| D R A

Product Documentation

IDERADB Optimizer

U;er Guide

Version 17.0.x

Published August 2019

© 2019 IDERA, Inc. IDERA, the IDERA logos, and all other IDERA product or service names are
trademarks or registered trademarks of IDERA, Inc. All other trademarks are property of their
respective owners.

This software/documentation contains proprietary information of IDERA, Inc.; it is provided
under a license agreement containing restrictions on use and disclosure and is also protected
by copyright law. Reverse engineering of the software is prohibited.

At IDERA, we deliver a new generation of tools for managing, administering, and securing your
Microsoft Windows Servers, including SQL Server, PowerShell and Microsoft Dynamics. We
employ numerous industry experts worldwide who are devoted to bringing proven solutions to
you, the administrator. IDERA provides solutions that help you ensure server performance and
availability and reduce administrative overhead and expense. Our award-winning products
install in minutes, configure in hours and deploy worldwide in days. IDERA is a Microsoft Gold
Certified Partner headquartered in Houston, Texas, with offices in London, UK, Melbourne,
Australia, and Sao Paulo, Brazil. To learn more, please visit http://www.idera.com/.

August 19, 2019

http://www.idera.com/

CONTENTS

Contents
WEICOME 10 DB OPtIMIZETvvviviiieieieicititei ettt bbbttt ettt benenen 7
ADOUTL hisS DOCUMENT ..ttt bebenes 7
(0o oY T={W g o Tl BT Y @] o] 4 17-Z=Y U RSUURNE 8
INTEIAL SET U ittt sttt e st et s e b et e be e e b e e ebe s ese st ese s enesteneetenenteneas 8
SPECITY @ WOTKSPDACE .. ettt bbbttt 8
LiCENSE DB OptiMIZEr cueuieiiiiieiieiisiestesie ettt ettt b e st sttt ettt s be bbb e s et eneebesbe e b ee 9
Customizing DB Optimizer (Preferences) ...ttt 10
Specify Data Sources Prefer@nCes ...ttt 10
Specify SQL Development Preferences ... s 11
Specify SQL EQItor PreferenCes ..ot 12
Specify SQL EXECULION PreferEnCeS. ..o 18
Specify SQL Filters Preferences ...ttt 19
Specify Profile Alerts Prefer@nces ...t 19
Specify Profile Repositories Preferences ... 19
Specify Tuning Job Editor Preferences...... i 19
Specify VST Diagrams Tuning Preferences ...t 19
Specify File ENCoOding Prefer@nces ... 20
Introduction t0 Database TUNING ...ttt bbb 22
Introduction to DB Optimizer TUNET ...ttt 22
SQL TUNING MEthOdOIOgY eveviiiiiiiiicit ettt 24
SQOL TUNET OVEIVIEW ittt 25
What's Happening on the Databases? ...ttt 26
TUNING EXAMPIE. ittt et e e et e e e et e e e e s ebtee e e s beeeeeebteeeeastaeaesastaeeeanseaeaesnseneesanseaeesansens 29
The Database is Hanging or the Application has Problems ... 29
The Database Caused the Problem ...t 30
The Machine Caused the Problem ...t 31
Finding and Tuning Problem SQL ...ttt 33
USING DB OPtiMIZEN c.uiuiiiiiciiieetestet ettt ettt bbb 34
WOrKing With Data SOUICES......vcveuiiieieiiirieiei ettt ettt 34

RegiISter Data SOUICESccuiiiiiciee e 34

CONTENTS

Add @ NEW Data SOUMCE.c.viiiiiiicicieicicititi ettt bbbttt nenene 36
IMPOrt and EXPOrt Data SOUICES ..ueuiiiiirieieieieieieeseieee ettt se s saesensenas 39
Categorize Data SOUMCES ..ottt 40
Customizing Data SoOUrce Cate@gories ...ttt 41
Browse @ Data SOUICE.....cuiiiiiicic e s 42
View Database Object Properties......cu sttt 43
Search for Database ODjJECES.....uwiiiiiiiieiete sttt es 45
Filter Database ObJECTS. ..ottt 46
Drop @ Database ObjJECTc.ciriiiiririeieeiieie ettt 48
WOrking With SQL PIOJECES ..vuvuvvvietcieieiieieieieitititt ettt bbbttt 49
Create @ New SQL ProjecCt ... e 50
Open an EXIStING PrOJECT ..o 50
SEAICN @ PrOJECT ittt bbbttt 51
A FIlES 10 @ PrOJECT cueuiiiiiieieierse ettt 51
DEIETE @ PrOJECT ... ittt bbbttt b ettt 52
Creating and Editing SQL Files (SQL EQITOr) ...uovrrrrrrrsicecieieecieieieieieicieei ettt 53
Create an SQL File ittt 55
Open an EXisting SQL File ...ttt 55
WOrKing in SQL EQItOrvvuiiiiiiiiiiiiiiisrs sttt 55
ViIieW Change HISTOIY ...cciiiiiiiitttr ettt 71
Revert to an Old Version of @ File ... 72
Delete an SQL FIle .ottt ettt bbbt s b nens 72
EXECULING SQL FIlES ottt ettt 73
Associate an SQL File With @ Data SOUMCE ..ot 74
Configure an SQL SESSION ...ttt 75
EXECULE SQL COTB ..ttt bbbt bbbttt b ettt 76
ViIeW aNd SAVE RESUITS ...ttt ettt 76
B o0 o] [=T s Vo To 1 [o= 20 PP 78
ViIEW LOG DIETAIIS vttt ettt ettt bbb ee 79
IMAINTIN LOGS vttt sttt s a et e b e sb e bt n e eseenes 80
T OGS 1ttt bbb bbb bbbt b ettt b b 80
IMPOIrt aNd EXPOIt ErTOr LOGS. c.cviiueueiirieieiisietetrtste ettt 83
Find and Fix SQL Code EITOrS.....cciiiiirninirirnrrrss ettt sttt nenes 84

FINA N FiX Other ProblEmS ..ottt ee e e e e e st e e e e e eeeesaneeseeeeeanseesaneeesnes 84

CONTENTS

USING PrOfiliNg ettt 86
UNderstanding ProfiliNg ...ttt 86
Understanding the INterface ..ot 87
RUNNING @ Profiling SESSION ...uuiuiiiiiiiiiiirirrr sttt 88

Execute @ Profiling SESSIONc.cc ittt 89
Killing @n Oracle SESSION ...cucuiuiuiuiiiiiiiitrts sttt ettt nene 90
RN Te Y= T W O L= (ol (I SE 1Y (o o IR 91
WOrk With SESSION RESUILSvevviiieiiiciicicit ettt 91
Creating Profiling REPOIS ...ttt 118
SaVING Profiling SESSIONS. ...ttt 119
IMmport Statements tO TUNING .o 123
Other Profiling CommMands.......cc ittt 123
CoNfIGUIING ProfiliNg ettt 124
Configuring DBMS Properties and PermiSSionsccceerrieeeeienniiceietenneeeieeseesesesceesenens 124
Building Profiling Configurations.........cccericceiencccieiessec ettt 128
Specify Profile Alerts PreferenCes......c.c et 132
Specify Profile Repositories Preferences ... 136
Using SQL Load EQItOr/TESLEN ..ottt bbbttt 138

USING TUNING ettt st e b e s bbb bbbt be b srenes 142

Understanding the TUNEr INTErfacecu e 142
Understanding the Overview Tab ... 143
Understanding the Analysis Tab ... 150

TUNING SOL STat@MENTS . cciiieeieee ettt e e e e s e st e e e e e e s sssbbateeeeesesanassraeeeeeesssansenes 152
Create @ New TUuNING JOD ...t 153
SPECITY @ DAta SOUICE ..ttt bbbttt es 153
Add SQL STATEMENTS ...ttt 154
Managing Bind Variable Errors ...t 156
RUN @ TUNING JOD ot 159
ANAlYZE TUNING RESUIS ettt 161
MOAify TUNING RESUIS ..ttt 165
USING the ANAIYSIS Tabeuiiiiiiii e 167
ViSUBI SQOL TUNING wttttiieieiiirietctr ettt ettt b ettt b e nes 169
Interpreting the VST Diagram GraphiCs.....corrrieieieieieieieieieieicitictee et sesesenenes 179

Using Platform-Specific FEAtUIESui e 191

CONTENTS

Using the Table Statistics Tab (Oracle and SQL Server)......ccorreiennneenreeeseseeeeseseeee 191
Using the Column Statistics and Histograms Tab (Oracle and SQL Server).....c.cccccevvvecnenennee 192
Using the Outlines Tab (Oracle) ... 193
Using the Plan Guides Tab (SQL SEIVED)......ccoiirreireieeeneeereees e 194
Tuning SQL Statements in the System Global Area (Oracle)ccveveeeecereciiecee e 196
Additional TUNING COMMEANGS ...uuuiiiiiiiiiiiirr ettt 197
View the Source Code of Tuning Candidates ... 197
View Statement or Case Codes in SOL VIEWET ..o 197
Open an Explain Plan for a Statement or Caseccuiveeeiirieieeinieieeesieeesesee s 198
Executing a Session from the Command LiNEceveeeirieieieieiiicecceceeeeseseseseses e 198
SAVING @ TUNING JOD ottt 199
CoNTIGUING TUNING ittt bbbttt ettt 200
Set Roles and Permissions 0N Data SOUICEScoreiiririeieinnieersieieess ettt 200
Specify Tuning Job Editor Preferences... .. 201
Specify Case Generation Prefer@nces.. ... 202
Specify VST Diagrams Tuning Preferences ... 204
Examples of Transformations and SQL query REWNLES.......c.ceeueueuiueieiiiieiieeie e 205
DBIMS HINTS 1ottt ettt h e bbbt et et s e bt b e bt s b e s et et e st e bt eb e b e e b nae s ennennen 206
OraClE HINTS 1ttt b et b bttt b et b bttt b ettt 207
SQL SEIVET HINTS cotiieiiietic ettt ettt b et b e bt eb e se b s s nteneas 215
DB 2 HINTS ittt b ettt b e a e n e 217
SY0ASE HINTS et bbbttt 217
RETEIEINCE .ttt b ettt b e st e b et e st e ke b e st e e b e b e st s et e b e st et et e b e et et nenens 220
Database O JECES...cuiueueieueieieieieieiiicet ettt bbbttt 220
DBMS Connection Parameters by Platform ... 230
IBIME DB2 LUW ...ttt 231
IMICTOSOTt SQL SEIVET ..ttt ettt ettt et et b e s enenenenes 231
JDBC Connection Parameters ... 233
Oracle ConNection ParameEters........cc ettt 233

Sybase ConNection ParameETars ...ttt 234

Welcome to DB Optimizer

IDERA DB Optimizer simplifies SQL optimization and development for application developers
with many features for improving productivity and reducing errors. A rich SQL IDE with
statement tuning, data source profiling, code completion, real-time error checking, code
formatting and sophisticated object validation tools helps streamline coding tasks. DB
Optimizer's user interface helps improve overall productivity with integrated development,
monitoring, and tuning components. DB Optimizer offers native support for IBM® DB2® for
LUW, Oracle®, Microsoft® SQL Server and Sybase® as well as JDBC support for other DBMS.

DB Optimizer has four components that when used together can optimize your database
performance.

SQL Editor: A developer can write Java in Eclipse that calls to the database with SQL. The SQL
that calls to the database can be written in the SQL Editor with type ahead, code assist and

quick fixes to show the users syntax and correct mistakes. For more information, see Creating
and Editing SQOL Files (SQL Editor).

Load Tester: The SQL code can be run in the Load Tester to test execution by multiple
concurrent users. User load testing is so often done by one single user and then problems don't
appear until production with multiple concurrent users. Concurrent user testing is a breeze in DB
Optimizer. For more information, see Using SQL Load Editor/Tester.

Profiler: You can run the Profiler while the Load Tester is executing to show clearly the impact on
the database. The profiler can also be used by QA on load simulation. Finally, the Profiler can be
run on any production database to clearly show load, bottlenecks, and sources of bottlenecks or
resource consumption. For more information, see Using Profiling.

Tuner: Finally, if a problem SQL is found on the system the Tuner will show if it's correctly
optimized by the database or not, and if not it will show the best plan and what hints or
optimizer directives can be included in the SQL to force the database to use the optimal plan.
For Oracle these hints can even be stored in the database so that there is no need to even
change the original SQL text. For more information, see Using Tuning.

About this Document

This document is the primary reference and usage guide for DB Optimizer.

NOTE: For the latest versions of DB Optimizer documents and for information that will help
you install and upgrade, see the IDERA documentation website. Always make sure to
consult the README for late breaking updates at
www.idera.com/support/productdocuments.

DB OPTIMIZERUSERGUIDE 7

https://www.idera.com/support/productdocuments

Configuring DB Optimizer

This section contains information on configuring DB Optimizer. It includes information on setting
up the system directory for project files, as well as licensing information. Additionally, this section
contains information on setting preferences within the application for the customization of
various features and functionality.

e |nitial Setup
e Customizing DB Optimizer (Preferences)

Initial Set Up

The following topics provide general help for configuring DB Optimizer:

e Specify a Workspace
e License DB Optimizer

Additionally, the following preferences are available to help you customize and tune functions
within the application:

e Specify Data Sources Preferences
e Specify SOL Development Preferences
e Specify SOL Editor Preferences

Specify Code Assist Preferences
Specify Code Formatter Preferences
Specify Code Quality Preferences
Specify Results Viewer Preferences
Specify SOL Templates Preferences
o Specify Syntax Coloring Preferences

O O 0O O O

e Specify SOl Execution Preferences

e Specify SOL Filters Preferences

e Specify Data Source Indexing Preferences
e Specify Profile Alerts Preferences

e Specify Profile Repositories Preferences

e Specify Tuning Job Editor Preferences

e Specify VST Diagrams Tuning Preferences
e Specify File Encoding Preferences

Specify a Workspace

When you install DB Optimizer, you are prompted to create a workspace. Then when you launch
DB Optimizer, you have an opportunity to choose your workspace. At any time while running DB
Optimizer, you can change your workspace.

8 DB OPTIMIZER6USERGUIDE

e Select File > Switch Workspace.
Workspace Launcher e

Select a workspace

IDERA DB Optimizer stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Workspace: C\Users\npollard\AppData\Roaming\IDERA\dboptimizer\w

~ Copy Settings
["] Workbench Layout
[working Sets

@ OK] l Cancel

License DB Optimizer

The first time you first launch DB Optimizer, you will be prompted to activate the product.
Choose to activate by Internet and follow the prompts. During the activation process you will
receive an email with an activation key; after you enter that key into the License Setup dialog,
you will receive a free 14-day evaluation license.

If due to firewall or other restrictions you cannot use Internet activation, select the E-mail
alternative.

To continue using DB Optimizer after the evaluation period, select Help > IDERA Licensing >
License Registration and follow the prompts.

DB OPTIMIZERUSERGUIDE 9

Customizing DB Optimizer (Preferences)

To customize various aspects of DB Optimizer, select the aspect you want to customize from
the Preferences menu.

This section is comprised of the following topics:

Specify Data Sources Preferences

Specify SOL Development Preferences

Specify SOL Editor Preferences

Specify SOL Execution Preferences

Specify SOL Filters Preferences

Specify Data Source Indexing Preferences

Specify Profile Alerts Preferences

Specify Profile Repositories Preferences

Specify Tuning Job Editor Preferences

Specify VST Diagrams Tuning Preferences

Specify Data Sources Preferences

When you add a data source to your list of Managed Data Sources in the Data Source
Explorer, DB Optimizer stores the definition and metadata for the data source in the
location you specify. For information on adding data sources, see Register Data Sources.

1

From the Preferences menu, select Data Sources.

The Data Sources pane appears.

Preferences (Filtered)

type filter text

Data Sources

7\
@

Data Sources v T

Specify the location for data source definitions and their metadata:

Data Sources: C\Users\npollard\AppData\Roaming\IDERA\Dal
Metadata: pData\Roaming\IDERA\Data Sources\metadata

Data Source Categories

Category Name Short Name Color Add...
Development DEV Edit.
Production PROD
Test TEST Remove
QA QA

Connectivity

Enable Oracle OCI driver

Note: This preference will enable use of the Oracle OCI driver installed on the
local machine. Additionally, this will cause the Oracle Thin JDBC driver to use
the installed Oracle client libraries. Please ensure your Oracle client installation
is compatible with your Oracle data sources before enabling this preference.
You may need to restart the application for this change to take effect.

[Resmre Defaults] l Apply

l

[oK l I Cancel I

2 Specify the location for data source definitions and their metadata.

3 Click Apply.

NOTE: For information on adding custom categories, see CUSTOMIZING DATA
SOURCE CATEGORIES.

DB OPTIMIZER6USERGUIDE

Specify SQL Development Preferences

The SQL Development Preferences specified on the first page of the SQL Development
Preferences determines DB Optimizer behavior when connecting to and extracting DDL from a
data source. For information on preferences accessible by expanding SQL Development, see
Customizing DB Optimizer (Preferences).

1 From the Preferences menu, select SQL Development.

Preferences (Filtered) u@lﬁ
type filter text SQL Development Ty

» SQL Development -
Connection timeout (seconds): ﬂ <

DDL Extraction

Extract dependent objects also

Add initial USE statement if the platform supports it
| Extract storage information

Include DROP statement

QOracle Data Dictionary View Usage

@) Automatic “Role Based" Selection
Manually Force DBA_* View Usage
Manually Force ALL_* View Usage

DBA Check
Always check if the user has SELECT_CATALOG_ROLE role, when connecting to a database (Oracle only)

‘Resmre Defaults‘ ‘ Apply |

@ [oK] | Cancel ‘

2 Choose your preferences and then click Apply.
The following describes the SQL Development preferences:

e Connection timeout (seconds): Specify the connection timeout before the connection
to the database fails.

e Extract dependent objects also: If selected, when extracting DDL dependent objects
such as indexes are also extracted.

e Add initial USE statement if the platform supports it: If selected, a USE statement is
added to the DDL extracted. Adding the USE statement ensures that when you run the DDL,
you are using the correct database context.

e Extract storage information: If selected, when extracting DDL object storage information
is also extracted.

* |nclude DROP statement: If selected, the DROP statement will be added to the DDL so
you can easily execute the statement.

DB OPTIMIZERUSERGUIDE "

Specify SQL Editor Preferences

1 Select Preferences > SQL Editor.

Preferences (Filtered) L@-wﬁ—h]
type filter text sQL Editor - -
4 SQL Development

. SQL Editor Enable the SQL parser for files smaller than 700 = KB

Severity level for semantic validation problems: |Error =

Hyperlinks can be configured on the Text Editors preference
page.

lResmre Defaults] [Apply]

"?: I OK I I Cancel l

2 Change the settings as appropriate in each section and then click Apply.

* Enable the SQL parser...: For performance reasons, you may want to enable the SQL
parser only if a SQL file is smaller than the size you specify here.

e Severity level for semantic validation problems: Choose a security level from this list.
This determines how semantic code errors are flagged in the editor and the Problems
view.

® The link to specify hyperlinks takes you to the Text Editors preference page.

NOTE: Clearing Enable SQL Parser will disable many of the “smart” SQL editor features,
including code formatting, auto completion, semantic validation, and hyperlinks. For
better performance, you may disable the parser for files above a specified size.

See the following topics to configure other SQL Editor preferences.

Specify Code Assist Preferences
Specify Code Formatter Preferences
Specify Code Quality Preferences
Specify Results Viewer Preferences
Specify SOL Templates Preferences
Specify Syntax Coloring Preferences

12 DB OPTIMIZER6USERGUIDE

Specify Code Assist Preferences

The Code Assist panel is used to specify configuration parameters that determine how code
completion features in SQL Editor behave.

e Select Preferences > SQL Editor and then in the Preferences dialog, expand SQL Editor
and click Code Assist.

Preferences (Filtered) l Ef X |
type filter text Code Assist (Sl v -
4 SQL Development

4 SQL Editor Enable auto-activation
Code Assist Auto-activation delay (ms): 1000 =
Code Formatter Auto activation triggers for SQL: .
Code Quality
Results Viewer] Fully qualify completions automatically

SQL Templates

R Code assist color options:
Syntax Coloring

Completion proposal background Color: @
Completion proposal foreground

< m b [Restore Defaults] [Apply]

'f?:' [OK I I Cancel l

The following describes the options on the Code Assist Preferences page.

¢ Enable auto-activation: When selected enables code assist functionality with the Ctrl +
Space command. If this option is selected, the code assist window automatically appears
when you stop typing.

e Auto-activation delay (ms): Specify the amount of time in milliseconds that the window
automatically appears.

e Auto activation triggers for SQL: Enter a trigger character or trigger characters. When
you enter an activation trigger in the SQL Editor, you will see the code assist options
available.

e Fully qualify completions automatically: When selected, specifies if code completion
results are returned specific (fully qualified), rather than the minimum required to identify the
object.

e Code assist color options: Specifies the color formatting of code completion proposals.
Select background or foreground options from the menu and modify them as appropriate.

DB OPTIMIZERUSERGUIDE 13

Specify Code Formatter Preferences

The Code Formatter pane provides configuration options for code formatting functionality in SQL
Editor.

e Select Preferences > SQL Editor and then in the Preferences dialog, expand SQL Editor and
click Code Formatter.

Preferences L@_ﬂ
type filter text Code Formatter LTy
S -
General Select a profile:
Data Sources
. Help [IDERA [built-in] x| show.] Rename. Remove
4 SQL Development N
Code Completiy e
. Profile Alerts CREATE TABLE colTable i
Profile Reposite| (
4 501 Edit L coll INT,
QLEditor 1= col2 INT, 3
Code Assist col3 INT,
Code Forma cold VARCHAR (3@)
Code Quality)5
Results View
SQL Templat INSERT
INTO colTable
Syntax Color|

. VALUES
SQL Execution (

SQL Filters <)
» Tuning Job Edit ~
‘ 1 »

[Resmre Defaultsl I Apply J

"'_7)‘ l oK I l Cancel I

The panel provides a drop down list of formatting profiles and a preview window that displays
how each profile formats code.

e Select a profile: From the list, choose the profile you want to view.

e Click Show to view the details of the Profile. On the Show Profiles dialog that appears, you
can edit the profile and save the changes.

o Click New to define additional code formatting profiles.

e Click Edit to modify existing profiles. You can modify how code characters appear in the
interface and how SQL Editor determines line breaks.

e Click Rename to change the name of an existing profile. The new name cannot be the same
as another existing profile.

NOTE: If you create a new profile with a name that already exists in the system, a prompt will
appear asking you to change the name of the new code formatting template.

Create and Edit Code Formatting Profiles

You can create your own code formatting profiles that will define how your SQL code is formatted.

1 Select Preferences > SQL Editor and then in the Preferences dialog, expand SQL Editor
and click Code Formatter.

2 On the Code Formatter pane, click Show or New and a dialog similar to the following
appears.

14 DB OPTIMIZER6USERGUIDE

Show Profile = X

Style Preview:
Keyword: |Uppercase - CREATE OR REPLACE PROCEDURE PreviewProcedure — «
(
. vall IN NUMBER,
New lines val2 IN NUMBER,
Maximum line width: 136 z , val3 IN NUMBER
Dlnsert a new line before keywords Is I
Keep empty BEGIN..END block on a single line EE!?NWI NUMBER ;
SELECT col@
Conditions FROM table@ —
) - — — WHERE
Formatting policy: |Stack conditions, trailing operators - coll = vall AND
. = col2 = val2 AND
Stacking threshold: 2 =
acking thresho! 013 = val3; i
[] Keep simple THEN statements on the same line < DI N -
(?) This is a built in profile, you will ..a new name when you close the profile Apply OK l [Cancel

3 Make your changes, click Apply to preview your changes and then click OK to create the
new profile or to exit the Show Profile dialog.

4 Use the preview pane to preview the changes you make to your code formatting
preferences. Changes are not implemented until you click Apply or OK.

Specify Code Quality Preferences

The Code Quality preferences allow you to specify the severity level for several categories of
problems that result in inefficient or erroneous SQL.

1 Select Preferences > SQL Editor and then in the Preferences dialog, expand SQL Editor
and click Code Quality.

Preferences (Filtered) L@ﬂ—hl

type filter text Code Quality f - v -
4 SQL Development

Q) P Select the severity level for the following categories of problems that result in

4 SQL Editor

inefficient or erroneous SQL:
Code Assist

Code Formatter Missing valid JOIN criteria:
;:fuelt?:l"“tir Invalid or missing OUTER JOIN:
SQL Templates Transitivity problem:
Syntax Coloring Nested query in WHERE clause:
Wrong place for conditions in HAVING clause:
Index suppressed by a function or an arithmetic operator:
Mismatched or incompatible column types:
NULL column comparison:

P T — Y [Restore Defaults” Apply]

(?) l 0K l [Cancel I

2 Change the severity levels by clicking the list next to the category and choosing the level.

3 To save your changes, click Apply.

DB OPTIMIZERUSERGUIDE 15

Specify Results Viewer Preferences

The Results Viewer pane provides configuration options that specify how the Results
view displays or saves results.

1 Select Preferences > SQL Editor and then in the Preferences dialog, expand SQL
Editor and click Results Viewer.

Preferences (Filtered) =X
type filter text Results Viewer R A
SQL Devel it
“5Q everapmen Result sets options
4 SQL Editor —
Code Assist Maximum number of result sets: 100 [+
Code Formatter Suppress execution messages
Code Quali
2 - v @ Show results in editor
Results Viewer
SQL Templates Grid refresh interval (ms): 2000 =

Syntax Coloring . —
Maximum result rows to sort: 25000~

Results format: Grid

| Stripe the rows of the results table

Display results in a separate tab in the SQL editor
Save results to file

Prompt to save file

Include SQL text
Comma delimited (*.csv) -
-
< m D |Rest0re Defaults‘ ‘ Apply |
'/':7>‘ l OK] | Cancel ‘

2 Make your preference changes and then save your changes by clicking

Apply. The following describes the preference options available:

e Maximum number of result sets: If selected and the executed SQL returns more
results sets than the maximum specified, result sets in excess of the maximum
specified will not be displayed.

* Suppress execution messages: If selected and the SQL you execute returns
informational messages, they will not be displayed.

e Show results in editor: Execution results can be either shown in the editor or sent to a
file. If you choose

* Grid refresh interval: Indicates the speed in milliseconds that the Results view refreshes.

e Maximum result rows to sort: If the number of rows and results exceed this number,
the column sorting in the result set is disabled.

* Results format: These are the different formats that can be used to display the results in
the editor.

e Stripe the rows of the results table: Adds intermittent highlighted bars in the Results
view.

e Display results in separate tab in SQL Editor: Opens the Results view in a
separate window on the Workbench.

* Save results to file: Provides options that let you save the contents of the result sets
to a file. You can also specify the file type, delimiter and text qualifier.

DB OPTIMIZER6USERGUIDE

Specify SQL Templates Preferences

The SQL Templates panel provides customization options for creating and modifying SQL

code templates.

1 Select Preferences > SQL Editor and then in the Preferences dialog, expand SQL

Editor and click SQL Templates.

The SQL Templates panel displays a list of all SQL code templates currently available.
Additionally, when you select a template from the list, the Preview section displays the
code block as it will appear when the template is selected in SQL Editor.

Preferences (Filtered) =X
type filter text Templates oo v -
SQL Devel it
4 5QL Deve Vapmen Create, edit or remove templates:
4 SQL Editor =
Code Assist Name Context Description Auto Ins : New.
Code Formatter ALL.. DB2(. allocates acurs.. on =
Code Quality ALTE.. DB2 (.. alters a table on
Results Viewer ALTE.. DB2 (.. altersa tablesp.. on Remove
SQL Templates ALTE.. DB2(.. altersaview on
Syntax Coloring ALTE.. DB2 (.. alters a function on
ALTE.. DB2 (.. altersa method on Revert to Default
ALTE.. DB2 (.. altersa proced.. on
ALTE.. DB2 (.. alters a sequence on
[ZFlrall DRI ralle a nracadira an T Bremi
< 11 3 =
Preview:
-
4 }
[T use code formatter
q T D [Restnre Defaults] [Apply]
@ [OK] l Cancel I

2 Click on the check box beside each template to specify if it is included in the code assist
check or not, within SQL Editor. Use the buttons on the right-hand side of the panel to
create, edit, or delete SQL templates, as needed.

When you create or edit a template, the Edit SQL Template dialog appears.

Edit SQL Template

5] |

Name: ALLOCATE_CURSOR

Description: allocates a cursor for the result set

Pattern: ALLOCATE ${cursorName} CURSOR FOR RESULT SET ${variable};

<

Insert Variable...

Edit context Autcmaticallyinsert

@ [o

|

Cancel I

3 Enter a Name, Description, and Pattern in the fields provided, and click

OK.

If the template name doesn’t match an existing SQL code template, your new template is
added to the list, and will automatically be considered when the code assist function is

executed in SQL Editor.

4 Select the Use Code Formatter check box to apply code formatting preferences to the
specified template. See Specify Code Formatter Preferences for more information about

setting code formatter preferences.
DB OPTIMIZER USER GUIDE

17

Specify Syntax Coloring Preferences

The Syntax Coloring panel provides configuration options that change the look and feel of
code syntax in SQL Editor.

1 Select Preferences > SQL Editor and then in the Preferences dialog, expand SQL
Editor and click Syntax Coloring.

Preferences (Filtered) =0 X
type filter text Syntax Coloring Grevy
4 SQL Development

4 SQL Editor Element:
Code Assist 4 SQL Enable
Code Formatter Keyword Color: E]
Code Quality Non-executable command line [Bold
Results Viewer Number i
[1talic
SQL Templates Other
Syntax Coloring String
> Comment

Preview:

-- Table : Accounts
CREATE TABLE ACCOUNTS
(

T TMT
4 [

mf»

Pl P TrE— lRestore Defaults” Apply]

('_7)‘ l oK I [Cancel I

2 Use the tree view provided in the Element window to select the comment type or code
element you want to modify. Select the options to the right-hand side of the window
to modify it.

The Preview window shows a piece of sample code that updates according to the changes
you made.

Specify SQL Execution Preferences
The SQL Execution preferences you set determine how SQL is executed.

Select Preferences > SQL Execution.

Preferences (Filtered) =X
type filter text SQL Execution w7 B

4 SQL Development

- Enable auto-commit for the following platforms:
SQL Execution

[¥]18M DB2 for LUW
Microsoft SQL Server
Oracle

Sybase ASE

Enable DBMS output (Oracle only)

lRestnre Defaultsl l Apply]

('_7)‘ l oK I [Cancel I

18 DB OPTIMIZER6USERGUIDE

The following describes the SQL Execution Preference options available.

Enable auto-commit for the following platforms: When disabled, the SQL is
executed within transactions that must be manually committed.

Enable DBMS output (Oracle only): When disabled, this omits the output statements
that

Oracle would otherwise display.

NOTE: If you disable auto-commit for a platform, you must use SQL Editor's transaction
features to execute code on that platform.

Specify SQL Filters Preferences
These are the set of controls that determine what objects are shown in the Data Source Explorer.

Select Preferences > SQL Filters.
Preferences (Filtered) { Bl X

type filter text SQL Filters T T

4 SQL Development
SQL Filters The selected filters will be applied in an AND manner.

IBM DB2 for LUW | Microsoft SQL Serverl Oracle | Sybase ASE|

Ignore system objects New...

Remove
Export...
Select A

Deselect All

lRestcre Defaultsl l Apply]

=
)

l OK I [Cancel I

Specify Profile Alerts Preferences

For information on specifying the Profile Alert Preferences, see Configuring Profiling.

Specify Profile Repositories Preferences

For information on specifying the Profile Repositories Preferences, see Configuring Profiling.

Specify Tuning Job Editor Preferences

For information on specifying the Tuning Job Editor Preferences, see Configuring Tuning.

Specify VST Diagrams Tuning Preferences

For information on specifying the VST Diagrams Tuning Preferences, see Configuring Tuning.

DB OPTIMIZERUSERGUIDE 19

Specify File Encoding Preferences
The Workspace panel provides options for Unicode support in SQL files.

Select Preferences > General, expand General and then click Workspace in the tree.
Preferences (Filtered) Bl X

type filter text Workspace (=g v -
4 General . ,
See 'Startup and Shutdown' for workspace startup and shutdown preferences.
» Appearance

Compare/Patch
Content Types Build automatically
» Editors || Refresh using native hooks or polling
Globalization || Refresh on access
Keys [save automatically before build
» Netwark Connectic | || Always close unrelated projects without prompt
Perspectives
Search Workspace save interval (in minutes): 5
» Security
» Startup and Shutdc Workspace name (shown in window title):
Tracing

UL Responsiveness | Workspace path: C\Users\npollard\AppData\Roaming\Idera\dboptimizer\workspace

Web Browser [] Show workspace path in window title

» Workspace
Open referenced projects when a project is opened
) Always ‘j_'Never 0 Prompt
Command for launching system explorer: explorer /E/select=${selected_resource_loc}
Text file encoding New text file line delimiter
(@ Default (UTF-8) (@ Default (Windows)
@) Other: | UTF-8 - @) Other: |Windows ~
q i » [Resmre Defaults] [Apply]
'/?) [0K] l Cancel I

The default encoding for text files on Windows platforms is Cp1252. You can change Unicode
support in from file to file using the Text File Encoding options available on the Workspace
panel.

To change text file encoding in the development environment:

1 Select Preferences > General > Workspace and click the Other option under Text File
Encoding.

2 Use the drop down menu and select an encoding mode from the list provided.

3 Click Apply to save your changes.

20 DB OPTIMIZER6USERGUIDE

To change text file encoding on a specific, folder, or project:

1 Right-click on the file, folder or project that you want to modify and choose Properties.
2 Modifythe Text file encoding selection on the Resource properties page that

appears.
-
Properties for Untitled Tuning Job 2.tun B X
Resource v T
R
ESOUIR) Path: /SQLProject/Untitled Tuning Job 2.tun
Run/Debug Settings)
Type: File
Location: C\Users\npollard\AppData\Roaming\ldera\dboptimizer\workspace\SQLProject\Untitled Tuning
Job 2.tun
Size: 2,000 bytes

Last modified: March 1, 2018 at 8:52:38 AM

Attributes:
|1 Read-only
[¥] Archive
[Derived
Text file encoding
(@) Default (inherited from container: UTF-8)

@) Other: | UTF-8 -

[Restore Defaults] [Apply I

@, [0K } l Cancel]

DB OPTIMIZERUSERGUIDE 21

Introduction to Database Tuning

This discussion will help you understand the methodology behind DB Optimizer’s tuning
functionality and how you can use it to optimize database performance. This discussion is
comprised of the following topics:

Introduction to DB Optimizer's Tuner

SQL Tuning Methodology

SQOL Tuner Overview

What's happening on the databases?

Tuning Example

The Database is Hanging or the Application has Problems
The Database Caused the Problem

The Machine Caused the Problem

Finding and Tuning Problem SOL

Introduction to DB Optimizer Tuner

DB Optimizer's methodology grew out of the impossible predicament presented by the defacto
method of database tuning. The standard method was trying to collect 100% of the statistics
100% of the time. Trying to collect all the statistics as fast as possible ends up putting load on
the monitored database and creating problems. Stories of problems created by database
monitoring products abound in the industry. In order to avoid putting load on the target
database, performance monitoring tools have to collect less often as a compromise. Oracle
compromised in 10g with AWR (their automated performance data collector), only running it
once an hour because of the performance impact. Not only is the impact on the monitored
target high, but the amount of data collected is staggering, but the worst problem of all though,
is the impossibility of correlating statistics with the sessions and SQL that created the problems
or suffered the consequences.

The solution to collecting performance data required letting go of the old problematic paradigm
of trying to collect as many performance counters possible as often as we could and instead
freeing ourselves with the simple approach of sampling session state. Session state includes
what the session is, what its state is (active, waiting, and if waiting, what it is waiting on) and what
SQL it is running. The session state method was officially packaged by Oracle in 10g when they
introduced Active Session History (ASH). ASH is an automated collection of session state
sampling. The rich robust data from ASH in its raw form is difficult to read and interpret. The
solution for this was Average Active Sessions (AAS). AAS is a single powerful metric which
measures the load on the database based on the ASH data. AAS data provided the perfect road

map for what data to drill into. The main drill downs are “top SQL", “top session”, “top event”,
and "“top objects”.

Other aggregations are possible based on the different dimensions in the ASH data.

22 DB OPTIMIZER USER GUIDE

Tuning Example

Here is an example screen shot of the same batch job being run four times. Between each run
performance modifications are made based on what was seen in the in the profiling load chart:

kg pars B - B = 0 moffer by i | O Scoemeit_gbry_ow. b5 i e
=i | . o5]
i % 3 Home syslem B Processes: | -al- W FRter by | Hone- -, i r_E. @
iy 8 laad edor L
Py A SGL Praect Frofife Session] g
= Gy A SOL Proect 2
& & Comectons B on CPU B System 0 B User V0 B Cluster B Application B Cansiguraton B Cornmit B Fratwonk 8 Administrative
) ::__ﬁ Shebie ot B Concuriancy O Scheduber B Othes m
e J — - em—— e ———————— S ——— — eamm——
gy GEaerE SOL A
oo E al
3 cualony =k
G HOR g
- L0aD e
S OsR @ =l
; @
* -.:“ 5C demos &l |
g s & |
TN ol . Lt
2 T g &
- = VR gl
checkpoint
P log create
. g | | overview | B 500 | €53 Bvenss | 7 Sessions | 800 ipect 10|
ST - t SOL Statements Events Seusions
ESOL [prog i3 0
= B S Statement 08 Actin: Event 08 Acth P \rser | Frogram Act =
e L B Lo IR | b ffer by v [} ORACLE EXE fLGwR) =3
—ama gy tem | B siter datab,. 000 reuse log fie st ot mcompiese]) SYSTES o]
= m | D3 aner datals, . 000 reuce log Fi gy [2] SYSTEM i | |
Exeoastng 500 Load.. I & SELECT HASH...[0,10,0) OH CPU B SYSTEM TER i
:_.ip'n‘\-'-."(Home sysiem i log fie paralel srite [| SYSTEM o i
[Crrr T fop fie weinch complenon [SYSTEM 8 |
= | Log fie nt wmte I SYSTEM L1 i
b M paraliel wnte | EYETEM [|
contrel fie paredel smte | a | STSTEM | -
| £ > L > £ >
a Home gystes: [1350) e

Run:

1 Inrun1,” logfile sync “event is the primary bottleneck. To correct this, we moved the log
files to a faster device. (You can see the checkpoint activity just after run 1 where we
moved the log files.)

2 Inrun 2, the "buffer busy wait” event is the primary bottleneck. To correct this, we moved
the table from a normal tablespace to an Automatic Segment Space Managed tablespace.

3 Inrun 3the "log file switch” (checkpoint incomplete) event is the primary bottleneck. To
correct this, we increased the size of the log files. (You can see the 1O time spent creating
the new redo logs just after run 3.)

4 The run time of run4 is the shortest and all the time is spent on the CPU which was our goal,
take advantage of all the processors and run the batch job as quickly as possible.

NOTE: To view an explanation of the event, hover over the even name in the Event section.

DB OPTIMIZER USER GUIDE 23

Conclusion

With the load chart we can quickly and easily identify the bottlenecks in the database, take
corrective actions, and see the results. In the first run, almost all the time is spent waiting, in the
second run we eliminated a bottleneck but we actually spent more time - the bottleneck was
worse. Sometime this happens as eliminating one bottleneck causes great contention on the
next bottleneck. (You can see the width of the run, the time it ran, is wider in run 2). By the third
run, we are using more CPU and the run time is faster and finally by the 4th run all the time spent
is on CPU, no waiting, and the run is the fastest by far.

SQL Tuning Methodology

1 Verify that the execution path is the optimal for the query
If not either use the tuning directives (such as hints on Oracle) or
Identify why the native optimizer failed to pick the optimal path
2 If the query is still slow then look at adding indexes
3 If the query is still slow, then you know you are going to have to look at the architecture
What information is the query trying to
get? Is this information necessary?

Are there alternative ways to get this information?

DB Optimizer's SQL Tuner can help with 1 and 2. Step 3 will have to be done by a developer or
DBA but knowing that step 1 and 2 have already been validated can indicate to management
that step 3 is necessary and therefore allocate sufficient resources for step 3.

How do we know if the native database optimizer chose the optimal path? How long would it
take to check this by hand?

DB Optimizer's SQL Tuner is a solid fast sanity test to verify the plan chosen by the native
database SQL optimizer. Tuner quickly generates as many alternative paths as possible and
allows the user to execute them to see if there are more efficient execution paths. DB
Optimizer's SQL Tuner is successful at tuning queries that have a suboptimal execution path.

A query has a sub-optimal execution path when the database optimizer has miscalculated the
cost of the various possible access paths and mistakenly chosen a bad path. The access path
calculations can be miscalculated because of the following reasons:

e The table/index statistics are missing or wrong. (For example, the number or rows is missing
or way off.)

e The data is skewed, for example, the number of orders with an open status is usually low
compared to all the orders that have a closed status because the work is complete. (For
example, orders get filled every day, but only a few are open and needing to be processed.)
Looking for open orders should probably use an index and return fewer rows than looking
for closed orders which should probably just do a full table scan.

e The predicates used are correlated. The optimizer treats two predicate filters on a table as
more selective than just one, but this is not always the case such is the case in the query, how
many Swedes speak Swedish which basically returns the same number of results as just
asking for the number of Swedes alone. Another example is how many Swedes speak
Swahili, which is probably more selective than the optimizer would guess.

24 DB OPTIMIZER USER GUIDE

e Abugin the optimizer

DB Optimizer's SQL tuner will take a query and try to produce as many execution paths as
possible. These alternative execution paths can then be run to see if there is a faster or less
resource expensive execution path. The execution of each alternative case is timed and if the
execution exceeds 1.5 X the original case then its execution is stopped and we move on to the
next case. This avoids wasting time and resources on execution plans that are clearly
suboptimal.

SQL Tuner Overview

Tuning provides an easy and optimal way to discover efficient paths for queries that may not be
performing as quickly or as efficiently as they could be.

The application enables the optimization of poorly-performing SQL code through the detection
and modification of execution paths used in data retrieval. This process is performed through
the following functions:

® Hint Injection
¢ Index Analysis
e Statistic Analysis (Oracle only)

e Query re-writes such as suggesting joins to eliminate Cartesian joins, adding transitivity
predicates, and unnesting subqueries in the WHERE clause.

Tuning analyzes an SQL statement and supplies execution path directives to the application that
encourage the database to use different paths.

For example, if tuning is selecting from two tables (A and B), it will enable the joining of A to B,
or B to A as well as the join form. Additionally, different joining methods such as nested loops or
hash joins can be used and will be tested, as appropriate. Tuning will select alternate paths, and
enable you to change the original path to one of the alternates. Execution paths slower than the
original are eliminated, which enables you to select the quickest of the returned selections and
improve query times, overall.

This enables the DBA to correctly optimize queries in the cases where the native optimizer

failed.

DB OPTIMIZER USER GUIDE 25

What's Happening on the Databases?

Is the database idle, working or bottlenecked?

When a bottleneck happens how can you know which of these problems are causing the
problem? A bottleneck could be caused by:

* An application problem
¢ An undersized machine
¢ SQL requiring optimization

¢ A misconfigured database

All of these can be easily identified from DB Optimizer's performance profiling screen.

Let's look at the components of the performance profiling screen

L e e
B bl SeomE ey Poed e s e

o - E WS O |34 N e BT 7 e
L el B o e e o Py U,y el
: i b wyillinim = P, i W Py drw - ¥
3

el et

FISFEFRERNES

The screen has six important parts.

26

1. Databases. For more information, see Databases.

2. Average Active Sessions (AAS) Load of selected database. For more information,
see Average Active Sessions (AAS) Load of selected database.

3. Maximum CPU line. For more information, see Maximum CPU line.

4. Top SQL. For more information, see Top SQL, Top Bottlenecks, and Top Sessions.

5. Top Bottlenecks. For more information, see Top SQL, Top Bottlenecks, and Top
Sessions.

6. Top Sessions. For more information, see Top SQL, Top Bottlenecks, and Top Sessions.

DB OPTIMIZER USER GUIDE

Databases
First, on top left, is a list of our databases we have registered.
Average Active Sessions (AAS) Load of selected database

The most important part of the screen is the Average Active Sessions (AAS) graph. AAS shows
the performance of the database measured in the single powerful unified metric AAS. AAS easily
and quickly shows any performance bottlenecks on the database when compared to the
Maximum CPU line. The Max CPU line is a yardstick for performance on the database. When
AAS is larger than the Max CPU line there is a bottleneck on the database. Bottleneck
identification is that easy.

AAS or the average number or sessions active, shows how many sessions are active on average
(over a 5 second range in DB Optimizer) and what the breakdown of their activity was. If all the
users were running on CPU then the AAS bar is all green. If some users were running on CPU
and some were doing |O, represented by blue, then the AAS bar will be partly green and partly
blue.

Maximum CPU line

The line “Max CPU" represents the number of CPU processors on the machine. If we have one
CPU then only one user can be running on the CPU at a time. If we have two CPUs then only 2
users can be on CPU at any instant in time. Of course users can go on and off the CPU extremely
rapidly. When we talk about sessions on the CPU we are talking about the average number of
sessions on CPU. A load of one session on the CPU thus would be an average which could
represent one user who is consistently on the CPU or many users who are on the CPU for short
time periods. When a CPU becomes a resource bottleneck on the database we will see the
average active sessions in CPU state go over the Max CPU line. The number of sessions above
the max CPU line is the average number of sessions waiting for CPU.

The Max CPU is a yardstick for performance on the database.

From looking at the previous chart the problem is a machine resource problem.

Top SQL, Top Bottlenecks, and Top Sessions

In order to know what the problem is, we have to find out where that demand is coming from. To
find out where the demand is coming from we can look at Top SQL and Top Session tables
below the load chart. In our case shown here the load is well distributed over all SQL in Top SQL
and all sessions in Top Session. There is no outlier or resource hog. In this case it's the machine
that's underpowered. What does a case look like where we should tune the application? The
following screenshot depicts such a problem.

DB OPTIMIZER USER GUIDE 27

Frotis Lo

WO CFU B Syt 0 B Wk 10 BCiter Bapedcitun B onl guillsat B Cimmit§ Nabwick B A3m e teitie B Céinoumancy [Echicduls B0hia

hries Sampnr frag

o 4 TP S AL

In this case, again the CPU demand is more than the machine can supply but if we look at “Top
SQL" we can see that the first SQL statement (with the large green bar) uses up much more CPU
than any of the rest, actually 60%! If we could get it down to 10% CPU then we'd save 50% of the
CPU usage on the machine! Thus in this case it's worth our while to spend a day or week or even
a couple weeks trying to tune that one SQL statement instead of buying a bigger machine.

Finally, how do we know when the database configuration is a problem? We know it's a
configuration problem when we are seeing something other than CPU as the bottleneck in Top
Bottleneck section. Here's an example

A Optedsation kg Sl wwih (osepleDdoad | it iaders T8 OpOedded {000 aali e S it ey albaopd ek e e e 05 it T
EE k]
- -] [O MR = - o | e s

LT B EF D i st e | o e e

S labe_sysbens = PR B e B
ik iy
[A— &

Wi £ wnesn 3 e (] v W i [oo anaion I ot B s W st s] s B Bons e [

In this case we can see the load is higher than the Max CPU line but the load is coming from
brown colored bars and the green CPU colored bars. If we look at Top SQL we see that there is
only one SQL taking up almost all the load, but it's not because of CPU which would be a green
bar, but some other color. What does this other color represent? We can look at the Top
Bottleneck section and see that it is “log file switch (incomplete)” which basically means the log
files are too small, the database is not correctly configured. This bottleneck can be resolved
simply by increasing the log size.

28 DB OPTIMIZER USER GUIDE

Tuning Example

This example is comprised of the following parts:

e The Database is Hanging or the Application has Problems
e The Database Caused the Problem
e The Machine Caused the Problem

The Database is Hanging or the Application has Problems

| wonder if you can imagine, or have had the experience of the application guys calling with
anger and panic in their voices saying, “The database is so slow, you've got to speed it up.”

What's your first reaction? What tools do you use? How long does it take to figure out what's
going on?

