| D R A

Product Documentation

IDERADB Optimizer™

User Guide

Version 16.5/2016+
Published October 2016

© 2016 IDERA, Inc. IDERA, the IDERA logos, and all other IDERA product or service names are
trademarks or registered trademarks of IDERA, Inc. All other trademarks are property of their
respective owners.

This software/documentation contains proprietary information of IDERA, Inc.; it is provided
under a license agreement containing restrictions on use and disclosure and is also protected
by copyright law. Reverse engineering of the software is prohibited.

At IDERA, we deliver a new generation of tools for managing, administering, and securing your
Microsoft Windows Servers, including SQL Server, PowerShell and Microsoft Dynamics. We
employ numerous industry experts worldwide who are devoted to bringing proven solutions to
you, the administrator. IDERA provides solutions that help you ensure server performance and
availability and reduce administrative overhead and expense. Our award-winning products
install in minutes, configure in hours and deploy worldwide in days. IDERA is a Microsoft Gold
Certified Partner headquartered in Houston, Texas, with offices in London, UK, Melbourne,
Australia, and Sao Paulo, Brazil. To learn more, please visit http://www.idera.com/.

October 12, 2016

http://www.idera.com/

Contents

Welcome to DB Optimizero e e e 9
AboUt this DOCUMENT. . . oottt 9
Configuring DB Optimizerottt 1"
Initial SetUD . . o 1
Specify a Workspace 12
License DB Optimizer 12
Customizing DB Optimizer (Preferences)t e 13
Specify Data Sources Preferences. 13
Specify SQL Development Preferences 15
Specify SQL Editor Preferences. 16
Specify Code Assist Preferences 17
Specify Code Formatter Preferences 19
Create and Edit Code Formatting Profiles 20

Specify Code Quality Preferences.o 21
Specify Results Viewer Preferences o 22
Specify SQL Templates Preferences 24
Specify Syntax Coloring Preferences. 26
Specify SQL Execution Preferences 27
Specify SQL Filters Preferences.o 27
Specify Data Source Indexing Preferences 28
Specify Profile Alerts Preferences 30
Specify Profile Repositories Preferences 30
Specify Tuning Job Editor Preferences. 30
Specify VST Diagrams Tuning Preferences i 30
Specify File Encoding Preferences 31
Introduction to Database TuNINGo 35
Introduction to DB Optimizer's TUNET.ottt e e e e e e e e e e 35
SQL Tuning Methodology 37
SQOL TUNEI OVEIVIEW. .« . ottt e e e e e e e e e e e 38
What's happening on the databases? 39
TUNING EXample .. 42
The Database is Hanging or the Application has Problems.......... 42
The Database Causedthe Problem 44
The Machine Caused the Problem 45

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 3

CONTENTS

Finding and Tuning Problem SQL. 47
Using DB Optimizer. . . oo 49
Working with Data SOUrCes o 49
Register Data SOUICES i e 50
Add a New Data SoUrce.t 53
Import and Export Data SoUrces. o 56
Categorize Data SOUICESot 57
Customizing Data Source Categoriesttt 58
Browse a Data Source 59
View Database Object Properties. 60
Search for Database Objects. 62
Filter Database Objects o 63
Define Data Source-Specific Object Filters 64
Define Global Database Object Filters. 64

Drop a Database Object 65
Working with SQL Projects o 66
Create a New SQOL Project.t 66
Open an Existing Project 67
Search a Projecto 67
Add Files to a Project.o 68
Delete a Projectot 69
Creating and Editing SQL Files (SQL EItor)ot 71
Create an SQL Fileo o 73
Openan Existing SQL File. 73
Working in SQL EItorot 73
Understanding Automatic Error Detection. 75
Understanding Code ASSIStttt 77
Understanding Hyperlinks o 80
Understanding Code Formattingt 81
Understanding Code Folding o 85
Understanding Code Quality Checks 85
Understanding SQL Templatesot 89

View Change Historyo 90
Reverttoan Old Versionofa File 21
Delete an SOL File . ..o 21
Executing SQL Fileso o 92
Associate an SQL File with a Data Source 93

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

CONTENTS

Configure an SQL SesSioNottt 94
Execute SQL Codet 95
View and Save Results 95
Troubleshooting oo 96
View Log Details 98
Maintain Logs . . . oottt 99
Fiter LOgs . oo 99
Import and EXport Error Logst 102
Find and Fix SQL Code Errors.o 103
Find and Fix Other Problems. 103
Using Profilingo 105
Understanding Profiling oo 105
Understanding the Interface 107
Running a Profiling Session 108
Execute a Profiling Session 109
Killing an Oracle Session 110
Tracing an Oracle Session 17
Work with Session Results 111
Opening an Existing Profiling Session 112
Filtering Results. o 112
Analyze the Load Chart 113
Analyze the Top Activity Section 115

Top SQL Tab ..o 117

Top Execution Activity Tab (DB2 Specific)ot 118

Top Events Tab ... 119

Top Sessions Tab. 119

Top Blockers Tab (Oracle Specific) 119

Top Object I/0O Tab (Oracle-Specific) 120

Top Procedures Tab (Oracle, SQL Server, and Sybase Specific). 121

Analyze Profiling Details.o 122
Viewing Details onthe SQL Tab. 125

Viewing Details on the Sessions Tab o 129

Viewing Details on the Blockers Tab (Oracle). 132

Viewing Details onthe Events Tab. 135

Viewing Details on the Procedures Tab. 137

Creating Profiling Reportso 140
Saving Profiling Sessions 142

DB OPTIMIZER™ 2016+/16.5 USER GUIDE S5

CONTENTS

Work with the Profiling Repository 144
Import Statements to TUNINGo 147
Other Profiling Commandso 147

