.

Security Credentials The log on information required by DB Optimizer™ to connect to the data
source.

Auto Connect Automatically attempts to connect to the data source when selected in Data
Source Explorer, without prompting the user for connection information.

Allow Trusted Connections Enables trusted connections to the data source from DB Optimizer™.

JDBC Driver (Advanced) The name of the JDBC Driver utilized by DB Optimizer™ to connect and
communicate with the database.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 150

REFERENCE > DBMS CONNECTION PARAMETERS BY PLATFORM
Connection URL (Advanced) Used by the JDBC Driver to connect with a database. Often contains host and
port numbers, as well as the name of the database to which it connects.

For example:
jdbc:postgresql://host:port/database

jdbc:derby://host:port/database

Custom JDBC Driver Properties
(Advanced)

The name and property value of any custom JDBC drivers associated with the
data source.

Connection Parameter Description
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 151

REFERENCE > DBMS CONNECTION PARAMETERS BY PLATFORM
JDBC Connection Parameters

Oracle Connection Parameters

Sybase Connection Parameters

Connection Parameter Description

Connect String Used by the JDBC Driver to connect with a database. Often contains host and
port numbers, as well as the name of the database to which it connects.

For example:
jdbc:postgresql://host:port/database

jdbc:derby://host:port/database

Data Source Name The name of the data source to which you want DB Optimizer™ to connect.

Connection Parameter Description

Use TNS Alias If the data source is mapped to a net service name via tnsnames.ora, select
this parameter. Otherwise, choose Generic JDBC Configuration and enter the
connection parameters, as specified.

Host/Instance (JDBC Configuration) The name of the host machine on which the data source resides.

Port (JDBC Connection) The listening port used in TCP/IP communications between DB Optimizer™
and the data source.

Type (JDBC Configuration) Indicates if the data source is defined via a system identifier (SID) or a service
name.

Service/SID Name (JDBC Configuration) The name of the system identifier (SID) or service name that identifies the data
source.

Security Credentials The log on information required by DB Optimizer™ to connect to the data
source.

Auto Connect Automatically attempts to connect to the data source when selected in data
source Explorer, without prompting the user for connection information.

Allow Trusted Connections Enables trusted connections to the data source from DB Optimizer™.

JDBC Driver (Advanced) The name of the JDBC Driver utilized by DB Optimizer™ to connect and
communicate with the database.

Connection URL (Advanced) Used by the JDBC Driver to connect with a database. Often contains host and
port numbers, as well as the name of the database to which it connects.

For example:
jdbc:postgresql://host:port/database

jdbc:derby://host:port/database

Custom JDBC Driver Properties
(Advanced)

The name and property value of any custom JDBC drivers associated with the
data source.

Connection Parameter Description

Use Alias Information from your SQL.INI
File

If the data source is mapped to a name via SQL.INI, select this parameter to
use that name for connection. Otherwise, choose Generic JDBC Configuration
and enter the connection parameters, as specified.
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 152

REFERENCE > DBMS CONNECTION PARAMETERS BY PLATFORM
Host/Instance (JDBC Connection) The name of the host machine on which the data source resides.

Port (JDBC Connection) The listening port used in TCP/IP communications between DB Optimizer™
and the data source.

Default Database (JDBC Connection)
(Optional)

The default database name, as defined by the schema.

JDBC Driver (Advanced) The name of the JDBC Driver utilized by DB Optimizer™ to connect and
communicate with the database.

Connection URL (Advanced) Used by the JDBC Driver to connect with a database. Often contains host and
port numbers, as well as the name of the database to which it connects.

For example:
jdbc:postgresql://host:port/database

jdbc:derby://host:port/database

Custom JDBC Driver Properties
(Advanced)

The name and property value of any custom JDBC drivers associated with the
data source.

Connection Parameter Description
EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 153

EMBARCADERO TECHNOLOGIES > DB OPTIMIZER™ 2.0.1 USER ’S GUIDE 154

Index

A
Additional resources 8
archives, profiling

opening/saving 76
associating 40

C
caching, transformations requirements 127
cases, generated

opening in context 123
change history 38
code folding 34
code formatting 29

D
data source 9
database objects 15, 141
DB2 LUW 150
delete 20
Discussion Groups 8
DMBS 7
Documentation 8

E
editing 22
error 50
error detection 24
error logs 49
execute 42
explain plans

opening from tuning job 124

F
FAQs 8
files 19
filtering profile results 78
filters 15
Forums 8

G
global filters 16

H
Hardware 7
hints

opening in context 123
hyperlinks 29

I
IBM DB2 LUW 150
Import 20
index analysis, SQL Tuner 118

J
JDBC connection 152

K
Knowledge Base 8

L
license 53
local history 39
log 49

N
new_project_wizard_page 18
new_sql_file_wizard_page 22

O
object properties 12
objects 12
opening 18
Operating System 7
Oracle 152

P
permissions, SQL Profiler 79
permissions, SQL Tuner 126
profiling sessions

configuring DBMS for 79
filtering results 78
opening/saving 76
submitting tuning sessions from 77

project_info_page 18
Projects 17

R
roles, SQL Tuner 126

S
SQL

tuning 92
SQL file 22
SQL Server 150
Sybase 152

T
technical Requirements 7
transformations

caching requirement 127
tuning jobs

editor preferences 128
index analysis 118
introduced 92
opening explain plans from 124
roles/permissions required 126
understanding generated statements 130

tuning sessions
opening from profiling session 77

W
workspace 53

	User’s Guide
	Contents
	Welcome to Embarcadero DB Optimizer
	Technical Requirements
	Additional Product Information