Let's take a look at how it would work with DB Optimizer.

o iy o " bty il ot i P

I Vicuti: gl m - i sy

Lt ol

B
r
Ll

e
i

We can clearly see that the database is not bottlenecked and there must be a problem on the
application.

Why do we think it's the application and not the database? The database is showing plenty of
free CPU in the load chart, the largest chart, on the top in the image above. In the load chart,
there is a horizontal red line. The red line represents the number of CPUs on the system, which in
this case is two CPUs. The CPU line is rarely crossed by bars which represent the load on the
database, measured in average number of sessions. The session activity is averaged over five
samples over five seconds, thus bars are five seconds wide. The bars above fall mostly about one
average active session and the bars are rarely green. Green represents CPU load. Any other
color bar indicates a sessions waiting. The main wait in this case is orange, which is log file sync,
waits for commits. Why is the database more or less idle and why are most of the waits we do
see for “commit”? When we look at the code coming to the database we see something like
this:

insertintofoovalues
insertintofoovalues commit;
insertintofoovalues commit;

(‘a"); commit;

(‘a");

(‘a");
insertintofoovaluesE'a'g; commit;
aj;

(‘a");

(‘a");

insertintofoovalues('a'); commit;
insertintofoovalues commit;
insertintofoovalues commit;

DB OPTIMIZER USER GUIDE 29

Doing single row inserts and committing after each is very inefficient. There is a lot of time
wasted on network communication which is why the database is mainly idle. When the
application thinks it's running full speed ahead, it is actually waiting mainly on network
communication and commits. If we commit less and batch the work we send to the database,
reducing network communications, we will run much more efficiently. Changing the code to
begin
foriin1..1000loop insertintofoovalues
(a);
--commit;
endloop; end;

/

commit;

improves the communication delay and now we get a fully loaded database but we run into
database configuration issues.

The Database Caused the Problem

WA et By by e (b mbes B nfemee e et md e e ey et S

FEFFFFFFFFFFFFFF
i
i
|

{
0

i

'
!

[
)

In the above DB Optimizer screen, the same workload was run 4 times. We can see that the time
(width of the load) reduced, and the percent of activity on CPU increased. Runs:

1. "log file sync”, the orange color, is the biggest color area, which means uses are waiting on
commits, still even though we are committing less in the code. In this case we moved the log
files to a faster device. You can see the checkpoint activity just after run 1 where we moved the

log files.
2 "buffer busy wait”, the burnt red, is the biggest color area. We drilled down on the buffer busy

wait event in the Top Event section and the details tell us to move the table from a normal
tablespace to an Automatic Segment Space Managed tablespace.

30 DB OPTIMIZER USER GUIDE

3."log file switch (checkpoint incomplete)”, the dark brown, is the largest color area, so we
increased the size of the log files. (You can see the 1O time spent creating the new redo logs just
after run 3.

4. The run time is the shortest and all the time is spent on the CPU which was our goal, to take
advantage of all the processors and run the batch job as quickly as possible.

The Machine Caused the Problem

Now that the application is tuned and the database is tuned let's run a bigger load:

g B NG ED o= g = : | 33 drwmem
PRI b 1Y i [—— Bt oo [S —
o - wedily e shy syt = p— & = b we &

T vl . o 0

R B il il b L R e B e Ly

We can see that the CPU load is constantly over the max CPU line. How can we have a bigger
CPU load than there are actually CPUs on the machine? Because the demand for CPU is higher
than the CPU available on the machine. In the image above there are 2 CPUs on the machine but
an average of three users think they are on the CPU, which means that on average one user is
not really on the CPU but ready to run on the CPU and waiting for the CPU.

At this point we have two options. In this case we are only running one kind of load, the insert.
For inserts we can actually go even further tuning this insert and use Oracle's bulk load
commands:

declare

TYPEIDXISTABLEOFIntegerINDEXBYBINARY_INTEGER;
MY_IDXIDX;

BEGIN
foriin1..8000loop

MY_IDX(i):=1;

endloop;
FORALLIndxINMY_IDX.FIRST..MY_IDX.LAST
INSERTINTOfoo(dummy)
VALUES(MY_IDX(indx));
COMMIT;

end;

DB OPTIMIZER USER GUIDE 31

But if this was an application that had a lot of different SQL and the SQL load was well
distributed across the system then we'd have a case for adding more hardware to the system.
Making the decision to add more hardware can be a difficult decision because in general the
information to make the decision is unknown, unclear or just plain confusing, but DB Optimizer
makes it easy and clear, which can save weeks and months of wasteful meetings and debates.
For example

U Lab_wystem = P = - e o -
e L

- o d S B 4
P o W e v W [Canted A s] S] aman l binaran. [e anes I S macomaty [Sme dunes B Smas
o

g w
‘.
s

;-

EEEEEaEA ST
JESLREATAAGUE

If we look in the bottom left, there is no SQL that takes up a significant amount of load, there is
no outlier SQL that we could tune and gain back a lot of wasted CPU. We'd have to tune many
SQL and make improvements on most of them to gain back enough CPU to get our load down
below the max CPU line. In this case, adding CPUs to the machine might be the easiest and
most cost effective solution.

Conclusion

e With the load chart we can quickly and easily identify the bottlenecks in the database, take
corrective actions, and see the results. In part 1, we had an application problem, in part 2 we
had 3 database configuration issues and in part 3 we had a hardware sizing issue. In all 3
instances DB Optimizer provides a clear and easy presentation of the data and issues
making solutions clear.

32 DB OPTIMIZER USER GUIDE

INTRODUCTION TO DATABASE TUNING > FINDING AND TUNING PROBLEM SQL

Finding and Tuning Problem SQL

P - o

By =

B b [eegew BewTh B

-

@ 500 Ogstimivation - 1068 ABORC] 10y_1.oar - Embarcaders U8 Optimicer - {Bocumenis, and Settingyidodeh doptimines workspecrHproduction_ion (& | N
B Tl G
W 0-a- @ oA .
e Tiring Jo 7 [— 0 " indded K iowd 4 i PR e e
o TORLABDERCLIDG 1= SDOHHEE . A W E b ey w
Peohile Sranis #

=
4

iy d 0
[

tgksa

] :l.' II"IE“ ?:,:' lll‘

o gy noe e

i 5

&

kgt St bR (A

L o
o L U o BN it
Bl cowrons Mo S pers 7 secsore | 68 coma Lo
S Mstements g
P o 08 ety [| By v [L
Hmerao eaac, I e [—]
o TILE i a5 # .
e 348 e I
s = = I
=5 E [—]
3 » . —
§ o o e —
W = ashe e sl oA la [] £
o - B ;
o ¢ e B .
= sOR (]
o B]
%]
e -
i ¥ £ ¥ oA ¥

Utinc Tureng 28 g Jobls (0%

DB Optimizer is targeted at finding problem SQL in a running load with the profiler and then
tuning that (or those) specific queries with the tuner.

It's not efficient just to dump a bunch of procedure code into the tuner and then try and see
if any of the SQL in the package or procedure is tunable. Most queries should, by default,
run optimally on a database, so the goal of DBO is to tune those queries that for one reason
or another are not optimally tuned by the database by default. The easiest way to find those
queries is to identify them on a running system. They can be identified on a running system
because they take up a lot of resources. If we find a resource intensive query, then it's worth
the time to generate cases and analyze it for missing indexes to see if there is a way to tune

It.

DB OPTIMIZER USER GUIDE 33

Using DB Optimizer

This section describes how to use the features of DB Optimizer to optimize your database
operations. This section contains an overview of DB Optimizer functionality and also contains
detailed instructions for

e Working with Data Sources

e Working with SOL Projects

e Creating and Editing SOL Files (SOL Editor)
e FExecuting SOL Files

e Troubleshooting

Working with Data Sources

The Data Source Explorer provides a tree view of all registered data sources and associated
database objects. When you first start DB Optimizer, a prompt appears and offers to populate
Data Source Explorer from multiple sources on the system. This includes previously-registered
data sources on other IDERA products, and third-party DBMS clients such as TOAD. If DB
Optimizer cannot detect a data source, you can register it manually.

Additionally, you can initiate this feature by clicking the Auto-Discovery button on the Toolbar or
via the File > Import > IDERA > Data Sources > Previously Registered IDERA Data
Sources (Registry) command from the Main Menu

93 Data Source Expl.. % | % SQL Project Expl..
Y= RN T AT HER=
type filter text
4 3 Managed Data Sources (1)
4 H& DBPSSQLSerl6 (SQL Server 13.00.1601)
4 (i3 Database Objects
» =# Backup Devices (0)

B
-

- Ity Databases (20)

. @k Linked Servers J
e TN e e

The Profiling Repository entries in the Data Source Explorer are available only when configured
in the Profile Configuration Dialog for Oracle data sources only. These are saved profiling
sessions that you can share with other DB Optimizer users. For information on configuring the
data source profiles, see Building Profiling Configurations.

Register Data Sources

When DB Optimizer is started, it prompts you to discover data source catalogs that have been
created by any previously installed IDERA products (DBArtisan, Rapid SQL, DB Optimizer), or
other instances of DB Optimizer.

Additionally, the system scans your machine for the client software of all supported third-party
DBMS platforms (TOAD, Eclipse Data Tools Platform, etc.). These data sources are automatically
added to the data source catalog.

34 DB OPTIMIZER USER GUIDE

To manually initiate the scan later, click the Discover Data Sources icon [&1] at the top of Data
Source Explorer. The Discover Data Sources dialog appears.

Discover Data Sources S X
Discover Data Sources —
Select the locations to search for data sources.
Previously registered IDERA data sources (Registry)
File system and network

Eclipse Data Tools Platform (DTP)
@ Workspace

“) File system: Browse...
[7] Quest Software (TOAD)
Warkspace

File system: Browse...

@

o
&

1 Choose the type of data sources you want to scan for and click Next. The wizard
automatically returns all data sources it finds on your machine based on the criteria
you specified.

2 Choose the data sources you want to add to the DB Optimizer environment and click Finish.
Data Source Explorer automatically populates with the new data source selections.

TIP: To add data sources manually, right-click Managed Data Sources in the Data Source
Explorer tree, select New > Data Source, and enter the connectivity parameters
as prompted.

For additional information on data source connection parameters, sese DBMS Connection
Parameters by Platform.

Once registered, the data source appears in the Data Source Explorer view. If you have created
more than one workspace, they all share the same data source catalog.

Once a data source has been registered, the connection parameters are stored locally. In some
cases, a user ID and password are required to connect to a registered data source. DB Optimizer
can encrypt and save user IDs and passwords to connect automatically.

NOTE: In some cases, older versions of DB Optimizer and DB Artisan/Rapid SQL are not
compatible with this version of DB Optimizer, and the methods listed above will not
import these older data source catalogs. If you are experiencing difficulties, you can
import the old data sources via the Windows registry by selecting File > Import... >
IDERA > Data Sources > Previously Registered IDERA Data Sources (Windows
Registry).

DB OPTIMIZER USER GUIDE 35

Add a New Data Source

You can also add a new data source manually.

1 Click File > New > Data Source.
New Data Source: New data source { (S | S

Register a new data source

Choose the server type and location for your new data source.

Generate an unique name based on the alias or the host name

Data source name: New data source

Select a server type: Select a data source group:
ftiGeneric JDBC I Managed Data Sources
£fiIBM DB2 for LUW

i Microsoft SQL Server
‘i Oracle
i Sybase ASE

["] Create a new server type-specific subgroup

Select a category: Default hé

Configure data source categories

@

o

2 If you want the system to assign a name to the data sources, select Generate a
unique name based on the alias or the host name.

If you want to enter the data source name, deselect Generate a unique name based on

the alias or the host name and then in the Data source name: field, enter the data
source name.

3 Inthe Select a server type area, select the type you want to add.

4 Inthe Select a data source group area, select the data source group where you want
the new data source to appear in the Data Source Explorer.

5 If you want to assign the new data source to a category, useful if you have a large number of

data sources to manage, click the Select a category: list and choose one of the
categories.

36 DB OPTIMIZER USER GUIDE

I, PR P el NN
o I VLN g VS \uﬁ. -

|| Create a new server type-specific subgroup

Select a category: | Default hd
Default o
Development ‘E‘

[Production

Test -
[

=)
@

Categorized data sources appear with the color for the designated category on the bottom
left of the data source icon in the bottom of such as Fs for the Test category and 8 for the
Production category.

NOTE: Forinformation on adding custom categories, see CUSTOMIZING DATA
SOURCE CATEGORIES.

When you open a tuning job or SQL Editor window to create SQL for the categorized data
source you will see that the category color is applied to the top of the window, as follows.

[£] Urtitled Turing Job 4.tun 23
b 1) Oracle b | ROMLABORCLYI_Z(9.2.0.1)

= Overview P‘ Analysis

EE Qverview

Tuning Statements Generate cases] Perform detail analysis

6 Click Next.

DB OPTIMIZER USER GUIDE 37

New Data Source: New data source L@é]

Configure a new Oracle data source : -

Enter Oracle-specific connection and security credential information for the new data
saurce.

Oracle
(©) Use a TNS name alias

(©) Use connection descriptor

4 »

@ Use a direct connection

*

Host:
Port: 1521
Type: (7 Service name @ sID

Service/SID name:”

Instance name:

Security credentials

User name:

Password:

Connect as: [normal

Auto-connect (Saves and encrypts password)
|| Connect using Windows Authentication

Test Connection

Complete the data source configuration and then click Test Connection. This will ensure
your configuration is correct. If the connection test fails, make the necessary corrections and
then click Finish.

The new data source appears in the Data Source Explorer.

DB OPTIMIZER USER GUIDE

Import and Export Data Sources

Some IDERA products contain data source catalogs that are shared with DB Optimizer. In other
words, instead of manually adding data sources to the environment, you can import an existing
data source catalog from other IDERA products or third-party DBMS sources.

You import Data Sources via the File > Import command in the Main Menu, expanding the
IDERA folder in the Data Source Selection tree, and choosing Data Sources.

Select
\\

Import data sources, I E -

Select an import source:

[#[= General

B-E CvS

= (= Embarcadera
ﬂ!‘] Data Sources

[#- = Run/Debug

[#- (== Team

The following types of sources can be imported to Data Source Explorer:

e Eclipse Data Tools Platform (DTP)

e Previously Registered IDERA Data Sources (File)

e Previously Registered IDERA Data Sources (Registry)
e Quest Software (TOAD)

DB OPTIMIZER USER GUIDE 39

Once a data source is registered, it automatically appears in Data Source Explorer. Connection
parameters are stored locally, and DB Optimizer can be set to connect automatically each time
you select the data source from the tree.

Conversely, you can also Export your current data source catalog to a file, which can then be
imported into other instances of DB Optimizer via the Previously Registered IDERA Data
Sources (File) option. This is performed using the File > Export command in the Main Menu,
and then selecting IDERA > Data Sources from the tree view in the Export dialog.

To import data sources:
1 Select File > Import. The Import dialog appears.
2 Choose IDERA > Data Sources from the tree and click Next.

3 Choose a source from which you want to import the data sources. You can choose to import
data sources from the DTP, TOAD, or an existing IDERA data source catalog stored in the
Windows registry or as a file (created via the Export command). Click Next.

4 Specify the location of the import source and click Finish. Data Source Explorer is
automatically populated with the new data sources.

To export data sources:
1 Select File > Export. The Export dialog appears.
2 Choose IDERA > Data Sources from the export tree and click Next.

3 Use the check boxes beside each listed data source to indicate which data sources you want
to export. Click Next.

4 Click Finish.

5 The data sources are automatically exported in the form of an XML file. You can import this
file to other instances of DB Optimizer via the Import command.

Categorize Data Sources

To make managing a large number of databases easier, you can assign a category to a data
source. Categorized data sources appear with the color for the designated category on the

bottom left of the data source icon in the bottom of such as Fifor the Test category and = for
the Production category.

NOTE: For information on adding custom categories, see CUSTOMIZING DATA
SOURCE CATEGORIES.

You can categorize a data source when you add a new data source (see Add a New Data Source)
or by editing the properties of an existing data source.

1 In the Data Source Explorer, locate and then right-click the data source you want to add
to a category.

2 Choose Properties.

40 DB OPTIMIZER USER GUIDE

& Properties for DSQUERY _#2 (S0L Server)

[e Fiter text | Data Source Configuration -
-~ Configuration
- S0L Fikers Configuration |ﬁd~.'-unl:u|:||

Diata source name: | DSQUERY _#2
Mo category

Caleqory:

Microsoft SQL Serv [Development

() Use @ network [|, | Test
QA
Server gias iﬁu:h_.:ﬁm

3 From the Category list, choose the category you want and then click OK.

When you create a tuning job for the categorized data source you will see that the category
color is applied to the top of the tuning job data source details, as follows.

P‘ Overview P Analysis

£E Qverview

Tuning Statements Generate cases []Perform detail analysis

Customizing Data Source Categories
DB Optimizer lets you customize your data source category scheme. A data source category has

the following configurable components:
Category name - The name displayed as a selection when selecting a category

Short Name - An abbreviation shown in window components and icons
Color - The color used to denote a categorized data source in the Explorer tree icons and

[
window tabs.

DB OPTIMIZER USER GUIDE 41

To customize your datasource categories

1 Select Preferences > Data Source and then select the Datasource Group panel.
2 Take one of the following actions:

e Create a new category by clicking Add and selecting or providing a Full name,
Short name, and Color combination.

e Edit an existing category by selecting the category, clicking Edit and modifying the name
and color combination.

NOTE: The short name for a category cannot be edited.

e Delete an existing category by selecting the category, clicking Delete and verifying the
deletion at the prompt.

Browse a Data Source

You can drill down in the Data Source Explorer tree to view registered databases on a server, and
view tables, and other objects in a database. Additionally, you can view the structure of
individual objects such as the columns and indexes of a table. Right-click the object for a menu
of available commands, such as Extract to Project, which creates a new SQL file containing the
object’s DDL.

In most cases, whenever you browse a data source, DB Optimizer requires login information in
order to connect with the data source. Enter a valid user name and password in the fields
provided. The Auto Connect option retains your login credentials for future connections to the
same data source.

You can turn off the Auto Connect feature by right-clicking on a specified data source and
toggling the Connect on Expand option. By default, when Connect on Expand is active, DB
Optimizer automatically attempts to connect to the server each time you browse a data source.

42 DB OPTIMIZER USER GUIDE

View Database Object Properties

All objects in Data Source Explorer contain properties as they relate to the DB Optimizer
application.

93 Data Source Bxpl 53 5 sQLProjectexpl |~
a - R Hheoo BRY
I | G
= =F Managed Data Sources [:J
#-1=*+ DB2 Servers
#1=F MS SQL Servers
H_-I % datoearl1 (SQL Server)
@l datoedwina1 (SQL Server 7.0.1094.0)
=-Eis datotb19 (SQL Server 8.0.813.0)
= £} Databases (41)
=0
- @ *}* Check Constraints
B Defaults
#2 Foreign Keys
fx Functions
Bl Indexes § |
';“‘ Primary Keys
ﬂ; Procedures
& Roles
-0 Rules
= Tables
& {J Triggers
El :',n Unique Keys
"H User Datatypes

K Users
& Views

- 3-

|- -)

)

DB OPTIMIZER USER GUIDE

DB Optimizer Object Properties are viewed via the Properties dialog. The dialog is accessed by
right-clicking the object in Data Source Explorer.

% Properties for TORLABSCORCL (MOVIES) (Oracle 10.2.0.1) H=3
-

Data Source Configuration

Configuration - -
2L Fikers Configurstion advanced

Diata source name: TORLASSCCROL (MOWIES)
Category: [;]Tﬁt-t -

Oracle
() se & THS nane alias

(%) Use & direct connection

HostfInstznce: | TORLABSCORCL

Port: | 1521

Type: () Servios name (*) 5I0

Service{SID name: | orcl

Security oedentials
Usar nama: | MCVIES |

Pasoword: | sessss |

Connect as: normal v
fubo-connect {Saves and enorypis password)
[fllow trusted connections:

[Test CmnectionJ |_ Apphy I

e

@ [ox || concal |

To view Data Source Explorer object properties:
The properties are accessed by right-clicking a data source in Data Source Explorer.
The dialog displays properties with regards to Configuration and SQL Filters.

The Configuration node provides information about the parameters used to initially define the
data source during the data source registration process. For more information on these values
and how to modify them, see Register Data Sources.

The SQL Filter node enables a developer to place filters on data source objects that appear in
the Database Explorer. For more information, see Filter Database Objects.

44 DB OPTIMIZER USER GUIDE

Search for Database Objects

Database object searches rely on the Object Index when returning results. By default, caching is
set to configure only parts of a database. To configure the Index to expand object searches, see
Specify Data Source Indexing Preferences.

1 Select Search > Database. By default, the search scope is all currently connected
databases. Under Specify the scope for the search, clear any databases or server check
boxes you do not want to search.

2 Specify the search criteria:

¢ Type the value to search for in the Search String field. Use the * character to
indicate wildcard string values and the ? character to indicate wildcard character
values.

e Select Case Sensitive to indicate to the search function that you want case sensitivity to be
a factor when searching for appropriate string matches.

e Select Search Indexed Data to indicate that the search function should read the Index.
This increases the performance of the search function and will typically result in faster
returns on any hits the search might make.

e Select Apply SQL Filters to apply any relevant database or vendor filters to the search.

e Choose Declarations, References, or All Occurrences to specify what the search
is restricted to in terms of database objects.

¢ A Declaration is an instance where an object is declared. For example, an object
is declared in a CREATE table.

* A Reference is an instance where an object is used or referred to. For example, an object
is referred to in a procedure or as a foreign key in a table.

e Choose All Occurrences to return both declarations and references in the search results.

¢ Use the check boxes beside the database object panel to select and deselect the specific
database objects that you want to be included in the search process.

DB OPTIMIZER USER GUIDE 45

3 Click Search.

The results of your search are generated in the Search view. When you open a matched
file, references to the keyword are flagged with yellow arrow icons that appear in the left-
hand column of the editor.

DELETE FRON Shape Edge Display Ver
= WHERE Shape Edge Display ID IN
= (SELECT do.Cbject Table Row ID

FROM Diagram Object do,
Heta Table mt

WHERE mt.Name = 'Shape Edge Display' and
do.Heca Table ID = wr.Meta Table ID and
do.Diagram ID = BDelDiagramID)

JL

DELETE FROM Shape Edge Display
WHERE Object GUID IN
(SELECT dﬂ‘Di:lJect,_G-T.IID
FROM Diagram Object do,
Heta Table mt
WHERE mt.Name = 'Shape Edge Display' and
do.Heta Table ID = mt.Meta Table ID and
do.Diagram ID = @DelDiagramID)

You can navigate between keywords within all returned files using the yellow “up” and
“down" arrows that appear at the top of the Search view.

Filter Database Objects

Filters can be placed on data sources and corresponding data source objects to restrict their
display in Data Source Explorer. This feature is useful if you have data sources that contain large
numbers of database objects. You can apply filters to view only the schema objects you need for
the development process.

There are two types of data source filters available:

o Global filters that affect all registered data sources in the DB Optimizer development

environment.
o Data Source specific filters affect only the specified data source for which they are

defined.
e On Sybase and SQL Server platforms, you can apply database filters, which enables you to
set different filters on different databases within the same source.

In both cases, data source object filters are defined via the Object Filter Manager, through the
development of filter templates. Once defined, filter templates can be activated and
deactivated as you need them.

Several filter templates can be combined at a global level or applied to a specific data source.

See also:

e Define Data Source-Specific Object Filters
e Define Global Database Object Filters

46 DB OPTIMIZER USER GUIDE

Define Data Source-Specific Object Filters
Data source-specific object filters affect only the specified data source.
To define data source-specific filters:
1 In Data Source Explorer, right-click the data source and select Properties.

The Properties dialog appears.

2 Select the SQL Filters node and select Enable data source specific settings. The
other controls on the dialog become enabled.

3 Click New. The Filter Template dialog appears.
4 Specify the parameters of the filter.

¢ In the Name field, enter the name of the filter as you want it to appear in the selection
window on the SQL Filter node.

e The Database Type pane provides a list of data source objects. Deselect the data
source objects that this template filters so that they do not appear in Database Explorer
when displaying data source objects for the data source.

e Click New to add filter parameters for data source object properties. The New SQL Filter
Predicate dialog appears.

¢ Use the Property and Operator fields to supply the filter criteria. Property specifies
whether the value is a Name or Schema, and Operator specifies the matching type of
the filter syntax. (Equals, Not Equals, Like, Not Like, In, Not In)

¢ In the Value field, enter the full or partial syntax of the property or properties you want to
filter in Data Source Explorer.

5 Click OK. The filter property specification is added to the Filter Template.

6 When you have finished defining the filter template, click OK. The template name is added
to the Properties dialog. It can be enabled and disabled by selecting or deselecting the
check box beside its name, respectively.

Define Global Database Object Filters

Global filters affect all registered data sources in the DB Optimizer development environment.
When you create and apply a global filter to a platform vendor in DB Optimizer, all databases
associated with that vendor are affected by the filter, as defined.

DB OPTIMIZER USER GUIDE 47

Individual global filter templates are separated, by supported data source platform, on tabs in
the SQL Filter window. Select the appropriate tab to view existing filter templates or add new
ones, as needed.

To define a global filter:

1 Select Window > Preferences from the Main Menu. The Preferences dialog appears.

2 Expandthe SQL Development node and select the SQL Filter subnode. The SQL Filter
pane appears.

3 Click New. The Filter Template dialog appears.
4 Specify the parameters of the filter template:

¢ In the Name field, enter the name of the filter as you want it to appear in the selection
window on the SQL Filter node.

e The Database Type pane provides a list of data source objects. Deselect the data
source objects that this template filters so that they do not appear in Database Explorer
when displaying data source objects for the data source.

e Click New to add filter parameters for data source objects properties. The New SQL Filter
Predicate dialog appears.

e Use the Property and Operator fields to supply the filter criteria. Property specifies whether
the value is a Name or Schema, and Operator specifies the matching type of the filter
syntax. (Equals, Not Equals, Like, Not Like, In, Not In)

¢ In the Value field, enter the full or partial syntax of the property or properties you want the
template to filter in data source Explorer.

5 Click OK. The filter property specification is added to the Filter Template.

6 When you have finished defining the filter template, click OK. The template name is added
to the Properties dialog. It can be enabled and disabled by selecting or de-selecting the
check box beside its name, respectively.

TIP: Data Source object filters are added and removed from the development environment
by selecting and de-selecting the checkboxes associated with each filter template on
both the global and data source-specific dialogs.

Drop a Database Object

To delete an object permanently from a database, right-click the object in Data Source Explorer
and choose Drop from the menu. The Drop Wizard prompts you to confirm removal of the
object and provides a DDL preview of the deletion code.

48 DB OPTIMIZER USER GUIDE

Working with SQL Projects

You create projects to organize and store SQL development files. The purpose of projects is to
keep your work-in-progress files organized, as well as maintain a common directory structure
when developing code and executing files on registered data sources. Once a file has been

developed and is ready for deployment, that file can then be executed on a registered data
source.

SQL Project Explorer is used to view and access files. It uses a tree view to display the project as
a series of folder directories with a folder labeled with the project name as the parent directory,
and with project categories, and associated project files as its children.

53 pata Source Explor | £ 50L Project Explore 52 . — O
~ Fam

t '_"" Cormechons

& | Creation Scripts

=1 General QL

= #3 Inseet

#3 schematlame. tableniams
£it¥ Lintithed S0L.500
* -T SCLProject

[Untitled Tuning Jos22 tun
[Z Untitled Tuning Jobw. tun

All files in an SQL Project project are organized under the following categories:

e Connections: List the connections of any given SQL file of a data source associated with the
project.

e Creation Scripts: Provide DDL statements and statements that define database objects.

e General SQL: Provide a category for all other SQL files that are not used in database object
creation. This includes DML files, and so on.

e Large Scripts: Contain all files larger than the currently set SQL Editor preference. The file

size limit can be modified on the Preferences panel by selecting Window > Preferences
in the Main Menu.

Physically, the projects and files you create as you work in DB Optimizer are stored under the
Workspace directory you specified at the prompt when DB Optimizer was started. The directory
and files can be shared, and other tools can be used to work on the files, outside the DB
Optimizer development environment.

You can move existing files within a project by clicking and dragging the file you want to move in
the Project Explorer from one node to another, or via the File > Move command.

DB OPTIMIZER USER GUIDE 49

Create a New SQL Project

1 Select File > New > SQL Project from the DB Optimizer Main Menu. The New Project
Wizard appears.

2 Enter the appropriate information in the fields provided:
e Name: Enter the name of the project as you want it to display in the Project Explorer view.

* DBMS Platform: Select the data source platform to which the new project will be
associated. This enables DB Optimizer to properly parse SQL development code for
project files.

® Location: When selected, the Use Default Location check box indicates the project is to
be created under the currently selected Workspace. Deselect the check box and specify a
new folder path if you do not want to create the project in the currently selected
Workspace.

3 Click Finish. The new project icon appears in the Project Explorer view under the name that
you specified. If you did not select Use Default Location, the project will appear in the
appropriate Workspace when you open it in DB Optimizer.

NOTE: Alternatively, you can select New > SQL Project from the Main Menu or click the New
Project icon in the Tool Bar to create a new project.

Open an Existing Project

You can open projects by navigating to SQL Project Explorer and expanding the node of the
project that contains the files you want to access.

Below each project name are a series of nodes that categorize any existing SQL files by
development type:

e Connections: Lists the connections of any given SQL file of a data source associated
with the project.

¢ Creation Scripts: General data source object development scripts. This node contains DDL
statements and statements that define database objects.

e General SQL: Provides a category for all other SQL files that are not used in database
object creation. DML files, etc.

e Large Scripts: Contains all files larger than the currently set SQL Editor preference. The file
size limit can be modified on the Preferences panel. (Choose Window > Preferences in
the Main Menu to access the panel.)

NOTE: Physically, the projects and files you create as you work in DB Optimizer are stored
under the project directory that you specified at the prompt when the project was
created. The directory and files can be shared, and other tools may be used to work on
the files, completely exempt from the DB Optimizer development environment.

50 DB OPTIMIZER USER GUIDE

Search a Project

1 Select Search > File.
2 Specify the search criteria:

* Type the value to search in the Containing Text field. Use the * character to indicate
wildcard string values, the ? character to indicate wildcard character values, and the \
character to indicate an escape character for literals (* ? /).

e Select Case Sensitive and indicate to the search function that it should take into
account case when searching for appropriate string matches.

e Select Regular Expression to indicate to the search function that the string is a
regular function.

¢ Inthe File Name Pattern field, specify the extension name of the files to search for explicitly.
If the value in this field is a * character, the search function searches all files regardless of
extension. Manually type in the extensions to indicate file type (separate multiple file types
with commas), or click Choose and use the Select Types dialog to select the file extensions
the process will search for the string by.

o Select Consider Derived Resources to include derived resources in the search.

e Select Workspace or Working Set to choose the scope of the search. If you choose
Working Set, specify the name of the defined working set manually, or click Choose and
navigate to the working set you want to search for in the provided string.

3 Click Search. The results of your search are generated in the Search view on the Workbench.

Add Files to a Project

Existing files that reside in directories outside of the workspace can be added to a project via the
following methods:

e Dragging and dropping the file set from a system directory to SQL Project Explorer.
e Copying and pasting the file set from a system directory to SQL Project Explorer.

e Executing the Import command.

To drag/drop or copy/paste files from a system directory to SQL Project Explorer:
1 With the SQL Project Explorer view open, navigate to the directory where the files you want
to add to the project are located on the system.

2 Drag and drop the files you need from Windows Explorer into SQL Project Explorer. The files
appear in the tree view under the appropriate categories.

NOTE: Alternatively, you can use the Copy command on the files you want to add in Windows
Explorer and then right-click the Project Explorer and select Paste from the menu. The
files appear in the tree view under the appropriate categories.

DB OPTIMIZER USER GUIDE 51

To use the Import command:
1 Right-click anywhere on the Project Explorer and select Import. The Import dialog appears.

2 Expand the General node and double-click File System. A dialog containing the
import specification parameters appears.

* In the From directory field, manually type the directory location of the files you want to
import to Project Explorer, or click Browse and navigate to the appropriate folder. The
panels below the field populate with the folder selection and a list of suitable files contained
in that folder. Use the check boxes beside each folder and file to specify what folders/files
you want the import function to add in Project Explorer.

* In the Into folder field, manually type the name of the folder within Project Explorer
where you want to import the files specified in the panels above, or click Browse and
navigate to the appropriate folder.

e Select the Overwrite existing resources without warning check box if you do not want
to be prompted when the import process overwrites Project Explorer files that contain the
same name as the imported files.

e Choose Create complete folder structure or Create selected folders only, depending
on whether you want the import process to build the folder structure of the imported
directory automatically, or only create those folders you selected in the panels above,
respectively.

3 Click Finish. The import process moves all selected folders and files into Project Explorer
and thus into the DB Optimizer development environment.

NOTE: In addition to accessing the Import command via the shortcut menu, you can also
access the Import dialog by choosing File > Import... from the Main Menu.

Delete a Project

You can delete a project by right-clicking its folder in the SQL Project Explorer and selecting
Delete.

When you delete a project, DB Optimizer will prompt you with a Confirm Project Delete dialog
that asks you to confirm the deletion of the project, and offers you the option of deleting the
project from the DB Optimizer interface, or deleting the project from the system.

e |f you select Do not delete contents, the files and directory structure will be removed
from SQL Project Explorer, but they will still exist on your machine.

e |f you select Also delete contents ..., the files and directory structure will be removed
from SQL Project Explorer and deleted from your machine.

52 DB OPTIMIZER USER GUIDE

Creating and Editing SQL Files (SQL Editor)

The SQL Editor is a Workbench interface component that enables the development, viewing,
and formatting of SQL code.

|5_“B, Benson.sgl &3 | sqlLog.log

CREATE TABLE dbo.benson

|
job char (8} NOT NULL,
sal numeric(38,0) NOT NULL,
loc numeric (38,0} HOT HULL,
COMSTRAINT pjob
PRIMARY EKEY CLUSTEERED (job)

)

oo
IF CBJECT ID({'dbo.bemnson'} I5 NOT NULL
PRINT '«<«<< CEREATED TABLE dbo.benson >>>'
ELSE
PRoNT '<<< FATLED CREATING TABLE dbo.benson >>>'
qo

The Editor supports the following the functionality
* Code assist:

e Code complete. Type Ahead and Name completion. For more information, see
Understanding Code Assist.

* Code templates. Templates for creation of tables, procedures, etc. For more
information, see Understanding SQL Templates.

¢ Hyperlinks. For more information, see Understanding Hyperlinks.

* Semantic validation. For more information, see Sematic Validation.

* Object hovering. Hover over an error found and an explanation of the cause of the error
appears.

® Code formatter. For more information, see Understanding Code Formatting.

* Code correction and transformations. For more information, see Examples
of Transformations and SOL Query Rewrites.

* Object indexing. For more information, see Specify Data Source Indexing Preferences.

e SQL Project Explorer. For more information, see Working with SOL Projects.

DB OPTIMIZER USER GUIDE 53

SQL Editor contains context-sensitive command menus that are tailored with pertinent
functionality for the specified file format.

If SQL Editor does not recognize a selected file format, DB Optimizer automatically launches
the file externally in the system default application. External editors are not embedded in the
Workbench. For example, on most machines, the default editor for HTML files is the system Web
browser. SQL Editor does not, by default, recognize HTML files, and opening an HTML file from
the Workbench launches the file in an instance of the Web browser instead of the Editor.

Any number of instances of SQL Editor can be open on the Workbench at the same time.
Multiple instances of SQL Editor displaying different content may be open in the same
Workbench. These instances will be stacked by default, but can also be tiled side-by-side so the
content of various files can be viewed simultaneously for comparison or multi-tasking purposes.
When an instance of SQL Editor is active, the Workbench Main Menu automatically contains
commands applicable to the file format. If a view is active, SQL Editor commands are disabled
automatically, except when commands are still valid between the selected view and the file
displayed in the interface.

Sematic Validation

When working with code in SQL Editor, the window contains a number of features that provide
an increase in the efficiency and accuracy of code development. The following syntax
highlighting changes are automatically applied to code as a user adds lines in the interface.

Code Formatting
Comments Green font, italics SQL
Commands Dark blue font Coding
Errors Red underline

Strings Red font
Non-Executable Command Line Commands| Aqua font

Single line and multiple line comments appear in different colors.

Furthermore, SQL Editor provides two column bars, one on either side of the code window. The
purple change bar in the left-hand column indicates that the line of code has been modified.
Hover over the change bar to display the original code text. The red square in the right-hand
column indicates that there are errors in the code window. Hover the mouse over the square to
view the error count. Click the red bar in this column to navigate directly to the line in which the
SQL Editor detects the error. SQL Editor automatically highlights the appropriate code. Non-
executable command line commands are displayed in a different formatting style than SQL
commands. Syntactic and semantic errors are also highlighted.

SQL Editor also features dynamic error detection, object lookup and suggestion features, code
folding, and auto-formatting. SQL Editor is able to identify different areas in a statement, and
enables users to retrieve subclauses, resolve table aliases, and dynamically return lists of tables,
views, and columns, as needed.

See also Working in SOL Editor.

54 DB OPTIMIZER USER GUIDE

Create an SQL File

1 Create or open a SQL project.
2 Select File > New > SQL File. A blank instance of SQL Editor appears.

NOTE: If you are notin a SQL project when you create a new SQL file, it will not open in SQL
Editor.

Open an Existing SQL File
1 Open the SQL project containing the file, or that you want to contain the file.

2 If necessary, add the file to the project. See Add Files to a Project.

3 Inthe SQL Project Explorer, double-click the file to open it in SQL Editor.

Working in SQL Editor

SQL Editor handles SQL code formats and contains context-sensitive command menus, tailored
with pertinent functionality for development purposes. Other files may be opened in DB
Optimizer, as well, but these are handled by other editors.

For example, if a text file is opened in the Workbench, DB Optimizer detects and opens the
contents of that file in a text editor viewer with pertinent commands for that file type.

Any number of instances of SQL Editor can be active on the Workbench at the same time.
Multiple instances of SQL Editor displaying different content may be active on the same
Workbench. These instances will be stacked, by default, but can also be tiled side-by-side, so
the content of various files can be view simultaneously for comparison or multi-tasking purposes.
When an instance of SQL Editor is active, the Main Menu contains commands applicable to the
file format. If a view is active, SQL Editor commands are disabled automatically, except when
commands are still valid between the selected view and the file displayed in the interface.

DB OPTIMIZER USER GUIDE 55

s *Benson.sql 53

“EREATE TABLE dbo.benson

{
job char (8) HCOT HULL,
sal numeric(38,0) HOT NUOLL,
loc numeric({38,0) HOT HNULL,
CONSTRATHNT pjob
PRIMARY KEY CLUSTERED (job)

!

oo
IF OBJECT ID('dbo.benson'} IS5 NOT NULL
PRINT '«<«<< CREATED TAELE dbo.benson >>>'
ELSE
PRINT '<«<< FATLED CREATING TABLE dbo.benson >>>'
oo

Among the commands SQL Editor supports via the right-click menu:

56

e Revert File: Automatically restores the working file to the original text as it appeared the
last time the Save command was issued.

e Shift Right/Shift Left: Indents the line of code in the working file to the right or
left, respectively.

* Toggle Comments: Hides or displays comments in the code of the working file,
depending on the current hide/show state.

e Add Block Comment/Remove Block Comment: A block comment is used to insert a
comment into SQL code that spans multiple lines and begins with a forward slash and
asterisk. While block comments are typically used to insert a command that spans multiple
lines, some developers find them more useful than line comments, especially if a
development team is using different text editors on an individual basis. Moving code from
one text editor to another often breaks line comments in the middle of a line and causes
errors. Block comments can be broken without causing errors.

NOTE: In addition to editing commands, some commands such as extract, drop, and execute
can be accessed by right-clicking over statements in SQL code that are performed on
specific tables, views, and columns. These commands will appear automatically in the
appropriate menu when the code is highlighted. Full information on using these
commands is found elsewhere in this documentation, based on the task each
executable performs.

e Explain Plan: An explain plan details the steps that occur in SELECT, UPDATE, INSERT,
and DELETE statements and is primarily used to determine the execution path followed by
the database in its SQL execution.

DB OPTIMIZER USER GUIDE

See

also:

Understanding Automatic Error Detection

Understanding Code Assist

Understanding Hyperlinks

Understanding Code Formatting

Understanding Code Folding

Understanding Code Quality Checks

Understanding SOL Templates

Understanding Automatic Error Detection

SQL Editor orders and classifies SQL statements. This enables it to edit code as you work within
SQL Editor and highlight errors and typographical errors in “real time”. As you work, SQL Editor
examines each clause in a statement and provides error reporting and other features as
required.

SQL Editor identifies the following clauses and elements:

SELECT: Specifies the field, constants, and expressions to display in the query results.
FROM: Specifies one or more tables containing the data that the query retrieves from.

WHERE: Specifies join and filter conditions that determine the rows that query returns. Join
operations in a WHERE clause function in the same manner as JOIN operations in a FROM
clause.

GROUP BY: Specifies one or more columns used to group rows returned by the query.
Columns referenced in the SQL SELECT statement list, except for aggregate expressions,
must be included in the GROUP BY clause. You cannot group by Memo, General or Blob
fields.

HAVING: Specifies conditions that determine the groups included in the query. If the SQL
statement does not contain aggregate functions, you can use the SQL SELECT statement
containing a HAVING clause without the GROUP BY clause.

ORDER BY: Specifies one or more items used to sort the final query result set and the order
for sorting the results.

As you develop code in SQL Editor, it automatically detects semantic errors on a line-by-line
basis. Whenever an error is detected, the line is flagged by an icon located in the left-hand
column of the editor.

DB OPTIMIZER USER GUIDE 57

KEE} benson r *ADDRESS_ROLE (*Benson.sqgl E??

“CREATE TAELE dbo.ben=on
i
job CHAR (8) NOT NULL,
sal NUMERIC (38, 0) NOT NULL,
loc NUMERIC (38, 0) NOT NULL,
CONSTRAINT pjob PRIMARY EEY CLUSTERED (job)

go
IF OBJECT ID('dbo.benson') IS5 NOT NULL
PRINT '<<«< CREATED TABLE dbo.benson >>>!
ELSE
%] PRoNT '«<<< FAILED CREATING TABLE dbo.benson >»>»!

oo
ZSELECT *
@ FrROM tho.benson;

Additionally, all semantic errors detected in SQL Editor are displayed in the Problems view.

-
E_L, Problems &3

3 errors, 0 warnings, 0 infos

Description = Resource Path Location
= - Errors (3 items)
3 An unexpected token "< < < FAILED CR. Benson.sgl SCOL Project 1 line 14
@ an unexpected token ™" was found. Exg File.sql S0L Project 1 line &
3 Table benson cannot be resolved on 'da Benson.sgl SCL Project 1 line 19

Right-click the error and select Go To in order to find the error. DB Optimizer opens and
navigates to the specific line of code containing the specified error.

NOTE: Automatic error detection functions, such as syntax checking and semantic validation
are suspended if #define or #include directives are detected in an editor window. DB
Optimizer does not perform #define/#include substitutions on execution.

58 DB OPTIMIZER USER GUIDE

Understanding Code Assist

When SQL Editor has finished analyzing a partial piece of code, it displays a list of data source
objects for you to select from.

SQL Editor takes the following into consideration when analyzing code for a list of possible data
source objects for insertion:

e Text to be inserted

¢ Original text to be replaced

e Content assist request location in original text

e The database object represented by the insertion text

Generally, insertion suggestions use the following format:
<insertion_text>-<qualification_information>

Code assist is available for SELECT, UPDATE, INSERT, and DELETE statements (and MERGE
statements on SQL Server 2008 and above), as well as stored procedures, and functions (built-in
and user defined.)

Additionally, code suggestions can be made for DML statements nested within DDL statements.

This functions in the same manner as code assist for statements that are not nestled, and applies
to CREATE PROCEDURE, FUNCTION, TRIGGER, TABLE, and VIEW statements.

When the code assist window is open, you can filter out singular object suggestions by pressing
(Ctrl + Spacebar). This removes all objects from the assist window while retaining procedures
and functions. To display objects again, press (Ctrl + Spacebar) again.

The following table displays a list of all possible object suggestions, and the format in which SQL
Editor inserts the suggestions into a statement:

Object and Stored Procedure Suggestions

Object Suggestion Syntax/Example

Table (TABLE) [catalog].[schema]
EMPLOYEE - (TABLE)HR

Alias Table (TABLE ALIAS)

[catalog].[schema]tableName
EMPLOYEE-(TABLE ALIAS)HRJOBS

Column datatype - (Column)
[catalog].[schema].tableName

JOB_TITLE: varchar(20)-
(Column)HRJOBS

Alias Column datatype - (COLUMN ALIAS)
[catalog].[schema].tableName.
columnName

JOB_TITLE:int-(COLUMN
ALIAS)HR.JOBS.JOB_ID

Schema (SCHEMA)) [catalog]
dbo-(SCHEMA)NorthWind

Catalog (CATALOG)

Call Call HR.ADD_JOB_HISTORY

DB OPTIMIZER USER GUIDE 59

Function Suggestions

Function Suggestion Syntax/Example

Built-in SELECT A FROM HR.DEPARTMENTS
WHERE HR.DEPARTMENTS AVG

User-Defined SELECT + FROM HR.CLIENTS WHERE
HR.F_PERSONAL

NOTE: Function suggestions are only available for Oracle and DB2 platforms.

SQL Editor detects incomplete or erroneous code, processes the code fragments, and then
attempts to apply the appropriate logic to populate the code.

As code is typed into SQL Editor, the application ‘reads’ the language and returns suggestions
based on full or partial syntax input.

Depending on the exact nature of the code, the automatic object suggestion feature behaves
differently; this enables SQL Editor to provide reasonable and ‘intelligent’ suggestions on
coding.

Additionally, semantic validations can be made for DML statements nestled within DDL

statements. This functions in the same manner as validation for top-level statements, and
applies to CREATE PROCEDURE, FUNCTION, TRIGGER, TABLE, and VIEW statements.

The following chart displays the possible statement fragments that SQL Editor will attempt to
suggest/populate with objects:

Statement Fragment Elements Object Suggestion Behavior

SELECT A list of tables, when selected automatically, prompts the
user to select a column.

UPDATE and DELETE A list of tables appears in the FROM and/or WHERE clause.

INSERT Alist of tables and views appears in the INSERT INTO and

OPEN BRACKET clause prior to values.

A list of columns based on the table or view name appears in
the OPEN BRACKET or VALUES clause.

In addition to DML statements, SQL Editor also suggests objects based on specific fragmented
syntax per line of code:

Statement Syntax Object Suggestion Behavior

A partial DML statement (for example | The keyword is completed automatically, assuming SQL Editor can
SEL ... indicates a fragment of the match it. Otherwise, a list of suggested keywords is displayed.
SELECT clause)

If the preceding character is a period, and the word prior is a table
or view, a list of columns appears.

If the word being typed is a part of a table name (denoted by a
schema in front of it) the table name is autocompleted.

If the word being typed has a part of a column name (denoted
by a table in front of it) the column name is autocompleted.
Without typing anything. A list of keywords appears.

A period is typed. If the word prior to the period is a name of a table or view, a list
of columns is displayed.

If the word prior to the period is a schema name, a list of table
names is displayed.

If the word prior to the period is either a table name or a
schema name, then both a list of columns and a list of table
names is displayed

60 DB OPTIMIZER USER GUIDE

To activate code suggestions:

By default, code suggestions are automatically offered if you stop typing in SQL Editor for one
second. You can turn off the automated suggestion feature on the Code Assist preferences

page.

If automated code suggestion is disabled, you can still access the suggestion window using the
following method:

1 Click the line that you want SQL Editor to suggest an object for.

2 Press (CTRL + Spacebar) on your keyboard. SQL Editor ‘reads’ the line and presents a list of
tables, views or columns as appropriate based on statement elements.

NOTE: On a per platform basis, auto-suggestion behavior may vary. (For example, the WITH
statement on DB2 platforms.)

To modify object suggestion parameters, including setting it from automatic to manual, see
Specify Code Assist Preferences.

You can speed up the performance of the code assist functionality by enabling data source
indexing either when you connect to the data source, see Working with Data Sources or on the
Preferences page, see Specify Data Source Indexing Preferences.