Zooming Inand Outo 147

Configuring Profilingo 148
Configuring DBMS Properties and Permissions i 148

Configuring IBM DB/2 for Windows, Unix, and Linux 149

Configuring Microsoft SQL Server. 150

Configuring Oracle 151

Configuring Sybase. 151
Building Profiling Configurations 152
Specify Profile Alerts Preferences 156
Specify Profile Repositories Preferences 159

Using SQL Load EdItor/Tester. 162
USiNG TUNING. . .o e e 167
Understanding the Tuner Interface 167
Understanding the Overview Tab 168
Understanding the Analysis Tab 177
Tuning SQL Statements oot 179
Create a New Tuning Job o 180
Specify @ Data SOUICEottt 180
Add SQL Statementso 181
Managing Bind Variable Errors 183
Runa Tuning Job .. oo 186
Analyze Tuning Results. oo 188

Compare Cases. i 191

Filter and Delete Cases 191

Create an OuUtline 192
Modify Tuning Results 193

DB2, Oracle, SQL Server, Sybase Query Rewrites i 195
Using the Analysis Tab 195

Implementing Index Analysis Recommendations 197
Visual SQL TUNING. - oo 197

Changing Diagram Detail Displayo 198

Choosing the Tuning Statement and Generated Caseto Analyze. 198
Viewing the VST Diagram Legend 199
Viewing Table Counts and Ratios 200

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

CONTENTS

Viewing the Explain Plan. 202
Viewing the VST Diagram in Summary Mode i 202
Viewing the VST Diagram in Detail Mode. i 203
Changing Detail Level for a Specific Table 203
Viewing All Table Fields o 204
Expanding Views in the VST Diagramot 205
Viewing the Oracle Explain PlanOverlay 207
Expanding Subqueries and Nested Subqueries 208
Interpreting the VST Diagram Graphicst 208
Viewing the Diagram Legend. 209
ColOrs . oo 209
Connecting Lines/Joins. o 209
One-to-ONe JoiNn . . oo 210
One-to-Many JOIN . .. oo 210
Cartesian Join . ..o 211
Implied Cartesian Join 212
Many-to-Many Join 213
Indirect Relationship 213

Inor Exists JOIn 214

Outer Join ... 217
Unigque ..o 218

Not Inor Not Exists Join. 218
Viewing Object SQL o 219
Refreshing Tuning Statements. 219
Refreshing the VST Diagramt e 220
Using Platform-Specific Features 221
Using the Table Statistics Tab (Oracle and SQL Server) i 221
Using the Column Statistics And Histograms Tab (Oracle and SQL Server). 222
Oracle-specific Column Statistics and Histograms Tab Example................... 222
Using the Outlines Tab (Oracle) 223
Using the Plan Guides Tab (SQL Server) 224
Tuning SQL Statements in the System Global Area (Oracle) 226
Additional Tuning Commands.t 227
View the Source Code of Tuning Candidates i 227
View Statement or Case Code in SQLViewer 227
Open an Explain Plan for a StatementorCase i 228
Executing a Session from the Command Line.......... 229
Saving a Tuning Job .. o 229

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 7

CONTENTS

Configuring TUNING. .« « ..ttt e e 230
Set Roles and Permissions on Data SoUrcest 231
Specify Tuning Job Editor Preferences. 232
Specify Case Generation Preferences. 234
Specify VST Diagrams Tuning Preferences i 235

Examples of Transformations and SQL Query Rewrites e 236

DBM S HiNts . . oo 237
Oracle Hints. . ..o 238
SQL Server Hints. ..o 246
DB HiNts. « .ottt 247
Sybase HINtso 248

ReferenCe . o o 251

Database Objects. 251

DBMS Connection Parameters by Platform. ... 261
IBM DB2 LU . 262
Microsoft SQL Server 262
JDBC Connection Parameters.o 264
Oracle Connection Parameters. 264
Sybase Connection Parameters. 265

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

WELCOME TO DB OPTIMIZER

IDERA DB Optimizer simplifies SQL optimization and development for application developers
with many features for improving productivity and reducing errors. A rich SQL IDE with
statement tuning, data source profiling, code completion, real-time error checking, code
formatting and sophisticated object validation tools helps streamline coding tasks. DB
Optimizer's user interface helps improve overall productivity with integrated development,
monitoring, and tuning components. DB Optimizer offers native support for IBM® DB2® for
LUW, Oracle®, Microsoft® SQL Server and Sybase® as well as JOBC support for other DBMS.

DB Optimizer has four components that when used together can optimize your database
performance.

SQL Editor: A developer can write Java in Eclipse that calls to the database with SQL. The SQL
that calls to the database can be written in the SQL Editor with type ahead, code assist and

quick fixes to show the users syntax and correct mistakes. For more information, see Creating
and Editing SQL Files (SQL Editor).

Load Tester: The SQL code can be run in the Load Tester to test execution by multiple
concurrent users. User load testing is so often done by one single user and then problems don't
appear until production with multiple concurrent users. Concurrent user testing is a breeze in DB
Optimizer. For more information, see Using SQL Load Editor/Tester.

Profiler: You can run the Profiler while the Load Tester is executing to show clearly the impact on
the database. The profiler can also be used by QA on load simulation. Finally the Profiler can be
run on any production database to clearly show load, bottlenecks, and sources of bottlenecks or
resource consumption. For more information, see Using Profiling.