	Using DB Optimizer
	Working with Data Sources
	Register Data Sources
	Browse a Data Source
	View Database Object Properties
	Search for Database Objects
	Filter Database Objects
	Define Data Source-Specific Object Filters
	Define Global Database Object Filters

	Drop a Database Object

	Working with Projects
	Create a New Project
	Open an Existing Project
	Search a Project
	Add Files to a Project
	Delete a Project

	Creating and Editing SQL Files (SQL Editor)
	Create an SQL File
	Open an Existing SQL File
	Working in SQL Editor
	Understanding Automatic Error Detection
	Understanding Code Assist
	Understanding Hyperlinks
	Understanding Code Formatting
	Understanding Code Folding
	Understanding Code Quality Checks
	Understanding SQL Templates

	View Change History
	Revert to an Old Version of a File
	Delete an SQL File

	Executing SQL Files
	Associate an SQL File with a Data Source
	Configure a SQL Session
	Execute SQL Code
	View and Save Results

	Troubleshooting
	View Log Details
	Maintain Logs
	Filter Logs
	Import and Export Error Logs
	Find and Fix SQL Code Errors
	Find and Fix Other Problems

	Configuring DB Optimizer™
	Initial Setup
	Specify a Workspace
	License DB Optimizer™

	Customizing DB Optimizer™ (Preferences)
	Set Index Configuration Preferences
	Set SQL Editor Preferences
	Set SQL Execution Preferences
	Set Code Assist Preferences
	Set Code Formatter Preferences
	Set Results View Preferences
	Set Syntax Coloring Preferences
	Set SQL Code Template Preferences
	Set File Encoding Preferences

	Using Profiling
	Understanding the Interface
	Running a Profiling Session
	Execute a Profiling Session
	Working with Session Results
	Analyzing the Load Chart
	Analyzing the Top Activity Section
	Top SQL Tab
	Top Events Tab
	Top Sessions Tab
	Top Object I/O Tab (Oracle-Specific)

	Analyzing Profiling Details
	Viewing Details on the SQL Tab
	Viewing Details on the Sessions Tab

	Save Profiling Sessions
	Import Statements to Tuning
	Using Other Profiling Commands
	Zooming In and Out
	Filtering Results

	Configuring Profiling
	Configuring DBMS Properties and Permissions
	Configuring IBM DB/2 for Windows, Unix, and Linux
	Configuring Microsoft SQL Server
	Configuring Oracle
	Configuring Sybase

	Building Launch Configurations

	Using Load Editor

	Using Tuning
	Overview
	Understanding the Input Tab
	Understanding the Overview Tab
	Understanding the Analysis Tab

	Tuning SQL Statements
	Create a New Tuning Job
	Specify a Data Source
	Add SQL Statements
	Run a Tuning Job
	Analyze Tuning Results
	Compare Cases
	Filter and Delete Cases
	Create an Outline

	Modify Tuning Results
	Using the Analysis Tab
	Visual SQL Tuning
	Changing Diagram Detail Display
	Viewing the VST Diagram in Summary Mode
	Viewing the VST Diagram in Detail Mode
	Changing Detail Level for a Specific Table
	Viewing All Table Fields
	Expanding Views in the VST Diagram

	Interpreting the VST Diagram Graphics
	Icons
	Colors
	Connecting Lines/Joins
	One-to-One Join
	One-to-Many Join
	Cartesian Join
	Implied Cartesian Join
	Many-to-Many Join

	Implementing Index Analysis Recommendations
	Using Oracle-Specific Features
	Using the Table Statistics Tab
	Using the Column Statistics And Histograms Tab
	Using the Outlines Tab
	Tuning SQL Statements in the System Global Area (SGA)

	Additional Tuning Commands
	View the Source Code of Tuning Candidates
	View Statement or Case Code in SQL Viewer
	Open an Explain Plan for a Statement or Case
	Executing a Session from the Command Line

	Configuring Tuning
	Set Roles and Permissions on Data Sources
	Index Required Object Definitions
	Set Tuning Job Editor Preferences
	Set Generated Case Preferences

	DBMS Hints
	Oracle Hints
	SQL Server Hints
	DB2 Hints
	Sybase Hints

	Reference
	Database Objects
	DBMS Connection Parameters by Platform
	IBM DB2 LUW
	Microsoft SQL Server
	JDBC Connection Parameters
	Oracle Connection Parameters
	Sybase Connection Parameters

	Index