Understanding Hyperlinks

SQL Editor supports hyperlinks that are activated when a user hovers their mouse over a word
and presses the CTRL key. If a hyperlink can be created, it becomes underlined and changes
color. When the hyperlink is selected, the creation script for the hyperlink object is opened in a
new editor.

Hyperlinks can be used to link to tables, columns, packages, and other reference objects in
development code. Additionally, hovering over a hyperlink on a procedure or function of a call
statement will open it. You can also use the hyperlink feature on function calls in DML
statements.

Clicking a hyperlink performs an action. The text editor provides a default hyperlink capability. It
allows a user to click on a URL (for example, https://www.idera.com) and database object links.

Hyperlink options (look and feel) can be modified via the Hyperlinking subnode in the Editors >
Text Editors node of the Preferences panel.

NOTE: Hyperlink functionality relies on certain objects being captured in the Object Index. If
the index is turned off, or has been restricted in what information it captures, users will
be unable to link them (as they are non-existent within the Index.) To specify object
index types, see SPECIFY DATA SOURCE INDEXING PREFERENCES.

Understanding Code Formatting

Code formatting provides automatic code formatting in SQL Editor while you are developing
code.

To access the code formatter, select the open editor you want to format and select Ctrl+Shift+F.
The code is formatted automatically based on formatting parameters specified in the Code
Formatter subnode of the SQL Editor node in the Preferences panel.

You can also format an entire group of files from Project Explorer. To do so, select the directory

DB OPTIMIZER USER GUIDE 61

or file and execute the Format command via the shortcut menu. The files will be formatted
automatically based on your formatting preferences. See Specify Code Formatter Preferences
for more information.

The following examples display a list of code formatting parameters and the resultant output in
SQL Editor, based on the same set of SQL statements.

Custom Code Formatting Example 1

The following chart indicates a list of custom code formatting parameters and their
corresponding values. The chart is followed by the actual syntax as it would appear in SQL
Editor, based on the formatting parameter values. Compare the parameters and formatted code
in Example 2 with this example for a concept of how custom formatting works.

Custom Code Formatting Parameter Value (if applicable)

Stack commas separated by lists? Yes
Stack Lists with ___ or more items. 3
Indent Size? 2
Preceding commas? Yes
Spaces after comma? 1

Trailing commas? -

Spaces before comma? -

Right align FROM and WHERE clauses | Yes
with SELECT statement?

Align initial values for FROM and Yes
WHERE clauses with SELECT list?

Place SQL keywords on their own line? | No

Indent size? -
Indent batch blocks? Yes
Number of new lines to insert 1
Indent Size 5
Right Margin? 80

Stacked parentheses when they contain| No
multiple items?

Stacked parentheses when the list _
contains __ or more items.

Indent size? 5
New line after first parentheses? No
Indent content of conditional and Yes

looping constructs?

Number of new lines to insert? 1

Indent size? 5

62 DB OPTIMIZER USER GUIDE

% Fie.sql 33

Begin
If =x=&

SELECT apple
a3 * pear
orange ‘Big Orange”
' strawberry
orchard name
OWIRET
FRCM fruit F, orchard O
WHERE fruit region in (‘latin america’
 ‘france”
' ‘russiaf
' ‘canada*
V' Yhawaii')
and orchard not in (select region
from bad growers bg, (sSelect orchard
from hybrid growers
where us_approved in

DB OPTIMIZER USER GUIDE

63

Custom Code Formatting Example 2

The following chart indicates a list of custom code formatting parameters and corresponding
values. The chart is followed by the actual syntax as it would appear in SQL Editor based on the
formatting parameter values. Compare the parameters and formatted code in Example 1 with
this example for a concept of how custom formatting works.

Custom Code Formatting Parameter Value (if applicable)
Stack commas separated by lists? Yes

Stack Lists with ___ or more items. 2

Indent Size? 0

Preceding commas? -

Spaces after comma? Yes
Trailing commas? Yes
Spaces before comma? 2

Right align FROM and WHERE clauses with SELECT statement? | No
Align initial values for FROM and WHERE clauses with SELECT --

list?

Place SQL keywords on their own line? Yes
Indent size? 4
Indent batch blocks? No
Number of new lines to insert 1
Indent Size 5
Right Margin? 80
Stacked parentheses when they contain multiple items? Yes
Stack parentheses when list contains ___ or more items. 2
Indent Size? 2
New line after first parentheses? Yes

Indent content of conditional and looping constructs? -

Number of new lines to insert? 1

Indent size? 5

64 DB OPTIMIZER USER GUIDE

B "1=ile.sd

Begin
I+ x=S

SELECT
apple ,
pear ,
orangeBig Orange’
strawberry ,
orchard name ,
owner
FRO!1M
fruit F |
orchard O
WHERE

fruit_region in

'latin america",
'f rance'
L] ’ H 1
russia

z

DB OPTIMIZER USER GUIDE

'canada’

Vé

65

Understanding Code Folding

SQL Editor features code folding that automatically sorts code into an outline-like structure
within the editor window for easy navigation and clarity while developing code.

| [59 =ADDRESS_ROLE 52 . [} *Benson.sql
CREATE DEFAULT ET FALSE AS 0

go
'?hF OBJECT ID('PERFCNTR K5.ET FALSE') IS5 NHOT NULL{]
go

—CREATE TAELE PERFCNTE KES.ADDRESS ROLE

!
ADDRESS ROLE ID numeric (10,0} IDENTITY (20000,1),

NAME varchar (128) NOT NULL,

DESCRIPTICN varchar (255) NULL,

LIST ORDER int NOT NULL,

1S_DEFAULT bit NOT NULL,

IS_SYSTEM REQUIRED bit NOT NULL,

ROWTIMESTAME datetime CONSTRAINT DF _ADDRESS R ROWII_ 1BF

CONSTRAINT ADDRESSROLEPE
PRIMARY KEY CLUSTERED (ADDRESS ROLE 1ID)
)

oo
EXEC =p bindefault "PERFCHTR KS.ET FALSE', "'ADDRESS ROLE.IS DEFAULT'
Qo

@ EX sp bindrule 'FERFCHMTE ES.TEUEORFALSE', 'ADDRESS ROLE.IS DEFAULT'
._{ , 117}

The editor window automatically inserts collapsible nodes in the appropriate lines of code for
organizational purposes. This enables you to expand and collapse statements, as needed, while
developing code in particularly large or complicated files.

Understanding Code Quality Checks
Code quality markers provide annotations that prevent and fix common mistakes in the code.

These notes appear in a window on any line of code where the editor detects an error, and are
activated by clicking the light bulb icon in the margin or by pressing Ctrl + .

For example, if a statement reads select * from SCOTT.EMP, SCOTT.DEPT, when you click the
light bulb icon or press Ctrl + |, a window appears beneath the line of code that suggests Add
join criteria.

When you click on a proposed fix, the statement is automatically updated to reflect your change.

66 DB OPTIMIZER USER GUIDE

The following common errors are detected by the code quality check function in the editor:

Code Quality Check Type

Definition

Statement is missing valid JOIN criteria

If a SELECT statement contains missing join criteria, when it is executed, it
can produce a Cartesian product between the rows in the referenced
tables. This can be problematic because the statement will return a large
number of rows without returning the proper results.

The code quality check detects missing join criteria between tables in a
statement and suggests join conditions based on existing foreign keys,
indexes, and column name/type compatibility.

Example

The following statement is missing a valid JOIN criteria:
SELECT*FROMemployeee,customerc,sales_orders
WHEREe.employee_id=c.salesperson_id

The code quality check fixes the above statement by adding an AND
clause:

SELECT*FROMemployeee,customerc,sales_orders
WHEREe.employee_id=c.salesperson_idAND s.customer_id
=c.customer_id

Note: This code quality check is valid for Oracle, DB2, and Sybase-specific
join conditions.

Invalid or missing outer join operator

When an invalid outer join operator exists in a SELECT statement, (or the
outer join operator is missing altogether), the statement can return
incorrect results.

The code quality check detects invalid or missing join operators in the
code and suggests fixes with regards to using the proper join operators.

Example

The following statement is missing an outer join operator:
SELECT*FROMemployeee,customercWHERE
e.employee_id=c.salesperson_id(+)ANDc.state =

CA’

The code quality check fixes the above statement by providing the missing
outer join operator to the statement:

SELECT * FROM employee e,customer ¢ WHERE
e.employee_id=c.salesperson_id(+)AND c.state(+)
='CA’

DB OPTIMIZER USER GUIDE

67

Code Quality Check Type

Definition

Transitivity issues

The performance of statements can sometimes be improved by adding
join criteria, even if a join is fully defined. If this alternate join criterion is
missing in a statement, it can restrict the selection of an index in Oracle’s
optimizer and cause performance problems.

The code quality check detects possible join conditions by analyzing the
existing conditions in a statement and calculating the missing, alternative
join criteria.

Example

The following statement contains a transitivity issue with an index problem:
SELECT*FROMitemi,productp,priceprWWHERE
i.product_id=p.product_idANDp.product_id=

pr.product_id

The code quality check fixes the above statement with a transitivity issue by
adding the missing join condition:
SELECT*FROMitemi,productp,priceprWHERE i.product_id
=p.product_idANDp.product_id= pr.product_idAND
i.product_id=pr.product_id

Nested query in WHERE clause

It is considered bad format to place sub-queries in the WHERE clause of a
statement, and such clauses can typically be corrected by moving the sub-
query to the FROM clause instead, which preserves the meaning of the
statement while providing more efficient code.

The code quality check fixes the placement of sub-queries in a statement,
which can affect performance. It detects the possibility of moving sub-
queries from the FROM clause of the statement.

Example
The following statement contains a sub-query that contains an incorrect
placement of a WHERE statement:

SELECT*FROMemployee WHERE employee_id=(SELECT
MAX(salary)FROMemployee)

The code quality check fixes the above statement by correcting the sub-
query Issue:

SELECTemployee. *FROMemployee(SELECTDISTINCT
MAX(salary)collFROMemployee)t TWHERE employee_id=

t1.coll

68

DB OPTIMIZER USER GUIDE

Code Quality Check Type

Definition

Wrong place for conditions in a
HAVING clause

When utilizing the HAVING clause in a statement

It is recommended to include as few conditions as possible while utilizing
the HAVING clause in a statement. DB Optimizer detects all conditions in
a given HAVING statement and suggests equivalent expressions that can
benefit from existing indexes.

Example

The following statement contains a HAVING clause that is in the wrong
place:

SELECTcol_a,SUM(col_b)FROMtable_aGROUPBY
col_aHAVINGcol_a>100

The code check fixes the above statement by replacing the HAVING clause
with equivalent expressions:

SELECTcol_a,SUM(col_b)FROMtable_aWHEREcol_a
>100GROUPBYcol_a

Index suppressed by a function or an
arithmetic operator

In a SELECT statement, if an arithmetic operator is used on an indexed

column in the WHERE clause, the operator can suppress the index and
result in a FULL TABLE SCAN that can hinder performance.

The code quality check detects these conditions and suggests equivalent
expressions that benefit from existing indexes.

Example

The following statement includes an indexed column as part of an
arithmetic operator:

SELECT*FROMemployeeWHERE1=employee_id-5

The code quality check fixes the above statement by reconstructing the
WHERE clause:

SELECT*FROMemployeeWHEREé=employee_id

Mismatched or incompatible column
types

When the data types of join or parameter declaration columns are
mismatched, the optimizer is limited in its ability to consider all indexes.
This can cause a query to be less efficient as the system might select the
wrong index or perform a table scan, which affects performance.

The code quality check flags mismatched or incompatible column types
and warns that it is not valid code.

Example

Consider the following statement if Table A contains the column col int and
Table B contains the column col 2 varchar(3):

SELECT*FROMa,bWHEREa.col=b.col;

In the above scenario, the code quality check flags the ‘a.col = b.col’ part
of the statement and warns that it is not valid code.

DB OPTIMIZER USER GUIDE

69

Code Quality Check Type

Definition

Null column comparison

When comparing a column with NULL, the !=NULL condition may return a
result that is different from the intended command, because col=NULL will
always return a result of false. Instead, the NULL/IS NOT NULL operators
should be used in its place.

The code quality check flags occurrences of the I=NULL condition and
replaces them with the IS NULL operator.

Example
The following statement includes an incorrect col = NULL expression:
SELECT*FROMemployeeWHEREmanager_id=NULL

The code quality check replaces the incorrect expression with an IS NULL
clause:

SELECT*FROMemployeeWHEREmanager_idISNULL

Understanding SQL Templates

DB Optimizer provides code templates for DML and DDL statements that can be applied to the
Editor via the (Ctrl + Spacebar) command. When you choose a template from the menu that
appears, SQL Editor automatically inserts a block of code with placeholder symbols that you can
modify to customize the code for your own purposes.

creace t

El¥ CREATE_TABLE - creates & table with 3 columns [CREATE TABLE schemahlame. tablefame
El¥ CREATE_TABLE - ereates and papulates a table v
E‘q} CREATE_TRIGGER - creates a database trigger colurnniames dataTypes |,

i
columniame] dataTypel PRIMARY EEY,

columnnilarme3 dataTypes
--define other columns
%

Code templates are available for DML, ALTER, DROP, CREATE, and platform specific

commands.

A comprehensive set of DDL/DML templates are available, with statement alternatives varying
by DBMS and specific DBMS versions. You can modify and create new templates via the SQL
Templates panel on the Preferences dialog. See for more information on how to create and alter

SQL code templates.

70

DB OPTIMIZER USER GUIDE

View Change History

Each time an SQL file is saved, the local history of that file is recorded (changes made). Using the
Local History command, you can view all changes made to the file. Local History is accessed via
the shortcut menu of SQL Editor and selecting Compare With > Local History.

T "
Benson.sql (test.sql (E]D Compare Benson.sgl Current and Current Revision &4 = m
Text Compare L S BT R Y
Local: Benson.sql

k:REA‘I‘E TABLE dbo.benson CREATE TABLE dbo.benson
i i
4ob char (8) NOT NULL 4ob char(g) HOT |
2al mnumeric(38,0) NOT NULL sal numeric(38,0) NOT]
loc numeric (38,0} NOT NULIL loc numeric (38,0} NOT I
CONSTRAINT pjcb CONSTRAINT pjcb
PRIMARY EEY CLUSTERED (job PRIMARY EEY CLUSTEEED
))
go oo
IF CBJECT ID('dbo.benson') IS IF OBJECT ID('dbo.benscon')
PRINT '<«<«< CREATED TABLE d PRINT '<<«< CREATED TAE
ELSE ELSE
PRoNT '<<< FAILED CREATIHNG PRoNT '<<< FAILED CEREZ4]
go go
[(] T] [i] [(] i | [i]
R B]
SQL Log IZEEEL SQL Erro (& Problem (\Zﬁ Tasks (Em Bookmar E: Outline (@ History &3 - =
: =) = [2H
Benson.sql q}c}, % = | 2 ﬂp = |r:|j_|
Revision Time
= 05/02/08 11:45 AM
B 04/02/08 11:43 AM
[(_] 1 | [ﬂ

® The History view displays all recorded times the file was changed since its
inception/introduction into the workspace.

¢ Double-click a time in the History view to access the Text Compare panel. It displays
the text of the file after the change occurred at the time indicated in the History view.

DB OPTIMIZER USER GUIDE 71

Revert to an Old Version of a File

The Replace With > Local History command provides you with the ability to revert a SQL

file back to a previously recorded local history.

To replace the contents of a file with the contents of a previously saved version via local history:

1 Right-click the SQL Editor and select Replace With > Local History from the shortcut menu.

The Replace from Local History dialog appears.

£ Compare - rﬂl
/5QL Project 1fBensan.sql | 2
Revisiom Time
£ 0402/08 11:43 AM
[£] | Ed
[2ok Tk Compare A b 2 fa
|;E'} Warkspace Fie ' O Local Hstory (0402008 11:43 AM] .y |
COMSTRAINT picb COMSTRAINT pjck ~|
ERIMARY EEY CLUSTERED (jck) FRIMARY KEY CLUSTERED (jok)
I }
go Go =
IF OBJECT_ID("dbo.benson') I3 WOT UL IF OBJECT_ID('dbo.benson") IS HOT
PRINT ‘"<<< CREATED TABLE dbo.bens PRINT "<z CRERTEL TABLE dbho.
ELSE EL3E =
| DReNT "<<¢ FAILED CREATING TAELE [— PRINT '<<< SAILED CREATING Ta
g0 g 1]
| [l
<] ! 2 [- [
@ [Raplacs _] [Cancel |

2 Inthe Local History of ... panel, select a previously recorded version of the file by

clicking the appropriate timestamp.

3 Click Replace.

The contents of the currently-opened file revert to the contents of the file at the history

point you selected in the dialog.

Alternatively, from the shortcut menu, select Replace With > Previous from Local History
to replace the contents of the file with DB Optimizer’s last recorded history point.

Delete an SQL File

To delete afile, right-click its icon in the SQL Project Explorer and select Delete. This will remove

the file from both the SQL project and the file system.

72 DB OPTIMIZER USER GUIDE

Executing SQL Files
DB Optimizer can execute SQL code directly on registered data sources.

Files are executed via the Execute SQL command in the Run menu, or by clicking the green
arrow button on the toolbar.

When an SQL file is open in the Workspace, select it and choose a database and an associated
catalog on which you want to execute the file via the lists in the Toolbar.

You can click the execute icon to execute code on the specified database and catalog, start a
transaction or commit a transaction, or modify SQL session options prior to execution.

To execute a file:
Open the SQL file you want to run, ensure it is associated with the correct database, and
click Execute. DB Optimizer executes the code on the data source you specified. Results
are displayed in the Results view and can be exported into a file via the Data Export wizard,
or displayed in multiple file formats (HTML, XML, and TXT formats).

To execute a transaction:

To execute transactions, you need to ensure that the auto commit feature is turned off. See
Specify SOL Execution Preferences for more information on how to turn off auto commit.

Open the transaction file you want to run, ensure it is associated with the correct database,
and click Start Transaction. DB Optimizer executes the transaction on the data source you

specified.
Once the transaction runs, you can execute the file as normal.

NOTE: Click Commit or Rollback to finish or cancel a transaction.

To commit a transaction:

Open the transaction file you want to commit, ensure it is associated with the correct database,
and click Commit Transaction. DB Optimizer commits the transaction on the data source you

specified.

TIP: You can set transactions to auto-commit prior to execution on the SQL Execution node
of the Preferences panel.

See Also:
e Associate an SOL File with a Data Source

Configure an SOL Session

Execute SOL Code

View and Save Results

DB OPTIMIZER USER GUIDE 73

Associate an SQL File with a Data Source

When working with files, SQL Editor enables developers to view and change the data source to
which they are connected.

The bread crumb line in SQL editor is used to display and specify a data source in relation to the
specified SQL Editor file. The menu contains a list of all registered data sources. Additionally, on
platforms that support catalogs, these are displayed as well.

[s%% *untitled SO S 53 =0
b £ Microsoft SGL Server b [ROMLABSCLOS_1 (9.0.3054.0) # [master = .
select * from dbo.Customers:

Changing a catalog via the drop down lists is the equivalent of issuing a USE DATABASE
command on SQL Server, Sybase, and MySQL platforms. Any change will not affect the current
connection, and the list automatically updates to display the name of the newly selected data
source.

If no registered database is associated with a SQL file (as would be the case if a user started a
new, unsaved file), the list is empty. This indicates that the file is not connected to a registered
data source.

To change or associate a registered data source with a SQL file:

Click the database list and select the name of a registered database from the list provided.
Depending on the state of the code in SQL Editor, DB Optimizer's behavior differs when the
connection is made:

TIP: If you are receiving multiple syntax errors, always check that the file is associated with
the correct data source and corresponding database/catalog before troubleshooting
further.

74 DB OPTIMIZER USER GUIDE

Configure an SQL Session

The SQL Session Options dialog provides configuration parameters that indicate to DB

Optimizer how to execute code in the development environment.

&4 SOL Session Options

- \o/es

SQL Session Options

Spedify the SQL session options for the current editor.

&

Property
[=| Ansi Defaults
Setansi_nulls
Set ansi_padding
Set quoted_identifier
Set ansi_warnings
Set ansi_null_dfit_on
[=] Arithmetic
Ignore Arithmetic Overflow
Abort On Arithmetic Overflow
[=] Transactions
Isaolation Level
Set implicit_transactions
Set cursor_dose_on_commit
[=| Result Set
Maximum Rows in Result Set

Query Timeout (seconds)

Maximumn Mumber of Bytesina ...

Value

false
false
frue

false
false

false
false

Read Committed
false
false

0
2043
0

Finish

J

Cancel

To modify SQL session options:
Click the SQL Session Options icon in the Toolbar.

1

Session options only apply to the corresponding editor and are not retained when executing

The SQL Session Options dialog appears.

Click on individual parameters in the Value column to change the configuration of each

property, as specified.
Click Finish.

The session options will be changed and DB Optimizer will execute the code as specified

when you execute it.

multiple SQL files.

DB OPTIMIZER USER GUIDE

75

Execute SQL Code

Files can be launched from within the DB Optimizer development environment for execution on
a registered data source Files are executed via the commands in the Run menu.

When a SQL file is open in the Workspace, select it and choose a database and an associated
catalog on which you want to execute file using the drop down menus in the Toolbar. You can
click the execute icon to execute the code on the specified database and catalog, start a
transaction or commit a transaction, or modify the SQL session options prior to execution.

To execute code:

Open the SQL file you want to run, ensure it is associated with the correct database and click the
Execute icon. DB Optimizer executes the code on the data source you specified. Results are
displayed in the same tab or in a new tab.

To execute a transaction:

Open the transaction file you want to run and ensure it is associated with the correct
database, and then click the Start Transaction icon. DB Optimizer executes the
transaction on the data source you specified.

To commit a transaction:

Open the transaction file you want to commit, ensure it is associated with the correct
database, and then click the Commit Transaction icon. DB Optimizer commits the
transaction on the data source you specified.

TIP: You can set transactions to auto-commit prior to execution on the SQL Execution node
of the Preferences panel in DB Optimizer.

View and Save Results

Once a file has been executed, the results are displayed in the Results view. Here, you can
examine the outcome of the execution process, as well as save the results in other file formats,
as needed.

You can view results in the following formats:
e HTML
e XML
o TXT

76 DB OPTIMIZER USER GUIDE

To save results:

1 Right-click on the Results view and select Save Data. The Save Data dialog appears.

*# Save Data

Save data to a file
Save data ko a specified file bype.

Enter or select the parent folder:
MyProject

=i,

@ % MyProject

File name: | result

File type: |Delimited text files (*.csv, *. ppe, *.tab, *.Lxt)

Defimited besxk files (*,cov, *
Excel Files (*,xls)
#ML Files (*. xrnl]l

Include
Field d

@ |__fnish][cancel |

2 Select the project name to which you want to save the results, enter a file name, choose the
file parameters, and then choose a file format from the drop down menu. You can select
delimited text file, Excel, XML, or HTML file formats.

3 Click Finish. The results are saved in the directory location and format that you specified.

DB OPTIMIZER USER GUIDE 77

Troubleshooting

DB Optimizer contains a number of views used exclusively to log and monitor the SQL
development process.

e The SQL Log captures all SQL commands executed by SQL Editor and the system. SQL Log
entries are listed by SQL Statement name, Date issued, Host/Server, Service, User, Source,
and the Time (in milliseconds) it took to execute the command.

s 50LLog 52 . %" 5QLEmars| (2! Problems | ¥ Tasks | Ll Bookmarks | £ Cutiine | (2 History = 8]
B8 Bz rBET
SCL Statement Date HostfServer || DEMS
4] €3 ALTER TABLE dbo.testapps ADDCOMSTRAINT C_123 CHECk 2008-02-04 11:06:12.656 datothid S50 5erver ¢
& € CREATE TASLE dbo.benson [jobcharfd) MOTHNULL, saloe 3005-02-04 11:05:53.00 datothld SQLServer
[¥] IF OBJECT _ID{rbo.benson) IS MOT NULL PRINT ‘<<< CREATEL 2009-02-04 11:05:53.171 datotb19 SOLServer
I(| 1] >

* The SQL Errors log automatically logs all SQL errors encountered when SQL commands are
executed through DB Optimizer. Errors are listed by Error Code, SQL State, error Details,
Resource, and the Location of the error in the SQL file.

([0 50t Log | % sQUErees 51 . [2 Problems | &) Tacks | Ll Bookmarks | 5 Outine | [History o= = O
Error Code SQL State Details Resource Lacation
170 37000 Ling % Incorrect syntex near PRENT, Bensan.sal line 13
170 37000 Line &: Incorrect syritas near sdasd’. Berson.sqgl ine B

® The Problems view captures syntactic and semantic errors and warnings in the files of the
workspace. These entries typically take the form of error messages or warnings issued by the
system over the course of a procedure execution. Problems are organized by Description
(which indicates the type of problem logged), Resource, file Path, and Location. Using the
Problems view, you can apply quick fixes to issues that DB Optimizer detects, as well as
locate other problems that have similar attributes.

a1 5L Log ["0 s Errore (5 problems 52 . &5 Tasks | [l sackmarks | O outine | & History e
0 errars, 0 warnings, 0 infos
Descripbon = Resource Path Location

78 DB OPTIMIZER USER GUIDE

See Also:

View Log Details

Maintain Logs

Filter Logs

Import and Export Error Logs

Find and Fix SOL Code Errors

Find and Fix Other Problems

View Log Details

The SQL Error Log and Problems views contain functionality that enable you to view details
regarding individual log entries, and in some cases, locate or fix those issues automatically.

To view details about SQL Errors entries:

Right-click the error whose details you want to view and select SQL Error Details.

&1 SOL Error Details

@ Line 4: Incorrect syntax near 'PRoNT.

Reason:
Batch: 2

Line: 12

Position: 0

Error Code: 170
S0QL State: 37000

Details: Line 4 Incorrect syntax near 'PRoMT.

The SQL Error Details dialog provides information about the specified SQL error.

Additionally, you can double-click the error to view the problem code in SQL Editor.

To view details about Problems

Right-click the entry whose details you want to view and select Properties. The
Properties dialog appears, summarizing the issue.

DB OPTIMIZER USER GUIDE

79

Maintain Logs

The SQL Log and SQL Errors views both contain commands that enable you to save, restore, or
otherwise move log entries into files outside of DB Optimizer. Additionally, both views also
contain commands that enable the clearing of the view.

The current editor option will only show users statements as generated by the active editor.

To maintain log entries:

All entries automatically captured by the Error Log are written to a file (.log suffix) that resides in
the Workspace .metadata folder.

Right-click in the SQL Log view and select Clear Log Viewer to remove all messages.

In the shortcut menu, select Delete Log to delete the .log file. If entries are created after the
Delete Log command is issued, DB Optimizer will automatically generate a new .log file in
the .metadata subfolder.

NOTE: Old Error Log entries cannot be recovered once the .log file is deleted. To prevent data
loss, archive the .log file via the Export command prior to deletion.

To clear the Error Log view without deleting the .log file, select Clear Log Viewer from the
shortcut menu. The View will be cleared of entries, but these entries will still be contained in
the .log file.

To restore the Error Log view based on the entries contained in the .log file, select Restore
Log from the shortcut menu. The View is restored based on the entries in the .log file.

Filter Logs

Filters can be applied to Problems, SQL Log, and the SQL Errors views to limit searches when
troubleshooting and pinpointing specific processes within the system.

80

DB OPTIMIZER USER GUIDE

To filter the SQL Log:

e On the SQL Log view, select the Toolbar Menu icon [+] (the downward-pointing arrow in
the right-hand corner of the view) and choose Filters. The SQL Log Filters dialog
appears.

=~

&1 SOL Log Filters

S0L statement types
Successful

Failed

Limit display statements to: | 100

(<]

[]show statements with host:

Filter by source

User

[1By current editor
[System generated
Unavailable source

[oK H Cancel]

* In the SQL Statement Types frame, select Successful or Failed to filter by the type of Error
Log entries.

e Select Limit display statements to indicate a maximum limit of the number of entries
displayed in the Error Log, and enter the maximum entry value in the corresponding field.

e Select Show statements with host to indicate that only entries from a specific data
source are to be displayed, then type the name of the data source (as it appears in the
Database Explorer) in the corresponding field.

¢ In the Filter by Source pane, specify User, System Generated or Unavailable Source
to filter statements by the type of source from where they originated.

DB OPTIMIZER USER GUIDE 81

To view and filter the Problems log:
1 On the Main Toolbar, click Window > Show View > Other > General > Problems.

2 On the Problems view, select the options icon [+ | and choose Configure Contents. The
Configure Contents dialog appears.

& Configure Contents

Configurations: « Scope
' [7] Al Errors '

Warnings on Selection : :

5 Erms';ugﬁamings i Sty O On any element in same projeck

Duplicate, ..
[7] Errorsfwarnings on Praje () On selected element only
Remaove OOn selected element and its children
() On working set: Window Working Set

« Description

e (#)0n any element

e
Texk: |cuntains Vi L

where severity is: [v]Error [Warning [Info
* Types
Bl Pt E=TH
Select All
Problem
SOL Error Marker | Deselect Al

Transfarmation Marker

< >

() Mateh all configurations
() Match any configuration

OK ” Cancel]

The Configure Contents dialog enables you to create multiple filter profiles that you can
apply to the log by clicking the options icon [=], clicking Show, and then choosing the filter
to apply. The Configurations panel on the left-hand side of the dialog displays all existing
filter profiles stored in the Workspace. Selecting a configuration displays its filter
parameters, and selecting the check box associated with its name enables the filter in the
Problems view (only problems that match the criteria defined in the Filters dialog will appear
in the view).

82 DB OPTIMIZER USER GUIDE

The ability to define different profiles enables the selection of multiple filter profiles. For
each profile selected, the profile criterion is applied to the View, concurrently. You can
filter problems by:

e Working Set

Character String
Problem Severity
Problem Type

A combination of the above four filter options

Profile Criteria

Description

Working Set

The options located in the Scope area of the dialog enable you to filter problems based on
defined Working Sets. A Working Set is a collection of user-defined Project files that you can
organize, as needed, in DB Optimizer. Select an option, and then click Select to define a
Working Set to which the parameters apply. If no Working Sets exist, you need to define one or
more via the New button on the Select Working Set dialog.

Select one or more Working Sets to which you want the criteria to apply. If no Working Sets
exist, or none suitably match the current filter criteria, click New or Edit to define a new
Working Set, or edit an exist Working Set, respectively.

Character String

Use the Description list to select contains or doesn't contain, as needed, and type the character
string in the field below the list. The Problems view is filtered to only contain, or omit, problem
descriptions that fully or partially match the string value.

Problem Severity

In the Where severity is area, choose Error, Warning, Info or some combination of the
three check boxes. Only entries whose severity matches the check boxes you have selected
remain visible in the Problems view.

Problem Type

The options in the Types list on the right-hand side of the dialog enable you to filter problems
by type. For example, deselect Problem to remove any system entries from the view, or
deselect SQL Error Marker to remove any SQL code entries from the view.

Once you have defined and/or selected the appropriate filter profiles, the profiles will
appear in the Show submenu in the Toolbar Menu of the Problems view. Select or deselect
the profiles from the submenu, as needed.

Import and Export Error Logs

Error messages are written to a file named .log located in the Workspace directory .metadata
folder. This file can (and should) be cleared periodically via the Delete Log command to prevent
performance issues with regards to system memory and file size. However, the Export command
enables you to archive log files prior to deletion. The files created by the Export command can
then be imported back into the Error Log as needed at a later point in time.

To export the SQL Log:

Right-click the SQL Log view and choose Export Log. The log is saved in the specified
directory path with a .log extension.

DB OPTIMIZER USER GUIDE 83

To import the Error Log:

Right-click the SQL Log view and choose Import Log. Select the previously exported .log
file. The Error Log view is restored with the entries from the specified export file.

Find and Fix SQL Code Errors

The SQL Errors view contains an option that enables you to navigate directly to the resource
associated with an error entry.

EEE Benson.sgl &4 IJ sqlLog.log
CONSTRLINT pijob
PRIMARY KFEY CLUSTEEED (job)
)

go

IF CBJECT ID('dbo.benson') IS NOT NULL
PRINT '<«<< CREATED TABLE dbo.benson >>>'

ELSE

PRoNT '«<«<< FATLED CREATTNG TABLE dbo.benson >>>'

To navigate to the source of a SQL error entry:

Right-click the entry to which you want to navigate and select Go To. The file to which the
error applies automatically opens in a new instance of SQL Editor, and the line is highlighted
in the window.

Find and Fix Other Problems

By default, the Problems view organizes problems by severity. You can also group problems by
type, or leave them ungrouped.

The first column of the Problems view displays an icon that denotes the type of line item, the
category, and the description. Click the problem and DB Optimizer will open the SQL file and
automatically highlight the line that triggered the issue.

You can filter Problems to view only warnings and errors associated with a particular resource or
group of resources. You can add multiple filters to the view, as well as enable/disable them as
required. Filters are additive, so any problem that satisfies at least one of the filters will appear.

84 DB OPTIMIZERS 3.8/XES5 USER GUIDE

Problems can sometimes be fixed via the Quick Fix command in the shortcut menu. The
Quick Fix dialog enables you to apply a fix to a problem detected by the view. The dialog
also provides a list of similar problems to the one you selected, and enables you to apply a fix

to multiple problems at the same time.

I
5, 33 wearnings, 0 infos
riphion -
& Using the COMYERT() function suppresses index usage
& Using the LENG) Function suppresses index usage:
& Using thee LEN() function suppresses index usage
& Usingg thee LEN) Function suppresses index usage
& Lising the ROUND() function suppressas index usage
& Using the ROUNG) function suppresses index usage
& Using the SUBSTRING() function suppresses index usage
& Using the SUBSTRING() function suppresses index usage
& Using the SLIBSTRING() function suppresses index usage
8 Usireg thee TRUNC) function suppresses indsx usage
& Using the TRUNC) function suppresses index usage
8 Using the TRUNCE) function suppresses index usage
& Uksing the TRUNCE) Function suppresses index usage
8 Using the TRUNC) function suppresses index usage
& Using the TRUNCO) Function supprasses indsx ussge

Sybase.sql
Sybase.sql
Sybase.sql
Svbase.sql
Sybase.sql
Svbase,

Sybase.sql
Sbase.sql

DEZ. 50l
DB2.sql
DEZ.sq)
DE2.5ql
MyFile.sql
MiyFile. sql

&1 Quick Fix

Select a fix
Select the Fix for “Using the TRUNCE)
fumction suppresses index usage”.
Seleck & Fix:

g

I

Problems:

Resource Location | Salect Al

DEZ.5ql fine 151 '

& Sybase.sqgl line 181
i Sybasesql fne 187

& DB2.5ql line S0

[¥] & pez.sq fine 103

& DB2.s5qf line 146 =

@ Lok || conce

To apply a quick fix to an issue in the Problem view:

1 Right-click on a problem in the list and select Quick Fix from the menu. The Quick Fix

dialog appears.

2 Select a fix from the list provided and click OK. DB Optimizer attempts to resolve the

issue.

To find similar issues:

1 In the Quick Fix dialog, click Find Similar Problems. The Problems list populates with all
of the issues that are similar to your initial selection.

2 Use the check boxes beside the problems to select them, and then choose a fix and click
OK. DB Optimizer attempts to resolve all of the specified issues.

DB OPTIMIZER USER GUIDE

85

Using Profiling

For details on working with profiling, see the following topics:

e Understanding Profiling

Understanding the Interface

Running a Profiling Session

Configuring Profiling

Using SQOL Load Editor/Tester

Understanding Profiling

Profiling continuously samples the data source to build a statistical model of the load on the
database. Profiling can be used to locate and diagnose problematic SQL code and event-based
bottlenecks. Additionally, profiling enables you to investigate execution and wait time event
details for individual stored routines. Results are presented in the SQL Profiling Editor, which
enables users to identify problem areas and subsequently drill down to individual, problematic
SQL statements.

NOTE: DB Optimizer supports the Oracle Real Application Cluster (RAC). When you want to
profile a RAC you can profile the entire cluster in one profiling session. For more
information, see Building Profiling Configurations.

Profiling filters out well performing, light weight SQL and collects information on heavy weight
SQL. SQL that is heavy weight is either long running queries or queries that are short but run
so often that they put load on the database

Profiler takes snapshots of user and session activity once a second and builds up a statistical
model of the load on the database. The sampled data is displayed in three ways:

® Load on the database measured in average number of sessions active
e Top Activity - Top SQL, Event, and Sessions, Object I/O, and Procedures
¢ Details - Detail on a SQL statement, Session, Event, Object I/O or Procedure

The graph on the top of the screen shows the load on the database and can quickly indicate
visually how the database is functioning. The database could be

e |dle
e Lightly loaded
¢ Heavily loaded

* Bottlenecked

86 DB OPTIMIZER USER GUIDE

Problems can come from any one or more of four areas
® Machine CPU or Engine, slow disks (network)
e Application locks, invalid SQL
e Database cache sizes, log files, etc

¢ |nefficient SQL

Details of profiling sessions can be saved to an .oar file, which you can access through the SQL
Project Explorer, or if you are profiling to an Oracle 9i, 10g, or 11g data source, you can see the
profiling sessions in the Profiling Repository node of the data source in the Data Source Explorer,
or in the Profiling Repositories node. Profiling direct to a repository means the session details
are sent directly to the hard disk of the data source. If you have enough free disk space, you can
collect data for a longer time than if you were profiling to a file which accumulates in memory
until you save the session to disk.

Understanding the Interface

The profiling interface is divided into three major parts:

ETi0A~ Processes: |- v |Florby | Hone- %) o | BB | @
Profile Session &5
B B ONCPU B System B0 B User U0 [Clustar B Application BConfiguraton B Comnd B Ketwork BAdministrative BConcumancy B Schadular B Other
Eor -
= o
E |
24
i
w2
s
s o o { i r o o A
W w e w " o it ! o o R o i
BB overvien| B s (8 pvents | 7 cessons
SOL Statements Events Sessiong
S Achvity (%) ~| & Evert Aty (W) = | % Liger [Program SID | Seriad Aetrely () 0~ a
T noracunimi [7] 505G [T — 55.23 SYSTEM [Ewedutorsss | 135, 31553 M b T
Wf SELECT COUL.SYSTEM pmmEm 715 job scheduer..r sleve wat B .60 ORACLEENE [CTWR) 156, 3 L] .42
lﬁf\ﬂ'l'l'-‘l'....o!f_t'-'_,ﬂb || 208 db fle sequental resd | aJ.54 ORaCLE EE (C300] 152, 1 -] 2087
m UhaON [3383152264)) 143 oy Mg gomthenad raad I 135 QRACLE.ENE [r000]) 111, 2954) 343
0 ueioum f1245103937 sl aniryl S srgoenla read 0.35 SYOTEM [Sumcutorene 143, 25564) i
&} TNEERT INT .. 5YS USTRE 053 b fle paraiel write 0.z CRACLE.ENE [SMON} | 184, 1 1 P X
E TRLPICATE .,.&_DATA L a.ar Lvih: Bbrary cache .12 CYSTEM [Executorexe 110, 233 137
*&T:’:EET L L 014 s M ol il 0.12 SYITEM [Eusoutorene | 9T, 43223] .85
B o et couns ., e e ® s = eudl gvent 009 o | FYOTEM [Deeodorese 120, S99) L9 3
g | Lmagy ey | S T T o e g b] R
& Brofing Detals 23 =0
SQL: SLLCT COUNT(™) FROM (SILECT USERNAME FROH SYS.08A_USIRS WHERL DIFAULT_TABLESPACE="SYSTEM' OR TEMPO..
Bt 500 Text ({5 Evervn | €7 Sevsions | T80 Crieven Detode | o 50U Detaie
S0 Identfication Optemniner and Jagtiine Parsing SEakintics Execution Statectics {total) Execubion Statstics [per ececution) ™
S0L U0 BI4GIAU0S e TR Masrexry ZTHGEG Pttt 0.00 F
L address BB TDS Parang Useér ID § Loads 5 Eveoubons 1
Erreabelaliong Q Sorts @
Ok imacis @
Flan Hash Talue 2069026503 Suffer Gets QLOG
Pled i Tkl bl Plirecd Procegasd {00
Prageam 1D 100E
Arogram Lines 58 L

® The Load Graph is located on the top section of the editor and provides a display of the
overall load on the system. The bars represent individual aspects of the enterprise, and the
view can be used to find bottlenecks.

DB OPTIMIZER USER GUIDE 87

* Top Activity is located on the middle section of the editor and displays where the load
originates. Specifically, the top SQL statements, top events that the database spends time
in, as well as the top activity sessions.

e The Profiling Details View is located on the bottom section of the editor and
displays detailed information on any item selected in the middle section. For example,
an SQL statement, an Event, or a Session.

The graphical portion of the profiling editor presents the distribution of sessions executed over
the length of the profiling process, and those that were waiting in DBMS-specific events. It
provides a first and most important step in identifying problem areas. Results can be viewed in
real-time.

The Load Graph and Top Activity Section compose one view in the editor, while the Profiling
Details view is a separate interface component that only activates when an item in the Top
Activity Section is specified.

NOTE: Use a 1280 x 1024 monitor resolution when viewing profiling information. Smaller
resolution sizes can obscure details in the view.

Running a Profiling Session

Profiling provides the continuous monitoring of a data source and builds a statistical model
based of database load based on the user’s state every second. The created profile can then be
saved to file, and the data can be saved, analyzed, and optimized by importing statements into
the tuning component and running a tuning job.

The following list provides the general workflow and overhead tasks, when attempting to
monitor data sources and store query information.

1 Execute a Profiling Session

Work with Session Results

Saving Profiling Sessions

2
3 Creating Profiling Reports
4
5

Import Statements to Tuning

In addition to the workflow tasks outlined above, the profiling interface also enables a number of
important functions to help in statement analysis and diagnosis. This additional, or extra,
functionality can be found in Other Profiling Commands.

Furthermore, in some cases you will need to configure system variables and parameters in order
to get the results you need from the application. See Configuring DBMS Properties and
Permissions for more information on how to configure profiling and your registered data sources
prior to running a session.

88 DB OPTIMIZER USER GUIDE

Execute a Profiling Session
Profiling is monitored and managed via profiling’s three major interface components: the Load
Chart, Top Activity Section, and Profiling Details view.

& TORLABSCORCL ~ Frutesses:l-.ﬁ.l— ¥ | Filter by: -Mone- v W EY | 3
QQ

Profile Session

Bop CPU @ System VO W User 1O 0 Cluster B Application W Configuration B Commit B Metwork B Administrative

woneurrency [Scheduler [Other

e CPU i _
T . T i T QQ

o R o R o s s o o . 2
s o c’.:f:- 3 o o A5 o A R ‘fﬁ' R Al o Al R [o B o foad R o

5]

Active Sessions (ava
[] -

Overview | 03 50L | €5 Everts| 27 Sessions | 00 Object 1/

SQL Statements Events Sessions
Statement D Event OB~ Lisar { Program A
D% BEGINEMD_..., :3); END [OM P B | SYsManjoms]
+ o SELECT L.O..._EXTENTS, W db file sequential read Bl | MOvVIES]
=] ¢ SELECT T.0....I0T_NAME [} control file sequential read [SYSTEM |
e e Nl || control file paraliel write] DESHMP § emagent.exe O
o [Sh26oom...OT NAME ™| null event ¥ | ORACLE.EXE (CKPT) o
< 3 ||« | ¥ || | ¥ |
[—] U

@ Profiling Details &2 -
SQL: [74r348n219ngh] SELECT T.OWNER,T.IOT_NAME,"YES' FROM SYS.DBA_ALL_TABLES T WHERE

OF 5L Text | o SQL Details| €5 Events | 47 Sessions | T8 children Details | $0) Object 1O

To execute a profiling session:
1 In Data Source Explorer, right click on the data source you want to profile and select Profile

As from the menu, and then choose Data Source 1.

2 Inthe Profile Configurations dialog, select the configuration to use for this profiling
session. If you haven't already created a profile, see Building Profiling Configurations for a

description of the profiling configuration options you can choose.

The profiling session begins. Alternatively, clicking the Profiling icon on the Toolbar
automatically runs a profiling session for the last data source you selected.

Once a profiling session launches, it runs until you stop it. When a session has run for a
length of time, you can then interpret and analyze the results. See Work with Session

Results.

DB OPTIMIZER USER GUIDE 89

To stop a profiling session:

You can stop a profiling session at any time by clicking the Stop button [#] in the upper
left-hand side of the Profile Session screen of by clicking the Stop button in the Progress
Window.

N HOIE R BiA P
Bgpata 32 . sap | © O| % db2_cpu.sq |E dbzosal |l UOWWALT_small.oar
| "l £2DT -
R i =

=R

Profile Session

(type filter text | ™ ‘ ‘

Executing a Session from the Command Line
NOTE: This is not supported when using DB Optimizer InstantOn.

You can launch a profiling session from the command line using the following syntax:
dboptimizer.exeprofileds:ROM*L*ABORCL10G_1duration:20tofile:c:\testprofile.oar

In the above command, the user has specified ROM*L*ABORCL10G_1 as the data source, and
indicates a profiling session of 20 minutes. The tofi/e variable specifies the directory and name of
the file to which the profiling session will be saved.

Killing an Oracle Session

For the Oracle platform, you can stop profiling an active user session at any time during the
profiling session by right-clicking the session on the profiling Sessions tab and choosing
Kill Session.

EE Overview Er'_-u"' L {B Events éﬂ Sessions

User MName Program SID

SYSTEN ey | 30

Copy

E‘j Trace Session

7 Kill Session

90 DB OPTIMIZER USER GUIDE

Tracing an Oracle Session

While profiling an Oracle database you can choose to start a trace on a specific session by
right-clicking the session on the profiling Sessions tab and choosing Trace Session.

== overview | 5 5QL | (5 Events | £ Sessions

User Mame Progranm SID

Copy

i' Trace Session

¥ ¥ill Session

Work with Session Results

Results are displayed in the Profiling Session editor whenever a profiling session is executed.
Results can appear in real time (if real time profiling is enabled) or once a session as finished its
execution.

Results are displayed in the three major interface components of the editor, which you can use
to analyze the overall efficiency and capacity of queries running on the data source, to various
levels of detail:

The Profiling Ul has three correlated sections:

e Selection in Chart will fill the top activity section data, distributed in Overview/SQL/Events/
Sessions/Object 1/0O.

e Selection in any tab of Top Activity will fill the Profiling Details with top selection type related
data.

For more information, see:

e Opening an Existing Profiling Session

Filtering Results

Analyze the Load Chart

Analyze the Top Activity Section

Analyze Profiling Details

DB OPTIMIZER USER GUIDE 91

Opening an Existing Profiling Session

Saved profiling session data is stored in either an SQL Project or in a Profiling Repository on an
Oracle data source. You can find profiling sessions saved as .oar files in the SQL Project Explorer.
You can find profiling sessions saved to a profiling repository in the Data Source Explorer, either
in the Profiling Repository node of the data source or in the Profiling Repositories.

To view a saved profiling session, locate it in either the SQL Project Explorer orin the
Data Source Explorer and double-click the icon to open it in the Profiling Session window.

HEI [ata Source B 23 % S0L Project Ex =0 HEI Data Source Expl % S0L Project Expl 22 =0

MdR ES 5§ -
= = soLProject

4 Connections

|£l'| Creation Scripts

T General SGL

SRESYManaged Daka Sources (4)
= £l TORLABORCL10g_2 (Oracle 10.2.0.3)
L3 Database Objects

M Prafiling Repository
= ElE TORLABORCLI1g_Z (Oracle 11.1,0.6)
L_EJ Database Objects
= M Prafiling Repositor:

M TORLABORCLE
il TORLABSQLOD_1_#2.0ar
El Untitled Tuning Job, tun

El Unkitled Tuning Job2.tun

L2 Untitled Tuning Job22.bun

=-f| TORLABORCL11g_2
E—l Unkitled Tuning Jobw, bun

|_(1 2012-03-05 18:43:05 (33m)
Sl TORLABORCLSI_Z (Cracle 9.2.0.1)
Sl TORLABSQLOR_1 (S0 Server 10,0,160,0)
= Praofiling Repaositaries
ik ToRLABORCLIOg 2
=il TORLABORCL1g 2
= TORLABORCL11g_2
{4 2012-03-05 15:43:05 (33m)
M TORLABORCLS_2

Filtering Results

You can display filtered subsets of the original profiling results set for each section of profiling
based on DBMS platform type:

e IBM DB/2 for Windows, UNIX, and Linux: Application, Creator ID, Cursor Name,
Package Name, Statement Type, and User Name.