Tuner: Finally if a problem SQL is found on the system the Tuner will show if it's correctly
optimized by the database or not, and if not it will show the best plan and what hints or
optimizer directives can be included in the SQL to force the database to use the optimal plan.
For Oracle these hints can even be stored in the database so that there is no need to even
change the original SQL text. For more information, see Using Tuning.

ABOUT THIS DOCUMENT

This document is the primary reference and usage guide for DB Optimizer.

NOTE: For the latest versions of DB Optimizer documents and for information that will help
you install and upgrade, see the IDERA documentation website. Always make sure to
consult the README for late breaking updates at
www.idera.com/support/productdocuments.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 9

https://www.idera.com/support/productdocuments

WELCOME TODB OPTIMIZER

10 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

CONFIGURING DB OPTIMIZER

This section contains information on configuring DB Optimizer. It includes information on setting
up the system directory for project files, as well as licensing information. Additionally, this section
contains information on setting preferences within the application for the customization of
various features and functionality.

e |nitial Setup

e Customizing DB Optimizer (Preferences)

INITIAL SETUP

The following topics provide general help for configuring DB Optimizer:

e Specify a Workspace

e License DB Optimizer

Additionally, the following preferences are available to help you customize and tune functions
within the application:

o Specify Data Sources Preferences

¢ Specify SOL Development Preferences

e Specify SOL Editor Preferences

e Specify Code Assist Preferences

e Specify Code Formatter Preferences

¢ Specify Code Quality Preferences

¢ Specify Results Viewer Preferences

e Specify SOL Templates Preferences

e Specify Syntax Coloring Preferences

e Specify SOL Execution Preferences

e Specify SOL Filters Preferences

e Specify Data Source Indexing Preferences

o Specify Profile Alerts Preferences

® Specify Profile Repositories Preferences

e Specify Tuning Job Editor Preferences

e Specify VST Diagrams Tuning Preferences

e Specify File Encoding Preferences

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 1

CONFIGURING DB OPTIMIZER™ > INITIAL SETUP

SPECIFY A WORKSPACE

When you install DB Optimizer, you are prompted to create a workspace. Then when you launch
DB Optimizer, you have an opportunity to choose your workspace. At any time while running DB
Optimizer, you can change your workspace.

Select File > Switch
Workspace.

X

& Workspace Launcher

Select a workspace

Embarcadero DB Optimizer Professional stores wour projects in a Folder called a workspace.,
Choose a workspace Folder ko use For this session,

il Workspace: | C:\Documents and Settings) Jacquieldboptimizer3lworkspace v| [Browse. ..

+ Copy Settings
[]workbench Layout
[]working Sets

@:l [Ok H Cancel]

For more information about workspaces, see Help > Help Contents > Workbench User
Guide.

LICENSE DB OPTIMIZER

The first time you first launch DB Optimizer, you will be prompted to activate the product.
Choose to activate by Internet and follow the prompts. During the activation process you will
receive an email with an activation key; after you enter that key into the License Setup dialog,
you will receive a free 14-day evaluation license.

If due to firewall or other restrictions you cannot use Internet activation, select the E-mail
alternative.

To continue using DB Optimizer after the evaluation period, select Help > IDERA Licensing >
License Registration and follow the prompts.

12 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

CONFIGURING DB OPTIMIZER™ > CUSTOMIZING DB OPTIMIZER™ (PREFERENCES)

CUSTOMIZING DB OPTIMIZER (PREFERENCES)

To customize various aspects of DB Optimizer, select the aspect you want to customize from
the Preferences menu. For information on categories that may not be covered in this section,
see Help > Help Contents > Workbench User Guide or Help > Help Contents >
Debugger, respectively.

This section is comprised of the following topics:

e Specify Data Sources Preferences

o Specify SOL Development Preferences

e Specify SOL Editor Preferences

e Specify SOL Execution Preferences

e Specify SOL Filters Preferences

e Specify Data Source Indexing Preferences

e Specify Profile Alerts Preferences

¢ Specify Profile Repositories Preferences

e Specify Tuning Job Editor Preferences

e Specify VST Diagrams Tuning Preferences

SPECIFY DATA SOURCES PREFERENCES

When you add a data source to your list of Managed Data Sources in the Data Source Explorer,
DB Optimizer stores the definition and metadata for the data source in the location you specify
here. For information on adding data sources, see Register Data Sources.

1 From the Preferences menu, select Data Sources.

The Data Sources pane appears.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 13

CONFIGURING DB OPTIMIZER™ > CUSTOMIZING DB OPTIMIZER™ (PREFERENCES)

 Data Sources

pe crﬁ.rthe location fi:-_r_&éit&_ﬁ'uurce definitions and their metadata:

Datagomcu: ChUsers\ davidt\ AppData’\Roaming\Embarcadero\Data Sour - B

it\AppData\Roaming\Embarcaderc\Data Sources\metadata ~ | Brow

CategoryName .. . ShortName = . -©
| Development DEV .
- | Production .. PROD

| Test { TEST

Rﬂuﬂefuﬂl _ Apply l

2 Specify the location for data source definitions and their metadata.
3 Click Apply.

NOTE: For information on adding custom categories, see CUSTOMIZING DATA
SOURCE CATEGORIES.