* Microsoft SQL Server: Application, Command, Database, Hostname, NT domain, Net
Address, and User Name.

e Oracle: Processes (Background or User), Action, Application, Hostname, Module, Schema
Name, and User Name. When profiling a RAC, there is also an instance filter that appears to
let you limit the profiling results shown to a specific instance.

e Sybase: Application, Database, Host, IP Address, KPSID, SPID, and User Name.

92 DB OPTIMIZER USER GUIDE

You filter results using the filter controls in the upper, right-hand part of the profiling editor.

F‘r-:u:esses: Filter by: | Hostnarne % | TORLABSCORCL Y|Q§"l E)

-Mone-

Ackion &l
T —

Application

in W Configuration B Commit B Metwomodule t M Concurrency 0 Scheduler
Schema Mame
ser Marme

To filter profile editor results:

1 Use the Filter by menu to select a filter type. The second menu becomes active based on
your selection in the first menu.

2 Use the second menu to specify a value.

3 Click Refresh | 53 | to update the profiling details.
The profiling editor is updated to show only results associated with your choice.

TIP: Select -None- from the Filter by list to restore the unfiltered results.

Analyze the Load Chart

The Load Chart is located on the top section of the Profile Session editor and provides a display
of the overall load on the system. The bars represent individual aspects of the enterprise, and
the view is used to discover bottlenecks.

Profile Session & g
= B O CPLY B System UD B Ussa vD 1 Clastar B ApplicaSon B Configuration B Commit B Mateask B Administraiive B Concusrency © Schadular B Qther
£ .
=0
(=4
2a
w
*z2
o
=a
oL

The most important part of the previous screenshot is the Average Active Sessions (AAS) graph.
AAS shows the performance of the database measured in the single powerful unified metric
AAS. AAS easily and quickly shows any performance bottlenecks on the database when
compared to the Max Engines (for Sybase) or Max CPU (for Oracle) line. The Max Engines line is
a yardstick for performance on the database. When AAS is larger than the Max CPU line, there is
a bottleneck on the database. Bottleneck identification is that easy.

DB OPTIMIZER USER GUIDE 93

AAS or the average number or sessions active, shows how many sessions are active on average
(over a 5 second range in DB Optimizer) and what the breakdown of their activity was. If all the
users were running on CPU then the AAS bar is all green. If some users were running on CPU
and some were doing I/O, represented by blue, then the AAS bar will be partly green and partly
blue.

The line Max Engines or Max CPU represents the number of CPU processors on the machine. If
we have one CPU/Engine then only one user can be running on the CPU/Engine at a time. If we
have two CPUs/Engines then only two users can be on CPU at any instant in time. Of course
users can go on and off the CPU/Engine extremely rapidly. When we talk about sessions on the
Engines we are talking about the average number of sessions on CPU/Engine. A load of one
session on the Engine thus would be an average which could represent one uses who is
consistently on the CPU/Engine or many users who are on the CPU for short time slices. When
the number of Engines becomes a resource bottleneck on the database we will the average
active sessions in CPU/Engine state go over the Max Engine/Max CPU line. The number of
sessions above the Max Engine line is the average number of sessions waiting for CPU/Engine.

The Max CPU is a yardstick for performance on the database. The number of CPUs or Engine on
the data source is information DB Optimizer obtains during the profiling process. However,
sometimes the number of CPUs or Engines is not reported. In these cases, it might be desirable
to change the default number of CPUs/Engines from one to a number more closely matching
the actual system running the data source. You might also want to change the Max CPU/Engine
line to reflect the performance impact of adding or removing a CPU or Engine from the system.

To change the Max CPU or Max Engine count in the Load Graph:

1 From the Profile Session window, right-click anywhere on the AAS graph and select Edit
Engine Count or Edit CPU Count.

2 Inthe Engine Count dialog that appears select Use a custom value, enter a new value,
and then click OK.

The AAS or Load Chart Max CPU or Max Engine line is updated immediately to reflect
the change.

The Load Chart is designed as a high level entry point to profile session results. Subsequently,
you can use the Top Activity and Profiling Details views to examine more detailed information on
waiting and executing sessions over the length of the session. Alternatively, you can select one
or more bars on the graph to populate the Top Activity section (and subsequently, the Details
View) with information on a specific subset of the graph.

The Load Chart displays the distribution of waiting and executing sessions over the length of a
profiling session.

e Time is displayed on the X axis. You can zoom in and zoom out on the graph via the icons in
the upper right hand corner of the graph, once a profiling session is stopped.

94 DB OPTIMIZER USER GUIDE

® The Y axis shows the average number of sessions waiting or executing. Each
supported platform has a specific set of wait event times.

DBMS Wait Event Category

IBM DB2 Fetch, Cursor, Execution, Operation,
Transaction, Connectivity, Lock,
Other

Oracle On CPU, System I/O, User /O, Cluster,
Application, Configuration, Commit,
Other

SQL Server CPU, Lock, Memory, Buffer, 1/O, Other

Sybase CPU, Lock, Memory, I/O, Network,
Other

e A chart legend displays a color and code scheme for executing and waiting
session categories, in the upper right-hand corner of the view.

Analyze the Top Activity Section

The Top Activity Section is located in the middle section of the editor and displays where the
load originates. Specifically, the top SQL statements, top events that the database spends
time in, as well as the top activity sessions.

The Top Activity Section is composed of a series of tabs that provide detailed statistics on
individual SQL statements and sessions that were waiting or executing over the length of

a profiling

|E_l:| romlabsglls_1-sa

session.

ity romlabarclsi_z &2

=8

%romlaborclgi_z - F‘ru:u:esses: FiIterI:uy:|LlserName V|SY5TEM V|Il;~1r§h FEI @

Profile Session

®|

) B oM CPU B Systern 10 B User VO 0 Cluster BApplication M Configuration B Commit @ Other
z
o
W
w
[k}
o
k)
= g o o K & &
=2 a’ ar” o o ut B ar® G G
£E Overview EEL S0L @ Events E‘iﬂ Sessions | #0 Object I/0
S0L Statements Events Sessions
Statemnent = Event [User [Program =
L3 INSERT INT...QINSERTI || log file sync B || SvsTEM £
elect c.na... = u.userd I oM CPU B SYSTEM
+| LI LIRKROWN [., || dbfile sequential read W ., | SVSTEM 3
L5 | | 3 || i | 3 ||sEE 3

e The top SQL tab provides more detailed information than provided on the Overview tab, in
terms of executing SQL statements and procedures. For more information, see Top SQL

Tab.

DB OPTIMIZER USER GUIDE

95

The top Execution Activity (DB 2 Specific) tab provides details about the statements and
procedures that ran. This is DB 2 specific. For more information, see Top Execution Activity
Tab (DB2 Specific).

The top Events tab displays information about wait events profiled by the execution
process. For more information, see Top Events Tab.

The top Sessions tab displays information about sessions profiled by the execution process.
For more information, see Top Sessions Tab.

The top Blockers tab (Oracle) displays information about blocking sessions. For more
information, see Top Blockers Tab (Oracle Specific).

The top Object I/O tab (Oracle-Specific) tab does not appear in the Top Activity Section
unless the data source being profiled is an Oracle platform. This tab displays information
about the I/O profiled by the execution process. For more information, see Top Object I/O
Tab (Oracle-Specific).

The top Procedures tab (Oracle, SQL Server, and Sybase-specific) displays information

about procedures observed during profiling. For more information, see Top Procedures Tab
(Oracle, SQL Server, and Sybase Specific).

When you select any item from the Top Activity tabs, details are displayed in the Profiling Details
view. The tabs that appear in Profiling Details will be different depending on the database
platform and whether you selected a statement, session, or an event. This is to accommodate
the parameter specifics of the item you selected.

Top SQL Tab

The Profile editor’s SQL tab shows a representation of all SQL statements that are executing or
waiting to execute over the length of the profiling session or within the currently selected graph
bars.

NOTE: The image below depicts results achieved for a Sybase database. The columns
displayed on this tab differ depending on the database platform.

Profile Session & g

| el

BCPU OLock BUO B Metwork O Memary B Other

ad

(Y]

=

Active Sessions (avg)

L
'.ﬁ'*“'tI~

. J = 5l
N u W

Crverview f—% S0 F,I'_'" Events g-rr' Sessons | ;?J. Procedures

Statements CPU Phiysical [0 | Mamory Usag 4

o select count(™) From dbo, TVENDOR ai, dbo, TVEMDOR. a2, dbo. TVENDOR a3 where 1=1] 7
¥ INSERT INTO codruta.t1{ i, i, §, u) WALLIES @i, 6, @i, &) Z 3
3 DELETE FROM codruta.tl WHERE jfj = (select max(iii) from codruta ki) 5 4267
5% WHILE {SELECT COUNT(*) FROM codruts t1) = 1 BE. E fii = (seleck max{jii) From codruta.tt) END 0 2163
BETRi=Fi+1 1 1
E,I‘ WHILE @i <= 1000000 BEGIN INSERT INTO cadrut, . LLES | @i, @i, @i, @i) SET @i=&i + 1 END L i}
% om el] an [l

[

DB OPTIMIZER USER GUIDE

Statements

Statements can be grouped by type by right-clicking the view and selecting Organize > By
Type.

TIP: Statements are grouped when they differ only by their clause values. This enables the
roll-up of SQL statements that only differ by a variable value. For example: select * from
emp where empno=1; and select * from emp where empno=2. A '+’ symbol appears
beside rollup statements. You can click the symbol to expand and view the different
statement predicates.

Additionally, the SQL tab displays two other groupings of statements:

Group Description

OTHER Includes all recognized statements other than INSERT, SELECT, UPDATE,
DELETE, and MERGE statements.

UNKNOWN Statements that are not recognized by the application. DB Optimizer has
been improved to query the caching more often and more intelligently so
that UNKNOWN appears less frequently in the Top SQL tab. The system
queries the data source for SQL text in 15 second intervals. Unknown may
still appear infrequently as the SQL text may have been removed by the
database.

All statements are displayed in a tree structure with the following statement components:

Statement Component Description

Subject The DML statement type (and FROM clause, as appropriate).
Predicate The WHERE clause.

Remainder Any statement component following the WHERE clause.

For example, all statements with common subjects are shown as a single entry with multiple
children; one child for each unique predicate. Predicates are similarly broken down by
remainders.

NOTE: Right-clicking the SQL tab and selecting Organize By lets you choose between
Statement Type grouping and None. The None option disables grouping by
statement.

Statistics

Statistics are provided for statements and statement components. The statistics let you evaluate
costs and spot wait event problems not just at the level of entire SQL statements, but also at the
level of statement components. For each subject, predicate or remainder entry, the following
statistics are provided:

NOTE: Columns displayed on the top SQL tab differ depending on the data source platform.

DB OPTIMIZER USER GUIDE 97

Statistic Shown for Platform | Notes
Executions SQL Server, Oracle, | The number of active executions for the statement or statement
Sybase, DB2 component over the length of the profiling session or the selected
graph bars.
Avg. Elapsed (sec) Oracle, DB2 The average amount of time that elapsed while executing the

statement during the profiling period. This column appears for only
SQL Server, DB2 and Oracle data sources.

DB Activity (%) SQL Server, Oracle, | A graphical representation of the distribution of execution and wait
Sybase, DB2 time for the statement or statement component.

SQLID Oracle The ID value of the SQL statement. This statistic only appears on Oracle
data sources.

Child Number Oracle The child number in the database. This statistic only appears on Oracle
data sources.

Parsing User ID Oracle The ID of the user who parsed the statement. This statist only appears
on Oracle data sources.

Plan Hash Value Oracle The execution value of the statement. This statistic only appears

on Oracle data sources.

Top Execution Activity Tab (DB2 Specific)

In addition to the statistics displayed on the Top SQL tab, DB2 platforms have an additional tab
in the Profile Session editor named Execution Activity, which contains the following statistical
rows: Rows Read, Rows Written, Fetch Count, Statement Sorts, Sort Time, and Sort Overflows.

Top Events Tab

The Top Events tab displays information about wait events on the resources involved in the
profiling process. This display is used to tune at the application or database configuration level.
For example, if the top events are locks, then application logic needs to be examined. If top
events are related to database configuration, then database setup should be investigated.

Profile Session

a

3

50
'\Ll

clive Sessions (aw

soL

5 i
W e

BOMNCPU B System VO B User 10 O Cluster BApplication B Configuration B Commit Bl Netwo

EZ overview | T S0 | (5 Everts| £ Sessions | #00 Object 1O |

Event
on CPU
db File saquential read
FESMQICpU quantum
db File parallzl wrike
eng: OF - contention

NOTE:

Wl Courk

445
218
18

Ag. Per Wail (sac) Class DB Acthdty (3:) =
[TacT] [75.23
0.359 User [/O [| 15.01
0.5 Schaduler 1] 789
0.458 Sysham L0 0.6l
1.194 Cibher 0,32

The columns that display are data source-dependent. For example, the Wait Count and

Avg. Per Wait (sec) columns display only for an Oracle data source.

98

DB OPTIMIZER USER GUIDE

Top Sessions Tab

The Sessions Tab provides information about individual sessions. This tab provides information
about sessions that are very active or bottlenecked.

EE Overview E" SOL |'EB Events Ig" Sess‘onsl
Usir Mame Program 510 Serials Activity (%) - Machine Session Type
SYSTEM Exdcutor &xe 125 32563 27.19 EMBARCADERO'ROWEBITADL LSER.
T Rt ERE Crim) 15 T35 43 TORLABORCLWE 1 BACKGROLMD
ORACLE.EXE (C3Q0) 162 1. 20.67 TORLABORCL10G_1 BACKGROLMND
ORACLE.EXE (md00) 111 220521 3.43 TORLABORCL I0G_1 BACKGROLMD
SYSTEM Executor.exe 143 pit bl | 2.72 EMBARCADERORCVEANITUCADT LSER
QRACLE.EXE (SMOM) 154 il 2- 70 TORLABORCL I0G_1 BACKGROLMD
SYETEM Swecutor.exe 111 prl::x] R 2,37 EMBARCADERONROV SMOVACEL LSER
SYSTEM Executor.exe o7 228 1 1.86 EMBARCADERCROVSHNOVACDL USER.
SYSTEM Sxecuior.exe 120 ggese L. 159 EMBARCADSROROVENOVACOL USER
ORACLE.EXE (mi01) o7 431593 1 1.54 TORLABCRCLI0G 1 BACKGROLMD
ANAC = Sve fuaracik &4 L] TN ADMNGTT S0 8 S AW I

Top Blockers Tab (Oracle Specific)

The Blockers tab provides details on sessions holding blocking locks.

== Gverl.riew|] SQL|@ Events |£ﬂ Sessions Iﬁ Elockersl &0 Object /'O

User Mame Program SID | Seria®¥ | Blocking (%) | Machine | Session Type | Client Info

JDBC T...lient B 7910 rowch...

ORA..WR) 166 1 15.67 ROML...R503 BACK..UND
SYSTEM JDBC T..lient 124 26549] 4,48 rowch...iu02 USER

ORA...ON) 161 1 0.75 ROML...R503 BACK..UND

The following parameters are displayed on the Blockers tab:

Value Description

User Name The user name under which the session was run.

Program The name of the executable under which the session was run.

SID The SID value of the session.

Serial The serial number of the machine from which the session executed.
Blocking (%) A graphical representation of the percentage of total blocked sessions

being blocked by a blocking session.

Machine The machine name and network location of the machine from which the
session executed.

Session Type The type of session.

Client Info The name/type of the client from which the session initiated.

DB OPTIMIZER USER GUIDE 99

For more detailed information, see Viewing Details on the Blockers Tab (Oracle).

Top Object I/O Tab (Oracle Specific)

The Object 1/0 Tab is specific to the Oracle data source platform, and displays information
about Oracle 1/O loads on the profiled data source.

E2 overien f-_'lm S0L ‘._t?‘ Events {-rij Sessiors | # Obdect [JO

Obgect Type LB Actiwity (3% Tablescace File ID [Q=
ENE TAELE [N 10000 SYSTEW 1 Woreod b
W b file
B db fil=:
O drectp
b direct
W directe
N drectp
B Unco
H Other

The following parameters are displayed on the I/O tab:

Value Description

Object The name of the data source object affecting the Oracle 1/O.

Type The object type. For example, table, partition, or index.

DB Activity (%) Use the color chart on the right-hand side of the I/O tab to view the I/O
load on the data source during the profiling session.

Tablespace The name of the tablespace where the object resides.

File ID The unique ID value of the file from where specified object resides.

Top Procedures Tab (Oracle, SQL Server, and Sybase Specific)

The Procedures tab is specific to Oracle, SQL Server, and Sybase data source platforms. It
displays information about Procedure loads on the profiled data source.

EE Overview | E|'-_'E|L AL |{9 Events |§1 Sessions I_u;?_; F'ru:u:eu:luresl

Procedure Mame | Database Mame | Procedure ID | Executions | DB Ackivity (36) = |
ETEST_F‘ROCE codruta 50099035 1 [T 0,00
TEST_PROCL codruta 1542102572 1 IR 50,00

The following parameters are displayed on the Procedures tab:

Value Description

Procedure Name The name of the procedure affecting the database performance.

Database Name (SQL Server, Sybase only)| The name of the database where the procedure resides.

Owner (Oracle only) The owner of the schema in which the procedure resides.
Procedure ID A unique ID created when the procedure is created.
Executions (SQL Server, Sybase only) The number of times the procedure was executed during the session.

100 DB OPTIMIZER USER GUIDE

Analyze Profiling Details

The Profiling Details view displays detailed information on any item selected in the Top Section
View, such as an SQL statement, an Event, a Session or a Procedure.

@ Brofling Detais 75 = m|
SqL: INSERT INTQ PERFCHTR_DATA_1(QUERYID, VALUEL) SELECT 951, COUNT(=} FROM SYSA_SLOCK L SYS.DBA_OBJECT..

i} 5oL Test :a"'a sqL Detaibs | {3 Bvente | §7 sessions| 1B Chigren Detals

SOL Identification optimizer and Quthine [wecution Statistics (total) — per execution Perrow
SQLID 1135755065 iods ALL_ROWS Fahbches 0,00 0,00 0,00
S0L Address S98CESQ s Lkser ID 5 Svecutors 1 1.04 1.00
Child Addre=s GARAASID Curtine Categary Sarls 0 0,00 0,00
Thildran 1 Cuitlina 530 0 Tisk Reacks 1004 1,004.00 1, 004,00

Plan Hash value 3582252508

G=i= 13261 13,2500 13,2500
Parsing Statishcs

Matilz Executer,exs 2 Rowa Processed 1 1.0 1.0
ACtan Memary 163433 P Tme 93, 750000 &3, 750.00 43, 75000
50L Cp=ration Cod= 2 Loads 134 Slapzed Time 70,279, 820000 70,273,320.00 0,278, 320,00
Program 1D 10 1644 Invaidatiors 132
Frogram Line= 19%

Depending on the data source platform you have specified, the tabs that appear in the view will
be different, in order to accommodate the parameter specifics of the statement you have
selected.

Depending on the top activity selected and the profiled platform types, some tabs may not be
available.

Statement Selected

When a Statement is selected, the following Profile Detail tabs are available.

Tab Name | Description Supported Platform
Oracle |Sybase |DB2 |SQL
Server
SQL text Displays the full code of the selected SQL statement. yes yes yes |yes
SQL Details | Provides details on statement, like execution statistics. yes yes
Events Provides database activity details about events the statementis | yes yes yes |yes
associated with.
Sessions Shows which sessions executed this statement. yes yes yes |yes
Blockers Shows which sessions held blocking locks against the session yes

associated with this statement.

Double-clicking an entry on this tab opens that session in the
Top Blockers tab, letting you find more information on the
blocking session. For details, see Top Blockers Tab (Oracle

Specific).
Children Lists all copies of the cursor or SQL query, if Oracle has cached | yes
Details multiple copies of the same statement.
Object I/0O | If the SQL query has done physical I/0, then these are the yes

objects, such as tables, and indexes that were read to satisfy the
query. Temporary objects with not have values in Object and
Type columns.

DB OPTIMIZER USER GUIDE 101

Tab Name | Description Supported Platform
Oracle |Sybase |DB2 |SQL
Server
Procedures | Shows which procedures contain the selected statement. yes yes
Bind Shows bind variable information for SQL captured during the | yes
Variable Profiling session.
Details

Event Selected

When an Event is selected, the following Profile Detail tabs are available.

Tab Name | Description Supported Platform
Oracle |Sybase |DB2 [SQL
Server
SQL Shows which SQL statements waited on this event. yes yes yes |yes
Sessions Provides information about the sessions associated with the yes yes yes |yes
event.
Blockers Shows which sessions held blocking locks against the session yes
associated with this event.
Double-clicking an entry on this tab opens that session in the
Top Blockers tab, letting you find more information on the
blocking session. For details, see Top Blockers Tab (Oracle
Specific).
Procedures | Shows which procedures contain the selected event. yes yes
Raw Data | Raw data that was sampled from the database, specifically the | yes
following:
e Sample time
¢ SID
e Serial #
® User name
® Program
¢ SqglID
* P
e P2
*P3
Analysis Displays for “buffer busy waits” and “cache buffer chains latch” | yes
waits. The analysis shows data and documentation to assist in
solving these bottlenecks.
102 DB OPTIMIZER USER GUIDE

Session Selected
When a Session is selected, the following Profile Detail tabs are available.

Tab Name | Description Supported Platform
Oracle | Sybase |DB2 |SQL
Server

Sessions Provides parameters regarding the session. For example, yes yes yes

database server connection information, and data regarding the

client tool and application.
Blockers Shows which sessions held blocking locks while this session was | yes

active.

Double-clicking an entry on this tab opens that session in the Top

Blockers tab, letting you find more information on the blocking

session. For details, see Top Blockers Tab (Oracle Specific).
SQL Shows which SQL statements this session ran. yes yes yes |yes
Events Shows which events this session waited on. yes yes yes |yes
Procedures | Shows which procedures ran the selected session. yes yes

NOTE: When right-clicking on a SQL statement in the Top Activity Section in Profiling, if the

SQL statement is run by a different user than the user who is running DBO, than the
User Mismatch dialog appears, with an example of the following message: “This query
was executed by [SOE] and you are currently connected as [system]. We recommend
you reconnect as [SOE] to tune the SQL. Would you like to continue anyway?” This
message indicates that the statement is being tuned by a user other than the user who
originally ran the query, and tables may be missing based on the different schemas.
Click OK to run the query, or click Cancel and run tuning under the original user.

Blocking Session Selected
When a Blocking Session is selected, the following Profiling Detail tabs are available.

Tab Name | Description Supported Platform
Oracle | Sybase |DB2 |SQL
Server
Blocked Provides identifier and VESESSION session information on the yes no no no
Sessions sessions being locked by the blocking session.
Session Provides parameters regarding the session. For example, yes no no no
Details database server connection information, and data regarding the
client tool and application.
SQL Shows the SQL statements associated with the lock yes no no no
Events Shows which events the blocking session waited on. yes no no no

DB OPTIMIZER USER GUIDE

103

Procedure Selected

When a Procedure is selected, the following Profile Detail tabs are available.

Tab Name | Description Supported Platform
Oracle | Sybase |DB2 |SQL
Server
SQL Text Shows the SQL text of the selected procedure. yes yes
SQL Shows which SQL statements this procedure ran. yes yes
Events Shows which events the selected procedure waited on. yes yes
Sessions Provides parameters regarding the session. For example, yes yes
database server connection information, and data regarding the
client tool and application.

This section also addresses the following topics:

¢ Viewing Details on the SOL Tab

® Viewing Details on the Sessions Tab

* Viewing Details on the Events Tab

¢ Viewing Details on the Procedures Tab

Viewing Details on the SQL Tab

In the Top Activity Session, selecting a statement entry on the SQL tab displays information
in the Profiling Details view. The graph portion and details on the event category tabs on the
new editor pertain only to the selected statement. Additionally, new tabs become available:

e SQL Text tab: Shows the full code of the SQL statement. For more information, see SQOL
Text.

e SQL Details tab: Displays execution details. This tab is only displayed for Oracle
data sources. For more information, see SOL Details.

e Events tab: Displays information about the events the selected statement is associated with.
For more information, see Events.

e Sessions tab: Displays information about the sessions that the selected statement is
associated with. This tab is displayed only for Oracle data sources. For more information, see
Sessions.

® Procedures tab: Displays information about the procedures that contain the selected
statement. This tab is displayed only for SQL Server and Sybase data sources. For more
information, see Procedures.

104 DB OPTIMIZER USER GUIDE

To select a SQL tab statement entry:

e On the SQL tab, click on a statement with no child nodes or on a leaf node in the statement
structure.

The new profiling editor page opens, as reflected by the bread crumb trail at the top left of the
editor. You can continue to drill down into the statement, as needed.

SQL Text
The SQL Text tab displays the full code of the SQL statement.

£ New SQL Text t=l=] &=

Add Tuning Statement S u L

Add a 5QL statement. m

SELECT 4
First,
Last
FROM
Enployee
WHEERE
Gender = "E"

Apply

bkl (uiaitapest

SQL Details

The SQL Details tab provides information and the execution of the statement and other
information related to how it is running. It is only applicable to Oracle data sources:

il Profing Details 52 =0
Sl INSERT INTO PERFCHTR_DATA_1{QUERYID, VALUE1) SELECT 551, COUNT(=} FROM S¥SV_sLOCK LSVS.DRA_ORJECT...

Bt 50 Text | o 5L Detals | (5 Everts| 47 sessiors | B0 Chidren Detals

S Identification optimizer and Qutline Execution Statistics (total] — per execution Perrow
Optimizar Made ALL_PUOWS Fetches 0.00 0,00 0,00
ParsimgUser 100 5 Ex=cubons 1 1.00 1.0
Oubhne Csb=gory Sorta O 0.00 0.00

1 Qutine 5100 0 Disk R=ads 1004 1,C04.00 1,004, 00

Flan Hagh Value 38822524508 . . Buffer Cets 13281 13,251.00 13,262.00
Madule Exenutar.exe Parsiy Stobistics R Processed 1 100 Lo

Achan Memory 152933 CPU Tim= 93, 750,00 o3, 780,00 93, 750,00

S0L Operakon Code 2 Loads 134 Elapged Time 70,275 420,00 70,273,320.00 A0,275.820,00

Program I M 1644 Irrvaidatiors 132
Program Line= 185

DB OPTIMIZER USER GUIDE 105

SQL Details include:

Parameters Description

SQL Identification Values The SQL ID value of the statement.

Optimizer and Outline Values Optimizer-specific values pertaining to the parsing user ID value and
outline SID.

Parsing Statistics Information regarding memory, loads, and invalidation values.

Execution Statistics The execution statistics of the statement. This category includes disk reads,
buffer gets, rows, and values that represent CPU and elapsed time.

Events
The Events tab provides details about the events that the statement is associated with.

@ ProfingDetais 51 =0
SQL: INSERT INTO PERFCNTR_DATA_1(QUERYID, VALUEL) SELECT 951, COUNT(*) FROM SYS.V_SLOCK L SYS.0BA_OBIECT...

B SQL Text | @w SQL Details (€5 Events| &7 sessions | 50 Children Detais

Event Activity (%) =
db file s=quental read 1 322
db file scattered read 0.50

Sessions
The Sessions tab provides information about any sessions the statement is associated with:

@ Prafing Detsie 5 =

S0L: INSERT INTO PERFCNTR_DATA_1{QUERYID, ¥ALLEL) SELECT 951, COUNT[*) FROM SYS.V_SLOCK L,SYS.084_DBIECT...

Bt =g Test | g 50U Detals (€5 Bvents | @7 sessians | BB Crikden Detals

Ls=r Rlarme Program] Sanal=s Activity (%] Wlachin= Sezsion Type
SYETEM L 145 SLED 3.1 EMBARCADERDASVENOVACDL LIEER,
SYETEM Exeutor.ess 145 9242 1 0.35 BMBARCADERQ'ROWERCVACDL LIEER,

Session details include information on different parameters, depending on the platform. For
example, on Oracle platforms, the following parameters are displayed: User Name, Program,
SID, Serial #, Activity (%), Network Machine Name, and Session Type.

106 DB OPTIMIZER USER GUIDE

Procedures

The Procedures tab provides information about any procedures containing the selected
statement.

@ Profiing Detais 13 =5
S0L: WHILE {SELECT COUNT{*) FROM codrutakl) = 1 BEGIN DELETE FRO™ codrutat 1 WHERE jjj = (select max(jj.-
,:;:'t SO bext EE“ Events _:-I Se<zions _[";1 Frocedures

Frocedure Name Database Name Frocedure ID Exequtions DB Ackivity (%)
TEST_PROSCZ codruta ASOCAG03E i I i6.19

The following parameters are displayed on the Procedures tab:

Value Description

Procedure Name The name of the procedure that contains the selected statement.

Database Name The name of the database where the procedure resides.

Procedure ID The unique ID value of the file where the specified procedure resides.

Executions The number of times the procedure was executed.

DB Activity (%) Use the color chart on the right-hand side of the Procedures tab to view the
procedures load on the data source during the profiling session.

Viewing Details on the Sessions Tab

In the Top Activities Section, selecting a statement entry on the Sessions tab displays
information in the Profiling Details view. The graph portion and details on the event category
tabs on the new editor pertain only to the selected statement. Additionally, new tabs become
available.

Selecting an event type entry on an event category tab opens a new profiling editor page. The
graph portion and details on the Sessions tab and event category tabs on the new editor page
pertain only to the selected wait event and to SQL statements that waited in that event.

e Session Details tab: Shows system details about the selected session. For more
information, see Session Details.

e SQL tab: Displays information about the SQL files that the selected session is associated
with. This tab only appears on Oracle platforms. For more information, see SQL.

e Events tab: Displays the time and parameter information about the selected session. For
more information, see Events.

* Procedures tab: Displays the details of any procedures run in the selected session. For SQL
Server and Sybase data sources only. For more information, see Procedures.
Session Details

The Session tab provides further information about the selected session. The following are
examples of the session details provided for different platforms.

NOTE: The fields that display vary depending on the database platform.

DB OPTIMIZER USER GUIDE 107

Oracle Profiling Details

i

Session: 145, 9160

S session Detals| 5 5 () Events|

Database Server Connection Client Tool Application
S0 145 Program Exegutor.exe SQLID 1545343752
Serislz 0180 05 User NT AUTHORITTANCHYMOLUS LOGON SOL Operation Code 3

Lizar Mame SYSTEMM
Proc=ss 05 PID 142532
Logged On Time 200§-12-19 17:25:06.0
Logged On For D0:04:27.0
Connechon Type DEDICATED
Session Type USER
Rasource COnsumer Grous

Microsoft SQL Server

O Process 1D TEF2:T6 78
Hast EMBARCADERC\ROWSNOVACDL
Terrmingl ROWSMOVACHL
Clent ID
Client Info

Lask Cal Bapsed Time 86
[Modue Exsoutor, sxs
Action
SCL Trace DISABLED

Session: 55_2009-09-30 0%40:34,940 (5a / Executor Module)

Login ke 2000000930 054003494

Database Server Connection Client Application
SPI: 55 fApplicakion neme Executor Module
KPID 4,048 NT domain
Databass 10 103 NT usermanme
User 10 O Host process 1D 3552

Haostrame TORLABDEMOO1L

et address 000C29502138

Met tbrary TCRIIP

SQL

The SQL tab displays information about the statements associated with the session.

Sassion: 145, 9160
EE Smzmon Deteils ['u“ =l e Events
Shetement | Exeoubors | Acthity) <] S0 | ChidMurber | ParsnpUserID | Pl besh ek
¥R DSERTINTGPRERFCHTA L. M0 LIDI=O.CRISCT D | WSS 0140885 @ 8 Meneass
MWEERT INTD FERFCHTAR _D... LISER= FROM STS.USERE I B 0.30 5300025914 a 5 407535571
- 4 SELECT COUNT{™) FROM 5Y. . HERE STATUS = TRLTNE' [—— ~ 0.5 1545343752 a 5 3510734404
';RIJ-IFE‘M'IT‘ | bavrrmnmnmns 005 344047211 1 onn

108

DB OPTIMIZER USER GUIDE

SQL statements are listed by the following parameters:

Value Notes
Statement The name of the statement.
Executions The number of times the statement was executed during the session.

Activity (%)

A graphical representation of the distribution of execution and wait time

for the statement or statement

component. SQL ID

The SQL ID value of the statement.

Child Number

The child number in the database.

Parsing User ID

The ID of the user who parsed the statement. Plan Hash

Value

The execution value of the statement.

Events

The Events tab provides details about the events that the session is associated with.

(@ Frofiing Details &3

Session: 145, 9180

EE Session Details | ESL S0L I{B Eventsl

Event | Actvity (%) 7|

i db file sequential read | 2.79
db file scattered read 0,60
local write wait 0,05

Events are listed by the following values:

Value

Notes

Event Name

The name of the event.

Activity (%)

for the statement or statement component.

A graphical representation of the distribution of execution and wait time

DB OPTIMIZER USER GUIDE

109

Procedures

For SQL Server and Sybase data sources only, the Procedures tab provides details about the
procedures that the session is associated with

@ Profing Detais &1 =5
Sesshon: 112, 5505108 (sa)
E S sesswnDetsis | 5 5oL (5 Events | 8 Procedures
Procedurs Mame Database Mame Pracedurs ID Ewecubions | DB Aoty (%)
TEST_PROCE codruta BSO0RGIE 1 I 00,00
The following parameters are displayed on the Procedures tab:

Value Description

Procedure Name The name of the procedure that ran during the selected session.

Database Name The name of the database where the procedure resides.

Procedure ID The unique ID value of the file where the specified procedure resides.

Executions The number of times the procedure was executed during the session.

DB Activity (%) Use the color chart on the right-hand side of the Procedures tab to view the
procedures load on the data source during the profiling session.

Bind Variable Details

For Oracle data sources, profiling captures the bind variables and their attributes. Select an SQL
statement in the Profiling Session and the details of the captured bind variables for that
statement are displayed here.

& Profiing Details &3
SQL: SELECT COUNT{DISTINCT A.TITLE) FROM MOVIETITLE A, MOVIECOPY B, RENTALITEM C WHERE
53 5oL Text | o' SQL Details | (5} Events | &7 Sessions | [03 Children Details | 803 Object 1/0 || i)y Bind variable Details

SQL ID Child Number Position Varisble Name | Variable Type Yariable Valus
dexkgauihrpft 0 1 HUMBER 625

The following parameters are displayed on the Bind Variable Details tab:

Value Description
SQLID SQL identifier used by the data source.
Child Number A new child number is generated for the SQL ID of the query whenever the

plan changes, for example the value of a bind variable is changed, and the
query is executed again.

Position The position of the variable within the SQL text. For example, given the
query, select * from T1 where C1 =:a and C2 = :b and C3 = :cand C4 = .d,
the position ofais 1, bis 2, cis 3and dis 4.

Variable Name The name of the variable.
Variable Type The data type of the variable.
Variable Value The value of the variable.

110 DB OPTIMIZER USER GUIDE

Viewing Details on the Blockers Tab (Oracle)

In the Top Activities Section, selecting an entry on the Blocked Sessions tab
displays information on sessions holding blocking locks in the Profiling Details view.

Blocked Sessions

The Blocked Sessions tab provides general information on blocked sessions and the details

identifying the specific row locked.

(@ Profiling Details 53 . ==
Session: 124, 26549 (SYSTEM/JDEC Thin Client)

ﬁ Blocked Sessions | EE Session Details: f—_‘f; SQL. CD,' E\rents.
UserName | 51D ~ | ROW_WAIT_OBJ= | ROW_WAIT_FILE# ROW_WAIT_B..K# NUMEER | ROW..... ROW=

SYSTEM 137 -1 0 0]
SYSTEM 136 -1]] a
SYSTEM 110 -1 a] a
SYSTEM 107 -1]]]
SYSTEM 100 -1] 0 0
SYSTEM 96 -1] 0 a

This tab provides the following columns for each blocked session:

Value Notes

User Name The user name under which the blocking session was run.

SID The SID value of the blocking session.

ROW_WAIT_OBJ# Object ID of the table containing the row specified in ROW_WAIT_ROW#.

ROW_WAIT_FILE# Identifier of the datafile containing the row specified in
ROW_WAIT_ROWH#.

ROW_WAIT_BLOCK# Identifier of the block containing the row specified in ROW_WAIT_ROW#.

ROW_WAIT_ROW# The current row being locked.

Session Details

The Session Details tab provides information on the server connection, client, and application
associated with the blocking session.

i@ Profiling Details &3 ™. =l
Session: 124, 26549 (SYSTEM/JDBC Thin Client)

- ocked Sessions | ES Session Details \rents.
Blocked S 5 Details| 5 sQL| (B E

Database Server Connection Client Tool Application -
SID 124 Application JDBC Thin Client SQLID cujvduuungesh
Serial 26549 05 User Catalinb SQL Operation Code 3
User Mame SYSTEM 05 Process 1D 1234 Last Call Elapsed Time 00:16:13.0 [
Process O5 PID 5780 Hostname rowcbulgariuQ2 Module JDBC Thin Client|
Legged On Time 2012-10-31 05:54:54 Terminal unknown Action
Logged On For 00:17:03,359 Client 1D SQL Trace DISABLED
Connection Type DEDICATED Client Infa B

Session Type USER

DB OPTIMIZER USER GUIDE 11

SQL
The SQL tab displays information about the statements associated with the blocking session.

-

‘@ Profiling Details &3 = 5

Session: 124, 26549 (SYSTEM/JDBC Thin Client)

ﬁ Blocked Sessions EE Session Details I E;"_-J|L SQLI {B Events|

Statement | Executions | Avg. Elapsed (sec) | DB Activity (%) ~| SQLID | Child Number
- o/ SELECT €O...TIME_ID 52 490,325 (NI 100.00 cuj..csb 0

SQL statements are listed by the following parameters:

Value Notes

Statement The name of the statement.

Executions The number of times the statement was executed during the session.
Activity (%) A graphical representation of the distribution of execution and wait time

for the statement or statement component.

SQLID The SQL ID value of the statement.

Child Number The child number in the database.
Events

The Events tab provides details about the events that the blocking session is associated with.

-

'l e |
@ Profiling Details £2 O

Session: 124, 26549 (SYSTEM/JDBC Thin Client)

ﬁ Blocked Sessions | EE Session Details | 35 SQL) Everltsl

I- Event Wait Count | Awvg. Per Wait (sec) Clazs DB Activity (%) =

i direct path read temp TES 0179 User/O I o
| OMCPU ON CPU =3 19.68
! read by other session 2 0.205 User/O 051

112 DB OPTIMIZER USER GUIDE

Events are listed by the following values:

Value Notes

Event The name of the event.

DB Activity (%) A graphical representation of the distribution of execution and wait time
for the statement or statement component.

Viewing Details on the Events Tab

In the Top Activities Section, selecting a statement entry on the Event tab displays
information in the Profiling Details view. The graph portion and details on the event category
tabs on the new editor pertain only to the selected statement. Additionally, new tabs become

available.

Selecting an event type entry on an event category tab opens a new profiling editor page. The
graph portion and details on the Events tab and event category tabs on the new editor page
pertain only to the selected wait event and to SQL statements that waited in that event.

e SQL tab: Shows the statements involved in the selected event. For more information, see

SQL.

e Sessions tab: Displays information about the sessions that the selected event is associated
with. For more information, see Sessions.

® Procedures tab: Displays information about the procedures that ran during the selected
event. For more information, see Procedures.

SQL

The SQL tab displays information about the SQL statements involved in the selected event.

@ Prafing Details 53

=R
Event: wait for someone else to finish reading in mass
B saL] 27 Sessions | (B Procedures
Sratements CPU Physical 10 | Memary Usage Execu
_H CELETE FROM codruta.kl WHERE 5 = (sefeck maciiii) from codruta.tl) 1} 036 8
,:E WHILE (SELECT COUMTC=) FROM codrata k1) = 1 BE, .. E jji = (seleck mac(ji) from codruota,bl) EMD 1] 1625 8
Value Notes
Statement The name of the statement.
SQL ID The ID value of the SOL statement.
Child Number The child number in the database.

Parsing User ID

The ID of the user who parsed the statement.

Plan Hash Value

The execution value of the statement.

CPU Cumulative CPU time for the process. (measured in “ticks”, an arbitrary unit
of time)
Physical 1O Cumulative disk reads and writes for the process. (total count)

DB OPTIMIZER USER GUIDE

113

Value Notes

Memory Usage Number of pages in the procedure cache that are currently allocated to
this process. A negative number indicates that the process is freeing
memory allocated by another process.

Executions The number of times the statement was executed.

Activity (%) A graphical representation of the distribution of execution and wait time
for the statement or statement component.

Sessions

The Sessions tab displays the sessions and related information regarding those that were
associated with the selected event.

@ Profiing Detaik D2

| B s | 47 sestians | 2 paws Data

Event: O CFU

|| User Mame Program
QRACLE-SXE (CT)
CRACLE EXE (DB
| ORACLEZXE (MHOMN}
|| 1GHTE ORACLESHE (002)
ORACLE.EXE [SMOH)
| (JRACLE EXE [FSRO)
||| IGHITE QRACLESKE (M015)
| 5¥s QRACLEEXE (007)
||| svsTEM Exenutor.zxe
IGNITE QRACLE.SXE {2000}

Achvrty {32)
31,42 EM3ARCE

Medune

Sezgon Type
o - Freimlell L~

LISER

FACEGROUND

1 0.78 TOALAAORCL 106 _1 BACHGAGUND

1 0,45 TOALAIORCL10G_1 BACKGAUND
26503 0,10 TORLAICORCLIOG I USER

1 0.10 TOALA3ORCL 1G] BACKGACUND

1 0,10 TOALASORCLI0G 1 BACKGATUND
1 0,05 TORLAIORCLIOG 1 USER
& 0,05 TORLAIORCL DG] USER
242 0.05 EMBARCADERCIROVENOVADD USER
5 0,05 TORLAIORCLI0G 1 USER

The following parameters are displayed on the Sessions tab:

Value Notes

User Name The user name under which the session was run.

Program The name of the executable under which the session was run.
SID The SID value of the session.

Serial Number

The serial number of the machine from which the session executed.

Activity (%) A graphical representation of the distribution of execution and wait time
for the statement or statement component.
Machine The machine name and network location of the machine from which the
session executed.
Session Type The type of session.
114 DB OPTIMIZER USER GUIDE

Procedures
The Procedures tab displays the procedures and related information regarding those that were
associated with the selected event.
i@ Profiing Detsis (5 =g
Event: waiting for disk write to conplete

B 500 | 27 Sessions |) Procedures

Proceduns Mams Database Mame Frocedurs 1D Executions DB Aoty (%)
TEST_PROCL codruta 1842102572 1 [| 0. (]

The following parameters are displayed on the Procedures tab:

Value Notes

Procedure Name The name of the procedure that ran during the event.

Database Name The name of the database where the procedure resides.

Procedure ID The unique ID of the procedure.

Executions The number of times the procedure ran during the event.

DB Activity (%) A graphical representation of the distribution of execution and wait time
for the procedure.

Viewing Details on the Procedures Tab

In the Top Activities Section, selecting a procedure entry on the Procedure tab displays
information in the Profiling Details view. The graph portion and details on the procedure
category tabs on the new editor pertain only to the selected procedure. Additionally, new tabs
become available.

Selecting a procedure type entry on a procedure category tab opens a new profiling editor
page. The graph portion and details on the Procedure tab and procedure category tabs on the
new editor page pertain only to the selected procedure and to SQL statements that waited in
that procedure.

® The SQL Text tab shows the SQL of the procedure. For more information, see SQL Text.
e The SQL shows the statements involved in the procedure. For more information, see SOL.

e The Events displays the time and parameter information about the selected procedure. For
more information, see Events.

® The Sessions displays information about the sessions that the selected procedure is
associated with. For more information, see Sessions.

DB OPTIMIZER USER GUIDE 115

SQL Text

The SQL Text tab displays the full code of the procedure.

£

@ Frofling Detais

E-1= 18

Ch sy et

CREATE PROCEDURE dbo.TEST PROC1 AS
DECLARE Ei INT
BEGIN
SET Bd = 1
VHILE
Fi <= 1000000
BEGIN

st | (5 Evants | 87 Seesions

SQL

Procedure: TEST_PROCL

E

The SQL tab displays information about the SQL statements involved in the selected procedure.

i@ Profing Detals £ =
Procedure: TEST_PROC1
B0 oon Teat | 3B so | (5 Evers| 87 Sessions
Statements CPU Physical IO | Memary Usage Execu
¥ TSERT INTO codruta 11 if, i, 1, u) VALUES { @i, @, @i, &) 2 a B
% WHILE @i <= 1000000 BEGIN INSERT INTO codruk, . LUES { @i, @i, @, @i) SET @i= @i + 1 END 1 1] 8
S} SET @i= @i + 1 1 0 8

The SQL tab displays the following parameters about the statement:

Value Notes

Statement The name of the statement.

SQL ID The ID value of the SQL statement.
Child Number The child number in the database.

Parsing User ID

The ID of the user who parsed the statement.

Plan Hash Value

The execution value of the statement.

CPU Cumulative CPU time for the process. (measured in “ticks”, an arbitrary unit
of time)
Physical 1O Cumulative disk reads and writes for the process. (total count)

Memory Usage

Number of pages in the procedure cache that are currently allocated to
this process. A negative number indicates that the process is freeing
memory allocated by another process.

Executions

The number of times the statement was executed.

Activity (%)

A graphical representation of the distribution of execution and wait time
for the statement or statement component.

116

DB OPTIMIZER USER GUIDE

Events

The Events tab provides details about the events that the session is associated with.

| @ Profing Detsis £

Procedure: TEST_PROCI

5B oon T | B s (5 Everes | 7 Sessions

Event
“wasiting For disk wirite o complete
wasiting for network s=nd ko complake
waziting for samaphore
waziting on run gueus after sleep
wiiting on run gueue afbar yield

‘ ol BRCRIRRIRE. e
NETWORK EF T o P R R SPT
Lok 0.83
o | 4.46
LFL = 10,92

Events are listed by the following values:

Value

Notes

Event Name

The name of the event.

Class The wait group the event in the selected procedure belongs to.
Activity (%) A graphical representation of the distribution of execution and wait time
for the event.
Sessions

The Sessions tab displays the sessions and related information regarding those that were
associated with the selected procedure.

| @ Profing Detsis £

-0

Procedure: TEST_PROC1

8 oon Teat | B o [{E) Everes | @7 Sessions

User Hame Apiplic aton

| P Address
10.40.30. 135

SPID | KPID Akive (%) | Hast Name
40 511 1806 [10000 TCANMYEGHD]

The following parameters are displayed on the Sessions tab:

Value Notes

User Name The user name under which the session was run.

Program The name of the executable under which the session was run.
SID The SID value of the session.

Serial Number

The serial number of the machine from which the session executed.

Activity (%) A graphical representation of the distribution of execution and wait time
for the statement or statement component.

Machine The machine name and network location of the machine from which the
session executed.

Session Type The type of session.

DB OPTIMIZER USER GUIDE

117

For the Oracle Platform, you can kill a session by right-clicking the entry on the Sessions tab and
choosing Kill Session. You can start a trace on a session by right-clicking the entry on the
Sessions tab and choosing Trace. For more information, see Killing an Oracle Session and

Tracing an Oracle Session.

Creating Profiling Reports

After profiling a data source, you can create an HTML or PDF Report of the profiling session. You
can choose the details to include in the report.

1 At the top right corner of the Profiling tab, click the Export Report button.

=

|'[E] Unkiled Tuning Job 4.tun |E_Il] ROMLABORCLS 2 [

s ROMLABORCLOi_2 ~ Processes: [-Al || Fiter by: [-Hione- /@C

Export Report

Prafile Session

= BOoMCPU Bsystem 10 BUserv0 OCuster BApplication BConfiguration B Commit B Other
o Maeer

- 1

=

(=

w

W

a

w

go & o q - o & o o
z A1 A W -a' W o e A]

= e b " o i 2 7" o "

The Export a Profile Report dialog appears.