14 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

CONFIGURING DB OPTIMIZER™ > CUSTOMIZING DB OPTIMIZER™ (PREFERENCES)

SPeECIFY SQL DEVELOPMENT PREFERENCES

The SQL Development Preferences specified on the first page of the SQL Development
Preferences determines DB Optimizer behavior when connecting to and extracting DDL from a
data source. For information on preferences accessible by expanding SQL Development, see
Customizing DB Optimizer (Preferences).

1 From the Preferences menu, select SQL Development.

& Preferences (Filtered)

| | SOL Development b
S0L Development
onnection timeout {seconds):
DL Exkrackion

[]Extract dependent objects also

[]add initial USE statement if the platform supports it
Exctract storage information

[]Include DROP statement

2 Choose your preferences and then click Apply.
The following describes the SQL Development preferences:

e Connection timeout (seconds): Specify the connection timeout before the connection
to the database fails.

¢ Extract dependent objects also: If selected, when extracting DDL dependent objects
such as indexes are also extracted.

e Add initial USE statement if the platform supports it: If selected, a USE statement is
added to the DDL extracted. Adding the USE statement ensures that when you run the DDL,
you are using the correct database context.

e Extract storage information: If selected, when extracting DDL object storage information
is also extracted.

® |nclude DROP statement: If selected, the DROP statement will be added to the DDL so
you can easily execute the statement.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 15

CONFIGURING DB OPTIMIZER™ > CUSTOMIZING DB OPTIMIZER™ (PREFERENCES)

SPECIFY SQL EDITOR PREFERENCES
1 Select Preferences > SQL Editor.

% Preferences (Filtered) |Z|®
w

| | soL Editor

[= S0l Development
5L Editar Enable the SOL parser Far Files smaller than | 700 ~ kB

w

Severity level for semantic validation problems: | Errar w

Hyperlinks can be configured on the Text Editors preference page.

2 Change the settings as appropriate in each section and then click Apply.

* Enable the SQL parser...: For performance reasons, you may want to enable the SQL
parser only if a SQL file is smaller than the size you specify here.

e Severity level for semantic validation problems: Choose a security level from this list.
This determines how semantic code errors are flagged in the editor and the Problems
view.

e The link to specify hyperlinks takes you to the Text Editors preference page.

NOTE: Clearing Enable SQL Parser will disable many of the “smart” SQL editor features,
including code formatting, auto completion, semantic validation, and hyperlinks. For
better performance, you may disable the parser for files above a specified size.

See the following topics to configure other SQL Editor preferences.

® Specify Code Assist Preferences

Specify Code Formatter Preferences

Specify Code Quality Preferences

Specify Results Viewer Preferences

Specify SOL Templates Preferences

Specify Syntax Coloring Preferences

16 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

CONFIGURING DB OPTIMIZER™ > CUSTOMIZING DB OPTIMIZER™ (PREFERENCES)

SPECIFY CODE ASSIST PREFERENCES
The Code Assist panel is used to specify configuration parameters that determine how code
completion features in SQL Editor behave.

Select Preferences > SQL Editor and then in the Preferences dialog, expand SQL Editor
and click Code Assist.

& Preferences (Filtered)

| | | Ccode Assist =T v

= 35L Development
Data Source Indexing Enable auto-activation

Prafile Alerks

Auto-activation delay {ms); looo &
5 5. Edkor

Code fssisk Auto activation triggers for SCL: I:I

Code Formatker

Code Quality []Fully qualify completions automatically

Resulks Yiewer

50L Templates Code assist color options:

5';."|'ItEIX ':I:Illzlr'il'lg Zam ||Eeti|:|r| | u) ||:|5.E|| |:|.E||:l::_|:|r'|:|ur||:| ':I:I'I:Ir': @
S0L Execution Completion proposal foreground
SOL Filkers

Tuning Job Editor

[Restore Defaulks] [Apply]

@:l [O, H Cancel]

The following describes the options on the Code Assist Preferences page.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 17

CONFIGURING DB OPTIMIZER™ > CUSTOMIZING DB OPTIMIZER™ (PREFERENCES)

* Enable auto-activation: When selected enables code assist functionality with the Ctrl
+ Space command. If this option is selected, the code assist window automatically
appears when you stop typing.

e Auto-activation delay (ms): Specify the amount of time in milliseconds that the
window automatically appears.

e Auto activation triggers for SQL: Enter a trigger character or trigger characters.
When you enter an activation trigger in the SQL Editor, you will see the code assist
options available.

e Fully qualify completions automatically: When selected, specifies if code completion
results are returned specific (fully qualified), rather than the minimum required to identify the
object.

* Code assist color options: Specifies the color formatting of code completion proposals.
Select background or foreground options from the menu and modify them as appropriate.

18 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

CONFIGURING DB OPTIMIZER™ > CUSTOMIZING DB OPTIMIZER™ (PREFERENCES)

SPECIFY CODE FORMATTER PREFERENCES

The Code Formatter pane provides configuration options for code formatting functionality in SQL
Editor.

Select Preferences > SQL Editor and then in the Preferences dialog, expand SQL
Editor and click Code Formatter.