- N
Export a Profile Report l = éj
Export a Profile Report \’ Q
Configure and export a profiling report in various formats. “w'\"-i
Report Title: bata Source Profile Report

'S

Report Description:

Profile Report Options

~5QL il
saL E
Reportonlythetop 25 (= rows
[F Tnrliida Astsil infrarmatinn far fam 95 2 e T

General Report Options

Format Layout Paper Size
@ PDF (@) PORTRAIT @ Letter (8.5x 11, 216 x 279)
© HTML () LANDSCAPE () Legal (8.5 x 14, 216 x 356)

©) A4 (83 x 117,210 x 297)

Use default export location

Export location: | C\Users\npollard\AppData\Roaming\Idera\dboptimizer\workspace ||Browse...

@ Export] [Cancel

2 Enter a Report Title and Description.

3 Inthe Profile Report Options area, click the triangles to expand the options.

118 DB OPTIMIZER USER GUIDE

4 Select your options, enter the location for the report, and then click Export.

A report in PDF format will resemble the following:

E Ranknarks
1] - ' pe—
[1 - osts Sourca \‘-_
E] 2 - Profie Load chart Data Source Profile Report
B 3-Top S50 Jarweary 27, 2011 11:43 AM
‘Stataments
1 - Data Sowrce
[0 1401

Platiorm Qeacie 12030 1

Start w27 J001 1130 AM
Eril Jarvairy 77, 21 11311 AM
Dusratian: %o Zln

2 - Profile Load Chart

WOH SR B Swwiom T I Ugar @3 @ Sutor 1Ay picabon B ©arligaration B Somnd B Hekward B ddniiekate B Sanoimarey 8 8:heduar B Giber
i

[

B
: I

e . T ST LY e o

- o

dustivs B sk vl

Saving Profiling Sessions

The profiling session is saved automatically or when you try to close it according to the choices
made in the Profile Configuration dialog. For information on configuring profiling sessions, see
Building Profiling Configurations. Profiling sessions can be saved in the current workspace in an
archive file with a .oar suffix or for Oracle users, into a Profiling Repository.
The .oar archive file is named with a default file name of:
® The name of the data source if the session was not initiated from a named launch
configuration
® The name of the launch configuration if the session was initiated from a named launch
configuration.
If you are using an Oracle data source and have configured DB Optimizer to automatically save
profiling sessions in a Profiling Repository within an Oracle data source, then the profiling
session is saved in the Profiling Repository under the name of the data source. Each profiling
session for that data source is named using a date and time stamp. As you can see below, the
duration of the profiling session is also saved with the session data.

DB OPTIMIZER USER GUIDE 119

4 Data Source B 53 % SOl Project Ex =
i B Y

BRESYManaged Data Sources (4)
=58 TORLABORCLI0g 2 (Oracle 10,2,0,5)
[+ l__l:j Database Objecks
|[[_i:| Profiling Repository
=58 TORLABORCLI1g_2 (Oracle 11,1.0,6)
[+ l__l:j Database Objecks
= |[[_l:| Profiling Repository
= TORLABORCL11g_2
[§ 2012-03-05 18:43:05 (33m)
- E8 TORLABORCLSi_Z (Orace 2.2.0,1)
58] TORLABSOLOS_1 (50U Server 10.0,160,0)
= Profiling Repositaries
il ToRLABORCLING. 2
=il TORLABORCL11g_2
=-Hi TORLABORCL11g_2
(g 2012-03-05 18:43:05 (33m)
[+ M TORLABORCLSI_2

For information on working with the Profiling Repository, see Work with the Profiling Repository.

The time period of the saved session is the amount of data on the chart. The maximum amount
of data on the chart is determined when profiling is started (1-hour default). You can specify the
amount of time to profile the data source in the Profile Configurations dialog and you can also
stop the profiling at any time.

Saving the profile lets you open the archive at a later time for subsequent analysis by yourself or
by other DB Optimizer users. Use standard DB Optimizer file techniques to save, open, or close
SQL Profiling archives. If you open a profiling archive on a machine on which the associated
data source is not registered, a Data source not available warning appears in the profiling
editor header. Use the associated control to specify a data source already defined on the
machine or to register a new data source.

i EXTOVMHHB02 ¥t il i St

atkach Existing Data Source ..,

Profile Session akkach Mew Data Source .,

120 DB OPTIMIZER USER GUIDE

Work with the Profiling Repository

NOTE: Saving wait-time statistics to the Profiling Repository is not supported in Developer Editions
of DB Optimizer.

The Profiling Repository is only available when profile session data is saved to an Oracle data
source. You can specify a profiling repository on any Oracle 9i, 10g, or 11g data source. For
information configuring profiling repositories, see Specify Profile Repositories Preferences. You
can specify which profiling to save a session to using the Profile Configurations dialog. For more
information, see Building Profiling Configurations. When the system is configured to
automatically save profiling information to a Profiling Repository DB Optimizer can profile 24
hours a day 7 days a week, thus providing much more statistical data for analysis. Also, since a
Profiling Repository resides on a data source and not on the local disk, other DB Optimizer users
can also view and analyze the profiles.

To start saving profile sessions to the Profiling Repository:

1 From the Data Source Explorer right-click the data source you want to profile for and select
Profile As from the menu, then choose Profile Configurations.

The Profile Configurations dialog appears.

Profile Configurations

Create, manage, and run configurations

GEX B Merme: | TORLABORCLID_Z
f |lif Profle . [C] Cammon

=l pata Source Profling Target
i %l Test Dat-uswrl:l:::TORLﬁ.EiORCl‘Bi_E{Drath} v:
' ﬁ :gﬂ?g&g&;gﬂj [CIred Apslication Chaster (R&CH mods

I S0 Stared Rautine Prafile Repositaries

) Same o disk {.OAR Fle)

() Sawe bo data scurce: | TORLABOROLSE_2 (Orack) v

Confi dat e TORLABORCLLIOG_2 (Orack)
e L e NI LAROPCL 119 2 (Orack)
Realtime profibng TOPLABORCLS Z (Oracke)

[+] Shuowe data whike profilieg s2sskon |s In peogress
Pefrash inkerval: |5 2 | saconds

Fikar matched 5 of S items | Ponhs | [Revert]

Profile | | Close |

2 Inthe Name field of the Profile tab, enter a name for the profile session for this data source.
DB OPTIMIZER USER GUIDE 121

In the Profiling Target Data source field, select a data source from the list.

In the Profiling Repository area of the Profile tab, click Save to data source and then
from the list of registered profiling repositories, choose the Oracle data source to which you
want to store the profiling session information.

Click Apply and then click Profile to start a profiling session immediately.

Any new profiling session that you start continue until you manually stop it. The profile
session can be for as long as you like, days or weeks even. When the profiling session has
been stopped a profile file is stored in the profile group for this data source. The name of
the profile file is the date and time when the profile finished.

To delete profile sessions saved in the Profiling Repository:

1

In the Data Source Explorer, locate and then click the Profiling Repository.

TIP: You access the profile repositories either in the Managed Data Sources node or in the
Profiling Repositories.

=I-l=F Managed Data Sources (&)

= Progress &4 = Go Into
Properties
T 0L Errors 53 i
S0L Errors are not available .& Clean
Delete Al

2

122

+- 1= I6M DE2 For LUW (1)
=Tk Orade (5)
+- 8 TORLABORCL10g_2 (Oracle 10.2,0,3,0)
=& TORLABORCLI1g_2 (Oracle 11.1,0,6,0)
#-1{3 Database Objects
= |l[_l:| Profiling Repository
= TORLABORCL11g_2
[q 2012-03-05 18:43:05 (33m)
+- 8| TORLABORCLY_Z (Oracle 2,2,0,1,0
+ j‘_ﬁ TORLABSCORCL (Cracls 10,2,0,1.00
+-fm TORLAESQLOG_1 (501 Server 10,00, 160
+-T=F 0L Server (1)
+-l=F Svbase (1)

= Profiling Repositaries

it ToRLABORCLIOg 2
=Rl TORLABORCL 11
=l TORLABORCL
g z012-03-08

| ToRLABORCLYI 2

:ﬁh Refresh

If the data source is not already connected, DB Optimizer connects to the Profiling
Repository data source.

To delete all sessions in the Profiling Repository, right-click Profiling Repository and then
select Delete All.

To delete a specific profiling session, expand the Profiling Repository and the data source
containing the profiling session, and right-click the name of the profiling session, and then
select Delete.

DB OPTIMIZER USER GUIDE

The profiling session data is deleted, however, some information about the data source is
retained in order to expedite future profiling on this data source. If you are certain you will
not want to retain this information, right-click the Profiling Repository and then select Clean.

NOTE: You can also delete the profiling sessions saved to a repository by unregistering the
repository. For more information see Specify Profile Repositories Preferences.

Import Statements to Tuning

The profiling feature lets you submit one or more SQL tab statements for tuning by the tuning
feature. This lets you take advantage of tuning’s hint-based and transformation-based
suggestions, detailed execution statistics, and explain plan costing, in tuning a statement.

50OL

£ Overview o S0L {P} Events '-T:'SESSiDI'IS %0 Object IO

[

SQL Statements

Statement DB Activity (36)

&% har Organize By L] 3

SaL

M3 pEc
st BEC <82 Explain Plan I

& SEL [

)

L
I oLa
-l L

To open a tuning job on a statement appearing on the SQL tab of the profiling editor:

e Select one or more statements, right-click and select Tune from the context menu. Tuning
opens on the selected statement.

For more information, see Tuning SQL Statements in the Using Tuning section of this guide.

Other Profiling Commands

In addition to the default viewing options provided by the views, profiling also provides the
following features and functionality:

e Zooming In and Out. For more information, see Zooming In and Out.

e Filtering Results. For more information, see Filtering Results.

Zooming In and Out

To zoom in or out on the Load Graph:
In the upper right-hand corner of the Load graph, click the Zoom In or Zoom Out icons,
respectively.

NOTE: The Zoom In and Zoom Out commands are only available when a session has been
stopped.

By default, the information contained on the Load Chart spans the entire length of the profiling
session. You can select one or more bars of the graph to have the tabbed view populated with
statistics for only the selected subset of the graph.

DB OPTIMIZER USER GUIDE 123

To display statistics for one or more bars on the graph, use one of the following methods:
Click-drag across one or more bars.

gl ¥

Configuring Profiling

This section addresses the following topics:

e Configuring DBMS Properties and Permissions

e Building Profiling Configurations

o Specify Profile Alerts Preferences

¢ Specify Profile Repositories Preferences

Configuring DBMS Properties and Permissions
Profiling supports the following DBMS platforms:

* |BM DB/2 for Windows, UNIX, and Linux

* Microsoft SQL Server

¢ Oracle

e Sybase

The following describe how to set up a platform to utilize Optimizer on supported database
platforms:

e Configuring IBM DB/2 for Windows, UNIX, and Linux

e Configuring Microsoft SOL Server

e Configuring Oracle

e Configuring Sybase

124 DB OPTIMIZER USER GUIDE

Configuring IBM DB/2 for Windows, UNIX, and Linux
NOTE: The connected profiling user should be a member of the DB2 SYSMON group.

By default, DB2 Monitor flags are set to OFF. As a result, when attempting to launch a Profile job
on a DB2 data source, users may encounter the following message: “One or more errors have
occurred that prevent session profiling against this data source.” Examine the details below and
consult your data source administrator and/or the data source documentation to resolve the
problem(s).”

You can resolve this error using one of two methods:

¢ Enabling DB2 Monitor Flags via IDERA DBArtisan

e Command Line Option

To resolve the error through DBArtisan:
1 Ensure the following DB2 Monitor Flags are turned on in DB2:

e dft_ mon_uow

e dft mon_stmt

dft_mon_lock

dft_mon_bufpool

dft_mon_sort

dft_mon_table

dft_mon_timestamp

You can set view and set Monitor Flags via DBArtisan. Ensure that the New Value field for
each variable is set to Yes, as shown below.

Edit Configuration for TEE1ESE

Parameter: | dft_rmon_bufpool |

Current ' alue; |EIFF |

Mew v alue:

oK | |ﬁ Cancel | |":" Help

2 Restart the DB2 data source to enable the changes, then launch DB Optimizer and begin
profiling.

DB OPTIMIZER USER GUIDE 125

To resolve the error through the command line:

This solution must be performed from DB2 CLP, on the DB2 server. If you attempt to perform
these tasks through a client, an error message will result.

1 Navigate to start > Programs > IBM DB2/COMMAND LINE TOOLS > COMMAND
LINE PROCESSOR.

2 Turn the monitor switches on using the following commands:

db2updatedbmcfgusingdft_mon_lockondft_mon_bufpoolondft_mon_sorton dft_mon_stmt
ondft_mon_tableontimestampondft_mon_uowon

db2stop
db2start
3 Ensure that the switches are turned on by connecting to the server with the following
command:
Db2connectto databaseusernamepasswordpassword

The following screenshot provides an example of the input and output from the server:

db2? =» connect to gim user dbladmin
Enter current password for dbZadmin
db2 => get monitor switches

Monitor Recording Switches

Switch list for db partition number 0

Buffer Pool Actiwvity Information (BUFFERPOOL) = ON O03/05/2008 19:14:06.
Lock Information (LOCK) = ON 03052009 19:14:06.
Sorting Information (30RT) = OM 0O3/05/200% 19:14:06.
SQL Statement Information (STLTEMENT) = ON O3/05/2009 19:14:06.
Table Activity Information (TABLE) = CON 03/05/2009 19:14:06,
Take Timestamnp Information (TIMESTAMP) = ON 03/05/200%9 18:50:44.
Unit of Work Information (UOW) = O O03/05/2009 19:14:06.

Configuring Microsoft SQL Server

Perform the following tasks to ensure that SQL Server is compatible with Optimizer:

6l:
6l:
6l:
6l:
6l:
0of
6l:

e If you are setting up SQL Server 2000, ensure the current user is a member of the sysadmin

group.

e |f you are setting up later versions of SQL Server, the current user must meet one of the
following requirements:

® Be a member of sysadmin, or have the VIEW SERVER STATE permission enabled.

® Be a member of sysadmin, or have the SELECT permission enabled.

126 DB OPTIMIZER USER GUIDE

On SQL Server 2000 only:
You can enable profiling to capture more SQL by adding the following flag:

DBCCTRACEON(2861)

Trace flag 2861 instructs SQL Server to keep zero cost plans in cache, which SQL Server would
typically not cache (such as simple ad-hoc queries, set statements, commit transaction and
others). In other words, the number of objects in the procedure cache increases when trace flag
2861 is turned on because the additional objects are so small, there is a slight increase in
memory that is taken up by the procedure cache.

Ensure you restart the server for your changes to take effect.

Configuring Oracle

Oracle users need access to V$ views. In order to configure Oracle to provide users with these
privileges:

e |f you are setting up Oracle 10 or later, ensure you are logged in as sys or system with the
sysdba role, or the SELECT_CATALOG_ROLE has been granted to user_name.

e |f you are setting up an earlier version of Oracle, ensure you are logged in as sys or system
with the sysdba role.
Configuring Sybase
Perform the following tasks to ensure that Sybase is compatible with Optimizer:
e Ensure the following system configuration properties are activated:
e Enabling Monitoring (sp_configure “enable monitoring”, 1)
e Wait Event Timing (sp_configure “wait event timing”, 1)
e SQL Batch Capture (sp_configure “SQL batch capture”, 1)

® Max SQL Text Monitored (sp_configure “max SQL text monitored”, 2048) 2048 is the
suggested value, must be greater than 0. This defines the maximum size a SQL statement
that can be captured.

The following options are specific to Sybase 15.0.2 and higher.
e SQL Text Pipe Active (sp_configure “sqltext pipe active”, 1)

e SQL Text Pipe Max Messages (sp_configure “sql text pipe max messages”, 512) 512 is the
suggested value, must be greater than 0. This defines the maximum number of SQL
statements that Sybase tracks at any given time. You may want to increase this number if
you observe a lot of UNKNOWN statements in the Profile Editor.

e Statement Statistics Active (sp_configure “statement statistics active”, 1)

* Per Object Statistics Active (sp_configure “per object statistics active”, 1)

DB OPTIMIZER USER GUIDE 127

Additionally, perform the following tasks, as necessary:

If a user does not have mon_role enabled, the user will not be able to access Adaptive
Server's monitoring tables.

If the monProcess table is missing, the user will not be able to view currently connected
sessions.

If the sysprocesses table is missing, the user will not be able to view information about
Adaptive Server processes.

If the monWaitEventinfo table is missing, the user will not be able to view information about
wait events.

If the monProcessSQLText table is missing, the user will not be able to view currently
executing SQL statements.

NOTE: These packages should only be installed by the DBA.

Profiling enables you to create a set of launch configurations to store the basic properties for
each profiling session that you run on a regular basis. A launch configuration enables you to start
profiling sessions from a single menu command, rather than re-define configuration parameters
each time you want to run one.

Building Profiling Configurations

Profiling enables you to store parameters related to specific profiling sessions, in a profile
configuration for stored routines. Multiple configurations can be created for each data source in
your enterprise and saved with unique names that identify them in the application.

128

NOTE: On all supported platforms, support for stored routines includes functions and
procedures. On Oracle, stored routine support also includes package functions and
package procedures.

DB OPTIMIZER USER GUIDE

To create a profile configuration:

1 Right-click the data source you want to build a configuration for and select Profile As from
the menu, then choose Profile Configurations.

The Profile Configurations dialog appears.

% Profile Configurations

Create, manage, and run configurations

x| B Merne: | TORLABORCLL1g_2
| pe filt e tent |bla! Profile . T Comman
= M Data Source Profiling Tanget
L H
i TomLaBoRCLILg 2 Diska source: | TORLABORCLIDG_Z (Cracle) w

[l s ered Reutine [resl Apphcation duster (RAC) mads

Profile Repositonks
1 Save bo disk {OAR file)

¥} Save to daka source: | [TReIE RN R T
¥} Sawe to dabs [ToRLABORCLLLG_ 2 (Orack)

Configure data source repositorkes from the Profils Reposkores preferance pags.

Realtime prafiing
[+ shaw data whie profiling session & in prooress

Rafrash inbarval: ' 5 5| seconds

Fiter matches 2 of 5 dems _ppty | [Revert |
(’?_:l [Profiie H Jose |

2 Select the name of the data source and modify the parameters on the Profile tab, as
needed.

3 Inthe Name field, provide a name for the launch configuration. You should select a name
that will make the launch configuration unique and easily identified once it is saved in the
application.

4 In the Profiling Target area, click Real Application Cluster (RAC) mode if the target
database is an Oracle RAC. This enables you to profile the entire cluster in one profiling
session. (In general, profiling a RAC entails querying the GV$ views.)

TIP: When profiling a RAC, you can also filter the profiling details to show only the details
for a selected instance. At the top of the Profiling view, click the Instances list and
choose the instance you want to examine.

DB OPTIMIZER USER GUIDE 129

5 Inthe Profiling Repository area, choose to save the profile session to disk or if you are
profiling an Oracle data source then you can choose to save the profile session to a data
source registered as a Profiling Repository.

If you choose to save the session to disk, in the Time interval length area specify the length
of the profiling session. When you try to close the Profile Session, you will be prompted to
save the file and can then name the file as desired.

A .oar file saved to disk opens very quickly from File > Open dialog and has a limit of just
under 1000 hours of profiling data. Profiling to a data source directly allows the system to
capture more data for a longer period of time, until you decide to stop the profiling session.
The profiling session is automatically saved to the Profiling Repository where other DB
Optimizer users can also view the session for their own analysis.

6 Click Apply. The launch configuration is stored in the application.

Once a launch configuration is defined, you can execute it in profiling. For more
information, see Running a Profiling Session.

NOTE: The parameters provided when you select the data source name in the left pane control
session parameters for the specified data source. To set these controls, see
Configuring DBMS Properties and Permissions.

The following describes fields and options of the Profile tab that require further explanation.
e Name indicates the name of the profile configuration.

¢ Data source indicates the name of the data source to which the profile applies.

e Save to disk/Save to data source gives you the option to save your profiling session to a
.oar file which you can access from within DB Optimizer or you can save the profiling session
to a data source of your choice if you are using an Oracle data source. DB Optimizer will
create a Profiling Repository, similar to the following on the selected Oracle data source. The
structure of the Profiling Repository is created from the name of the data source and the
date and time of each specific profiling session.

130 DB OPTIMIZER USER GUIDE

E'EI Data Source Explorer 253 |.‘5:|—J-:u' SQL Project Explorer =0
MR B Y

[=]-T=F Managed Data Sources (5]
1= IBM DBZ for LUW (1)
[=+T=F Cracle (5
58 TORLABORCL10g_Z (Oracle 10,2,0,3.0)
=58 TORLABORCL11g_2 (Oracke 11.1.0.6.0)
[L_fj Database Ohjects
= |h_E| Prafiling Repository
=l TORLABORCL11g 2
4§ 2012-03-05 18:43:05 (33m)
8| TORLABORCLE 2 (Oracle 2.2,0,1.0)
ﬂ TORLABSCORCL (Oracle 10.2.0,1.0)
Sl TORLABSQLOG 1 (501 Server 10,00, 16007
1= 3L Server (1)
1= Svbase (1)
= Prafiling Repositaries
ity ToRLABORCLIDG 2
= M TORLABORCL11g 2
= TORLABORCL11g_2
[§ 2012-03-05 18:43:05 (33m)
M TORLABORCLII_Z

Saving your profiling sessions to a live data source enables you to better organize your
profile session data for later review.

* Time Interval Length indicates how many hours of the session to save to disk. Since the
profile session continues until you manually stop it the session length may exceed the time
interval length. For example, the time interval length is set to four hours but the profiling
session continues for 10 hours. In this case only the last four hours of data is retained. This
parameter also indicates the total width of the time load graph. The longer a profile is, the
larger the saved file will be. For heavily loaded databases, the time interval length value
should not exceed eight hours.

® The Show Data While Profile Session is in Progress check box enables “real time”
profiling, which refreshes the data of the session as profiling runs. The Refresh
Interval specifies how often in seconds profiling updates this data.

NOTE: Profiling can run sessions based on ad hoc parameters you designate before executing
the profiling process. However, by building profile launch profiles, it is a much more
efficient method of managing standard, frequent, or common profiling sessions.

DB OPTIMIZER USER GUIDE 131

Specify Profile Alerts Preferences

You can configure DB Optimizer to send you an alert via email if during a profiling session
it detects that database activity has met or exceeded the threshold that you specified.

1 Select Preferences> Profile Alerts.

& Preferences (Filtered) =3

Profile Alerts v

(= S0L Development
=B Profile Alerts
Email Contacts

Email Settings

Marnz Conkext Descripkion Mew...

Alerts reset after | 5 3 minutes

132 DB OPTIMIZER USER GUIDE

2 To create a profile alert, click New.
To edit an existing profile alert, select the alert you want to modify and then click Edit.

The Create Profiling Alert or Edit Profiling Alert dialog appears.

% Create Profiling Alert

€3 alert name must be specified,

Mame:! | | |
Ciaka source: |TORL.C'.BSQLEIEI_1 (SOL Server 8.0.2039.0) w |
Fire alert when (%) Active sessions meet or exceed (5 III

{:!' Sessions in waik: |:| I:I

{:} Sessions in waik class;

() all active sessions not on CPU

Send email when alert: fires
Display system nokification when alert fires

Cancel

3 Complete the create/edit profiling alert dialog as required and then click OK.
4 In the Preferences tree, click Email Contacts.

If you select Display system notification when alert fires, you will receive an
alert notification in your Windows system tray when the alert fires.

If you select Send email when alert fires, you must specify email contacts and email
server settings.

DB OPTIMIZER USER GUIDE 133

5 To create a new email contact, click New.

To edit an existing email contact, select the contact you want to modify and then click Edit.

& Create Email Contact

@ Specify the details of the contact to add,

Marne: | Jacquie |

Email address: | jacqueline@embarcadero, com |

Data Sources

TORLAESOLOO 1 (S0OL Server §.0,2039.0)

[] TORLABSOLOO 1 #7 {S0L Server 5.0.2039.0)
[] sfwpclbol.embarcadero, com (Oracle 10.2.0.1)
[] TORLABORCLE 3 (Oracle)

[] TORLABORCLST 2 (Oracle 8.1.7.4)

[] ROMLABORCLEI_1 (Orace 5.1.7.4)

[] ROMLABORCLSI 2 (Oracle 9.2.0.1)

[] TORLABORCLSI 1 {Oracle)

[] DSQUERY (S0L Server)

[] HOBO {S0L Server)

[] local {SGL Server)

Select Al] [Deselect all]

[(04 H Cancel]

6 From the list of Data Sources, select the data sources for which this contact should receive
an email notification that. an alert has fired, and then click OK to save this contact.

7 To configure your email settings, click SQL Development > Profile Alerts > Email
Settings.

134 DB OPTIMIZER USER GUIDE

% Preferences (Filtered)

| | Email Settings el -

[= 50L Development ; :]
= Profile Alerts Email Configuration
Email Contacks SMTP Host: | |

Email Settings SMTP Part: | oL |

Sender Address: | |

Authorization Required

Lisername: | |

Password: | |

@ ok, H Cancel]

8 Complete the Email Settings as required and click Apply.

e Sender Address: Thisis an email user configured on your email server. DB Optimizer
uses this address to send alerts to the email contacts defined.

DB OPTIMIZER USER GUIDE 135

Specify Profile Repositories Preferences

Use the Profile Repositories preferences to register and unregister Oracle 9i, 10g and 11g data
sources as profiling repositories. A data source must be added to the list of DB Optimizer
Managed Data Sources before it can be used as a repository.

To access the Profile Repositories Preference, select Preferences > Profile Repositories.

% Preferences (Filtered) |:”E|®

| | Profile Repositories

= 30L Developrment

Profile Repositories Mame Tvpe Yersion Reqgister

TORLABORCL11g_2 Oracle 11.1.0.6
TORLABORCLSi_2 Oracle 9.2.0.1

® 0] 4 H Cancel]

Register a profile repository

To register a new profile repository, in the Profile Repositories Preferences dialog, click Register.

The Register a data source as a repository dialog appears that displays the managed
data sources that may be used.

¥ Register a data source as a repository rz|
Marne Tvpe Version
TORLABORCLIOg_2 Crace 10.2.0.3.0
TORLABORCLI1g_2 Crache 11.1.0.6.0
TORLABORCLY_Z Oracle 9.2.0.1.0
TORLABSCORCL Crache 10,2.0.1.0

Cancel

Select the data source you want to register as a profile repository and then click OK and
then click OK again.

136 DB OPTIMIZER USER GUIDE

A data source registered as a profile repository appears in the Profiling Repositories
node of the Data Source Explorer and also has a Profile Repository child node in under
its entry in the Managed Data Sources folder. Profiling sessions are saved in the

repository under a name that is comprised of the date, time, and duration of the profiling
session.

4 Data Source B 52 % SOL Project Ex = .
bk BS -

SR Managed Daka Sources (4)
= 8] TORLABORCL10g_2 (Cracle 10.2.0.3)
({3 Database Objects
|E_I:| Profiling Repasitary
=8 TORLABORCL11g_2 (Oracle 11,1,0.6)
[L_fj Database Ohjects
= |E_II| Profiling Repository
= % TORLABORCL11g_2
[q 2012-03-05 18:43:05 (33m)
I8 TORLABORCLSI_Z (Oracle 2.2,0,1)
I8l TORLABSQLOS_1 (50U Server 10,0,160,0)
= Prafiling Repositories
I ToRLABORCLIDG 2
= rm TORLABORCLLI1g 2
= %l TORLABORCLILIg 2
(4 2012-03-05 18:43:05 (33m)
I ToRLABORCLSI 2

When you next choose to profile a data source, using the Profile As > Profiling
Configurations option, you can specify the profile repository in which you want to save

the profiling session data. You can also access the Profile Repository Preferences from this
dialog.

& Profile Configurations

Create, manage, and run configurations

LEaxX B Mame; | TORLABORCLIDg_Z
|lif Profle - [C] Common
=1l Data Source Profling Targst
ﬁ Test Diaka source: TORLABOROLSI_Z {Orack) ~
TORLABORCLIOG 2 ST ;
L TowIRtNEY02 [Cred Apglication Chester (RACH mods
L 50 stored Rautine Profile Fepositaries

) Sawe to disk (L08R Fle)

() Save tn data scurce: | TORLABCROLSI_Z (Orack) v

Configure data souce ref TORAECRCL10g 2 [Oracky

Realtme prafilng TORLABORCLS :tl_u-)

[+] Show data while profiing s2sskon |s In peogress
Pefrash inkarval: |5 2 | saconds

DB OPTIMIZER USER GUIDE 137

Unregister a profiling repository

To unregister a profiling repository, in the Profile Repositories Preferences dialog, select a profile
repository from the list and then click Unregister.

Unregistering a data source prompts you to optionally delete all sessions on the repository.

Unregister repository [$_<|

\..?]J Do o wank ko delete all sessions on the repository?

[Yes H Mo H Cancel]

If you choose not to delete the profiling sessions, they will still be available from either the
Profiling Repository node in the data source entry in Managed Data Sources or from the Profiling
Repositories node. You will not be able to save profiling sessions to the unregistered repository
until you register it.

Using SQL Load Editor/Tester

File Edit Search Preferences Window Help

UG e [0 B B eSS BB 0 ir-

The load editor can be run either with File > New > SQL Load or with the New SQL Load
icon shown above in the red square.

138 DB OPTIMIZER USER GUIDE

The icon depicts an RPM meter on a car with a red line. The idea behind the icon is that we can
run a load on a database and stress the database with the load similar to red lining.

il ToRLABSCORCL lily) TORLABDEZ97_1 4 *ntitled SQL Load 52 T =B

il TORLABORCL1 1g_2 Change data source

@ adhoc 5L (O 5oL file

hegin Mumber of parallel sessions: 15 5
for o in (select id from outel
for i in (=Select id from [#]Execution end condition:
null: .
{E}Tlme: 0 : hours
end loop:
end loop; 10 % | minutes
end; .
f|) Mumber of executions:
Sleep between executions
(%) Fixed delay: 250 (& ms

) Random inkerval:

: ») =

The load editor page has space on the left to show the SQL to be run. The SQL can be typed in
or pasted in or read from a file if the SQL File option at the top right-hand side of the window is
selected.

On the right are options on how to run the SQL
e Number of parallel sessions
® Length of test
e Number of executions
Sleep between executions
* No sleep
e Fixed sleep

e Random sleep between a max and min

Methodology
e Write SQL with Editor

DB OPTIMIZER USER GUIDE 139

Set up Load with Load Editor

Kick off profiling the database

Run the load in the Load Editor

Verify the database load profile to see if there are any major issues

The SQL Load Editor/Tester enables you to configure and execute SQL code against a data
source.

This feature enables you to specify a data source against which the code will be executed, and
then provides options that enable you to choose a period of time that you want the script to
execute for, and at what intervals the execution “loop” occurs.

On execution, SQL Load Editor/Tester runs in the background. It can therefore be run in
conjunction with a profiling session in order to analyze the effects of the executing load against
the specified data source. Once you run a SQL script via Load Editor, you can start the SQL
Profiling function and analyze the results of the load.

The SQL Load Editor/Tester is accessed via the New SQL Load icon on the Toolbar:

File Edit Search Preferences Window Help

-l o e wW-iF s BB IO 0

When you open SQL Load Editor/Tester, click Select Data Source to specify the data
source against which you want the SQL script to run.

Choose Ad hoc SQL and manually type (or copy/paste) the SQL code into the window provided,
or select SQL file and navigate to the SQL file you want to run. The window populates with the
code from the selected file.

The following configuration parameters are set with SQL Load Tester/Editor prior to executing
the SQL script:

Configuration Parameter Description

Number of Parallel Sessions Specifies the number of jobs that the
execution script will operate on.

Execution End Condition Specifies if the script execution process
runs for a set amount of time or script
executions.

Choose Time if you want the script to
execute over a specific period of time,
or Number of Executions if you want
the script to execute a specific number
of times.

140 DB OPTIMIZER USER GUIDE

Configuration Parameter Description

Sleep Between Executions Specifies if Load Editor will wait before
running the execution script again.
Select the check box and choose Fixed
Delay or Random Interval, depending
on whether you want the script to
execute at a specific time, or at
random intervals within a specified
range of time.

To run Load Editor:

1 Access SQL Load Editor/Tester by selecting the icon on the Toolbar. The SQL Load
Editor/ Tester opens.

2 Click Change Data Source and choose a data source you want to run the SQL code against.

3 Choose Ad hoc SQL or SQL file, and then copy/paste or manually type the code you
want to execute in the window provided, or navigate to the location of the file, respectively.

4 In the right-hand panel, choose the execution configuration parameters to specify how you
want SQL Load Editor/Tester to handle the script.

5 Click the Execute icon in the lower right-hand corner of the screen. The script starts to
execute against the specified data source, using the configuration parameters you selected.

6 Ifyou are profiling a data source, start and run a new profiling session on the data source you
specified in Load Editor. The session will reflect how your SQL script executes against the
specified data source.

DB OPTIMIZER USER GUIDE 141

Using Tuning
This section provides information on tuning, its functionality, and is structured so a user can
follow the information provided to fully tune their enterprise in terms of more efficient query
paths at the SQL statement level of individual data sources.
Tuner has three parts

e Query rewrites and quick fixes

¢ Alternative execution plans generated via optimizer directives

* Analysis of Query showing

¢ Indexes used, not used, missing (suggested to create)
* Graphic display of query

The SQL tuner will take a query and add database optimizer directives to change the execution
path of the query. A list of all the unique execution paths will be generated with all duplicates
eliminated from the list. The final list of alternative paths can be executed. Any path that takes
more than 150% of the base case will be canceled because we are only interested on paths that
could be faster than the base case so no need to waste time and resources continuing to run
cases that are slower than the original. After the cases have been executed they can be sorted in
order of elapsed time. If a better path is found then those optimizer directives can be included in
the original query to achieve optimal response time.

You can save the entire content of a tuning job for later analysis or for sharing with other users.
This section contains the following topics:

e Understanding the Tuner Interface

Tuning SQL Statements

Using Platform-Specific Features

Additional Tuning Commands

Configuring Tuning

Examples of Transformations and SOL Query Rewrites

DBMS Hints

Understanding the Tuner Interface

In the application interface, tuning is composed of two tabs:

e Qverview
* Analysis

NOTE: When using tuning on Oracle sources, several additional tabs appear on the
Analysis and Outlines tabs. For more information on utilizing these extra features,
see Using Platform-Specific Features.

142 DB OPTIMIZER USER GUIDE

Understanding the Overview Tab

Inputting SQL to tune

Click the SQL button on the Overview tab to specify the source of SQL statements
you want to tune.

F etk Tuning dob 53 M Sekecten) | =g

b ooy Oracle b S TORLABCRCLLLG 2711.1.0.6.0)

| B Overview | F Area |y l

== Dverview R -[:} g | @
: T Mew SOL Ter Py
Tuning Slatenent s El:u:r:'.l:: L Dp\:ﬂ'.l'llllH.di-:IH_";b [Ewecite eachg D Etract Fram Dokahase Chject kﬁ r-_rJ

[Trvpace t From Fike (iioeksance)
[et From Fie: (Suskem)
Fyscandraceses 000 feemeeeeeeee

Sratemen ! ; | Time
Hame Sthema Taxt Tablkes ViEps Elapse (21 I [23

¢ New SQL Text: From the SQL button menu, select New SQL Text, and then copy/paste
SQL statements to the SQL Text dialog or write queries by hand and then click OK.

& S0l Text (=13

SELECT A
L.COMPANY,
.PAYGROUF,
.OFF_CYCLE,
.3EPCHE_FLAG,
. TAX_METHOD,
.TAX_PERICDS,
.RETROPAY ERNCD,
SUM (C.AMOUNT DIFF) SUM AMOUNT
FROM
PS_PAY CALENDAR 1,
WE_JOB B,
WE_RETROPAY EARNS C,
PS_RETROPLY ROST I,
PS_RETROPAYPGM TEL E

LI o I o I o I e

WHERE
L.RUM IDL = 'PDZ' AND
L.PAY CONFIEM RUN = 'IN' AND
E.COMPANY = A.COMPANY AND
BE.PAYGROUF = A.PAYGROUP AND
E.OFF_CYCLE = A.PAY OFF CYCLE CAL AND
E.EFFDT = (3ELECT /*+ gk namewk ki) =/

| £

[K H Cancel]

TIP: You can also input SQL by clicking anywhere in the Tuning Statements area and
pressing Ctrl-V.

Once you have input the SQL and click OK, you can later edit the text by right-clicking an
entry in the Tuning Statements area and selecting Edit.

DB OPTIMIZER USER GUIDE 143

e Extract from Database Objects: Search for and then select (Ctrl-click) data base objects
containing SQL that you want to tune from the selected data source. DB Optimizer will
search through the database to find objects matching your input and presents matches for
you to choose. In order for this option to work, you must enable Data Source Indexing in the
properties for the database. If the data source has not already been indexed you will receive
a message indexing that no indexing information is available. You can configure the
database Properties dialog from the Data Source Objects Selection dialog by clicking
Configure data source indexing....

& Data Source Objects Selection i_,@
Enter object name prefix or pattern ¢ = any character, * = any string): -
E |
Matching objects:

& COUMNT_TIME_INTERYAL {Package) - SYSTEM ~
-~ DEMS_REPCAT_AUTH (Package) - SYSTEM B
% DRG (Package)
=4 DRGS (Package) - SYSTEM
Z (Package) - SYSTEM
%’ DRGSS (Package)
S~ EMP_ACTIONS (Package) - SYSTEM
Sl CRAN MENT AT A Tl mann Z

Confiqure daka source indexing.. .

® [Ok, H Cancel]

For information on setting data source indexing properties, see Specify Data Source
Indexing Preferences.

® Import from File (Workspace) and Import from File (System): Browse the workspace
or file system and select an SQL file from which to extract statements to tune.

144 DB OPTIMIZER USER GUIDE

e Scan Oracle SGA: For the Oracle platform only, you can also scan the System Global Area
(SGA) for statements to tune. Bind variables are extracted automatically.

& Scan SGA |_,®
SGA filters .
apecify the filkering criteria for active SOL in the SGA, GJ

Filker Criteria

Mazimum retrieved queries:ﬁl -

Sort by | CPU Time v|

Advanced Filkers

User: | hd |

Parsing Schemas;

Module: | w |
Ackion: | 3 |
Service:

® You can also drag and drop Materialized Views, Procedures, and Views from the Data Source
Explorer to the Tuning Statements grid and they will be added to the list of statements to

tune.

Running a Tuning Job

Once you click the Run Job icon on the top right-hand side of the Overview tab, the Overview
tab provides the list of statements that were analyzed by the Tuner, as well as the cases
suggested by the execution process to improve them. Additional information may include
statement Name, Text, Source, Cost, and Elapsed Time values, depending on the platform.

DB OPTIMIZER USER GUIDE 145

Only the Elapsed Time statistic appears on all supported platforms. On Oracle and DB2 LUW
platforms, Execution Statistics and Other Execution Statistics columns will appear. When
determining the best possible path using the Overview tab, it is best to use the Elapsed Time
value as the guideline. The faster the path, the more optimized the query will become.

Lt *romAsoROEt LS Hunkiied Tuning obE 5E =T
b O cvare b 5 ROMLABOROLE D (5.1,7.4]

= Overview | B analysis |

B Overview Lero debeded 2B - | | @
Tuning Statements & Generate caces CParform datal andysis [#lExmcubs mach crrerated caze |3 - limes 1\-:} r.-_l_)
Statemant Tirie ki i
T SChETE Text Tobles s Elopsed [5) | Dmproved [5) Coses Trcko=ss
[A5EECT 3 s seluch from sys. jobd i
#y [MAstecrs B select from Fetf, w53 o
#*, [AsaiecTs 5 st from pandng_bransh 0
| # [Aszects 3 select from sus.obg o =
Gernerated Cases >
S0L Sratements ond Cases o Cost WExenbl.. sk | w orhey Exenubion Stoklsdcs |
Tilerie= Tt ahas Lleps=d Tiree {5} Fhymcel Resds | Locical Reads CEU Torve €57
_TE,. = && SELECT | selmrk friom SYSTEM.DEFS_ACKCALL 056 1] n.oo
m=l THDER_COMBINE L0 053 a 11 0.0
=] INLEX EZE.D 087 o 0.co
mel RILE 077 0 9 0,00
_E__. ""—_. SELECT 3 sel=ct from sys.obf
E| Fy SELECT 4 sedect from Pty vsd
El SELECT S sedaik from pandng_trarsd
El ﬁL_.'J'_lLl'_I b sel=ct from sus.obif, svseserd, ndf,

There are three tuning options to choose from before clicking Run Job:

To analyze the SQL statement, click Generate cases.

To perform the analysis that populates the Analysis tab now, click Perform detail analysis.
Otherwise, the analysis tab is populated when you click the Analysis tab.

7o have the system generate execution statistics, click Execute each generate case and
then select the number of time the system should execute each generated case. Multiple
executions can verify that the case results are not skewed by caching. For example, the first
time a query is run, data might be read off of disk, which is slow, and the second time the
data might be in cache and run faster. Thus, one case might seem faster than another but it
could be just benefiting from the effects of caching. Generally, you only need to execute the
cases once, but it may be beneficial to execute the cases multiple times to see if the
response times and statistics stay the same.

146 DB OPTIMIZER USER GUIDE

Creating Tuning Reports
After tuning SQL you can create an HTML or PDF Report of the tuning session. You can
choose the details to include in the report.

1 At the top right corner of the Tuningtab, clickthe Export Report button.
L] TORLABORCLIOg 2(1) |kl TORLABORCL10g 2.0ar L5 *Uniitled Tuning Job (3 1% Select.sdl | ot m 1
» £f) Orace » i TORLABORCL11g_2 (11.1.0.6.0) El;_'I

I
| P Overview | P Analysis

EE OQverview

Tuning Staten [V]Generate cases [lPerform detai ar [CJEsecute sach genersted case | 1 2 w Export Report

DB OPTIMIZER USER GUIDE 147

The Export a Tuning Report dialog appears.

% Export a Tuning Report

Export a Tuning Report #"
Configure and export a tuning report in various Formats, | Q

Report Tile: | Data Source Tuning Report |

Report Description: |

Tuning Cases | Configuration

Mame Generated Cases | Exec... | énal..

SN SELECT 1 © 10j26 (16 fit...
[MO_INDEX & 0/3 (3 filkered)
[¥] INDE¥_55 © 0j2 (2 Fikered)

INDEY_FFS
FIRST_ROWS
= |:| [Missing a walid join c @ 5/16 (11 fiber...

[JUsE_NL _
[] ORDERED &) 0f1 (1 fitered)
T e 1ICE B N, L == e L b

General Report Options

Format Layout Paper Size
() POF (*) PORTRAIT (¥) Letter (8.5 % 11, 216 = 279)
(CIHTML () LANDSCAPE () Legal (8.5 x 14, 216 x 356)

() Aa4(8.3x11.7, 210 % 297)

Use default export location

® [Export H Cancel

2 Enter a ReportTitle and Description.

3 On the Tuning Cases tab, choose the cases you want to report on. Click the + to
expand the cases.

148 DB OPTIMIZER USER GUIDE

2 On the Configuration tab, choose the content you want to include in the report.

¥ Export a Tuning Report

Export a Tuning Report 1#73

Configure and export a buning report in various Formaks, q ?
Report Title: Data Source Tuning Report -
Report Description:

' Tuning Cases | Configuration |

(>

[]Run Full job prior ko generating report
Cwerview Information
Execution Details

Cost
Execution Statistics
[] Other Execution Statistics

SOL Text

5 Select the General Report options, enter the location for the report, and then click Export.

You will see the progress of the report generation in the Progress pane.

B4 Progress 52 % ~ — 0O

| Generaking tuning report...
| & wees)

Streaming data to report cache. .,

When complete, the report is stored at the top level of your workspace.

DB OPTIMIZER USER GUIDE 149

A report in PDF format will resemble the following:

|'|_ Dookrarks [l
= ® —
I - Dotz source: \x Data Source Tuning Repart
& [F 2- crerviews | Merth &, 2012 10:07 AM
&-{F 2- cass SELECT 1 Texst rapon
1 - Dt seource:
— TORLABORCLEG 2
Fiattoem: Oracke 111,040
Tusieg b Har: Unied Tusing Job
2 - Dverview
Marma Sowme Schwra Texd Tabe WVw Elgoed proesd Gawn Inzazas
Timssy) Tewew) Andgmed As

ZELECT 1 ComiomCms IYSTEM asdecd romHRENFLOTEES HR DEFAHTHE "
3. Case SELECT A

34 - Generated Cases

Marss Tant ot Eapsed Rows
Readt T fs) Retamed

EELECT 1 st o HA ENPLOYESE. HR DEFATTMENTS g

FIAST_ROWSE af

i

TOEX_FF5 an

IMDEE 88 =]

32 .80 Text

SELECT®
FROM

FREMFLOYEES.
BRDEFARTMENTS

3.3 - Case FIRST_ROWS

331 - Generated Cases

Marm Tad st Sapsed Aows
Foml Tk (5] Aelemed

FIAST_ROWS an

3.3.2 - SOL Text

SR BT P+ FIRST_ROWS] 10)

FROM
LT St mwET

Understanding the Analysis Tab

Index analysis is started when you either generate cases with Perform detail analysis
selected on the Overview tab, or when you click the Analysis tab. If any columns referenced
in the WHERE clause of the tuning candidate are not the first column of an index, tuning will
recommend that you create an index on that column.

The color-coded Index Analysis feature highlights missing indexes as well as shows which
indexes are used and which are not used in the default execution path. The Index Analysis
feature highlights issues where the database optimizer might not be using the preferred
indexes. DB Optimizer also lists indexes on the tables that do not have fields in the WHERE
clause helping the designer to see if adding an additional predicate in the WHERE clause might
make use of an existing index.

150 DB OPTIMIZER USER GUIDE

The layout of the Analysis tab shows the SQL text and Visual SQL Tuning (VST) diagram on the

top and the indexes on the tables in the query below.

koY orack b o] TORLAESCORCL (10,2.0,1)
| | Overview | ¥ Analysis
| . ;
| B SOL Analysis Select stabomerd of inberests |SILECT 11 w || -5 moor » @3 E®
SELECT & F..-; N t’f I.z;.: !I:I: @1 a o
e.employes id, -)
e.jon_id,
=] .manalzer_id, 3
e deparcment id,
d. lacst .'i.cm_:i.d,
l.countey_ id,
e .:Eil.'st_x:m:n'n:.l
e.last n=me,
E.=alary, : -
e.comsission_pot, FHL
d.departwent _name,
3.40b_title, 1 LOTATIONS (L]
l.eniey, . pEe.
er"lFDt-l:_]leD'v'imL‘_r ﬁm
CLOOUNTEY hoddd,
o rrE'ﬂ'lﬂﬂ_ﬁm
FROH " =3 COURNTRIES (C) w
Index dnelysis | [Table Statistics | 52 Column Statistics Ard Histograms | [Outines
Colleck and oreats indexs=s A [Ej
- Indax Mame Table Owner Tatlke Hama Calurn Mame Index TH5|I’$“ Frgaﬁrﬁ&j_’;l:'lea 'JZI_'EI"TI 5
i & . presernt in oredc s S0k oo
o DCCLhTP'.._E__]D_PK HR COMTRIES CCJl:hT_F‘.".'_[) Urigus= b isad by Hie databass eptitviset
o [JDERT LOCATION [+ HE: DERARTHENTS LOCATEDN D tormel = || e vou run the skabemert.
W [Jxom o pe HE 4 0BG 108 1D Unicus — |
o CILoC_CounTRY 1% HR: LOCATIONS COUNTRY [fiormal k
o [Jrec o P HE REGICHS REGECR_ID Lnigus
| |mepePTmPE JHR | DEPARTENTS CEFARTMENT (D Lrinus
M [ews REBABTYEMT 1w [F]=3 FEAABTRAERT 1T Filrara ml
€4 >
The Analysis tab has five important components as depicted in the previous illustration:
1 Statement selector, if there are multiple statements in the tuning set. Here you can
select the statement and the generated case you want to analyze.
2 Statement text for selected statement.
3 Graphical diagram of the SQL statement.
4 Index analysis, statistics, and settings relating to the SQL statement and referenced
elements.
DB OPTIMIZER USER GUIDE 151

5 Description of the selected index, including the reasoning behind DB
Optimizer recommendations.

NOTE: Tabs are platform-specific. For example, against Oracle data sources, Table Statistics,
Column Statistics And Histograms, and Outlines tabs are available. For more
information, see USING PLATFORM-SPECIFIC FEATURES.