& Preferences (Filtered)

| rte | | Code Formatter =T v
[= SQL Development)
= soL Editar Select & profie:
Code Assist |Eml:uar-:adem[huilt-in] w I Shiow, I Renams. .. Remove
Code Formatter
Code Quality b
Results Yiewer Presview:
el CREATE TABLE colTable ~
Syntax Coloring I
coll INT,
cold INT,
col3d INT,
cold VARCHAR (309
1 |
INZERT
INTO colTable |
VALUES
{
[| 9,
9,
g,
'test! "
1&&5&«& Del‘aults] [Apply]
@ | ox. [N . cacel]

The panel provides a drop down list of formatting profiles and a preview window that
displays how each profile formats code.

e Select a profile: From the list, choose the profile you want to view.

e Click Show to view the details of the Profile. On the Show Profiles dialog that
appears, you can edit the profile and save the changes.

e Click New to define additional code formatting profiles.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 19

CONFIGURING DB OPTIMIZER™ > CUSTOMIZING DB OPTIMIZER™ (PREFERENCES)

¢ Click Edit to modify existing profiles. You can modify how code characters appear in the
interface and how SQL Editor determines line breaks.

¢ Click Rename to change the name of an existing profile. The new name cannot be the
same as another existing profile.

NOTE: If you create a new profile with a name that already exists in the system, a prompt will
appear asking you to change the name of the new code formatting template.

CREATE AND EDIT CODE FORMATTINGPROFILES
You can create your own code formatting profiles that will define how your SQL code is
formatted.

1 Select Preferences > SQL Editor and then in the Preferences dialog, expand SQL Editor
and click Code Formatter.

2 On the Code Formatter pane, click Show or New and a dialog similar to the
following appears.

& Show Profile

e Presigw:

Eesword: |_ - CREATE OF REPLACE PROCEDURE PreviewProcedt s
{ 5

Haw linas vall IN NURNEBER,

wval:d IN NUHRBER,

wali IN NUNBER

Maximurn bne width:; 136
[“Tinsert a nev line befare keywords 1

ip

1%
+| Kesp empty BEGIN. .END Black on a single lins
D £ ne temp_wval NUNEER:
BEGIN

Conditi

Hneran SELECT cold
Fovreatbng palicy: | Scack condiions, traiing operators i FROM tablel

= UHERE
i 1] 2
Stacking threshold: - coll = wvall AMD v
[Keap simple THEM skabemerizs on the: same line < B i
':?\, This is & bult in profile, you wil be prompted to enter a new name when you close the profile Apply I_ CH I l Cancel]

3 Make your changes, click Apply to preview your changes and then click OK to create the
new profile or to exit the Show Profile dialog.

4 Use the preview pane to preview the changes you make to your code formatting
preferences. Changes are not implemented until you click Apply or OK.

20 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

CONFIGURING DB OPTIMIZER™ > CUSTOMIZING DB OPTIMIZER™ (PREFERENCES)

SPECIFY CODE QUALITY PREFERENCES

The Code Quality preferences allow you to specify the severity level for several categories of
problems that result in inefficient or erroneous SQL.

1 Select Preferences > SQL Editor and then in the Preferences dialog, expand SQL Editor
and click Code Quality.

& Preferences (Filtered) |Z|E]

| | | code Quality =T v
[= S0l Developrment

Select the sewverity level For the Following categories of problems that result in

= 5L Editor inefficient or erroneous SCL:
Code Assisk
Code Formatter Missing valid JOIN criteria; Warning v
Code Quality
Resulks Yiewer Irvalid ar missing OUTER. JOIN: Watning
a0l Templates

. :) -
e T Transikivity problem W' arning

Mesked query in WHERE clause: Warning W
Wrong place For conditions in HAYIRNG clause: Warning W

Index suppressed by a function or an arithmetic operator: |Warning

Mismatched or incompatible column bypes: Warning v

MULL column comparison: Warning v

2 Change the severity levels by clicking the list next to the category and choosing the level.

3 To save your changes, click Apply.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 21

CONFIGURING DB OPTIMIZER™ > CUSTOMIZING DB OPTIMIZER™ (PREFERENCES)

SPECIFY RESULTS VIEWER PREFERENCES
The Results Viewer pane provides configuration options that specify how the Results view
displays or saves results.

1 Select Preferences > SQL Editor and then in the Preferences dialog, expand SQL
Editor and click Results Viewer.

& Preferences (Filtered)

Results Viewer =10 -

= S0L Developrment
=I- 5L Editor))
Code Assist Maximum rumber of result sets: | 100 - _

Result sets options

Code Formatter []suppress execution messagqes
Code CQualty

:‘;iu:.t:;i:; (%) Showe results in editor

Syritax Coloring =

Grid refresh interval {ms): | 2000 5

Macimum result rows ko sork: 25000 :

Results format: %Gid Lr
[+] Stripe the raves of the results table
[Ioisplay results in 3 separate tab in the SOL editor

() 5ave results bo file

[R&stnre Defau.il:s] [Apgly]

@ | ok || coxe |

2 Make your preference changes and then save your changes by clicking Apply.
The following describes the preference options available:

e Maximum number of result sets: If selected and the executed SQL returns more
results sets than the maximum specified, result sets in excess of the maximum specified
will not be displayed.

e Suppress execution messages: If selected and the SQL you execute returns
informational messages, they will not be displayed.

22 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

CONFIGURING DB OPTIMIZER™ > CUSTOMIZING DB OPTIMIZER™ (PREFERENCES)

® Show results in editor: Execution results can be either shown in the editor or sent to a file.
If you choose

¢ Grid refresh interval: Indicates the speed in milliseconds that the Results view refreshes.

e Maximum result rows to sort: If the number of rows and results exceed this number,
the column sorting in the result set is disabled.