TIP: The text, diagram, and analysis sections can be resized or expanded to take up the
whole page.

The Analysis tab suggests missing indexes, indicates which indexes are used in the execution
path and lists all indexes that exist on all the tables in the query. Indexes on the table are listed
on the Analysis tab and color coded as follows:

Text Color Interpretation

Index is used in the query

Index is usable but not used in the current execution path.

This index is missing. DB Optimizer recommends that you create this index.

This index exists on the table but not usable in this query as it is written.

In the Collect and Create Indexes table, orange-highlighted entries indicate missing
indexes that DB Optimizer recommends be created to improve performance. Clicking on that
index, displays text to the right outlining the rationale behind this recommendation.

For more information on using the Analysis tab, see Using the Analysis Tab.

Tuning SQL Statements

A tuning job enables you to view the cost details of SQL statements on a registered data source
and then select the best, or most efficient, array of execution path directives in order to make
query execution faster, therefore improving the entire enterprise, overall.

A tuning job consists of a set of SQL statements and any analysis results you generate against a
data source using tuning. The SQL statements and analysis results that compose a tuning job
can be saved in a tuning file (.tun). This enables you to open a tuning job at a later time for
inspection and analysis, to add, delete, or modify the SQL statements, or generate new
execution statistics.

The following topics provide a high-level overview of the tuning process:

1 Create a New Tuning Job

2 Specify a Data Source
3 Add SOL Statements
4 Run a Tuning Job

152 DB OPTIMIZER USER GUIDE

5 Analyze Tuning Results

6 Modify Tuning Results

NOTE: Foradditional commands that fall outside the general tuning workflow, but may still be
helpful, see Additional Tuning Commands.

TIP: For information on working with data sources such as adding and browsing them, see
Working with Data Sources.

Create a New Tuning Job

You can create a new tuning job via the File > New > Tuning Job command, or by importing
statements directly from profiling. The New Tuning Job icon is also available on the Toolbar.
To create a new tuning job via the Menu or Icon command
Select File > New > Tuning Job, or click the New Tuning Job icon on the Toolbar.
Tuning opens.

You can now proceed to set up the parameters of the new job.

To create a new tuning job from profiling

After you have run a profiling session, in profiling’s Profiling Details tab, select one or
more statements, right-click, and select Tune from the context menu. Tuning opens, pre-
populated with parameters based on the statements you selected.

To open an existing tuning job
Navigate to the SQL Project tab and double-click the name of the existing tuning job.

To name a job, save it

Ensure you specify a meaningful name that identifies the job in other views and dialogs. You
can save the job by selecting File > Save or File > Save All from the Menu bar. Once a
job is saved, it is added to the SQL Project view.

Specify a Data Source

The bread crumbs at the top of the tuning job window identify the data source where the SQL
statements to be tuned reside. The default data source is the one that was selected when the
new tuning job was initiated. For example, in the following image, we see that the data source is
TORLACSCORCL, which is part of the Oracle data source group. The color of the bar at the top
of the tuning window shows the category of the data source as defined in the data source
configuration properties.

b O} Orace b ZF TORLABSCORCL (10,2.0.1)
= Overview b“ Analysis

£ Overview

DB OPTIMIZER USER GUIDE 153

You can change the data source of a tuning job by clicking a bread crumb triangle and then
navigating to the data source or using the filter to locate and then select a data source. In the

following screenshot, Microsoft SQL Server was clicked and 7was entered in the filter text area,
which resulted in several matches.

= = Data Source Group
[=1-T=F Microsaft SOL Server
[=T=F Microsaft 0L Server

S
I8 TORLABSQLOO_1

Click the name of the desired data source to affect the change.

NOTE:

Multiple tuning jobs can be saved against the same data source. You can therefore set
up your tuning jobs organizationally. You might for example, set up a tuning job to tune
only SQL associated with procedures or a set of SQL sources that are functionally
related. Alternatively, your tuning jobs may be organized by application.

Add SQL Statements

Once you have created a tuning job and named it, using File > Save As, you need to add SQL
statements to the job that are to be tuned. All standard DML statements can be tuned (SELECT,
INSERT, DELETE, and UPDATE as well as MERGE on SQL Server 2008 and higher).

Statements are added to tuning via the Overview pane.

L *Unkbed Tuning Job 55 1% Skt el
¥

=8
' Jracle b SR TORLABORCLLLD_2{LL.1.0.6.0)

| P Overview | B analysis I

== Dverview

RN
) T Puew 0L Teor “
Tuning Slalenenls L—tﬂl:rd'J:F = EH) Dp\:ﬂ'.l'llllH.didld’)’:-b [ienie each g E Svtract Fram Dok ase Chject | :} *-_lj
[et From Pl QRorksaoce)
L] | e [Tt From File (Susten)
L | o TR e SO S oo e R S
G BEeEcTL zebet from

Fo Scandrade 568 femmemme s

There are several different methods for adding SQL statements to a job, as reflected by the
option in the New SQL text menu.

e New SQL Text enables tuning via manual entry, or cutting and pasting into the
tuning window.

154 DB OPTIMIZER USER GUIDE

e Extract from Database Objects enables you to select stored SQL from the data source to
which you are connected. You can either drag and drop objects from the Data Source
Explorer or you can add database objects matching specified filers. For example, entering t
in the filter area of the Data Source Objects Selection dialog, can match functions,
materialized views, procedures, and views, whose name begins with t. You can then drag
and drop the matches from the Data Source Explorer to the Tuning Statements grid.

® The Import from File (Workspace) and Import from File (System) options enables you
to choose an SQL file saved in your workspace or elsewhere on your computer or network.

® The Scan Oracle SGA option is available for the Oracle platform only. It enables you to scan
for and select active SQL in the System Global Area (SGA). For more information, see Tuning
SQL Statements in the System Global Area (Oracle).

To add an ad hoc SQL statement:

Select the New SQL Text option and manually type an SQL statement in the window,
or copy/paste the statement from another source.

To add a database object:
1 Select the Extract from Database Objects option

The Data Source Object Selection dialog appears where you can search for and then select
the object you want to tune.

2 Type an object name prefix or pattern in the field provided. The Matching objects window
automatically populates with all statements residing on the specified data source that match
your criteria. Database objects include functions, materialized views, packages, package
bodies, procedures, stored outlines, triggers, and views.

NOTE: In order to find matching objects, data source indexing must be enabled. To enable
data source indexing, click Configure data source indexing, select Enable indexing,
and then click OK.

3 Click the object you want to add. Ctrl-click to add more than one object to the job.
4 Click OK.

NOTE: Alternatively, after clicking the Database Objects tab, you can drag and drop objects
from Data Source Explorer into the Database Objects window. As long as the dragged
object is a valid object type, it will be added to the Database Objects tab.

To add an SQL file:

1 Fromthe New SQL Text menu, select either Import from File (Workspace) or Import
from File (System), depending on where the file you want to add is stored:

* Workspace files are files that reside in the application, meaning project files or
other objects generated or stored in the system.

e File System files are files that reside on your machine or the network.

DB OPTIMIZER USER GUIDE 155

2 Select a file from the dialog that appears. It is automatically added to the job.

To add SQL from the Oracle SGA
1 From the New SQL Text menu, select Scan Oracle SGA.

2 The system scans for SQL text which you can filter on the Scan SGA dialog that appears.

3 Choose the statement to be tuned and then click Finish.

Managing Bind Variable Errors

When you try to tune a statement containing a bind variable you will be warned that either the
type is not set or the value is not set. Mouse over the error to learn what problems were
detected.

L] *Maview Tuning Jobt L8] *Untiled Tuning Job || TORLABDEZ97_1 |L2] *Unkitled Tuning Jab L]
b £'f} IBM DBZ For LUW P[5 TORLABDBE257 _t (09.07.0003)

b b

'@ Overview 30errors detected

SELECT 1: The walue is nok set For DECHAR
Tuning Statements [/{SELECT 1: The walue is not set For DEDATETIME o
SELECT 1: The walue is not set for DEDECIMAL
SELECT 1: The walue is nak set for DEINTEGER.
SELECT 1: The walue is not set For DENMUMERIC
SELECT 1: The walue is nak set for DEREAL i

Mame Schi<EIECT 1: The value is not set For DESMALLINT 1
E O A R TG SELECT 1: The value is not set for DEVARCHAR |
Eﬁﬁ SELECT 2 SELECT 1: The walue is nat set for dbchar -
5.;53 SELECT 3 SELECT 1: The walue is nok set Far dhdatn_atlme
5[SELECT 1: The walue is not set for dbdecimal
ﬁ!] SELECT 4 SELECT 1: The walue is not set for dbinteger
Sl IAcocicerc SELECT 1: The walue is not set for dbnumeric

SELECT 1! The walug is nok set Far dbreal
SELECT 1: The walue is nok set for dbsmallink
SELECT 1: The walue is nak set for dbvarchar
SELECT 2: The walue is naok set for DEREAL
SOUSELECT 2: The walue is nok set for dbreal
SELECT 3: The walue is nok set For dbdauble

Generated Cases

L |

hl=rm—-

156 DB OPTIMIZER USER GUIDE

You can use the Bind Variable Editor to set the types or variables.

1 Click the Edit Bind Variable icon as shown below.
cdl=lc

The Edit Bind Variables dialog appears.

& [Edit Bind Variables

Edit Bind Variables SAaL
Manage bind variable data types and values. t_ﬂ
All Tuning Statements
Hame | WULL Data Type yalue

DECHAR: a character
DECATETIME O timestamp
DEDECIMAL O decimal
DEINTEGER O integer
DEMUMERIC O decimal
DEREAL O smalint
DESMALLIMT O el
DEVARCHAR a warchar
dhbigint a bigink
dbchar O character
dbdatetime O date

3| dodecimal O decimal
dibdouble O double
dibfloak O fhoat
dbirteger O integer
dhlongchar a long varchar
dbriumeric O fLMmeric
dbreal O real
dbsmallint O smalink
AbFirna | o

o

You can either set the bind variables for all tuning statements at once or you can set the
bind variables for each select statement individually. If you set the bind variable in the All
Tuning Statement section, you can still override that setting for an individual select
statement.

2 Set the bind variable by clicking the Null box, clicking in the Data Type column and
selecting the data type from the list, or by clicking in the Value column and entering the
value.

DB OPTIMIZER USER GUIDE 157

3 If you want to set the bind variable for an individual select statement, click the expand
button to see all the select statements. The expand button is marked with a red box in the

previous image.

SELECT 11 (select from MOYIES, CUSTOMER, MOVIES, MOVIERENTAL)

Marme MULL Data Type
DECHAR. _ character w
dbchar 0O [date A
dblongchar integer —
J O bigink
blab
boolean b

m

Yalue

In this manner you can set the bind variables from all tuning statements and then override
that setting by setting the bind variable for a specific select statement.

You may find it easier to set the bind variables when you can see the tuning statement. In
the Generated Cases section, you can double click a statement and an editor appears
where you can edit the SQL statement and set the variable data types and values.

& Edit Case - SELECT 1

Edit Tuning Statement

Unidabi the SO0 shaterment kel a5 wel 25 manage varzble data ypesivalues,

saL

kELECT #
oo .oustomerid,
za, firacname,
o, lasthams,
WE.rentalid,
e, dusdate,
W, totaleharge,
Tl lnembimas
FROM L3
ACVIES . customer cs,
ACVIES moviersntal mr,
HOVIES.centalitem £,
{ZELECT
DISTINCT
AVG [cocslohargs] COL1O
FRON MOWIES.wovierental) T3l
VHERE
oa . FIRSTHAAE = cdhohar LED
za,. zip > odibvarchar AND
rlh=wAal 1ane & ~= cn=comerad RN E
Tz | ML Data Typs ale s
DACHAR, 0 choracter
DHOATETIME O timestang
DHDECIMAL O d=cima
DAIITEGER O integer
DHNLIMERTE O de=cimd
DEREAL O smalint
DESMALLTNT O res
DEVARCHAR, O varcha
dbchar O cheractar
dhadametime a data
dbdacimal O deamd
dhinteger OO inkeoer
[—— o T — i
4 PRy
Cangel
158

DB OPTIMIZER USER GUIDE

Run a Tuning Job

As you add SQL statements to the job on the Overview tab of the tuner, tuning-supported DML
statements (SELECT, INSERT, DELETE, and UPDATE as well as MERGE on SQL Server 2008 and
above) are parsed from the statements and added to the Overview tab in preparation for the
tuning function execution.

Each tuning source statement is listed by Name, Schema, Text, Tables and Views. For SQL Server
and Sybase platforms, there is also a Catalog column. Additionally, each statement will have
Time and Analysis values that approximate how efficiently they execute on the specified data
source.

In the Generated Cases area of the Overview tab of a tuning job, the Cost and Execution
Statistics columns let you compare the relative efficiency of SQL statements or statement cases.
While the explain plan Cost for a statement or case is calculated when you add SQL to a tuning
job, the Elapsed Time and Execution Statistics (and Other Execution Statistics columns, if
available) columns are not populated until you execute that statement or case.

If the Tuning Status Indicator indicates that a statement or case is ready to execute, you can
execute one or more statements on the Overview tab. Alternatively, the Tuning Status Indicator
may show that you have to correct the SQL or set bind variables before you can execute.

Once the tuning job has run, the Overview tab provides a series of cases, per statement, that
you can select and modify based on your results.

In some cases, automatic case generation might be disabled (via the Preferences panel). If this is
true, or if you have otherwise modified the Generated Cases table and can no longer generate a
specific case, you can instead explicitly generate a case for specific statements.

[#]Execute each generated case | 1 * | times p t))

To execute a tuning job:

1 Ensure you have registered and selected a data source. For more information, see Register
Data Sources and Specify a Data Source.

2 Ensure you are connected to the database by double clicking the database name in the
Data Source Explorer.

3 Click the tuning icon on the toolbar, or click File > New > Tuning Job.
4 On the Overview tab, specify the SQL you want to tune:

5 Modify the number of times to execute each statement in the Execute each
generated case field at the top right of the tuner, as needed.

-
6 Click the execution button [r'~-)] on the right side of the case generation field.

The tuning job runs, exacting and analyzing each statement and providing values in the
appropriate columns.

DB OPTIMIZER USER GUIDE 159

To explicitly generate a case for a specific statement:

1 Ensure you are connected to the database by double clicking the database name in the Data
Source Explorer.

2 Click the Overview tab.

3 Inthe Generated Cases area, right-click in the Name field of a statement or

transformation case and select Generate Cases from the context menu, or click the
Overview Run Job icon. The specified case is generated.

To view the generated cases for a specific statement

1 Inthe Tuning Statements area, click the checkbox to the left of the tuning source
statement name.

A check mark appears in the checkbox and the cases displayed in the Generated Cases area
are filtered to display only those cases related to the selected source statement.

L *rorMAaoROELL (L2 *unkted Toning JohE
b el ceace b R ROMLABOROLE D (5.1,7.4)

| [Uverview | B nnalyeis |

8 Overview | e deteced HE-|E @

Tunhing Statements] GENEF At Cases Dresfonm datal analysts [#Exmcute mach grrerated casm | 3 | HimEs 1;‘_:} et
Stakement Tiniex Analyiis -
Tame: Schema Text Tables Yimaus Elopsed [5) | Improved [5) Coses Treckeezess
[FAEECT 3 5 selucl from sys.jobk 0
#, Mstecia 1] select from Fetd, s} o
#y MsEEcTs S5 select from pandng_trancf 0
L% [ASEECTS S5 zelect rom sve.obif. : g |
Generated Cases E-
501 Sratemerts and Cases % Cost | BExendl_istes | 8 Cithey FreeoLblon Shatkstdes |
Mlmpres Tet ek Elaps=d Time (s} Fhysical Fesds | Locicel Reads CFU T (53
?E. = & SELECT 1 sedprk from SYSTER.DEFS_ACsALL .56 u]] 0.0
=l THDER_COMBINE L.0 063 a 11 000
=l INDEX EZE.0 D.87 o] 0.0o
mel RIULE 077] q 0,00
13 FySELECT 3 sel=ck from sys.jobf
E] Ay SELECT 4 sedeet from Ferf, sf
El - #4SELECTS saelact from pandng_trans$
El i_"a'_lLLI [sel=ct from sus.obif, svsousard, rof,

160 DB OPTIMIZER USER GUIDE

Analyze Tuning Results

Once you have executed a tuning job, the Overview tab reflects tuning analysis of the specified
statements. The Analysis tab shows the resulting analysis of the query, including indexes used,
not used, and missing (or suggested to create). For more information on using the Analysis tab,

see Understanding the Analysis Tab.

Tuning Siftus Indicator Column Set Run/Cancel
Enable Execution Expand{Collapse Job
Chéck Box Contro Controls
Increase/Decrease
' Catatpgand Pane izeControt
B overview VB Analysfls Schelna Selector
1, Overview ietected & N B ®
Tuning [censrate [Cases [Perfoem detail analysis Exefute each cenerated case @ @
SEmtamant J Time J An
V| © | Schema Text Tibles Views Elapsed (5] | Improved (s} Cases Inde:
T MseecT2 MOVIES o select from BROKER, 5.32 6.32 0
" HseecTt 0.00 0.00 10
£ | E.]
Generated Cases J — =
LState‘Eﬁé{EEEﬂ&%‘és%.?se , | » cost]»Exemﬁ..,'ilsthscs Ef»t o Other
o Nam/ | xpano/\,ouapsq_‘e\ign{m Value Elapsed Time (s) | Physical Reads | Lo
el RS 2 select from BROKER, CLIENT ACTION, 34014.0 6.32 2
el ssing & ...sformatian 274.0 0.03 o
oel Ef SRECT1 select from chent_transaction, dient, 4.0 0.0 i}
e USE_HASH 14.0 0.00 o
e ORDERED 8.0 0.00 o
E"_;_j -MO_USE_NL 16.0 0,00 1]
= -LEADING4 8.0 0.00 0
gl LEADING3 Extracted SQL 10.0 0.01 0
el LEADINGZ Transformation Case Statements 7.0 0.01 0
EE LBADINGI / Hint-Based 40 0.00 g
el TMOEX_FFS C 8.0 0.0 o
= ases
s FULL 54,0 0.00 o
el -FIRST_ROWS 4,0 .04 1]
¢ e

e The Generated case Expand/Collapse control lets you hide or display the hint-based
cases and transformation-based case generated for a statement.

e The Perform detail analysis and Execute each generated case check boxes let you
enable multiple statements or cases for simultaneous execution while the Run/Cancel Job

controls let you start and stop simultaneous execution.

DB OPTIMIZER USER GUIDE

161

Use the Schema and Catalog Selectors to select a schema and catalog for the tuning job.
The catalog selector is available only for SQL Server and Sybase data sources. By specifying
the schema and catalog, the tuner can use the paths of the schema and catalog selected to
find the tables queried in the job rather that use the paths of the schema and catalog used
to connect to the data source. If you change the schema or catalog used in a tuning
statement you will need to refresh the tuning statements in order for new cases to be
generated, which take into consideration the schema used. Right-click a tuning statement,
and then select Refresh Tuning Statements.

The Column set Expand/Collapse controls let you expand a column set to display more
of the columns within the table.

The Tuning Status Indicator indicates whether a statement or case is ready to execute
or has successfully executed. The following table provides information on the Tuning
Status Indicator states:

Icon Description

El The case has not been executed. There are no errors or warnings and the case is ready to be executed.
ETZJ The case has been successfully executed.

é:J Execution for this case failed or was cancelled due to execution time exceeding 1.5 of original case time.

a,
1.3
0.6
0.4
0.7
0.4

162

Hovering the mouse over the Tuning Status Indicator displays a tip that notes the nature of a
warning or error.

i
NOTE: If awarning """ indicates that one or more tables do not have statistics, you can right-
click the statement and select Analyze Tables to gather statistics. A warning may also
indicate that the tuning statements are out of sync, in which case you can right-click a
tuning statement and select Refresh Tuning Statements.

A warning can indicate an object caching error. For example, a table may not exist or not be
fully qualified. Cases cannot be generated for the associated statement.

The explain plan-based Cost field can be expended to display a graphical representation of
the values for statements or cases. Similarly, after executing a statement or case, the
Elapsed Time field can be expanded to display a graphical representation. The bar length
and colors used in the representation are intended as an aid in comparing values,
particularly among cases. For example:

?8 —

43 I

88 ——

09

g? —

28_

In the case of both Cost and Elapsed Time, the values for the original statement are
considered the baseline values. With respect to color-coding for individual case variants,
values within a degradation threshold (default 10%) and improvement threshold (default
10%) are represented with a neutral color (default light blue). Values less than the
improvement threshold are represented with a distinctive color (default green). Values
greater than the degradation threshold are shown with their own distinctive color (default

red).

DB OPTIMIZER USER GUIDE

With respect to bar length, the baseline value of the original statement spans half the width
of the column. For child-cases of the original statement, if one or more cases show a
degradation value, the largest degradation value spans the width of the column. Bar length
for all other children cases is a function of the value for that case in comparison to the
highest degradation value.

NOTE: Forinformation on specifying colors, and the improvement threshold and degradation
threshold values used in these graphical representations, see Specify Tuning Job
Editor Preferences.

Additionally, once results have been generated you can:

e Compare Cases. For more information, see Compare Cases.

* Filter and Delete Cases. For more information, see Filter and Delete Cases.

e Visual SQL Tuning. For more information, see Visual SOL Tuning.

e Create an Outline. For more information, see Create an Outline.

Compare Cases

You can compare cases between an original statement and one of its tuning-generated
statements, or another statement case via the Compare to Parent and Compare
Selected commands, respectively.

& Compare Statements E@@

3 1
£ W &R
Eﬁr : . E],-- & i o
gnt SELECT X =r Transformation (SELECT 2):
T IooTT
BREOTFRE T s
e = ShVAER A
BROEER A, d
e e e e -
[——— P els L ENLI O LEAD .'_".E'L'_p;._l:..l 3
CLIENT TRANSACTION B, = &
e OFFICE LOCATICHN C,
CFFICE LOCATICH C, =
L e e e
INVESTMENT I INVESTHENT 1
INVESTHEER 11 e
Tw:'—":'_:' L PP B =y
et A.BROEER ID = B.BROEFR IO
= e e B A.BROEER ID B.BROEER 1
A.BROKER ID = B.BROKER ID ANI
= = —————— = = A.OFFICE LOCATION ID = C.
A.OFFICE LOCATION ID = C.OFFl—— — —
T B.INVESTMENT ID = I.INVEE
GROUP BY [l
i S
™ o & Eh LY =
A.BRCOKER_ID, A BROKER ID
A.BRCKER LAST MAME, ey
= 4.BROEKER LAST HAME
- BoDAYED ETRCST MAME = - - K <. e r
oy sl, C_.._.n_.. —DD L aRliLy A .BROEER FIRST NAME
= S | HA.DEURER FPlHEaL [18
A.YEARS WITH FIRM, — — E
— a8 2 wmmme TTTTL TToL
Gl s B L.YEARS WITH FIBEM
C.QFFICE MNAME: = — y b
J?“\
?2)

To compare a case side-by-side with its parent:

Right-click in the Name field of a case and select Compare to Parent from the

context menu.
DB OPTIMIZER USER GUIDE 163

To compare two cases:

Select the two cases, and then right-click in the Name field of either case. Select Compare
Selected from the context menu.

Filter and Delete Cases

You filter cases from the Generated Cases table via the Filter icons on the Generated Cases
Toolbar of the Overview tab.

i

Filter the cases on the Overview tab so that hints that are not improvements on the original
statement are not displayed. You can filter:

¢ Non-optimizable statements

Optimized statements
® Worst cost cases
e Worst elapsed time cases

When filtering, the criteria remain in effect until you change the criteria. That is, as new cases are
generated, only those cases that do not satisfy the filtering criteria are displayed. To restore an
unfiltered set of cases, open the Filter dialog and deselect the filtering options.

When removing cases, the criteria you set has no effect on cases subsequently generated.
To filter cases from the Overview table:

1 Click the Filter button, respectively. A Filters dialog opens.

2 Use the check boxes to select your filtering and then click OK.

To delete cases from the Overview table:

1 Right-click on the row of the case you want to delete and select Delete. A Delete dialog
opens.

2 Use the check boxes to select your filtering and then click OK.

When removing cases, the criteria you set has no effect on cases subsequently generated.

Create an Outline

If SQL is executed by an external application or If you cannot directly modify the SQL being
executed but would like to improve the execution performance, you can create an outline on the
Oracle platform. An outline instructs the Oracle database on the execution path that should be
taken for a particular statement.

To create an outline for a change suggested by a case:
1 On the Overview tab of a tuning job, right-click in the Name field of a case and select
Create Outline from the context menu.

A New Outline wizard opens.

2 On the first panel, provide an Outline name, select an Outline category, and then click

Next.
164 DB OPTIMIZER USER GUIDE

A Preview Outline panel opens previewing the SQL code to create the outline.

3 Select an Action to take option of Execute or Open in new SQL editor and then click
Finish.

For more information, see Using the Outlines Tab (Oracle).

Modify Tuning Results

As you add SQL source to the Overview tab of a tuning job, the supported DML statements are
automatically parsed out and a numbered statement record for each statement is added to the
Overview tab.

Cases generated from tuning candidates are alternative forms of the original statement that
have been optimized or otherwise “fixed” by the tuning function. Once you have executed a
tuning job, tuning automatically generates all SQL optimizer hint-based variations that can be
applied to the statement: If you change the schema of a statement

e All SQL Optimizer hint-based variations that can be applied to a statement.

e A transformation-based case, if any of the eight common quick fixes can be applied to an
SQL statement. This feature leverages the DB Optimizer Code Quality Check functionality.
See Understanding Code Quality Checks for more information on the eight quick fixes. A
transformation case, in turn, has its own set of SQL Optimizer hint cases. For information on
query rewrites, see DB2, Oracle, SQL Server, Sybase Query Rewrites. For information on
other transformations, see Examples of Transformations and SQL Query Rewrites.

e SQL Query Rewrites may be suggested when tuning. For example, a recommended rewrite
for EXISTS may be IN. For information on query rewrites, see DB2, Oracle, SOL Server,
Sybase Query Rewrites.

DB OPTIMIZER USER GUIDE 165

L'i-" Overview P‘ Analysis

== i 4 soL
£E Overview |y
Tuning Stateme Generate cases []Perfarm detail ana []Execute each generated case | 2 - @
Stakement | Time |
| Marme | Schema Texk Tables Wigws Elapsed (=) Improved (=) r
“ SELECT 1 MOYIES select from custamer, _—_ -
T SELECT 2 select fram
5

Generated Cases

| e

S0l Statements and Cases *r Cost #rExecuti, , istics ¥

| Mame Text Walue | Elapsed Time (s) | Phys
—EF]" SELECT1 * select Fram custnmer;'rﬁ;:;';fiérental, rertaliter o T
el [IN_TO_EKI...LRew_rite - SQbueryewrites
- [+ [BETWEEN_...Rewrite
- INDE®
CYMAMIC_SAMPLIMNG
FLILL
- TNDE¥_55 Hint-basedases
- INDEY_FF5
INDE3_COMBIME
v NO_TNDES
[+ [Expressin.. sfarmation <@———— Transformation-basedase
‘ 5[—':]" SELECT 2 select from movies. customer,

Hint-based cases and the transformation-based cases are a special case of the statement
records added to the Overview tab as you add candidates to a tuning job. With the exception of
the Text, Source, and Index Analysis fields, cases are identical to the standard statement record.
Similarly, execution, statistics collection, and other options available for basic statement records
are available for individual cases.

Once cases have been generated, if you have the required permissions on the specified data
source, you can apply the changes suggested by hint and transformation based cases in the
Overview table.

166 DB OPTIMIZER USER GUIDE

DB2, Oracle, SQL Server, Sybase Query Rewrites

The following query rewrites or transformations may be recommended during tuning. The
examples below are for Oracle data sources. The implementations for DB2, SQL Server, and
Sybase data sources are slightly different. These rewrites are available on all four platforms
except for those noted for ORACLE and DB2 only.

Before

After

select * from t1 where
EXISTS
(select null from t2 where t2.key = t1.key);

select * from t1 where t1.key
IN
(select t2.key from t2);

select * from t1 where
NOT EXISTS
(select null from t2 where t2.key = t1.key);

select * from t1 where t1.key
NOT IN
(select t2.key from t2 where t2.key is not null);

select * from t1 where t1.key
IN
(select t2.key from t2);

select * from t1 where
EXISTS
(select null from t2 where t2.key = t1.key);

select * from t1 where t1.key
NOT IN
(select t2.key from t2 where t2.key is not null);

select * from t1 where
NOT EXISTS
(select null from t2 where t2.key = t1.key);

select * from t1 where
NOT EXISTS
(select null from t2 where t2.key = t1.key);

select t1.* from t1, t2 where t1.key = t2.key(+) and t2.key
is null

select * from t1 where t1.key
NOT IN
(select t2.key from t2 where t2.key is not null);

select t1.* from t1, t2 where t1.key = t2.key(+) and t2.key
is null;

select column BETWEEN X AND Y

select (column <= X AND column >=Y)

select column NOT BETWEEN X AND Y

select (column < X AND column >)

select (column<= X AND column >=Y)

select column BETWEEN X AND Y

select (column < X AND column >)

select column NOT BETWEEN X AND Y

select t1.* from t1, t2 where t1.key = t2 key
and
t2.col = 10;

select t1.* from tT1,
(select * from t2 where t2.col = 10) inline_alias
where t1.key= inline_alias.key;

For DB2 and Oracle only

select t2.* from t1, t2 where t1.key = t2 key
and
t1.col is null

select * from t2 where t2.key
IN
(select t1.key from t1 where t1.col is null)

Using the Analysis Tab

The Analysis tab provides detailed information about statements and cases selected from the
Overview tab, after a tuning job has been executed. It also shows filter ratio, and table and join

sizes.

DB OPTIMIZER USER GUIDE

167

The Analysis tab contains information about the statement or case, its full SQL code, a diagram
of the SQL statement, and Index Analysis.

L3 *unkitled Tuning Job 21 =m
| F o Orade b [TORLABSCORCL

B Overview

| B S0L Analysis Saleck statement of inberest: |SELECT 1 | -On_To ExisTSISQIRewvke | i - B | Bl | B

= Analysis

SELECT A
S2 . CUSTOmSE 10,
o, firstnome €3] SUBSUERY (1)
eE, lastnans, f
wr . rentalid,

wr . dusdace, &
B . totalchacge, i i
ri. iTemnuet [MOVIERENTAL (MR) & 0T TN (2)
FRON W
HOVIES. customer oS, 3
NOVIES .movierencal e, ¢
HOWIES.centalitem i
UHERE ;E] CUSTOMER (CS5) |
LENGTH (o=, laschame)] = 5 AND
og. gip > TE052 AND
i £ cz.customerid + 2 AND
c=,.phone EETWEEN 9625569900 END S
ROMDI (ci.cencalid) > 10 AND
TRUNC (ri.icenmnumber) > 1 AND e
4 | i
| [E finedex ysis|| (T Table Statistics| B Column Statistics And Histograms | [£] Outines
Collect and create indexes wh ﬂ-l
Tndex Bame Tahle Owiner Table Mane ~ [
O Oiox_HMOYIERENTAL_O MOVIES MOMIERENTAL OTALCH
o [ClcusTomMer_Fx MOVIES CLISTOMER. CLSTOME
o [CImMovIECORY_PK [CVIES MOVIECOPY MOVIECD
o DF:E.‘-,'TAL[TEM_FKI. [MOYIES RENMTALITEM REMNTALIC:
@ [JcusToMER _IEI MCVIES CLSTOMER LASTHARI
< >

Additionally, for the Oracle and SQL Server platforms there are Table Statistics, Column Statistics
and Histograms, and Outlines/Plan Guides tabs. For more information, see Using Platform-
Specific Features.

Statement analysis is performed when you click Perform detail analysis on the Overview
tab and then click Run Job or when you click the Analysis tab. In order to view and analyze
statement statistics, select the tab (Index Analysis, Table Statistics, Column Statistics and
Histograms, or Outline) and the statements whose statistics you want to analyze.

Next to the Select statement of interest list at the top, you choose to see an analysis of the -
>ROOT statement, or you can click the list and see an analysis of any one of the generated
cases produced by running the tuning job from the Overview tab.

For more information, see Visual SOL Tuning.

168 DB OPTIMIZER USER GUIDE

Implementing Index Analysis Recommendations

Once you have added tuning candidates to a tuning job, DB Optimizer can analyze the
effectiveness of the indexes in the database and recommend the creation of new indexes where
the new indexes can increase performance.

In the Collect and create indexes table, any indexes DB Optimizer recommends you create
are marked in orange.

[E] Ende Anzlyms | 53] Table Szekistics | 22 o Soabstics And Misoorans | [£f Cubres

Colect and reste oees wh |0
Indsx hlams Table Cawer Tzble Name Column tlams [redess: Type Ll 'Ta-flﬁﬂ[fs-r'mh\'rm?;mﬁ wared | & | Create
E = T =T = PR wia Ful & scarn but it afilbet
81 o powenana 0 moaes oo o I B et Idex
o [Jcustarer = FCWIES OLETOMER CLSTCRAERID Unigue Chefckenie] frem OIS, fevdesenta]
o CmouEooe py MEWIES MENIECRY MCRIEC LR Unioe 4 onic and we oreskad & vikuelindsx
* CIRENTALITEM_FiL HCHIES RENTALITEM REATALID Horm]mﬁrﬂcbﬂf"m-ﬂ‘gm“**T':'t""“ﬁ“
CUR, S0 e Au00e Emerkni
@ [JousTorER_IEL PWIES CLETOMER, LASTHAME Namsl | Fe=C P i @

To accept the suggestion and have tuning automatically generate an index:
1 For any recommended index, click the checkbox to the left of the index.

Optionally, modify the Index type by clicking in the Index Type column and then selecting a
type from the list.

2 Click the Create Indexes button.
The Index Analysis dialog appears.

To view the index SQL in an edlitor for later implementation, click the statement and then
click Open in a SQL editor.

To run the index SQOL and create the index on the selected database, click Execute.

Visual SQL Tuning

NOTE: Visual SQL Tuning is not available in DB Optimizer Developer.

DB Optimizer can now parse an SQL query and analyze the indexes and constraints on the
tables in the query and display the query in graphical format on The Visual SQL Tuning (VST)
diagram, which can be displayed in either Summary Mode or Detail Mode. This helps
developers, designers and DBAs see flaws in the schema design such as Cartesians joins,
implied Cartesians joins and many-to-many relationships. The VST diagram also helps the user
to more quickly understand the components of an SQL query, thus accelerating trouble-
shooting and analysis.

This section is comprised of the following topics:

e Changing Diagram Detail Display

® |nterpreting the VST Diagram Graphics

DB OPTIMIZER USER GUIDE 169

Changing Diagram Detail Display
This section is comprised of the following topics:

e Choosing the Tuning Statement and Generated Case to Analyze

® Viewing the VST Diagram Legend

¢ Viewing Table Counts and Ratios

¢ Viewing the Explain Plan

¢ Viewing the VST Diagram in Summary Mode

¢ Viewing the VST Diagram in Detail Mode

e Changing Detail Level for a Specific Table

¢ Viewing All Table Fields

¢ Viewing Diagram Object SOL

e Expanding Views in the VST Diagram

¢ Viewing the Oracle Explain Plan Overlay

CHOOSING THE TUNING STATEMENT AND GENERATED CASE TO ANALYZE

If, from the Overview tab, you have run the tuning job using more than one tuning statement,
from the Analysis tab, you can choose to see the SQL analysis of any one of the tuning
statements.

1 On the Analysis tab, click the Select statement of interest list and choose the
tuning statement you want to see analyzed here.

1] *untitied Tuning Job £2 = |
b el Orale b TR TORLAESCORCL

;'-" Overview P Analyxis
El SO Analysis Seleck skabament of interest: SELECT 1 % = ROOT ¥ - E R ®
=TT ECT =il [TI=ELECT 2

Notice that next to the statement of interest box another list ->ROQOT. This shows that the
statement being analyzed is the original statement, without any of the generated cases. This
is the default selection.

170 DB OPTIMIZER USER GUIDE

2 To choose the generated case to be analyzed, click the second Select statement of
interest list and choose a generated case.

L uniktled Turing Joh 23 iz
b s Oracle b gl TORLABSCOACL

B finalysis |

= vervicw
[E SOL Analysis Selieck statemant of terast: | SELECT 1 || -=ROOT vl-E F @
-=ROAOT A~
SFLECT A - [[N_TO_EXISTS] SLRew ke

oI customerid,
ca. firsenams, . SUBQLERY (1) .
cE. lasoname | - {:rlil-[:fr
e . rencalid. | - IHDE COMEIME
me . duedats, - ALL_Ri3WS
mr.cocalchargs, , M ___-«""ff - IHDEY FFS b

After you make your selections, a new analysis is performed taking into consideration the
statement and case you chose. A new diagram is displayed and the Index Analysis, Table
Statistics, Column Statistics And Histograms, and Outlines are recalculated and updated.

VIEWING THE VST DIAGRAM LEGEND
Click the Diagram Legend toggle [El] to view the legend and then click it again to hide
it. All the icons used in the VST diagram are identified and in the Diagram Legend.

Diagram Legend A
Tahble
A4 Miew
g Materiglized Wiew
s Sub-guery
[cTel Cornmion Table Expression
EE Caolumn
Index
B Primary Key
Us Unique Key
[d Filkered object
Z—e= Many ko Many (M:N)
——== Parent o Child (1:M)
Unique (1:1)
4o CUTER 101N
4 EXISTS | IN v

DB OPTIMIZER USER GUIDE 171

VIEWING TABLE COUNTS AND RATIOS
To view or hide table counts, two table join sizes and filtered result set ratios, click the Ratios

and Counts icon [123’].

"’:1 L
15 2 O] &

1 10000
S SUBQUERY (1) | I3 RENTALITEM (RI)
'\F 1003
|
15?1 10000
fului] '1"\ 0
| B MovIERENTAL (MR) | S MOT IN (2)

Loon

=]

|3 cusTOMER (C3)
1005

Green numbers at top left of table represent the total number of rows in that table. In the above
the MOVIERENTAL (MR) table has 5000 rows.

Blue percentage at the bottom right of the table represent the percentage of rows in that table
that meet the selection criteria. In the above example, 100 percent of the rows in the
RENTALITEM (RI) table have met the selection criteria.

The numbers on the table joins indicate the total number of rows that meet the selection criteria
for both tables.

You can also view the SQL Query that created a relationship by hovering over the
relationship. lfthe tooltip content is larger than the size of the tooltip rectangle, you can
hover the mouse on top of the tooltip for a second, and then it will turn into a dialog you
can re-size, scroll in, and select text from to copy into the Clipboard.

172 DB OPTIMIZER USER GUIDE

1 10000

E000 REMTALITEM (RI)
7 MOVIERENTAL | I—E] //I T
N\ 100 — .
1541 Cardinality: Master-Detail
™ Joined Row Count: 10000
=il X Relations:

MOYIERENTAL (M1

r.RENTALID = mr.RENTALID

Columns:
E000

MOVIERENTAL RENTALID
- ‘ RENTALITEM.RENTALID

|_m CUSTOMER (CS: SQL Count Statement:

10U} SELECT COUNT (*)
FROM
MOVIES.MOVIERENTAL MR,
MOVIES.RENTALITEM RI
WHERE ri.RENTALID = mr . REMTALID

VIEWING THE EXPLAIN PLAN
NOTE: The Explain Plan is available only for the Oracle 10g platform.

Hover the mouse over the VST diagram to see the Explain Plan icon [#%and then click it to
view the Explain Plan Overlay. Click the Explain Plan icon again to hide the overlay.

The additional nodes shown in the Explain Plan overlay provide details on the flow of the
query plan, with operations (such as nested loops, sorts, and joins) showing connecting
tables and other operations..

- FHL

REP:JTF'.LITEM (RI) |
=

]
| MOVIEREMTAL (MR &00 :

[F MOVIECORY (MC)

I3 CUSTOMER {5) 500

| B moviErenTAL |

Hover the mouse over the objects or relationships in the overlay to view additional details.

DB OPTIMIZER USER GUIDE 173

VIEWING THE VST DIAGRAM IN SUMMARY MODE

By default the diagram displays Summary Mode, showing only table names and joins, as seen in
the following illustration

W R _

| {3 RENTALITEM (RI} |
L

[
| E= MOVIERENTAL (MR | & NOT I (2)

|13 cusTOMER (5)| S SUBQUERY (1)

VIEWING THE VST DIAGRAM IN DETAIL MODE

By default, the VST diagram displays in Summary Mode, but by clicking the Detail
Mode/Summary Mode switch.

T

\

Detailodef ummarMode
= Switch

| (3] RENTALITEM (R1)
¥

| B MovIERENTAL (MR) | S NOT IN (2)

|13 cusTOMER (C5)| & SUBQUERY (1)

174 DB OPTIMIZER USER GUIDE

Additional details of the tables display, including table columns and indexes

€ HR]’

RENTALITEM (RI)

[3E ITEMNUMEER: MUMBER.
£= MOVIECOPYID: NUMEER,
[3E RENTALID: NUMBER

REMTALITEM_Fi1
REMTALITEM_FKzZ
Y RENTALITEM_PEK

]
MOYIEREMTAL (MR SHL MOT IN (2)
£E CUSTOMERID: MUMBER, [5E COPYCONDITION: ChS

CHANGING DETAIL LEVEL FOR A SPECIFIC TABLE

You can also switch between Summary Mode and Detail Mode for a specific table or view,
by double-clicking the object name.

VIEWING ALL TABLE FIELDS
By default, only fields that are used in the WHERE clause are displayed in detail mode; however,
if you right-click the table you can choose to display even unused columns as follows:
I
MOVIERENTAL (MR
CUSTOMERID! NUMBER
LEDATE: DATE
EMTALID: NUMEE
Qéh Reset Layouk
== TOTALCHARGE: Ml

+I+ Layout Direction »

MOVIERENTAL_FK

MOVIERENTAL_FK £% Show Explain Plan
=] MOVIERENTAL _IE
MO'-.-'IERENT.ﬂ.L_IE’ 12“; Shiow Ratios/Counts

PR MOVIERENTAL_PK| P Summary Mode

/ Expand all

Showe Unused Columns k

L show Ohject Cwners

Showe Query HMames

@, Zoom In
=) Zoom Out

DB OPTIMIZER USER GUIDE 175

All the columns in the table are shown, and not just the ones used in the WHERE clause of the
SQL statement.

MOYIEREMTAL (MR

£ CUSTOMERID: MUMEER
DUEDATE: DATE
REMTALID: MUMEBER.
TOTALCHARGE: MUMEBER.

MOVIERENTAL _FE1
MOVIERENTAL_FEZ
MOVIERENTAL _IEL
MOVIEREMTAL _TEZ
"\';5 MOYIEREMTAL _PE

VIEWING DIAGRAM OBJECT SQL
While in Detail Mode, hovering the mouse over the sub query, table name, field, or
index displays the SQL required to create that object.

REMTALITEM (RI}

[3E ITEMMUMEER: MUMBER:
2= MOYIECOPYID: MUMBER
[5E RENTALID! MUMBER:

REMTALITEM_FE1

RENTALITRI =
5 RENTALITBE RENTALITEM_FK2
] CREATE INDEX MOVIES.RENTALITEM_FK2
ON MOVIES. RENTALITEM(MOVIECOPYID)
TABLESPACE USERS
LOGGING

Hovering over the join between two tables displays the relationship between the two tables.

RENTALITEM (RI)

[5E ITEMNUMEER: NUMEER:
£2 MOVIECOPYID: NUMEER
[5E RENTALID: NUMBER:

REMTALITEM_FK1
REMTALITEM_FKZ
¥ B REMTALITEM_PK

»

Cardinality: Master-Detail
Relations:
== CUSTOMERID: NUMBER | COlUmRS:
DUEDATE: DATE E COPYFORMAT: CHAR

RENTALID: MUMEBER.
== TOTALCHARGE: MUMEER

[0 _MOYIERENTAL_O

176 DB OPTIMIZER USER GUIDE

EXPANDING VIEWS IN THE VST DIAGRAM

If there are views in the Visual SQL Tuning diagram, they can be expanded by right clicking
the view name and choosing Expand View.

Right click on the view, and choose Expand View.

&5 EMP_DETAILS_YIEW

@h Reset Layout

+I+ Layout Direction r
1" ;
2, Show Ratios/Counts

O, Detail Mode
o Expand All

L3
L3

L+]

=Z Show Unused Colurnns

L Show Object Cwners

T Show Query Mames

(ﬂ Zoam In

Now we can see the objects in the view:

@@ EMP_DETAILS_VIEW

| B EmpLovEES () |

| E=l DEPARTMENTS (D) |
N7

| B Locations)|
7

| B2 countrIEs () |
7

REGIOMS (R

You can further expand the sub-view within the original view also.

The following is an example of view expansion along with the Explain Plan to the left.

DB OPTIMIZER USER GUIDE 177

Notice in the view expansion a list of all the indexes on all the underlying tables in the views and

sub views and Which of those indexes is used in the default execution plan.
ﬁﬂmmnu.‘u T

I- i orack b f;ﬁ'rummcma.

D- D view ,.: An 1|,w, l

:EISQL Paﬁ"rlvsls Seluct skabamenk of inbernst; | SEAECT 1 | - DA _saeRLmG wh- B @@

I o
G
7 | feBi=]
B e drnsivein | [TE T Stumsncs | o Sunnenes Aot Haingens] s BE Lt
Bl cLiEn G o
Lot and ranie rdeaes B cum o s P

Gk % & X N
ooooooooo

VIEWING THE ORACLE EXPLAIN PLAN OVERLAY
NOTE: This option is only available for Oracle versions 10 and higher.

Click the Explain Plan toggle [__], you can choose to view or hide the Explain Plan details.
The additional nodes shown irfthe Explain Plan overlay provide details on the flow of the
query plan, with operations (such as nested loops, sorts, and joins) showing connecting
tables and other operations. Hover the mouse over the objects or relationships to view
additional details.

sz:]

IND_STATS$ (15T} |

178 DB OPTIMIZER USER GUIDE

Expanding Subqueries and Nested Subqueries

Double-click queries to expand them or right-click the query and select Expand Query from
the menu that appears. The following shows several layers of nesting queries.

[F] REMTALITEM (RI)
5 "

-

[Z MOYIECORY (1M2)
&

=

(3] MOYIETITLE (MT)
ket

=
[MOWIECATESORY (1MC)
SE CATEGORYID: NUMBER:
== REMTALPRICE: MUMBER,
B MOVIECATEGORY PE
Un MOVTECATEGORY LK

MCVIECATEGORY

ZE CATEGORYID: MUMBER.
it ZE RENTALPRICE: NUMBER

R MOVIECATEGCRY _PK
",ﬂ MOVIECATEGORY LK

Interpreting the VST Diagram Graphics
This section contains the following topics that will help you understand the graphics in VST
diagrams:

¢ Viewing the Diagram Legend

e Colors

e Connecting Lines/Joins

DB OPTIMIZER USER GUIDE 179

VIEWING THE DIAGRAM LEGEND

Click the Diagram Legend Toggle button as shown in the diagram below to see a
description of the icons and relationship lines used in VST diagrams.

Diagram Legend

Table

A4 Miew

£ Materiglized Wiew
i Sub-gquery

[

[cTEl Carnrnon Table Expression

£ Column
Inde:x
B Primary Key

s Unigue key

[@ Filtered object
Z=—== Many to Many (M:N)
—== Parent to Child (1:M)
Unique {1:1)

o> OUTER 101N
& EXISTS [IN
I WOT EXISTS [NOT IM

COLORS
The color of the index entries in the Collect and Create Indexes table is interpreted as follows:

Text Color Interpretation

Index is used in the query.

Index is usable but not used by the current execution path.

This index is missing. DB Optimizer recommends that you create this index.

This index exists on the table but not usable in this query as it is written.