® Results format: These are the different formats that can be used to display the results in
the editor.

e Stripe the rows of the results table: Adds intermittent highlighted bars in the Results
view.

e Display results in separate tab in SQL Editor: Opens the Results view in a
separate window on the Workbench.

e Save results to file: Provides options that let you save the contents of the result sets to
a file. You can also specify the file type, delimiter and text qualifier.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 23

CONFIGURING DB OPTIMIZER™ > CUSTOMIZING DB OPTIMIZER™ (PREFERENCES)

SPecCIFY SQL TEMPLATES PREFERENCES

The SQL Templates panel provides customization options for creating and modifying SQL code
templates.

1 Select Preferences > SQL Editor and then in the Preferences dialog, expand SQL
Editor and click SQL Templates.

The SQL Templates panel displays a list of all SQL code templates currently available.
Additionally, when you select a template from the list, the Preview section displays the code
block as it will appear when the template is selected in SQL Editor.

& Preferences (Filtered)

Templates =l -

= S0 Devel k
S Create, edit or remove templates:

= S0L Editor
Zode Assist Marme Context Description Aubo I, Mew.. . I
Code Formatter ALLOCATE.., DBZ (8, 20 allocates a cursaor For th... i -
Code Qualty ALTER_TA.., DBZ(8, 20 alkers atable !
Results Viewer ALTER_TA... DBZ(8,9) alkers atablespace

SOL Templates ALTER_VIEW OBZ(8,9) alters aview

Syritax Colaring SLTER _FUL., DB2(8, 9) alters a function
ALTER_ME.., DB2(8,9) alkers a method
ALTER_PR.., DB2(8,9) alkersa procedure
ALTER_SE... DBZ (8, 9) alters a sequence

CALL CB2 (8, 9) calls & procedurs
COMMIT DBz (8, 9) commits the databaze c...
DECLARE ... DB2 (8, 9) defines a temporary ta...
DISCOMM... DBZ (8, 9) destroys one ar more c...

3888558588898 5%

[FlrRAP Bl PRZ (8 4% deane & finckan b .
< b

Prewview:

[Juse code formatker

[F!.EitureDefal.ﬂ:sH Apply i

@ I ox JIl coedl |

24 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

CONFIGURING DB OPTIMIZER™ > CUSTOMIZING DB OPTIMIZER™ (PREFERENCES)

2 Click on the check box beside each template to specify if it is included in the code assist
check or not, within SQL Editor. Use the buttons on the right-hand side of the panel to
create, edit, or delete SQL templates, as needed.

When you create or edit a template, the Edit SQL Template dialog appears.

T Edit SOL Template

pame: | ALTER_TABLESPACE Edit contest [] Automaticaly inse
Description: .addsadataﬂetetaﬂewe |oracle (81, 91, 10g, i!u}lk
Batterm: ALTER TABLESPACE §

ADD DATAFILE “${filelame}’

AUTCEXTEND ON NEXT ${autoExtendValuel MASIZE ${maxSizevaluel;

-

J ([concel

3 Enter a Name, Description, and Pattern in the fields provided, and click
OK.

If the template name doesn’t match an existing SQL code template, your new template is
added to the list, and will automatically be considered when the code assist function is
executed in SQL Editor.

4 Select the Use Code Formatter check box to apply code formatting preferences to the
specified template. See Specify Code Formatter Preferences for more information about
setting code formatter preferences.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 25

CONFIGURING DB OPTIMIZER™ > CUSTOMIZING DB OPTIMIZER™ (PREFERENCES)

SPECIFY SYNTAX COLORING PREFERENCES
The Syntax Coloring panel provides configuration options that change the look and feel of code

syntax in SQL Editor.

1 Select Preferences > SQL Editor and then in the Preferences dialog, expand SQL
Editor and click Syntax Coloring.

¥ Preferences (Filtered)

=1- 5L Edikor
Code fAssisk
Code Formatter
Code Qualty
Results Viewer
SOL Templates
Synitax Colaring

@

= 5L Development

Syntax Coloring

Element:

=50l
Keyword

Mon-executable command ine

Muimber

Other

Skring
[+ Comment

-= Table : Accounts

CREATE TARLE

i
ID IHT ,

TYPE VARCHAR (20) DEFAULT 'CREDIT',
CODE IHT DEFAULT 30 /# Account code =7

1

ACCOUNTS

SET TERMOUT ON

FRONPT Demonstrate sglplus commands.

SHET TETAMATTT

ATE .

= -
| [#]Enable
Colar: E]
[“]Boid
[1talic
=
3
[Rlﬁtﬂfﬁ [:lafal.its] [Apply]
| ook i caned]

2 Use the tree view provided in the Element window to select the comment type or code
element you want to modify. Select the options to the right-hand side of the window to

modify it.

The Preview window shows a piece of sample code that updates according to the changes

you made.

26

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

CONFIGURING DB OPTIMIZER™ > CUSTOMIZING DB OPTIMIZER™ (PREFERENCES)

SPeECIFY SQL EXECUTION PREFERENCES

The SQL Execution preferences you set determine how SQL is executed.

Select Preferences > SQL Execution.

& Preferences (Filtered)

| | SOL Execution -

= 50L Development
SOL Execution

Enable auto-commit For the Following plakfarms:
Generic JDBC

IBM DB2 For LUW
I6M DBZ for zji0s
Firebird

InterBase

Microsoft SOL Server
Oracle

Sybase ASE

Enable DEMS output (Oracle only

The following describes the SQL Execution Preference options available.

Enable auto-commit for the following platforms: When disabled, the SQL is
executed within transactions that must be manually committed.

Enable DBMS output (Oracle only): When disabled, this omits the output statements that
Oracle would otherwise display.

NOTE: If you disable auto-commit for a platform, you must use SQL Editor’s transaction
features to execute code on that platform.

SPeCIFY SQL FILTERS PREFERENCES

These are the set of controls that determine what objects are shown in the Data Source Explorer.

Select Preferences > SQL Filters.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 27

CONFIGURING DB OPTIMIZER™ > CUSTOMIZING DB OPTIMIZER™ (PREFERENCES)

& Preferences (Filtered)

= 5L Development
S0L Filters

- B

SOL Filters -

The selected Filters will be applied in an AMD manner,

IBM DEZ for LUV || Microsoft S0L Server || Oracle | Svbase ASE

Ignore syskem objects

Mew, ..

Deselect Al

SPECIFY DATA SOURCE INDEXING PREFERENCES

The Data Source Index is a local repository that stores the schema of registered data sources in
DB Optimizer. DB Optimizer is automatically set to index information about data sources
registered in the development environment.

By default, the Data Source Index captures all catalogs, functions, procedures, tables, and views.
Additionally, after the initial index, the index performs incremental captures of information.

28

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

CONFIGURING DB OPTIMIZER™ > CUSTOMIZING DB OPTIMIZER™ (PREFERENCES)

However, there is a definitive trade-off when indexing a full database schema. The time it takes
to fully capture a large schema and logical space considerations on local workstations, often
makes it inefficient for DB Optimizer to perform this task each time a new data source is
registered in DB Optimizer. Thus, the Index can be configured via the DB Optimizer
Preferences dialog to accommodate machine processing ability and speed.

1 Select Preferences > Data Source Indexing. Change the settings as appropriate.

% Preferences (Filtered)

| | Data Source Indexing -

= 0L Development
[raka Source Indexing Enable indexing

[clear the index on application dose

Index Content
Ohjects ko indesx: @

& Aliases and =y Synonyms
fx Functions

Indexes and & Keys

) Packages

1 Procedures

Tables

A iews

Maximurn nurmber of objects to inde:x: 00000 o
Maximurn requesk resules by bvpe (0=all):

Clear Indesx

[Restare Defaulks] [Apply]

@ [Ok H Cancel]

The following describes the Data Source Indexing options

Enable indexing: When enabled, indexing is performed on demand to support code
assist and validation in the SQL editor.

Clear the index on application close: Select to ensure your indexing data is the most up
to date. This is useful in an environment where the database schema changes often.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 29

CONFIGURING DB OPTIMIZER™ > CUSTOMIZING DB OPTIMIZER™ (PREFERENCES)

Index Content

e Objects to index: Choose the objects you want to index when connecting to a data
source. Restricting indexing to certain objects of interest only may improve performance.

e Maximum number of objects to index: From the list, select the maximum number
of objects to index. Once this maximum number has been reached, older indexing data
is replaced with new information.

e Maximum request results by type: From the list, select the maximum index request
result size. This is the maximum number of objects that can be shown in the SQL Assist
suggestion box.

¢ Clear Index: Click to clear the index immediately. You can disconnect and reconnect
the data source to reindex it.

SPECIFY PROFILE ALERTS PREFERENCES

For information on specifying the Profile Alert Preferences, see Configuring Profiling.

SPECIFY PROFILE REPOSITORIES PREFERENCES

For information on specifying the Profile Repositories Preferences, see Configuring Profiling.

SPECIFY TUNING JOB EDITOR PREFERENCES

For information on specifying the Tuning Job Editor Preferences, see Configuring Tuning.

SPECIFY VST DIAGRAMS TUNING PREFERENCES

For information on specifying the VST Diagrams Tuning Preferences, see Configuring Tuning.

30 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

CONFIGURING DB OPTIMIZER™ > CUSTOMIZING DB OPTIMIZER™ (PREFERENCES)

SPECIFY FILE ENCODING PREFERENCES
The Workspace panel provides options for Unicode support in SQL files.

Select Preferences > General, expand General and then click Workspace in the tree.

% Preferences (Filtered)

=

=1

= General

Appearance

- Compate/Patch

- Zanktent Types

|- Editors

- keys

|- Metwork Connections
- Perspectives

- Search

|- Securiby

-Skartup and Shukdown
- Web Browser

|- \Waorkspace

| | workspace

See 'Startupn and Shukdown' Far warkspace startup and shukdowin preferences,

Build automatically
[1refresh automatically
[[]5ave automatically before build

Workspace save interval {in minutes): : 5

Warkspace name (shown in window title): | 5

Cpen referenced projects when a project is opened

) always (O Mever (%) Prompt
Texk file encoding Mew bext File line delimiter
(" Default (Cp1252) (%) Default
&) Other: | SRR w) Okher:
[50-535859-1 -~
J5-A5CIT T
UTF-16
UTF-16EBE =

The default encoding for text files on Windows platforms is Cp1252. You can change Unicode
support in from file to file using the Text File Encoding options available on the Workspace

panel.

To change text file encoding in the development environment:

1 Select Preferences > General > Workspace and click the Other option under Text File
Encoding.

2 Use the drop down menu and select an encoding mode from the list provided.

3 Click Apply to save your changes.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

31

CONFIGURING DB OPTIMIZER™ >CUSTOMIZING DB OPTIMIZER™ (PREFERENCES)

To change text file encoding on a specific, folder, or project:

1 Right-click on the file, folder or project that you want to modify and choose Properties.
2 Modifythe Text file encoding selection on the Resource properties page that

appears.