CONNECTING LINES/JOINS

Joins are represented with connecting lines between nodes. You can move tables in the diagram
by clicking and dragging them to the desired location. The position of the connecting lines is
automatically adjusted. The following describes when a particular type of connecting line is used
and the default positioning of the line.

Connecting Lines When used
P — One-to-One Join relationships are graphed horizontally using blue lines. For more
information, see One-to-One Join.

180 DB OPTIMIZER USER GUIDE

Connecting Lines

When used

One-to-Many Join relationships are graphed with the many table above the one table. For
more information, see One-to-Many Join.

Cartesian Join shows the table highlighted in red with no connectors to indicate that it
is joined in via a Cartesian join. For more information, see Cartesian Join.

—
EN

Many-to-Many Join relationships are connected by a red line and the relative location is not
restricted. For more information, see Many-to-Many Join.

Indirect Relationship. For more information, see Indirect Relationship.

-Ep—p. Outer Join: For more information, see Outer Join.
- Unique: For more information, see Unique.

—At—— Not Exists and Not in relationship lines connect the subqguery to the table being queried.
Notice that when you click this relationship line, the SQL text creating the relationship is also
selected. For more information, see Not In or Not Exists Join.

= Exists and In relationship lines connect the subquery to the table being queried. Notice

that when you click this relationship line, the SQL text creating the relationship is also selected.
For more information, see In or Exists Join.

ONE-TO-ONE JOIN

If two tables are joined on their primary key, then graphically, these would be laid out side-by-

side, with a one-to-

one connector:

| & mvesTmENT TvPE - [oFFICE_LocaTION |

ONE-TO-MANY JOIN

This is the default positioning of a one-to-many relationship, where INVESTMENT_TYPE is the
master table and INVESTMENT is the details table.

INVESTMENT

| B mwveSTMENT _TYPE |

DB OPTIMIZER USER GUIDE 181

The following is an example of a query that consists of only many-to-one joins, which is more
typical:

SELECT

ct.action, c.client_id,
i.investment_unit,
it.investment_type_name

FROM
client_transactionct,
clientc,
investment_typeit,
investmenti

WHERE
ct.client_id=c.client_idAND
ct.investment_id=i.investment_idAND
i.investment_type_id=it.investment_type_idand
client_transaction_id=1

| & cLIENT_TRANSACTION |

| B cLenT | | B mwvesTvENT |
Y

| & mwesTvENT TYPE|

CARTESIAN JOIN

A Cartesian join is described in the following example where the query is missing join criteria on
the table INVESTMENT:

SELECT
A.BROKER_IDBROKER_ID, A.BROKER_LAST_NAME
BROKER_LAST_NAME, A.BROKER_FIRST_NAME
BROKER_FIRST_NAME, A.YEARS_WITH_FIRM
YEARS_WITH_FIRM, C.OFFICE_NAMEOFFICE_NAME,
SUM(B.BROKER_COMMISSION)TOTAL_COMMISSIONS
FROM
BROKERA,
CLIENT_TRANSACTIONB,
OFFICE_LOCATIONC,
INVESTMENTI
WHERE
A.BROKER_ID=B.BROKER_IDAND
A.OFFICE_LOCATION_ID=C.OFFICE_LOCATION_ID
GROUPBY
A.BROKER_ID,
A.BROKER_LAST_NAME,
A.BROKER_FIRST_NAME,
AYEARS_WITH_FIRM,
C.OFFICE_NAME;

182 DB OPTIMIZER USER GUIDE

Graphically, this looks like:

| & cLient_transacTION|

BROKER.

[E5 oFFice_LocaTion|

INVESTMENT is highlighted in red with no connectors to indicate that it is joined in via a
Cartesian join.

Possible missing join conditions are displayed in the Overview tab under Generated Cases
in the transformations area. DB Optimize recommends that you create these joins.

bl 0L Statements and Cases | ¥ Cost WExenuii,. ity | 2 Pther Exsqution Stefistics

fiame Tewt Valua Elapmad Time {5} Phiysical eads | Logical Reads CPUT

0140 6.1 0
[l [Mi=ing & valid jain criberiz] transformation 2740 004 0 167
AL 34018.0 £.29 0 173
LEADIMG] 34010 5,25 Q 192
ALL_ROWS 340140 E3 Q0 170
LEADTHES 390170 B.41 0 170
INDEX 343920 .58 o 419
LEADIMG2 35143.0 7094 d 1m
QRDERED 3470 B.&1 Q 170
USE_ML IEEE.0 203 0 37516

4 2

NOTE: Transformations are highlighted in yellow.

IMPLIED CARTESIAN JOIN

If there are different details for a master without other criteria then a Cartesian-type join is
created:

SELECT*

FRO

M
investmenti,
brokerb,

clientc

WHERE
b.manager_id=c.client_idand
i.investment_type_id=c.client_id;

DB OPTIMIZER USER GUIDE 183

| 2 BROKER | | B INVESTMENT

The result set of BROKER to CLIENT will be multiplied by the result set of INVESTMENT to
CLIENT.

MANY-TO-MANY JOIN

If there is no unique index at either end of a join then it can be assumed that in some or all cases
the join is many-to-many; there are no constraints preventing a many-to-many join. For example,
examine the following query:

SELECT*

FROM
client_transactionct, clientc

WHERE ct.transaction_status=c.client_marital_status;

There is no unique index on either of the fields being joined so the optimizer assumes this is a
many-to-many join and the relationship is displayed graphically as:

| B cLenT_TRANsACTION|
S

IéLIEHT

If one of the fields is unique, then the index should be declared as such to help the optimizer.

INDIRECT RELATIONSHIP

Indirect relationships are produced by the following SQL, where BIG_STATEMENT2 is a
Materialized View.

SELECTCS.*
FROM
MOVIES.CUSTOMERCS,
MOVIES.MOVIERENTALMR,
MOVIES.RENTALITEMRI,
OE.BIG_STATEMENT?2
WHERE
CS.ZIP> '75062" AND MR.RENTALID=RI.RENTALID
AND RLITEMNUMBER=
OE.BIG_STATEMENTZ2.ITEMNUMBER AND MR.CUSTOMERID=
CS.CUSTOMERID;

184 DB OPTIMIZER USER GUIDE

The following diagram produced by the SQL above shows that an indirect relationship exists

between the RENTALITEM(RI) tables inside and outside the materialized view,

BIG_STATEMENT2. An indirect relationship also exists between MOVIERENTAL (MR) inside

BIG_STATEMENTZ2 and MOVIERENTAL(MR) inside the RENT_VIEW1 view.

e

gy E.I;s_'sTnIEHEuTz

[7= WMOVIEREMTAL {HR)

[T cusmomer o5

[2 WIOVIERENTAL (MR}
b e

[72 REWTALTTEW (R}

| 21}
S0 WaT IH (2

\
\

&3 RENT_WIEW1L

W

k)
[F =ovIERENTAL

IN OR EXISTS JOIN

The following SQL contains a nest IN subquery (shown in bold text) that is graphically

represented with the Subquery summary icon and the IN join.

SELECT
cs.customerid,
cs.firstname,
cs.lastname,
mr.rentalid,
mr.duedate,
mr.totalcharge,
ri.itemnumber
FROM
(
SELECT
cl.customerid,
c1.firstname,
c1.lastname,
cl.phone
FROMMOVIES.customerc]
WHERE EXISTS(SELECT NULL

DB OPTIMIZER USER GUIDE

185

FROMMOVIES.customerc?

WHERE
c1.customerid<>c2.customerid AND
cl.lastname=c2.lastname AND
cl.phone BETWEENO AND9999569900)

) cs,

(

SELECT
customerid,
rentalid,
duedate,
totalcharge,
rentaldate
FROMMOVIES.movierental
WHEREtotalcharge>10
)
mr, MOVIES.rentalitemri
WHERE
LENGTH(cs.lastname)=10 AND
-1<cs.customerid AND
ROUND(ri.rentalid)>10 AND
TRUNC(ri.itemmnumber)>1 AND
mr.totalcharge>(SELECT AVG(totalcharge) FROM
MOVIES.movierental WHERE
TOTALCHARGE>=40)
AN
D
ri.moviecopyid NOT IN(SELECTmc.moviecopyid FROM
MOVIES.moviecopymc
WHERE
mc.copyformat= 'vhs' AND
mc.copycondition= ‘new' AND
mc.movieidIN(SELECTmt.movieid
FROMMOVIES.movietitlemt
WHERE mt.year<1990AND
mt.ratingIN('pg’,'r'YAND
mt.categoryidIN(SELECT
mc.categoryid
FROM

MOVIES.moviecategorymc
WHER

186 DB OPTIMIZER USER GUIDE

mc.rentalprice=(SELECTMAX(rentalprice) FROM
MOVIES.moviecategory

WHEREcategoryid=mc.categoryid)))) AND
mr.CUSTOMERID=cs.CUSTOMERID AND

ri.RENTALID =rnr.RENTALID

Graphically, this woulddisplay as the following when the MOVIECOPY (MC) subquery is

expanded:
Ecs ﬁ RENTALITEM (RT)
7
y.
S MR

||3] MOVIECTE (M)
&

=
lillit<)

fi}1\10MERENTAI

OUTER JOIN

The bold SQL predicate in the statement below defines the outer join between customer and

movierental.

selectcs.*
from MOVIES.customercs,
MOVIES.movierentalmr
where
length(cs.lastname) =8 and
cs.zip>75062 and
1<cs.customerid+2 and

cs.phone between9625569900 and9999569900 and

mr.rentalid =(select max(ri.rentalid)
from
MOVIES.rentalitemri,
MOVIES.moviecopymc

where
ri.itemnumber>1 and
mc.moviecopyid =700) and

mr.customerid(+)=cs.customerid

DB OPTIMIZER USER GUIDE

187

The following screen shot illustrates how the outer join is displayed in the VST diagram.

o 1F @
15 ' 0 |

& SUBQUERY (1)

| B MOVIERENTAL (MR) |

Cardinality: Outer Join
Relations:
mr.customerid (+) = cs.customerid

Columns:

|3 cusTOMER (cs)|

UNIQUE
The subquery below illustrates a unique relationship between two primary keys.

...select max(rentalprice) from
MOVIES.moviecategory where categoryid =
mc.categoryid...

MOYIECATEGORY (MC)

Cardinality: One-to-One
Relations:
categoryid = mc.categoryid
| B MovIECATEGORY Columns:

NoT IN OrR NOT EXISTS JOIN

The following SQL contains a NOT IN subquery (shown in bold below) that is graphically
represented with the Subquery summary icon and the NOT IN join.

SELECTCS.*

FROM
MOVIES.CUSTOMERCS,
MOVIES.MOVIERENTALMR

WHERE
CS.ZIP> '75062' AND
MR.RENTALID NOT IN(SELECTMAX(MOVIES.BIG_STATEMENT5.CUSTOMERID)

FROM
MOVIES.RENTALITEMRI,
MOVIES.MOVIECOPYMC,

188 DB OPTIMIZER USER GUIDE

MOVIES.BIG_STATEMENTb5
WHERE RLLITEMNUMBER>1
AND

MC.MOVIECOPYID=700) AND
MR.CUSTOMERID=CS.CUSTOMERID;

Graphically, this statement would look like this:

| Ed MOVIERENTAL (MR) |

| (3 cusTOMER (C5)| S NOT TN (1)
SE MaX (MOVIES.BIG_STATEMENTS.CUSTOMERID): NUMBER

E ITEMMNUMBER.: MUMBER.
E MOYIECOPYID: MUMEER,

Viewing Object SQL

Hover over the name of an object to view the object SQL as shown in the diagram below.

[&3 RENT_VIEW1 1
22 RENTALID: K &3 RENT_VIEW1
: CREATE OR REPLACE VIEW MOVIES

RENTALID,
REMTALDATE,

Refreshing Tuning Statements

At times you may see an error on the Overview page, which when you mouse over it, indicates
that the tuning statements are out of sync and need to be refreshed. This can happen, for
example, if you tune a statement, then delete it, and insert another SQL query for tuning.

To refresh the tuning statements
In the Tuning Statements area of the Overview tab, right-click the tuning statement and select
Refresh Tuning Statements.

DB OPTIMIZER USER GUIDE 189

iy Overview 1 warning detecked

Tuning Statements Generate ca

Ske

Mame Schema

o Refresh Tuning Statements

UL Generate Cases
Detail Analysis

Execute

[sal, Ediit

— |5 Copy

E _E Paske

& ¥ Delete act
mf Rename

Clone Case

<5 Explain Plan

Preferences. ..

Refreshing the VST Diagram

There are two refresh options available: Refresh and Refresh All. Click the Refresh list as
shown below to gain access to these options.

B B ®

A Full Refresh ! ‘

® Refresh: Regenerates the Analysis tab including the VST diagram. Any changes made on
the tab are reflected in the diagram.

e Full Refresh: Re-caches all objects used in (or related to) the query, then regenerates the
Analysis tab including the VST diagram. This option is typically used when the underlying
objects have been recently changed.

190 DB OPTIMIZER USER GUIDE

Using Platform-Specific Features

This section describes the tuning features specific to individual platforms.

e Using the Table Statistics Tab (Oracle and SQL Server)

Using the Column Statistics And Histograms Tab (Oracle and SOL Server)

Using the Outlines Tab (Oracle)

Using the Plan Guides Tab (SQL Server)

Tuning SOL Statements in the System Global Area (Oracle)

Using the Table Statistics Tab (Oracle and SQL Server)

The Table Statistics area of the Analysis tab indicates when and if table statistics were last taken.
Using the Table Statistics you can view the information the optimizer uses to choose a path and
assess the validity of the various hints presented on the Overview tab.

E Indez Anakyss | £ Table Statistics | 2= Column Stabstics And Histograms | 2] Cutlnes

wien Lable statistios wh |
chiact » Statistics [22 moriteing ¥ Abtrbues ~
Table Craner Table Name Stekigtics Status Days Jince 3kats Taen Maritoring Cache
: SYSTEM PS_RETRCPANPGN_TBL Stakiskics O 200 YES V]
S E R CALENDTG. e e e e - A—
Osvatem WE_IDE Shakistics DR 200 YES i
DSH'E-TEM WE_RETROPAY EARMS Stelighics Ok 200 Y¥ES]
: g r— nE RETRANAY MeET Shebeee ca man wEs n > bt

This table draws attention to:

* Missing statistics: Missing statistics can cause the optimizer to choose the wrong path
because the optimizer uses table statistics to make decisions. If the statistics are missing,
you can click the select a table and then click Collect Statistics I on the far right of
the tab. This sends a request to the database to analyze the table and calculate the
statistics.

e QOut-of-date statistics: Like missing statistics, out-of-date statistics can also cause the
optimizer to choose the wrong path. You can update the statistics by selecting a table, and

S) o
then clicking Display Statistics “, which refreshes the statistics from the database or by
clicking Collect Statistics K0, which requests the database to analyze the table and

calculate the statistics.

NOTE: Collecting Statistics may be time-consuming, depending on how many tables the
database is analyzing and the number of rows in each table.

DB OPTIMIZER USER GUIDE 191

e Useful statistics: The number of rows in a table and whether the table has been
modified since the statistics were last collected can help you to determine which hints you
should implement in the SQL code. These statistics can help the DB Administrator to
better understand the database.

TIP: You can right-click anywhere in a row and choose options such as Collect Statistics,
Display Statistics, and Copy from the short-cut menu.

Using the Column Statistics and Histograms Tab (Oracle and
SQL Server)

Histograms are special statistics that exist for a limited number of columns and are created by the
database administrator. Column histograms should be created only when there are highly- skewed
values in a column, such as is the case of an order details table with an Order Status column where
the number of closed orders for a business operating for several years is far greater than the
number of open orders. The Order Status column therefore meets the criteria of a useful target for
a histogram because the data is highly skewed. Using histograms the optimizer determines that a
full-scan is recommended when searching for closed orders, but an index scan is more useful when
searching for open orders.

Oracle-Specific Column Statistics and Histograms Tab Example

DB Optimizer looks at the columns that have histograms and using statistics tries to determine
whether the column is a good or bad candidate for a histogram and presents this information on
the Column Statistics and Histograms tab.

[E] brdes driekyss | T2 Teblo Shatistics 32 Colomn Shatitics dod Hebograns, [£] Cubines

Wi colmn skatishes ‘_:‘. E |
b=zt | w Heto granms
Sathar | Dwop Tkl Hame Colannn Tlanne Histograimn £ Euckets Filer Tope Ircexed Median vaboe Deviation & Detine: Walue
a a P5_PaY_CALEHCAR P&Y_CONFIRM_RUY MOKE L UteralEquaky Wes
O O P5_RETROPAY RCET FETRCFAY ZEQ HO HOHE L Jain Equalty Wi L
O a P5_RETROPAYPEA TEL OFF_CWCLE HOHE L Join Equalty Ha
a || PF5_PAY_COLEWDER PAMERCLF NORE L Join Equalty Vg
';‘ ﬁ AZ FMETASMANHASTE TR AETESRAY M= T L1kl L] R e LLEWS > s

The row shading indicates the following:

e Green: Good histogram candidate
¢ Red: Bad histogram candidate
¢ No shading: Not determined to be a good or bad histogram candidate

Median Value Deviation

For columns that have histograms, the median value deviation is presented. Understanding the
median value deviation can help you determine whether an index scan or a full-table scan would
be more efficient.

192 DB OPTIMIZER USER GUIDE

The median value deviation represents the number of values that have duplicates away from the
median. In the case or the Order Status column, there are only three possible values, open,
processing, and closed. Consider the following:

10 open orders
100, 000 closed orders
1 order in processing

In this case the median is the middle value, 10. The number of closed orders is 10,000 times the
median which indicates that the column data is highly skewed. In this case the value in the
Median Value Deviation column would be presented as

1,0,0,0,1,0,0,0

There are 1's at the first and 5th spot in the median value deviation field indicating one column
value (value of orders in the processing state which appears once) is 1 factor of 10 away from the
median and there is a 1 at the 5th position indicating there is a column value (orders in the
closed state) that appears 5 factors of 10 more often (10,000) than the median value of 10.

A column with a median value deviation of 0, 0, 0, 0, 0, O, 0, O indicates that the column data is
not skewed and it is a bad candidate for a histogram, and therefore a full scan of the table would
more efficiently satisfy a query than an index scan.

To update the statistics of any object, you can select Gather for that column and then click
Display Statistics or Collect Statistics.

To stop gathering statistics for an object, such as a bad candidate for a histogram, select Drop
for that column and then click Display Statistics or Collect Statistics.

TIP: If you are gathering statistics for a column for which the statistics were missing or out-
of-date, then once the statistics collection is complete, you should return to the
Overview tab and rerun the cases, because the characteristics of the column may have
changed, so the hints to improve performance would also change.

Using the Outlines Tab (Oracle)

The Outlines tab provides detailed information about outlines created by the query during the
statement execution process on the Overview tab.

It provides information including the SQL statement name, if the outline is enabled or not, and
the Name, Category, and Hints associated with the outline. Additionally, the Drop parameter
specifies if it is dropped or not at execution time.

[E2 Indox Analysis | 3] Tabls Statistics | £ Cokumn Statistics And Hisbograms | [Outlines

Wiz authnes
. Enablzd [rop Mame Category Hirks
o o SYS_0... 20684 DEFALILT FULL{SELS2”
=] o FULL TEST SWAP JOIN_INPUTS(m SELS1"

DB OPTIMIZER USER GUIDE 193

In order to view outlines, the session needs to have USE_STORED_OUTLINES=true set prior to
execution. Outlines in tuning are created for the DEFAULT category, by default. Use the
following commands to enable outlines with the default settings:

altersystemsetUSE_STORED_OUTILNES=true; altersystemset
USE_STORED_OUTLINES="DEFAULT’; altersessionset
USE_STORED_OUTLINES=true;

Additionally, in order for a session to USE_STORED_OUTLINES, the user requires the create any
outline role. Use the following command to set up the proper permissions:

grantcreateanyoutlinetoluser];

Using the Plan Guides Tab (SQL Server)

This tab displays any existing plan guides on the server for the statements being tuned. This can
be useful when trying to determine whether a plan guide is, or should be, used for a query, or
conversely, finding plan guides that have become obsolete.

Index Analysisl Table Statisticsiéé Column Statistics And Histograms if Plan Guides-l

Yiew Plan Guides

| Enabled | Drop I Mame | Statement | Type I Medule / Batch : Parametersl
B | TUMNER_PLAM_GUIDE | SELECT[ShiftlD]

194 DB OPTIMIZER USER GUIDE

In addition to the Enabled and Drop controls, each plan guide entry on the tab shows
columns corresponding to the sp_create_plan_guidecall arguments the plan guide was created
with.

Column Description

Name The name given the plan guide when it was created.
Statement The text of the Transact-SQL statement

Type The type of entity in which the statement occurs:

OBJECT - in the context of a stored procedure, scalar function, multistatement
table- valued function, or DML trigger in the current database.

SQL - in the context of a stand-alone statement or batch.

TEMPLATE - specifies that this plan guide applies to any query that parameterizes to
the specified statement form. Only the PARAMETERIZATION { FORCED | SIMPLE }
hint can be specified if a Type of TEMPLATE is specified.

Module/Batch Specifies either the name of the object in which the statement occurs or the batch text
in which the statement appears.

Parameters Specifies the definitions of all parameters in the statement.

Hints Can be one of the following:

- An OPTION clause containing any valid sequence of query hints
- A query plan in XML format to be applied as a hint

- NULL

NOTE: For a detailed understanding of the Parameters and Hints values, particularly when
using the edit plan guide functionality described below, see the Microsoft SQL
Server documentation.

You can modify any plan guide listed on the Plan Guides tab. You can enable or disable the
plan guide, drop it, or specify parameters or hints.

To drop a plan guide

e Select the Drop check box for that plan guide entry and then click the Apply button i
on the far right of the tab.

To enable or disable a plan guide
e Enable by selecting the Enabled check box (or deselect Enabled to disable) for the

plan guide entry and then click the Apply butten on the far right of the tab.
To edit a plan guide
1 Right-click a plan guide entry and select Edit to open the Edit Plan Guide.

2 Inthe Parameters field, provide a valid sp_create_plan_guidestored procedure call
@params= argument.

3 Inthe Hints field, provide a valid sp_create_plan_guidestored procedure call @hints =
argument.

4 Click Next to preview the generated stored procedure calls.

5 Click Finish.

DB OPTIMIZER USER GUIDE 195

Tuning SQL Statements in the System Global Area (Oracle)

On Oracle platforms, SQL statements that reside in the SGA can also be tuned. When you
create a tuning job and specify an Oracle source, an additional tab appears in the Tuning
Candidates section of tuning, named Active SQL in SGA.

The SGA contains all the SQL since the database has been started up, except for those that
have been purged when the system runs out of memory. When analyzing the causes of a
database bottleneck, it is perhaps more useful to view and tune the SQL statements most
recently run, than those that have run in the last month, for example. DB Optimizer cannot tell
you which statements have most recently run by looking in the SGA. However, by profiling the
database using DB Optimizer Profiling and then optimizing the code by executing and running
the generated cases, you will be able to see which paths are most likely causing a bottleneck
and can be altered to enhance performance. Also, you can use IDERA Performance Center to
continually monitor a database over a longer period of time to help you analyze and optimize
database performance.

& Scan SGA

SGA filters
specify the filkering criteria for active S0L in the 5G4,

Filker Criteria

Maximum retriewved queries:@'| =

Sart by |E:<eu:utiu:uns w |

Advanced Filkers

g | g
Parsing Schema: | v |
Module: | v |
Action: | v
Service: | v |

©

196 DB OPTIMIZER USER GUIDE

To add a statement active in the SGA:
1 From the Overview tab, click the SQL icon and select Scan Oracle SGA.

The Scan SGA wizard
appears.

2 Set the filtering criteria for an SGA scan and then run the wizard. It returns all
active statements on the Oracle source.

3 Choose the specific statements and add them to the tuning job.

Additional Tuning Commands

In addition to tuning, the interface provides additional commands and functionality that
enables you to view source code, statements, and other information regarding the data source.

o View the Source Code of Tuning Candidates

* View Statement or Case Code in SOL Viewer

e Open an Explain Plan for a Statement or Case

e Executing a Session from the Command Line

View the Source Code of Tuning Candidates
You can view the source code of a tuning candidate as follows:

e On the Ad hoc SQL tab of the Input tab, you can see the SQL statements you typed
or pasted into that tab.

® On the Database objects, SQL Files, and Active SQL in SGA tabs of the Input tab,
you can double-click the name of any object added to that tab and an SQL session will
open that displays the SQL of that database Object. The SQL editor in use is actually
Rapid SQL, an IDERA product that is integrated with DB Optimizer.

View Statement or Case Codes in SQL Viewer

The Tuning job’s Overview tab let you open a statement in an SQL Viewer if you want
to perform either of the following tasks:

* View the entire SQL statement.

e Set bind variables. If the Tuning Status Indicator indicates a statement or case has
invalid bind variables, you must set those variables before executing the statement or
case.

To view or set bind variables in a statement or case:

1 Right-click a statement or case and select Edit.

2 Use the Data Type and Value (or NULL) controls to specify the type and value for each
bind variable.

DB OPTIMIZER USER GUIDE 197

After setting bind variables, you can execute a case.

NOTE: Setting the bind variables in a parent statement sets the bind variables in all generated
cases for that statement.

Open an Explain Plan for a Statement or Case

Any valid SQL statement added to the Overview tab shows a calculated explain plan cost in
the Cost field of the statement or case record. You can open an explain plan on these
statements to view the sequence of operations used to execute the statement and the costs
and other explain plan details for each operation.

On Oracle version 9 and higher, DB Optimizer attempts to get the Explain Plan from
V$SQL_PLAN when possible. Otherwise, the Explain Plan is generated by the Oracle
EXPLAIN PLAN command.

To initially open an explain plan on a valid SQL statement on the Overview tab:
1 Right-click in the Name field of any statement record showing a value in the Cost field.
2 Select Explain Plan from the context menu.

An Explain Plan tab opens below the Overview tab.

TS0 Errore =500 Lag | ¢ Error Log + Seanth |5 Explain Plan
sedect from cata.chentl, cata fcturl, cata.liniifact], < Nested Tables: cata liniifactl =
by flter text .
Flan Cost " Estimated Statistics = Actual Statisticss #
Operation Cosk Operation Cost Result Cardinality Bytes OPUCost | [0 Cost Optimézer Starts
« SELECT STATEMENT 2530 [LAx] 37 Z183 102..107 235 ALL..WS
P COORDIMATOR
& P SEND - SYS, -TG10004 2530 oo 37 2§3 102...107 3%
‘MRS 2530 0.0 i7 F1EZ 102...107 215
9P RECEIVE 26T0 0.0 17 2183 102...107 235
4P SEND - SY5, TOI0003 15340 0.0 EX Z183 102...107 235
“HASH 1550 1.0 7 2153 10%...107 135
FHASH I 2520 1.0 F931 4F08T9 95195351 235
= FX RECEIVE &7.0 0 37 703 24604129 63
ol P SEHD - TIQA0001 &67.0 0.0 37 703 24604129 63
» P BLOCK &7.0 o0 7 703 24604129 53
T TABLE ., JENTI1 7.0 57,0 37 T03 24604129 63 AHA.ED
HASH XN 154.0 1.0 11706 488240 STIRTITL 173 b

Explain plan operations are shown in a typical tree structure showing parent-child
relationships. The following table describes the column groups shown for each operation
on the Explain Plan tab.

With the Explain Plan tab open, you can quickly switch the view to an explain plan
for another SQL statement.

To change the Explain Plan tab display to another SQL statement:
1 Click in the Name field of another statement record showing a value in the Cost field.

Executing a Session from the Command Line

You can launch a tuning job from the command line using the following syntax:

198 DB OPTIMIZER USER GUIDE

dboptimizer.exetuneds:ROMLABORCL10G_1sglfile:C:\dboptimizer\workspace\test.sq|

In the above command, the user has specified ROMLABORCL10G_1 as the data source, and
indicates a tuning session using the test.SQL script.

Saving a Tuning Job

A tuning session can be saved to a file with a .tunsuffix. This enables you to open the file at a
later time for analysis and to share the tuning job results with other users.

b O

& Save As

Save As

Save a tuning job

Erkter or select the parent Folder:

| SQLProject

T soLProject

File name: | ntitled Tuning Job 3. kun|

@:' [Ok H Zancel]

Tuning sessions can be saved as .tun files for use at a later time.

Once you have saved a tuning session to disk as a .tun file, it appears in the SQL Project Explorer
under the name you saved it as. It can be opened again by double-clicking the project name.

To save a tuning session:

Select the tuning session and then choose File > Save As.... Specify the project location you
want to save the file in and modify the file name, as needed. Click OK. The tuning job project is

added to SQL Project Explorer.

DB OPTIMIZER USER GUIDE 199

Configuring Tuning

This section contains information on configuring tuning. It provides information on setting up
your data sources to work with tuning functionality, as well as information regarding preferences
within the application for the customization of various features and functionality.

This section is comprised of the following topics:

Set Roles and Permissions on Data Sources

Specify Tuning Job Editor Preferences

Specify Case Generation Preferences

Specify VST Diagrams Tuning Preferences

Set Roles and Permissions on Data Sources

In order to take advantage of all tuning features, each user must have a specific set of
permissions. The code below creates a role with all required permissions. To create the required
role, execute the SQL against the target data source, modified according to the specific needs of
your site:

/*Createtherole*/ CREATEROLESQLTUNING
NOTIDENTIFIED

/ GRANTSQLTUNINGTO

"CONNECT"

/ GRANTSQLTUNINGTO
SELECT_CATALOG_ROLE

/ GRANTANALYZEANYTO

SQLTUNING

/ GRANTCREATEANYOUTLINETO
SQLTUNING

/ GRANTCREATEANYPROCEDURETO
SQLTUNING

/ GRANTCREATEANYTABLETO
SQLTUNING

/ GRANTCREATEANYTRIGGERTO
SQLTUNING

/ GRANTCREATEANYVIEWTO

SQLTUNING

/ GRANTCREATEPROCEDURETO
SQLTUNING

/ GRANTCREATESESSIONTO

SQLTUNING

/ GRANTCREATETRIGGERTO

SQLTUNING

/ GRANTCREATEVIEWTO

SQLTUNING

/ GRANTDROPANYOUTLINETO
SQLTUNING

/ GRANTDROPANYPROCEDURETO
SQLTUNING

/ GRANTDROPANYTRIGGERTO
SQLTUNING

/ GRANTDROPANYVIEWTO

SQLTUNING

/ GRANTSELECTONSYS.V_$SESSIONTOSQLTUNING
/ GRANTSELECTONSYS.V_$SESSTATTOSQLTUNING
/ GRANTSELECTONSYS.V_$SQLTOSQLTUNING
/ GRANTSELECTONSYS.V_$STATNAMETO
SQLTUNING

/

Once complete, you can assign the role to users who will be running tuning jobs:

/*Createasampleuser*/ CREATEUSERTUNINGUSERIDENTIFIEDBYVALUES
'05FFD26E95CF4A4B!

DEFAULTTABLESPACEUSERS

TEMPORARYTABLESPACETEMP

QUOTAUNLIMITEDONUSERS

200

DB OPTIMIZER USER GUIDE

PROFILEDEFAULT ACCOUNT
UNLOCK
/ GRANTSQLTUNINGTO
TUNINGUSER
/ ALTERUSERTUNINGUSERDEFAULTROLESQLTUNING
/

Specify Tuning Job Editor Preferences

Tuning job editor preferences let you control certain aspects of the appearance of items in the
tuning job editor as well as default behaviors.

1 Using the SQL Optimization perspective, select Preferences > Tuning Job Editor.

& Preferences (Filtered) |Zl@®

Tuning Job Editor

= 57L Development
#- Turing Job Editor Conrect bo the buning sowrce automatically

O Always CFMever (50 Prompt

Color scheme for plan cost

Baseline: @

Improverneer:) Threshold (%): [10 2|

Degradabon: [WEEE| Threshold (%): [10 3]

Case execution
For move reliable resuks, it is recommended to average the execution statistics over multiple runs.

Murber of iberations: | 1 2

e

Result set febch size: | 100 O

YWirap acle case execukions in: L LI Case_query
1 Crac SELECT COUNT(*) FROM ([T

2 Make your changes and then to save your changes, click Apply.

The following describes the options available:

General Preferences

Connect to the tuning source automatically: When you open a tuning perspective,
it automatically opens the last saved tuning jobs that were open when you closed the
application. This option lets you specify whether, in addition, you want to automatically
connect to the data sources associated with these tuning jobs. If you typically review
existing tuning job archives rather than run new tuning jobs, you may wish to explicitly
connect to a data source rather than connect automatically. The options are:

® Always: Automatically connects to data sources associated with tuning jobs that were open
last time you shut down tuning.

® Never: Automatically opens tuning job archives that were open last time you shut down the
application but does not automatically connect to the associated data sources.

® Prompt: Prompts you to connect to data sources associated with tuning jobs that were
open last time you shut down the application.

DB OPTIMIZER USER GUIDE 201

Color scheme for plan cost: In the graphical representations of explain plan cost and
elapsed time, tuning uses a color scheme to highlight differences among generated cases.
Values for the original statement are treated as a baseline, and values for individual cases
that are within a specified threshold range of the baseline value are represented with a
Baseline color. For cases whose values are outside the threshold range, Improvement and
Degradation colors are used to represent values in those cases.

TIP: You can set the threshold in the application preferences, by selecting Window >

Preferences > Tuning Job Editor and then changing the threshold levels as
required.

Case execution: Lets you dictate how execution statistics are gathered.

See Also

Specify Case Generation Preferences

Specify VST Diagrams Tuning Preferences

Specify Case Generation Preferences

Additionally, the Generated Case preference page lets you enable or disable the automatic
generation of SQL Optimizer hint-based cases of SQL statements added to a tuning job. It
also lets you indicate which specific hint types are generated when the feature is enabled.

202 DB OPTIMIZER USER GUIDE

& Preferences (Filtered)

= SO Developrment
Data Source Indexing
[+ Profile slerts
[+ 50L Edior
S0L Execution
SCL Filters
= Tuning Job Editor

Case Generation
YT Diagrams

®@

Case Generation (=1 -

(] Generate cases automatically after extracting tuning candidates

| Orecle |Microsoft SQL Server | IBMDB2 for LUW | SybesedsE|
Select the hints to be considered when generating cases:
' | Hin
= FFlORACLE_ACCESS_PATHS
O anp_EquaL
Ocuster
[l FuLL
OnasH
M moEx
O micex_asc
A nDEx_COMBINE
O moex_pesc
[l nDEx_FFs
PPl InDER 201N

I Walues | L]

Seleck Al
= Deselect Al

» | 20 out af 80 selected

Description:

[Rﬁstnte DeFathsI [Apply I

I (=4 “ Cancel J

Using the SQL Optimization perspective, select Preferences > Tuning Job Editor >

Case Generation.

Use the Case Generation option automatically after extracting tuning candidates control
to enable or disable automatic generation of hint-based cases, and then select the check
boxes to specify the hint-based cases that are generated for a statement added to a

tuning job.

About Statement Records

Column or column set

Description

SQL Statements and Cases

Identifiers for the generated statement or case:

Name: Statements are assigned a numbered identifier based on the order in
which they were added to a tuning job.

Text: An excerpt of the statement or case based on the statement type. For
details on how to view the entire statement or case.

Cost

An explain plan-based cost estimate. This field is populated as soon as the
statement is added to the Overview tab.

This column set can be expanded to display a graphical representation of the
cost to facilitate comparisons among cases.

Index Analysis

Tuning automatically detects indexes that require optimization and offers you
the option to automatically optimize the index. For more information, see
Implementing Index Analysis Recommendations.

Elapsed time

DB OPTIMIZER USER GUIDE

The execution time during the most recent execution. This column set is not
populated until you execute the statement or case.
203

Other Execution Statistics

This column set can be expanded to display a graphical representation of the
elapsed time to facilitate comparisons among cases.

Against Oracle datasources, the default, collapsed view has Physical Reads
and Logical Reads columns. Expanded, there are also Consistent Gets,
Block Gets, and Rows Returned, CPU time(s), Parse CPU Time(s), Row
Sorts, Memory Sorts, Disk Sorts, and Open Cursors columns.

For details on these statistics, refer to your DBMS documentation.

Against DB2 LUW datasources, the default, collapsed view has Pool
Physical Reads and Pool Logical Reads columns. Expanded, there are
also Direct Reads, CPU Time (s), Sorts, Sort Time, and Sort Overflows
columns.

This column set is not populated until you execute the statement or case.

Specify VST Diagrams Tuning Preferences

The preferences on this page allow you to change the default presentation of count information
and sub-query names in Visual SQL Tuning diagrams.

Using the SQL Optimization perspective, select Preferences > Tuning Job Editor >

VST Diagrams.

® Show count information: If enabled, shows the ratios and count information when the VST

diagram is generated. If not enabled, you must click the Ratios/Counts icon ['%] on the VST
diagram to view ratio and count information.

e Hide sub-query names when expanded: If enabled, shows the sub-query name when
the VST diagram is generated. If not enabled, you must right-click anywhere in the VST and
from the menu that appears, choose Show Query Names.

204

DB OPTIMIZER USER GUIDE

Examples of Transformations and SQL query Rewrites

Cartesian Product Elimination: Detects Cartesian Joins and propose corrections based on
analysis of statement, for example suggesting dept.deptno = emp.deptno if emp and dept had

no join criteria.

Expression Transformation: Identifies actions on predicates that might suppress index
usage such as “where empid + 1 = 1", should be “where empid=0"

Invalid Outer Join: Identifies invalid outer joins and suggests more efficient alternatives.

Before

After

SELECT * FROM employee e, customer c
WHERE e.employee_id = c.salesperson_id (+)
AND c.state = 'CA'

SELECT * FROM employee e, customer ¢
WHERE e.employee_id = c.salesperson_id (+)
AND c.state(+) = 'CA'

Transitivity:

Before

After

SELECT * FROM item i, product p, price pr

WHERE i.product_id = p.product_id AND
p.product_id = pr.product_id

SELECT * FROM item i, product p, price pr

WHERE i.product_id = p.product_id AND
p.product_id = pr.product_id

AND i.product_id = pr.product_id

Move Expression to WHERE Clause

Before

After

SELECT col_a, SUM(col_b) FROM table_a
GROUP BY col_a HAVING col_a > 100

SELECT col_a, SUM(col_b) FROM table_a
WHERE col_a > 100 GROUP BY col_a

NULL Column

Before

After

SELECT * FROM employee
WHERE manager_id = NULL

SELECT * FROM employee
WHERE manager_id IS NUL

Push Subquery

Before

After

SELECT *
FROM employee

WHERE employee_id = (SELECT MAX(salary)
FROM employee)

SELECT employee.*

FROM employee, (SELECT DISTINCT MAX(salary)
col1 FROM employee) t1

WHERE employee_id = t1.col1

Mismatched column types: identify joins type mismatch such as number = character

which might suppress use of Index.

DB OPTIMIZER USER GUIDE

205

DBMS Hints

Users can provide hints to a specified platform in order to instruct data source optimizer on the
best way to execute SQL statements. Tuning automatically generates cases using these hints.

Hints can be enabled or disabled when cases are being generated by tuning on the Window >
Preferences > Tuning Job Editor > Case Generation pane. Choose a tab as it pertains to
the platform you want to modify and use the check boxes to select and de-select the hints you

want to enable or disable, respectively.

& Preferences (Filtered)

4

| Case Generation oo v

[= S0L Developrent
Data Source Indexing
[+ Profile flerts

[] Generake cases automatically after exbracting buning candidates

| Orecle |Microsoft QL Server || IBMDB2 for LUW | SybaseAse|

[+ 5L Ediar [
Sl Execlition | Select the hints to be considered when generating cases:
EQL_FiIters _ Hink I Values | A
=2 TI.II'II] JDEdIL‘ﬂI’ - Pl ORACLE ACCESS PATHS
I:ﬁneratln:nn O amo_EquaL =
12qrams Ocwster
I FuLL
OHasH
| e
O moex_asc
BA moEx_comeIng
[JmoEs_pEsc
[moEs_FFs
FPloE: 101N W 20 out of 80 selected
Description:

[Restnre DeFaLiJ:sI [Apply I

@ | o

The following topics describe platform hints that are packaged in tuning to provide optimal
efficiency when executing jobs:

“ Cancel J

e Oracle Hints
e SQL Server Hints
e DB2 Hints

e Sybase Hints

206 DB OPTIMIZER USER GUIDE

Oracle Hints

NOTE:

Hint Analysis through SQL hint injection for Oracle data sources is not supported in DB
Optimizer XE Developer.

The following table highlights Oracle hints based on Oracle hints optimization:

Category Hint Available For Notes
ACC PATH AND_EQUAL /*+ CLUSTER (tablespec) */ -
ACC PATH CLUSTER /*+ FULL (tablespec) */ Use on Clustered Tables only
ACC PATH FULL /*+ HASH (tablespec) */ Forces a table scan even if there are
indexes.
ACC PATH HASH /*+ INDEX (tablespec [TAL: Only to tables stored in a table
indexspec]) */ cluster.
ACC PATH INDEX /*+ INDEX_ASC (tablespec If no indexspec is supplied, the
[TAL: indexspec]) */ optimizer will try to scan with each
avail index.
ACC PATH INDEX_ASC /*+ INDEX_COMBINE Essentially the same as INDEX.
(tablespec [indexspec [TAL:
indexspec]...]) */
ACC PATH INDEX_COMBINE /*+ INDEX_DESC (tablespec | Forces the optimizer to try multiple
indexspec [TAL: indexspec]...]) | boolean combinations of indexes.
*
/
ACC PATH INDEX_DESC /*+ INDEX_DESC (tablespec [Essentially the same as INDEX.
indexspec [TAL: indexspec ...])
*
/
ACC PATH INDEX_FFS /*+ INDEX_FFS (tablespec [Forces an index scan using
indexspec [TAL: indexspec]...]) | specified index(es).
*
/
ACC PATH INDEX_JOIN /*+ INDEX_JOIN (tablespec | Indexes used should be based on
indexspec [TAL: indexspec]...]) | columns in the where clause.
*
/
ACCPATH | INDEX_RS_ASC /*+ INDEX_RS([@queryblock] Instructs the optimizer to perform
<tablespec> <indexspec>) */ an ascending index range scan for
the specified table.
ACC PATH INDEX_RS_DESC I*+ INDEX_RS([@queryblock] Instructs the optimizer to perform a
<tablespec> <indexspec>) */ descending index range scan for
the specified table.
ACC PATH INDEX_SS /*+ INDEX_SS (tablespec [Useful with composite indexes
indexspec [TAL: indexspec]...]) | where the first column is not used in
*/ the query, but others are.
ACC PATH INDEX_SS_ASC /*+ INDEX_SS_ASC (tablespec [| Essentially the same as INDEX_SS.
indexspec [TAL: indexspec ...])
*
/
ACC PATH INDEX_SS_DESC /*+ INDEX_SS_DESC (tablespec | Essentially the same as INDEX_SS.
[indexspec [TAL: indexspec]...])
*
/

DB OPTIMIZER USER GUIDE

207

Category Hint Available For Notes

ACC PATH NO_INDEX /*+ NO_INDEX (tablespec [Directs the Optimizer not to use
indexspec [TAL: indexspec]...]) | specified index(es).

*
/

ACC PATH NO_INDEX_FFS /*+ NO_INDEX_FFS ([tablespec | Directs the Optimizer to exclude a
[indexspec [TAL: indexspec]...]) | fast full scan of the specified
*/ index(es).

ACC PATH NO_INDEX_SS /*+ NO_INDEX_SS (tablespec| | Directs the Optimizer to exclude a
indexspec [TAL: indexspec]...]) | skip scan of the specified index(es).
*

/

ACCPATH | ROWID - -

JOIN OP HASH_AJ - -

JOIN OP HASH_SJ - -

JOIN OP MERGE_AJ - -

JOIN OP MERGE_SJ - -

JOIN OP NL_AJ - -

JOIN OP NL_SJ - -

JOIN OP NO_USE_CUBE /*+ Instructs the optimizer to exclude
NO_USE_CUBE([@queryblock] cube joins when joining each
<tablespec>) */ specified table to another row

source using the specified table as
the inner table.

JOIN OP NO_USE_HASH /*+ NO_USE_HASH (tablespec | Negates the use of hash joins for
[TAL: tablespec]...) */ the table specified.

JOIN OP NO_USE_MERGE /*+ NO_USE_MERGE (Negates the use of sort-merge joins
tablespec [TAL: tablespec]...) */ | for the table specified.

JOIN OP NO_USE_NL /*+ NO_USE_NL (tablespec Negates the use of nested-loop
[TAL: tablespec]...) */ joins for the table specified.

JOIN OP USE_CUBE /*+ USE_CUBE([@queryblock] When the right-hand side of the join
<tablespec>) */ is a cube, this hint instructs the

optimizer to join each specified
table with another row source using
a cube join. If the optimizer decides
not to use the cube join based on
statistical analysis, you can use
USE_CUBE to override that
decision.

JOIN OP USE_HASH /*+ USE_HASH (tablespec [TAL: | Directive to join each table
tablespec]...) */ specified using a hash join.

JOIN OP USE_MERGE /*+ NO_USE_MERGE (Directive to join each table
tablespec [TAL: tablespec ...) */ | specified using a sort--merge join.

JOIN OP USE_NL /*+ NO_USE_NL (tablespec Directive to use a nested-loop join
[TAL: tablespec]...) */ with the specified tables as the

inner table.

JOIN OP USE_NL_WITH_INDEX /*+ USE_NL_WITH_INDEX (Directive to use a nested-loop join
tablespec [indexspec [TAL: with the specified table as the inner
indexspec]...]) */ table using the index specified to

satisfy at least one predicate.
208 DB OPTIMIZER USER GUIDE

Category Hint Available For Notes

JOIN ORDER | LEADING /*+ LEADING (tablespec) */ Directive to join the tables in the
order specified.

JOIN ORDER | ORDERED /*+ ORDERED */ Directive to join tables in the order
found in the FROM clause.

JOIN ORDER | STAR - -

OPT ALL_ROWS /*+ ALL_ROWS */ Indicates the goal is overall

APPROACH throughput.

OPT CHOOSE - -

APPROACH

OPT FIRST_ROWS /*+ FIRST_ROWS (integer) */ The goal is to retrieve the first row(s)

APPROACH as fast as possible.

OPT RULE /*+ RULE */ Used to disable the COST based

APPROACH optimizer.

OTHER APPEND_VALUES /*+ APPEND_VALUES */ Instructs the optimizer to use direct-
path INSERT with the VALUES
clause.

OTHER CACHE /*+ CACHE (tablespec) */ Should be used with the FULL hint.
Places data in the most-recently
used area of the buffer cache.

OTHER APPEND /*+ APPEND */ Directs the optimizer to INSERT
data at the end of the existing table
data using direct path I/O.

OTHER CURSOR_SHARING_EXA | /*+ CURSOR_SHARING_EXACT | Directs the Optimizer to ignore

CT */ previously parsed SQL that
matches, but uses bind variables.
Forces the SQL to be parsed unless
an exact match is found.

OTHER DRIVING_SITE /*+ DRIVING_SITE (tablespec) | Used when data is joined remotely

*/ via DBLink. Normally data at the
remote site is returned to the local
and joined. This hint directs the
optimizer to send the local data to
the remote site for resolution of the
join.

OTHER DYNAMIC_SAMPLING /*+ DYNAMIC_SAMPLING Only used in simple SELECT

([TAL: tablespec] integer) */ statements with a single table to
approximate cardinality if there are
no existing statistics on the table.

OTHER GATHER_OPTIMIZER_STA | /*+ Instructs the optimizer to enable

TISTICS GATHER_OPTIMIZER_STATISTI | statistics gathering during CREATE

CS*/ TABLE... AS SELECT and INSERT
INTO ... SELECT bulk loads.

OTHER MODEL_MIN_ANALYSIS | /*+ MODEL_MIN_ANALYSIS */ | Used with spreadsheet and model
analysis to minimize compile time.

OTHER NO_GATHER_OPTIMIZER | /*+ Instructs the optimizer to disable

_STATISTICS

NO_GATHER_OPTIMIZER_STAT
ISTICS */

statistics gathering during CREATE
TABLE... AS SELECT and INSERT
INTO ... SELECT bulk loads.

DB OPTIMIZER USER GUIDE

209

Category

Hint

Available For

Notes

OTHER

NO_PUSH_PRED

/*+ NO_PUSH_PRED [TAL:
(tablespec)]*/

Opposite of PUSH_PRED, it directs
the Optimizer not to try to push the
predicate into the view.

OTHER

NO_PUSH_SUBQ

/*+ NO_PUSH_SUBQ] */

Opposite of PUSH_SUBQ, it directs
the Optimizer not to try and
evaluate the subquery first.

OTHER

NO_RESULT_CACHE

/*+ NO_RESULT_CACHE */

Disables caching of results for the
current query.

OTHER

NO_UNNEST

/*+ NO_UNNEST */

Subqueries in the WHERE clause
are considered nested. A subquery
can be evaluated several times for
multiple results in the “parent”.
Unnesting evaluates the subquery
once and merges the results with
the body of the “parent”. This hint
directs the Optimizer NOT to
unnest.

OTHER

NOAPPEND

/*+ NOAPPEND */

Directs the Optimizer to utilize
existing space in a table and
negates parallel processing.

OTHER

NOCACHE

/*+ NOCACHE (tablespec) */

Should be used with the FULL hint.
Places data in the least-recently
used area of the buffer cache.

OTHER

OPT_PARAM

OTHER

OPTIMIZER_FEATURES_E
NABLE

ALTER SESSION

Directive to force query execution
to be done at a different site than
that selected by Oracle.

OTHER

ORDERED_PREDICATES

OTHER

PUSH_PRED

/*+ PUSH_PRED [TAL:
(tablespec)]*/

Used when one of the tables in a
join is an in-line view. Forces the
predicate used to join the table and
the view into the view.

OTHER

PUSH_SUBQ

/*+ PUSH_SUBQ *

Used with an EXISTS or IN subselect
to force evaluation of the subquery
rather than the default behavior of

the last.

OTHER

RESULT_CACHE

/*+ RESULT_CACHE */

Caches the result set of the current
query, ensuring that another session
issuing the same query will be
returned results from the cache.

OTHER

UNNEST

/*+ UNNEST */

Subqueries in the where clause are
considered nested. A subquery
could be evaluated several times for
multiple results in the “parent”.
Unnesting evaluates the subquery
once and merges results with the
body of the "parent”.

210

DB OPTIMIZER USER GUIDE

outer_distribution
inner_distribution) */

Category Hint Available For Notes

PARALLEL NO_PARALLEL /*+ NO_PARALLEL (tablespec) | Directs the Optimizer not to parallel
*/ the specified table.

PARALLEL NO_PARALLEL_INDEX /*+ NO_PARALLEL_INDEX Directs the Optimizer not to parallel
(tablespec [indexspec [TAL: the specified index(es).
indexspec]...1) */

PARALLEL NO_PQ_CONCURRENT_ | /*+ Instructs the optimizer to disable

UNION NO_PQ_CONCURRENT_UNIO | concurrent processing of UNION
N(@queryblock) */ and UNION ALL operations.

PARALLEL NO_PQ_SKEW [*+ Advises the optimizer that the
NO_PQ_SKEW([@queryblock] distribution of values of the join
<tablespec>) */ keys for a parallel join is highly

skewed. The table specified in
tablespec is the probe table of the
hash join.

PARALLEL NO_PX_JOIN_FILTER /*+ NO_PX_JOIN_FILTER Directs the Optimizer not to try and
(tablespec) */ join bitmap indexes in parallel.

PARALLEL NO_STATEMENT_QUEUI | /x4 Lets a st atement bypass the parallel

NG NO_STATEMENT_QUEUING */ | statement queue regardless of the
PARALLEL_DEGREE_POLICY set-
ting.

PARALLEL NOPARALLEL /*+ NOPARALLEL (tablespec) */ | Directs the Optimizer not to parallel

the specified table.

PARALLEL NOPAARALLEL_INDEX /*+ NOPARALLEL_INDEX Directs the Optimizer not to parallel
(tablespec [indexspec [TAL: the specified index(es).
indexspec]...]) */

PARALLEL PARALLEL /*+ PARALLEL (tablespec [Number specifies degrees of
integer | TAL:DEFAULT]) */ parallelism (how many processes).

PARALLEL PARALLEL_INDEX /*+ PARALLEL_INDEX Number specifies degree of
(tablespec [indexspec [TAL: parallelism (how many processes).
indexspec ... | integer |
DEFAULT) */

PARALLEL PQ_CONCURRENT_UNIO | /*+ Instructs the optimizer to enable

N PQ_CONCURRENT_UNION(@q | concurrent processing of UNION
ueryblock) */ and UNION ALL operations.

PARALLEL PQ_DISTRIBUTE /*+ PQ_DISTRIBUTE(tablespec | Used in parallel join operations to

indicate how inner and outer tables
of the joins should be processed.
The values of the distributions are
HASH, BROADCAST, PARTITION,
and NONE. Only six combinations
table distributions are valid.

DB OPTIMIZER USER GUIDE

211

Category Hint

Available For

Notes

PARALLEL PQ_FILTER

/*+ PQ_FILTER([SERIAL]
[HASH]INONE][RANDOM) */

SERIAL: Process rows serially on the
left and right sides of the filter. Use
this option when the overhead of
parallelization is too costly for the

query.

NONE: Process rows in parallel on
the left and right sides of the filter.
Use this option when there is no
skew in the distribution of the data
on the left side of the filter and you
want to avoid distribution of the left
side.

HASH: Process rows in parallel on
the left side of the filter using a hash
distribution and serially on the right
side of the filter. Use this option
when there is no skew in the
distribution of data on the left side
of the filter.

RANDOM: Process rows in parallel
on the left side of the filter using a
random distribution and serially on
the right side of the filter. Use this
option when there is skew in the
distribution of data on the left side
of the filter.

PARALLEL PQ_SKEW

/*+ PQ_SKEW([@queryblock]
<tablespec>) */

Advises the optimizer that the
distribution of values of the join
keys for a parallel join is highly
skewed. The table specified in
tablespec is the probe table of the
hash join.

PARALLEL PX_JOIN_FILTER

/*+ PX_JOIN_FILTER (tablespec)
*/

Directs the Optimizer to try and join
bitmap indexes in parallel.

PARALLEL FACT

/*+ FACT (tablespec) */

In the context of STAR
transformation, this table should be
considered a FACT table (as
opposed to a DIMENSION).

PARALLEL MERGE

/*+ MERGE ([view | tablespec)
*/

Use with either an in-line view that
has a Group by or Distinct in it as a
joined table, or with the use of IN
subquery to “merge” the "view”
into the body of the rest of the
query.

PARALLEL NO_EXPAND

/*+ NO_EXPAND */

Used when OR condition (including
IN lists) is present in the predicate
to not consider transformation to
compound query.

212

DB OPTIMIZER USER GUIDE

Category Hint Available For Notes

PARALLEL NO_FACT /*+ NO_FACT (tablespec) */ In the context of STAR
transformation this table should not
be considered a FACT table.

PARALLEL NO_MERGE /*+ NO_MERGE [([view | Directs the Optimizer not to

TAL:tablespec)] */ "merge” the view into the query.

PARALLEL NO_QUERY_TRANSFOR /*+ Directs the Optimizer not to

MATION NO_QUERY_TRANSFORMATIO | transform OR, in-lists, in-line views,
N */ and subqueries. Try it whenever any
of these conditions are present.

PARALLEL NO_REWRITE /*+ NO_REWRITE */ Directs the Optimizer not to use a
Materialized View, even if one is
available.

PARALLEL NO_STAR_TRANSFORMA | /*+ Directs the Optimizer not to try a

TION NO_STAR_TRANSFORMATION | Star Transformation.
*/
PARALLEL NO_XML_QUERY_REWRI | /*+ NO_XML_QUERY_REWRITE | Use only if the query is using XML
TE */ functionality.

PARALLEL NO_XMLINDEX_REWRITE | /*+ NO_XMLINDEX_REWRITE */ | Use only if the query is using XML
functionality.

PARALLEL NOFACT /*+ NOFACT (tablespec) */ In the context of STAR
transformation, this table should not
be considered a FACT table.

PARALLEL NOREWRITE /*+ NOREWRITE Directs the Optimizer not to use a
Materialized View, even if one is
available.

PARALLEL REWRITE /*+ REWRITE Directs the Optimizer to use a

[(view [TAL: view]...)]*/ Materia.lized View instegd of the
underlying tables. Specify REWRITE
without additional parameters.
Oracle will determine if it can us a
Materialized View or not.

PARALLEL STAR_TRANSFORMATIO | /*+ STAR_TRANSFORMATION Directs the Optimizer to try Star

N */ Transformation. Only try with a 3
table or more join.

PARALLEL | STATEMENT_QUEUING | /x4 STATEMENT_QUEUING */ | Enables the queuing mechanism for
the current query even if that
feature is disabled.

PARALLEL USE_CONCAT /*+ USE_CONCAT */ Used when the OR condition
(including IN lists) is present in the
predicate to transform the query
into a compound UNION ALL.

QUERY EXPAND_GSET_TO_UNIO | /*+ EXPAND_GSET_TO_UNION | Performs transformations on

TRANS N */ queries that have GROUP BY into
Unions.

QKSFM_ALL | NATIVE_FULL_OUTER_JO | /*+ A directive that instructs the

IN

NATIVE_FULL_OUTER_JOIN */

optimizer to use native full outer
join.

DB OPTIMIZER USER GUIDE

213

Category Hint Available For Notes
QKSFM_ALL | NO_NATIVE_FULL_OUTE | /*+ A directive that instructs the
R JOIN NO NATIVE FULL OUTER JOI | optimizer to exclude the native
- N*/ - - - execution method when joining
specified tables.

QKSFM_ALL | NO_USE_HASH_AGGREG | /*+ A directive that disables hash

ATION NO_USE_HASH_AGGREGATIO | aggregation.
N */

QKSFM_CUR | BIND_AWARE /*+ BIND_AWARE*/ Makes the cursor aware of bind

SOR_SHARIN values.

G

QKSFM_CUR | NO_BIND_AWARE /*+N)_ BIND_AWARE*/ Disables bind peeking for the

SOR_SHARIN current query.

G

QKSFM_IND | NO_USE_INVISIBLE_INDE | /x4 Makes invisible indexes unusable by

EX XES NO_USE_INVISIBLE_INDEXES | the current query.

*
/

QKSFM_XML | NO_XML_DML_REWRITE | /*+ NO_XML_DML_REWRITE*/ | A directive that explicitly disables

_REWRITE XML DML operator rewrite.

QKSFM_TRA | PRECOMPUTE_SUBQUER A directive that instructs the

NSFORMA- |y /*+ PRECOMPUTE_SUBQUERY | optimizer to execute the subquery

TION */ before executing the outer query.

QKSFM_ALL | USE_HASH_AGGREGATI | /*+ A directive that enables hash

ON USE_HASH_AGGREGATION */ | aggregation.

QKSFM_IND | USE_INVISIBLE_INDEXES | /+4 USE_INVISIBLE_INDEXES */ | Makes invisible indexes usable by

EX the current query.

REAL TIME MONITOR /*+ MONITOR */ Effective only if STATSTICS_LEVEL
initialization parameter is either set
to ALL or TYPICAL and
CONTROL_MANAGEMENT_
PACK_ACCESS is set to
DIAGNOSTIC+TUNING. Turns on
features of the Oracle Database
Tuning Pack.

REAL TIME NO_MONITOR /*+ NO_MONITOR */ See MONITOR hint.

Online CHANGE_DUPKEY_E | 7+ Unambiguously identifies a unique

Application RROR_INDEX CHANGE_DUPKEY_ERROR_IND | key violation for a specified index or

Upgrade EX ({table, index | table set of columns.

Hints (column [, column]...) '})*/

Online Appli- | IGNORE_ROW_ON_DUP | /< Attempts to insert duplicate key

cation KEY_INDEX IGNORE_ROW._ON_DUPKEY_| values are silently ignored, rather

Upgrade NDEX(<tablespec>, <index- than causing an ORA-0001 error.

spec>) */
214 DB OPTIMIZER USER GUIDE

Category Hint Available For Notes

Online RETRY_ON_ROW_C | /*+ RETRY_ON_ROW_CHANGE | Retries the operation when the
Application HANGE */ ORA_ROWSCN for one or more
Upgrade rows in a set has changed from the
Hints time the set of rows to be modified

is determined, to the time the block
is actually modified.

SQL Server Hints
The following table highlights SQL hints based on MS SQL Server hints optimization:

Category | Hint Available For Notes
QUERY IGNORE_NONCLUSTER| SELECT/INSERT/UPDATE/ This hint lets you disable use of a
ED_COLUMNSTORE_IN | DELETE/MERGE nonclustered xVelocity memory optimized
DEX columnstore index.

JOIN LOOP SELECT/UPDATE/DELETE Not applicable for RIGHT OUTER or FULL
joins.

JOIN HASH SELECT/UPDATE/DELETE -

JOIN MERGE SELECT/UPDATE/DELETE -

JOIN REMOTE SELECT/UPDATE/DELETE Only for INNER JOINs. Not applicable
with COLLATE

QUERY RECOMPILE SELECT/UPDATE/DELETE -

QUERY FORCE ORDER SELECT/UPDATE/DELETE -

QUERY ROBUST PLAN SELECT/UPDATE/DELETE -

QUERY KEEP PLAN SELECT/UPDATE/DELETE -

QUERY KEEPFIXED PLAN SELECT/UPDATE/DELETE -

QUERY EXPAND VIEWS DML Statements Only for statement containing views.

QUERY HASH GROUP SELECT Only when GROUP BY, COMPUTE and
DISTINCT clauses are used.

QUERY ORDER GROUP SELECT/UPDATE/DELETE Only when GROUP BY, COMPUTE and
DISTINCT clauses are used.

QUERY MERGE UNION SELECT Only for statements chained using UNION

QUERY HASH UNION SELECT Only for statements chained using UNION

QUERY CONCAT UNION SELECT Only for statements chained using UNION

QUERY LOOP JOIN SELECT/UPDATE/DELETE -

QUERY MERGE JOIN SELECT/UPDATE/DELETE -

QUERY HASH JOIN SELECT/UPDATE/DELETE -

Table FORCESCAN SELECT/UPDATE/COMPLETE | Forces the optimizer to use an index scan

operation as the access path to the
referenced table or view.

DB OPTIMIZER USER GUIDE

215

Category | Hint Available For Notes
Table FORCESEEK SELECT/UPDATE/COMPLETE | Forces the optimizer to use an index seek
operation as the access path to the
referenced table or view.
TABLE INDEX() DML Statements Only for tables and views with indexes.
TABLE KEEPIDENTITY INSERT Only for INSERT statements using
OPENROWSET clause with BULK option.
TABLE KEEPDEFAULTS INSERT Only for INSERT statements using
OPENROWSET clause with BULK option.
TABLE HOLDLOCK DML Statements Not applicable for SELECT statements
using FOR BROWSE clause.
TABLE IGNORE_CONSTRAINT | INSERT Only for INSERT statements using
S OPENROWSET clause with BULK option.
TABLE IGNORE_TRIGGERS INSERT Only for INSERT statements using
OPENROWSET clause with BULK option.
TABLE NOLOCK SELECT/UPDATE/COMPLETE | Not applicable for the target table in
UPDATE/DELETE statements.
TABLE NOWAIT DML Statements -
TABLE PAGLOCK DML Statements -
TABLE READCOMMITED DML Statements -
TABLE READCOMMITEDLOCK | SELECT/UPDATE/COMPLETE | -
TABLE READPAST SELECT/UPDATE/COMPLETE | Not applicable for the target table in
UPDATE/DELETE statements.
TABLE READUNCOMMITED SELECT/UPDATE/COMPLETE | Not applicable for the target table in
UPDATE/DELETE statements.
TABLE REPEATEABLEREAD DML Statements -
TABLE ROWLOCK DML Statements -
TABLE SERIALIZABLE DML Statements Not applicable for SELECT statements
using FOR BROWSE clause.
TABLE SPATIAL_WINDOW_MA | DML Statements Specifies the maximum number (1 - 8192)
X_CELLS of cells to use when tessellating a
geometry or geography object.
TABLE TABLOCK DML Statements -
TABLE TABLOCKX DML Statements -
TABLE UPDLOCK DML Statements -
TABLE XLOCK DML Statements -
216 DB OPTIMIZER USER GUIDE

DB2 Hints

The following table highlights SQL hints based on IBM DB2 hints optimization:

Category Hint Notes

Command SET OPTIMIZATION LEVEL For top-level SELECT statements
only

Clause optimize for <n> rows For top-level SELECT statements
only

Clause fetch first <n> rows only For SELECT statements only

Sybase Hints

The following table highlights SQL hints based on Sybase hints optimization:

Category Hint Notes

Logical distinct No explicit implementation

Logical group No explicit implementation

Logical g_join No explicit implementation

Logical nl_g_join Not applicable for: statements with chained
queries; select statements with group by
clause and having clause or group by clause
and order by clause

Logical m_g_join Not applicable for: statements with chained
queries; select statements with group by
clause and having clause or group by clause
and order by clause

Logical join No explicit implementation

Logical nl_join Not applicable for: select statements with
group by clause and having clause or group
by clause and order by clause

Logical m_join Not applicable for: select statements with
group by clause and having clause or group
by clause and order by clause

Logical h_join Not applicable for: select statements with
group by clause and having clause or group
by clause and order by clause

Logical union No explicit implementation

scan No explicit implementation

Logical scalar_agg Only used in combination with other
operators. It does not change the execution
plan itself.

Logical sequence Is a keyword that will be used in the
implementation of scalar_agg operator.

Logical hints We don't support a combination of hints

Logical prop Uses a set of pre-defined values.

DB OPTIMIZER USER GUIDE

217

Category

Hint

Notes

Logical

table

Used only in combination with other
operators, when referring tables from
subqueries

Logical

work_t

This operator is applicable only together
with store operator

Logical

Used only in combination with other
operators, when referring tables from
subqueries

Logical

subg

Used only in combination with other
operators, when referring tables from
subqueries

Physical

distinct_sorted

Only for SELECT statements containing
DISTINCT, and only for tables

Physical

distinct_sorting

Only for SELECT statements containing
DISTINCT, and only for tables

Physical

distinct_hashing

Only for SELECT statements containing
DISTINCT, and only for tables

Physical

group_sorted

Only for SELECT statements (not working for
views) with no having and no order by clause.

Physical

group_hashing

Only for SELECT statements (not working for
views) with no having and no order by clause.

Physical

group_inserting

Not implemented

Physical

append_union_all

Not applicable for: UNION chained clauses,
nested sub-selects in a from clause, if a
group by clause is present or if scalar
aggregation is present

Physical

merge_union_all

Not applicable for: UNION ALL chained
clauses, nested sub-selects in a from clause,
or if a group by clause is present.

Physical

merge_union_distinct

Not applicable for: UNION ALL chained
clauses, nested sub-selects in a from clause,
or if a group by clause is present.

Physical

hash_union_distinct

Not applicable for: UNION ALL chained
clauses, nested sub-selects in a from clause,
if a group by clause is present, or if scalar
aggregation is present.

Physical

i_scan

Applied to all table references in the from
clause of the main select and of the sub
select statements except: 1. statement has
sub-selects. 2. table references has no
indexes.

218

DB OPTIMIZER USER GUIDE

Category

Hint

Notes

Physical

t_scan

Applied to all the table references in the
from clause of the main select and of the sub
select statements except: On Sybase 12.5
not applied for tables in the main query if: 1.
statement has chained queries. 2. Sub
queries have group by and having clauses;
and not applied to the tables in sub selects
if: 1. has select statements in from clause of
the main select. 2. sub queries have group by
and having clauses. 3. statement has select
statements in select clause. 4. statement has
parent statement and insert statement; on
Sybase 15 not applied for tables in sub
selects if: 1. has select statements in from
clause of the main select. 2. statement has
chained queries.

Physical

m_scan

Applied for all tables if in the where clause
there is a condition like:
table1.indexedColumn1 condition body OR
table1.indexedColumn2 condition body; Not
applied if the LIKE operator is used. For
columns that belong to a primary key only
the first column is considered.

Physical

store

Physical

store_index

Physical

sort

Physical

xchg

DB OPTIMIZER USER GUIDE

219

Reference

The following topics provide reference details:

e Database Objects

e DBMS Connection Parameters by Platform

Database Objects

The following table describes the database objects displayed in DB Optimizer and contains
information regarding each one, including object name, DBMS platform, and any notes
pertaining to the specified object.

In DB Optimizer, database objects are stored in Data Source Explorer as subnodes of
individual, pertinent databases.

Database Object

DBMS Platforms

Notes

Aliases

DB2

An alias is an alternate name that references a table, view, and
other database objects. An alias can also reference another
alias as long as the aliases do not reference one another in a
circular or repetitive manner.

Aliases are used in view or trigger definitions in any SQL
statements except for table check-constraint definitions. (The
table or view name must be referenced in these cases.)

Once defined, an alias is used in query and development
statements to provide greater control when specifying the
referenced object. Aliases can be defined for objects that do
not exist, but the referenced object must exist when a
statement containing the alias is compiled.

Aliases can be specified for tables, views, existing aliases, or
other objects. Create Alias is a command available on the
shortcut menu.

Check Constraints

All

A check constraint is a search condition applied to a table.
When a check constraint is in place, Insert and Update
statements issued against the table will only complete if the
statements pass the constraint rules.

Check constraints are used to enforce data integrity when it
cannot be defined by key uniqueness or referential integrity
restraints.

A check condition is a logical expression that defines valid
data values for a column.

220

DB OPTIMIZER USER GUIDE

Database Object

DBMS Platforms

Notes

Clusters

Oracle

A cluster is a collection of interconnected, physical machines
used as a single resource for failover, scalability, and
availability purposes.

Individual machines in the cluster maintain a physical host
name, but a cluster host name must be specified to define the
collective as a whole.

To create a cluster, you need the CREATE CLUSTER or
CREATE ANY CLUSTER system privilege.

Database Links

Oracle

A database link is a network path stored locally, that provides
the database with the ability to communicate with a remote
database.

A database link is composed of the name of the remote
database, a communication path to the database, and a user
ID and password (if required).

Database links cannot be edited or altered. To make changes,
drop and re-create.

Foreign Keys

All

A foreign key references a primary or unique key of a table (the
same table the foreign key is defined on, or another table and
is created as a result of an established relationship). Its
purpose is to indicate that referential integrity is maintained
according to the constraints.

The number of columns in a foreign key must be equal to the
number of columns in the corresponding primary or unique
key. Additionally, the column definitions of the foreign key
must have the same data types and lengths.

Foreign key names are automatically assigned if one is not
specified.

Functions

DB2, Oracle

A function is a relationship between a set of input data values
and a set of result values.

For example, the TIMESTAMP function passes input data
values of type DATE and TIME, and the result is TIMESTAMP.

Functions can be built-in or user-defined. Built-in functions are
provided with the database. They return a single value and are
part of the default database schema. User-defined functions
extend the capabilities of the database system by adding
function definitions (provided by users or third-party vendors)
that can be applied in the database engine itself.

A function is identified by its schema, a function name, the
number of parameters, and the data types of its parameters.

Access to functions is controlled through the EXECUTE
privilege. GRANT and REVOKE statements are used to specify
who can or cannot execute a specific function or set of
functions.

Groups

All

Groups are units that contain items. Typically, groups contain
the result of a single business transaction where several items
are involved.

For example, a group is the set of articles bought by a
customer during a visit to the supermarket.

DB OPTIMIZER USER GUIDE

221

Database Object

DBMS Platforms

Notes

Indexes

All

An index is an ordered set of pointers to rows in a base table.

Each index is based on the values of data in one or more table
columns. An index is an object that is separate from the data in
the table. When an index is created, the database builds and
maintains it automatically.

Indexes are used to improve performance. In most cases,
access to data is faster with an index. Although an index
cannot be created for a view, an index created for the table on
which a view is based can improve the performance of
operations on that view.

Indexes are also used to ensure uniqueness. A table with a
unigue index cannot have rows with identical keys.

DB2: Allow Reverse Scans, Percent Free (Lets you type or
select the percentage of each index page to leave as free
space when building the index, from 0 to 99), Min Pct Used
(Lets you type or select the minimum percentage of space
used on an index leaf page. If, after a key is removed from an
index leaf page, the percentage of space used on the page is
at or below integer percent, an attempt is made to merge the
remaining keys on this page with those of a neighboring page.
If there is sufficient space on one of these pages, the merge is
performed and one of the pages is deleted. The value of
integer can be from 0 to 99.

Oracle: The Logging, No Sort, Degrees, and Instances
properties are documented in the editor.

Java Classes

Oracle

A model or template, written in Java language, used to create
objects with a common definition and common properties,
operations and behavior.

Java classes can be developed in Eclipse (or another Java
development environment such as Oracle JDeveloper) and
moved into an Oracle database to be used as stored
procedures.

Java classes must be public and static if they are to be used in
this manner.

When writing a class to be executed within the database, you
can take advantage of a special server-side JDBC driver. This
driver uses the user's default connection and provides the
fastest access to the database.

Java classes become full-fledged database objects once
migrated into the database via the loadjava command-line
utility or the SQL CREATE JAVA statement.

A Java class is published by creating and compiling a call
specification for it. The call spec maps a Java method’s
parameters and return type to Oracle SQL types.

Once a Java class is developed, loaded, and published -- the
final step is to execute it.

Il R
Jdvd NESUUTCLES

A M I i L L] | M L]
A JdVad TEoUUTCE 1S5 d COTNITCUHUIT O THES LUIIIPIUDDUU T d .Jdl e

222

DB OPTIMIZER USER GUIDE

Database Object

DBMS Platforms

Notes

Libraries

Oracle

A library is a configurable folder for storing and sharing
content with an allocated quota. Multiple libraries may exist in
the same database environment.

A library is a special type of folder in Oracle Content Services.
Unlike Containers and regular folders, each library has a Trash
Folder and an allocated amount of disk space.

A library is composed of a name (mandatory), description,
quota, path, and library members.

The library service allows you to create folders, list quotas, and
manage categories, workflow, trash folders, and versioning.
The Library service does not allow you to create or upload
files.

Materialized Views

Oracle

A database object that contains the results of a query. They are
local copies of data located remotely, or are used to create
summary tables based on aggregations of table data.
Materialized views are also known as snapshots.

A materialized view can query tables, views, and other
materialized views. Collectively, these are called master tables
(a replication term) or detail tables (a data warehouse term).

For replication purposes, materialized views allow you to
maintain copies of remote data on your local node. These
copies are read-only. If you want to update the local copies,
you need to use the Advanced Replication feature. You can
select data from a materialized view as you would from a table
or view.

For data warehousing purposes, the materialized views
commonly created are aggregate views, single-table
aggregate views, and join views.

Materialized View Logs

Oracle

Because Materialized Views are used to return faster queries (a
query against a materialized view is faster than a query against
a base table because querying the materialized view does not
query the source table), the Materialized View often returns
the data at the time the view was created, not the current table
data.

There are two ways to refresh data in Materialized Views,
manually or automatically. In a manual refresh, the Materialized
View is completely wiped clean and then repopulated with
data from the source tables (this is known as a complete
refresh). If source tables have changed very little, however, it is
possible to refresh the Materialized View only for changed
records -- this is known as a fast refresh.

In the case of Materialized Views that are updated via fast
refresh, it is necessary to create Materialized View Logs on the
base tables that compose the Materialized View to reflect the
changes.

If the number of entries in this table is too high, it is an
indication that you might need to refresh the Materialized
Views more frequently to ensure that each update does not
take longer than it needs.

Select owner, then select from tables with Materialized Views,
etc.

DB OPTIMIZER USER GUIDE

223

Database Object

DBMS Platforms

Notes

Oracle Job Queue

Oracle

The Oracle Job Queue allows for the scheduling and
execution of PL/SQL stored procedures at predefined times
and/or repeated job execution at regular intervals, as
background processes.

For example, you could create a job in the Oracle Job Queue
that processed end-of-day accounting -- a job that must run
every weekday, but can be run unattended, or you could
create a series of jobs that must be run sequentially -- such as
jobs that might be so large, that in order to reduce CPU usage,
only one is run at a time.

Runs PL/SQL code at specified time or on specified schedule,
can enable/disable.

Outlines

Oracle

Oracle preserves the execution plans of “frozen” access paths
to data so that it remains constant despite data changes,
schema changes, and upgrades of the database or application
software through objects named stored outlines.

Outlines are useful for providing stable application
performance and benefit high-end OLTP sites by having SQL
execute without having to invoke the cost-based optimizer at
each SQL execution. This allows complex SQL to be executed
without the additional overhead added by the optimizer when
it performs the calculations necessary to determine the
optimal access path to the data.

224

DB OPTIMIZER USER GUIDE

Database Object

DBMS Platforms

Notes

Packages

All

A package is a procedural schema object classified as a PL/
SQL program unit that allows the access and manipulation of
database information.

A package is a group of related procedures and functions,
together with the cursors and variables they use, stored
together in the database for continued use as a unit. Similar to
standalone procedures and functions, packaged procedures
and functions can be called explicitly by applications or users.

DB applications explicitly call packaged procedures as
necessary with privileges granted, a user can explicitly execute
any of the procedures contained in it.

Packages provide a method of encapsulating related
procedures, functions, and associated cursors and variables
together as a unit in the database. For example, a single
package might contain two statements that contain several
procedures and functions used to process banking
transactions.

Packages allow the database administrator or application
developer to organize similar routines as well as offering
increased functionality and database performance.

Packages provide advantages in the following areas:
encapsulation of related procedures and variables, declaration
of public and private procedures, variables, constraints and
cursors, separation of the package specification and package
body, and better performance.

Encapsulation of procedural constructs in a package also
makes privilege management easier. Granting the privilege to
use a package makes all constructs of the package assessable
to the grantee.

The methods of package definition allow you to specify which
variables, cursors, and procedures are: public, directly
accessible to the users of a package, private, or hidden from
the user of the package.

Package Bodies

Oracle

A package body is a package definition file that states how a
package specification will function.

In contrast to the entities declared in the visible part of a
package, the entities declared in the package body are only
visible within the package body itself. As a consequence, a
package with a package body can be used for the construction
of a group of related subprograms in which the logical
operations available to clients are clearly isolated from the
internal entities.

DB OPTIMIZER USER GUIDE

225

Database Object

DBMS Platforms

Notes

Primary Keys

All

A key is a set of columns used to identify or access a row or
rows. The key is identified in the description of a table, index,
or referential constraint. The same column can be part of more
than one key.

A unigue key is a key that is constrained so that no two of its
values are equal. The columns of a unique key cannot contain
NULL values.

The primary key is one of the unique keys defined on a table,
but is selected to be the key of the first importance. There can
only be one primary key on a table.

Oracle: If an index constraint has been defined for a table, the
constraint status for the table's primary key cannot be set to
Disabled.

Procedures

All

A procedure is an application program that can be started
through the SQL CALL statement. The procedure is specified
by a procedure name, which may be followed by arguments
enclosed within parenthesis.

The argument or arguments of a procedure are individual
scalar values, which can be of different types and can have
different meanings. The arguments can be used to pass values
into the procedure, receive return values from the procedure,
or both.

A procedure, also called a stored procedure, is a database
object created via the CREATE PROCEDURE statement that
can encapsulate logic and SQL statements. Procedures are
used as subroutine extensions to applications, and other
database objects that can contain logic.

When a procedure is invoked in SQL and logic within a
procedure is executed on the server, data is only transferred
between the client and the database server in the procedure
call and in the procedure return. If you have a series of SQL
statements to execute within a client application, and the
application does not need to do any processing in between
the statements, then this series of statements would benefit
from being included in a procedure.

Profiles

Oracle

Profiles are a means to limit resources a user can use by
specifying limits on kernel and password elements.
Additionally, Profiles can be used to track password histories
and the settings of specific profiles may be queried.

The following kernel limits may be set: maximum concurrent
sessions for a user, CPU time limit per session, maximum
connect time, maximum idle time, maximum blocks read per

session, maximum blocks read per call, and maximum amount
of SGA.

226

DB OPTIMIZER USER GUIDE

Database Object

DBMS Platforms

Notes

Roles

Oracle

Arrole is a set or group of privileges that can be granted to
users to another role.

A privilege is a right to execute a particular type of SQL
statement or to access another user’s object. For example: the
right to connect to a database, the right to create a tale, the
right to select rows from another user’s table, the right to
execute another user's stored procedure.

System privileges are rights to enable the performance of a
particular action, or to perform a particular action on a
particular type of object.

Roles are named groups of related privileges that you grant
users or other roles. Roles are designed to ease the
administration of end user system and object privileges.
However, roles are not meant to be used for application
developers, because the privileges to access objects within
stored programmatic constructs needs to be granted
directly.

Sequences

DB2, Oracle

A sequence generates unique numbers.

Sequences are special database objects that provide numbers
in sequence for input into a table. They are useful for
providing generated primary key values and for the input of
number type columns such as purchase order, employee
number, sample number, and sales order number.

Sequences are created by use of the CREATE SEQUENCE
command.

Structured Types

DB2

Structured Types are useful for modeling objects that have a
well-defined structure that consists of attributes. Attributes are
properties that describe an instance of the type.

A geometric shape, for example, might have as attributes its
list of Cartesian coordinates. A person might have attributes of
name, address, and so on. A department might have a name
or some other attribute.

Synonyms

Oracle

A synonym is an alternate name for objects such as tables,
views, sequences, stored procedures, and other database
objects.

A synonym is an alias for one of the following objects: table,
object table, view, object view, sequence, stored procedure,
stored function, package, materialized view, java class, user-
defined object type or another synonym.

Tables

All

Tables are logical structures maintained by the database
manager. Tables are composed of columns and rows. The rows
are not necessarily ordered within a table.

A base table is used to hold persistent user data.

A result table is a set of rows that the database manager
selects or generates from one or more base tables to satisfy a
query.

A summary table is a table defined by a query that is also used
to determine the data in the table.

DB OPTIMIZER USER GUIDE

227

Database Object

DBMS Platforms

Notes

Tablespaces

DB2, Oracle

A tablespace is a storage structure containing tables, indexes,
large objects, and long data. Tablespaces reside in database
partition groups. They allow you to assign the location of
database and table data directly onto containers. (A container
can be a directory name, a device name, or a file name.) This
can provide improved performance and more flexible
configuration.

Triggers

All

A trigger defines a set of actions that are performed when a
specified SQL operation (such as delete, insert, or update)
occurs on a specified table. When the specified SQL operation
occurs, the trigger is activated and starts the defined actions.

Triggers can be used, along with referential constraints and
check constraints, to enforce data integrity rules. Triggers can
also be used to cause updates to other tables, automatically
generate or transform values for inserted or updated rows, or
invoke functions to perform tasks such as issuing alerts.

Undo Segments

Oracle

In an Oracle database, Undo tablespace data is an image or
snapshot of the original contents of a row (or rows) in a table.
The data is stored in Undo segments in the Undo table space.

When a user begins to make a change to the data in a row in
an Oracle table, the original data is first written to Undo
segments in the Undo tablespace. The entire process
(including the creation of the Undo data is recorded in Redo
logs before the change is completed and written in the
Database Buffer Cache, and then the data files via the
database writer (DBW) process.)

228

DB OPTIMIZER USER GUIDE

Database Object

DBMS Platforms

Notes

Unique Keys

All

A unique key is a key that is constrained so that no two of its
values are equal. The columns of a unique key cannot contain
null values. The constraint is enforced by the database
manager during the execution of any operation that changes
data values, such as INSERT or UPDATE. The mechanism used
to enforce the constraint is called a unique index. Thus, every
unique key is a key of a unique index. Such an index is said to
have the UNIQUE attribute.

A primary key is a special case of a unique key. A table cannot
have more than one primary key.

A foreign key is a key that is specified in the definition of a
referential constraint.

A partitioning key is a key that is part of the definition of a
table in a partitioned database. The partitioning key is used to
determine the partition on which the row of data is stored. If a
partitioning key is defined, unique keys and primary keys must
include the same columns as the partitioning key, but can have
additional columns. A table cannot have more than one
partitioning key.

Oracle: You cannot drop a unique key constraint that is part of
a referential integrity constraint without also dropping the
foreign key. To drop the referenced key and the foreign key
together, check the Delete Cascade option for the foreign key.

Clustered: A cluster composes of a group of tables that share
the same data blocks, and are grouped together because they
share common columns and are often used together.

Filegroup: Lets you select the filegroup within the database
where the constraint is stored.

Fill Factor: Lets you specify a percentage of how large each
constraint can become.

Views

All

A view provides an alternate way of looking at the data in one
or more tables.

A view is a named specification of a result table and can be
thought of as having columns and rows just like a base table.
For retrieval purposes, all views can be used just like base
tables.

You can use views to select certain elements of a table and can
present an existing table in a customized table format without
having to create a new table.

DB OPTIMIZER USER GUIDE

229

DBMS Connection Parameters by Platform

The following topics provide connection details:

IBM DB2 LUW

230

Microsoft SQL Server

JDBC Connection Parameters
Oracle Connection Parameters
Sybase Connection Parameters

DB OPTIMIZER USER GUIDE

IBM DB2 LUW

Connection Parameter

Description

Use Alias from IBM Client or Generic
JDBC Configuration

If you choose to use the alias from the IBM client, select the appropriate
alias name. Otherwise, choose Generic JDBC Configuration and enter the
connection parameters, as specified.

Schema ID (Optional)

The name of the database schema.

Function Path

Optional. Enter an ordered list of schema names to restrict the search
scope for unqualified function invocations.

Security Credentials

The log on information required by DB Optimizer to connect to the data
source.

Auto Connect

Automatically attempts to connect to the data source when selected in
Data Source Explorer, without prompting the user for connection
information.

JDBC Driver (Advanced)

The name of the JDBC Diriver utilized by DB Optimizer to initiate a
JDBC standard access connection.

Connection URL (Advanced)

Used by the JDBC Driver to connect with a data source. Often contains
host and port numbers, as well as the name of the data source to which it
connects.

For example:
jdbc:postgresql:// host:port/database

jdbc:derby:// host.port/database

Custom JDBC Driver Properties
(Advanced)

The name and property value of any custom JDBC drivers associated with
the data source.

Microsoft SQL Server

Connection Parameter

Description

Use Network Library Configuration

If the data source utilizes a network library, select this parameter. The
corresponding connection parameter fields become available. Otherwise,
choose Generic JDBC Configuration and enter the connection parameters,
as specified.

Host/Instance (JDBC Configuration)

The name of the data source.

Port (JDBC Configuration) (optional)

The listening port used in TCP/IP communications between DB
Optimizer and the data source.

Protocol (JDBC Configuration)

The communication mechanism between DB Optimizer and the data
source. Choose TCP/IP or Named Pipes.

Default Database (Optional)

The default SQL database name, as defined by the schema.

Security Credentials

The log on information required by DB Optimizer to connect to the data
source.

Auto Connect

Automatically attempts to connect to the data source when selected in
Data Source Explorer, without prompting the user for connection
information.

Allow Trusted Connections

Enables trusted connections to the data source from DB Optimizer.

DB OPTIMIZER USER GUIDE

231

Connection Parameter

Description

JDBC Driver (Advanced)

The name of the JDBC Diriver utilized by DB Optimizer to connect and
communicate with the database.

Connection URL (Advanced)

Used by the JDBC Driver to connect with a database. Often contains host
and port numbers, as well as the name of the database to which it
connects.

For example:
jdbc:postgresql:// host:port/database

jdbc:derby:// host:port/database

Custom JDBC Driver Properties
(Advanced)

The name and property value of any custom JDBC drivers associated with
the data source.

232

DB OPTIMIZER USER GUIDE

JDBC Connection Parameters

Connection Parameter

Description

Connect String

Used by the JDBC Driver to connect with a database. Often contains host
and port numbers, as well as the name of the database to which it
connects.

For example:
jdbc:postgresql:// host.port/database

jdbc:derby:// host.port/database

Data Source Name

The name of the data source to which you want DB Optimizer to
connect.

Oracle Connection Parameters

Connection Parameter

Description

Use TNS Alias

If the data source is mapped to a net service name via tnsnames.ora, select
this parameter. Otherwise, choose Generic JDBC Configuration and enter
the connection parameters, as specified.

Host/Instance (JDBC Configuration)

The name of the host machine on which the data source resides.

Port (JDBC Connection)

The listening port used in TCP/IP communications between DB
Optimizer and the data source.

Type (JDBC Configuration)

Indicates if the data source is defined via a system identifier (SID) or a
service name.

Service/SID Name (JDBC
Configuration)

The name of the system identifier (SID) or service name that identifies the
data source.

Security Credentials

The log on information required by DB Optimizer to connect to the data
source.

Auto Connect

Automatically attempts to connect to the data source when selected in
data source Explorer, without prompting the user for connection
information.

Allow Trusted Connections

Enables trusted connections to the data source from DB Optimizer.

JDBC Driver (Advanced)

The name of the JDBC Diriver utilized by DB Optimizer to connect and
communicate with the database.

Connection URL (Advanced)

Used by the JDBC Driver to connect with a database. Often contains host
and port numbers, as well as the name of the database to which it
connects.

For example:
jdbc:postgresql:// host.port/database

jdbc:derby:// host.port/database

Custom JDBC Driver Properties
(Advanced)

The name and property value of any custom JDBC drivers associated with
the data source.

DB OPTIMIZER USER GUIDE

233

Sybase Connection Parameters

Connection Parameter

Description

Use Alias Information from your
SQL.INI File

If the data source is mapped to a name via SQL.INI, select this parameter
to use that name for connection. Otherwise, choose Generic JDBC
Configuration and enter the connection parameters, as specified.

Host/Instance (JDBC Connection)

The name of the host machine on which the data source resides.

Port (JDBC Connection)

The listening port used in TCP/IP communications between DB
Optimizer and the data source.

Default Database (JDBC Connection)
(Optional)

The default database name, as defined by the schema.

JDBC Driver (Advanced)

The name of the JDBC Diriver utilized by DB Optimizer to connect and
communicate with the database.

Connection URL (Advanced)

Used by the JDBC Driver to connect with a database. Often contains host
and port numbers, as well as the name of the database to which it
connects.

For example:
jdbc:postgresql:// host.port/database

jdbc:derby:// host.port/database

Custom JDBC Driver Properties
(Advanced)

The name and property value of any custom JDBC drivers associated with
the data source.

234

DB OPTIMIZER USER GUIDE

DB OPTIMIZER USER GUIDE 235

	Welcome to DB Optimizer
	About this Document

	Configuring DB Optimizer
	Initial Set Up
	Specify a Workspace
	License DB Optimizer

	Customizing DB Optimizer (Preferences)
	Specify Data Sources Preferences
	Specify SQL Development Preferences
	Specify SQL Editor Preferences
	Specify Code Assist Preferences
	Specify Code Formatter Preferences
	Create and Edit Code Formatting Profiles

	Specify Code Quality Preferences
	Specify Results Viewer Preferences
	Specify SQL Templates Preferences
	Specify Syntax Coloring Preferences

	Specify SQL Execution Preferences
	Specify SQL Filters Preferences
	Specify Profile Alerts Preferences
	Specify Profile Repositories Preferences
	Specify Tuning Job Editor Preferences
	Specify VST Diagrams Tuning Preferences
	Specify File Encoding Preferences

	Introduction to Database Tuning
	Introduction to DB Optimizer Tuner
	Tuning Example

	SQL Tuning Methodology
	SQL Tuner Overview
	What’s Happening on the Databases?
	Tuning Example
	The Database is Hanging or the Application has Problems
	The Database Caused the Problem
	The Machine Caused the Problem

	Finding and Tuning Problem SQL

	Using DB Optimizer
	Working with Data Sources
	Register Data Sources
	Add a New Data Source
	Import and Export Data Sources
	Categorize Data Sources
	Customizing Data Source Categories
	Browse a Data Source
	View Database Object Properties
	Search for Database Objects
	Filter Database Objects
	Define Data Source-Specific Object Filters
	Define Global Database Object Filters

	Drop a Database Object

	Working with SQL Projects
	Create a New SQL Project
	Open an Existing Project
	Search a Project
	Add Files to a Project
	Delete a Project

	Creating and Editing SQL Files (SQL Editor)
	Create an SQL File
	Open an Existing SQL File
	Working in SQL Editor
	Understanding Automatic Error Detection
	Understanding Code Assist
	Understanding Hyperlinks
	Understanding Code Formatting
	Understanding Code Folding
	Understanding Code Quality Checks
	Understanding SQL Templates

	View Change History
	Revert to an Old Version of a File
	Delete an SQL File

	Executing SQL Files
	Associate an SQL File with a Data Source
	Configure an SQL Session
	Execute SQL Code
	View and Save Results

	Troubleshooting
	View Log Details
	Maintain Logs
	Filter Logs
	Import and Export Error Logs
	Find and Fix SQL Code Errors
	Find and Fix Other Problems

	Using Profiling
	Understanding Profiling
	Understanding the Interface
	Running a Profiling Session
	Execute a Profiling Session
	Killing an Oracle Session
	Tracing an Oracle Session
	Work with Session Results
	Opening an Existing Profiling Session
	Filtering Results
	Analyze the Load Chart
	Analyze the Top Activity Section
	Top SQL Tab
	Top Execution Activity Tab (DB2 Specific)
	Top Events Tab
	Top Sessions Tab
	Top Blockers Tab (Oracle Specific)
	Top Object I/O Tab (Oracle Specific)
	Top Procedures Tab (Oracle, SQL Server, and Sybase Specific)

	Analyze Profiling Details
	Viewing Details on the SQL Tab
	Viewing Details on the Sessions Tab
	Viewing Details on the Blockers Tab (Oracle)
	Viewing Details on the Events Tab
	Viewing Details on the Procedures Tab

	Creating Profiling Reports
	Saving Profiling Sessions
	Work with the Profiling Repository

	Import Statements to Tuning
	Other Profiling Commands
	Zooming In and Out

	Configuring Profiling
	Configuring DBMS Properties and Permissions
	Configuring IBM DB/2 for Windows, UNIX, and Linux
	Configuring Microsoft SQL Server
	Configuring Oracle
	Configuring Sybase

	Building Profiling Configurations
	Specify Profile Alerts Preferences
	Specify Profile Repositories Preferences
	Using SQL Load Editor/Tester

	Using Tuning
	Understanding the Tuner Interface
	Understanding the Overview Tab
	Inputting SQL to tune
	Running a Tuning Job
	Creating Tuning Reports

	Understanding the Analysis Tab

	Tuning SQL Statements
	Create a New Tuning Job
	Specify a Data Source
	Add SQL Statements
	Managing Bind Variable Errors
	Run a Tuning Job
	Analyze Tuning Results
	Compare Cases
	Filter and Delete Cases
	Create an Outline

	Modify Tuning Results
	DB2, Oracle, SQL Server, Sybase Query Rewrites

	Using the Analysis Tab
	Implementing Index Analysis Recommendations

	Visual SQL Tuning
	Changing Diagram Detail Display
	Expanding Subqueries and Nested Subqueries

	Interpreting the VST Diagram Graphics
	Viewing Object SQL
	Refreshing Tuning Statements
	Refreshing the VST Diagram

	Using Platform-Specific Features
	Using the Table Statistics Tab (Oracle and SQL Server)
	Using the Column Statistics and Histograms Tab (Oracle and SQL Server)
	Oracle-Specific Column Statistics and Histograms Tab Example

	Using the Outlines Tab (Oracle)
	Using the Plan Guides Tab (SQL Server)
	Tuning SQL Statements in the System Global Area (Oracle)

	Additional Tuning Commands
	View the Source Code of Tuning Candidates
	View Statement or Case Codes in SQL Viewer
	Open an Explain Plan for a Statement or Case
	Executing a Session from the Command Line
	Saving a Tuning Job

	Configuring Tuning
	Set Roles and Permissions on Data Sources
	Specify Tuning Job Editor Preferences
	Specify Case Generation Preferences
	Specify VST Diagrams Tuning Preferences

	Examples of Transformations and SQL query Rewrites

	DBMS Hints
	Oracle Hints
	SQL Server Hints
	DB2 Hints
	Sybase Hints

	Reference
	Database Objects

	DBMS Connection Parameters by Platform
	IBM DB2 LUW
	Microsoft SQL Server
	JDBC Connection Parameters
	Oracle Connection Parameters
	Sybase Connection Parameters