& Properties for test

Resource -
::':::::e path: frest A
Project References Type: Project
Refactoring History Locstion: CiiDecuments and Settings) Jacquieldboptimizer J\workspaceitest
:;me Settings Last modified: February 2, 2011 3:32:34 PM
Texk file encoding
(¥) inherited from container (Cp1252)
() Other!
Hew test File line delimiter
(®) Inherited from container
) Other:
[Restore Defauks | [Acoly |
@ b Dliicand)

32

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

INTRODUCTION TO DATABASE TUNING

This discussion will help you understand the methodology behind DB Optimizer's tuning
functionality and how you can use it to optimize database performance. This discussion is
comprised of the following topics:

¢ |ntroduction to DB Optimizer's Tuner

SQL Tuning Methodology

SQL Tuner Overview

What's happening on the databases?

e Tuning Example

e The Database is Hanging or the Application has Problems

e The Database Caused the Problem
e The Machine Caused the Problem
Finding and Tuning Problem SOL

INTRODUCTION TO DB OPTIMIZER'S TUNER

DB Optimizer's methodology grew out of the impossible predicament presented by the defacto
method of database tuning. The standard method was trying to collect 100% of the statistics
100% of the time. Trying to collect all the statistics as fast as possible ends up putting load on
the monitored database and creating problems. Stories of problems created by database
monitoring products abound in the industry. In order to avoid putting load on the target
database, performance monitoring tools have to collect less often as a compromise. Oracle
compromised in 10g with AWR (their automated performance data collector), only running it
once an hour because of the performance impact. Not only is the impact on the monitored
target high, but the amount of data collected is staggering, but the worst problem of all though,
is the impossibility of correlating statistics with the sessions and SQL that created the problems
or suffered the consequences.

The solution to collecting performance data required letting go of the old problematic
paradigm of trying to collect as many performance counters possible as often as we could and
instead freeing ourselves with the simple approach of sampling session state. Session state
includes what the session is, what its state is (active, waiting, and if waiting, what it is waiting on)
and what SQL it is running. The session state method was officially packaged by Oracle in 10g
when they introduced Active Session History (ASH). ASH is an automated collection of session
state sampling. The rich robust data from ASH in its raw form is difficult to read and interpret.
The solution for this was Average Active Sessions (AAS). AAS is a single powerful metric which
measures the load on the database based on the ASH data. AAS data provided the perfect road
map for what data to drill into. The main drill downs are “top SQL", “top session”, “top event”,
and “top objects”.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 33

INTRODUCTION TO DATABASE TUNING > INTRODUCTION TO DB OPTIMIZER'S TUNER

Other aggregations are possible based on the different dimensions in the ASH data.

Tuning Example

Here is an example screen shot of the same batch job being run four times. Between each run
performance modifications are made based on what was seen in the in the profiling load chart:

Ble Edt Mswapate Sepch Progsct Bun Wedow Heb
3 ¢ E-FE By 0% @ o £ [50 opomant..
By pats [B 5y B/ moutfer sy _wats |) “commit_svery_rowos [l fhoee tieing simoen 210 i) Mome mystem | ™1 S
= 5 B Home system = Processes: | -Al- S | Fiter by | Jone- = $ [B|D]
[0 & lond edtor |
H A SQL Progect Profide Session
= gy & 50U Projest 2
@ f Connections B O CPU B Sestem 00 B User V0 O Cluster B Application B Gonsiguration B Cammit B Hetwork B Administrative
= :19 Cnesten St B Goangurrency O Scheduber B Other m
il gy Genersl SO ar
& DE0 E al
hj dual, ooy :_"
g HCl E”
o - = LOAD WA
¥ 5 0aR @ 2l
2 5C_dewos E
. i1
&g s o
&= TR LiE &
= VeT e
checkpoint
P log create
. st || [HH overview | 18 500 | {5} Bverts | 7 Sesmans | 40 Object 10|
= — — = S0 Skabernents Events Seusions
P55 SO (e Prog i e - g ~ ;
e Statement 28 Actied Event S8 ALin Liger | Program At
" ME: B2 Lravovm N | e by v [] QRACLE BXE (LEwA) f]
Herra s bem I ﬁ aiter datsb, . 0000 revse log fie svalt. .. ¢ Incompiete) . SYGTEM -
== ™ | (3 aer catat, . 0000 reute log fie pym 7] SYETEM A
Excecistag SO0 Load... | |[# o SELECT HASH. (0, 8, 0) ohEry B SYSTEM ER
[Profiing Home system | log i paralel vrie a SYTEM =
[Crrrrassssssssl B fogy fhe gvinch compieon [l SYSTEM a
ok 1o sen,.. prafing, ! Log fle it wnte | SYSTEM ca
| o fi paradel wnte I SYSTEM (@ |
e TE TR R | g || STSTEM [-
| £ > |4 ¥ £ *
I Hiome systee: [13%) e |

Run:

Inrun 1,” log file sync “event is the primary bottleneck. To correct this we moved the log files
to a faster device. (You can see the checkpoint activity just after run 1 where we moved the

log files.)

2 Inrun 2, the "buffer busy wait” event is the primary bottleneck. To correct this we moved the
table from a normal tablespace to an Automatic Segment Space Managed tablespace.

3 Inrun 3the "log file switch” (checkpoint incomplete) event is the primary bottleneck. To
correct this we increased the size of the log files. (You can see the 1O time spent creating the
new redo logs just after run 3.)

36 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

INTRODUCTION TO DATABASE TUNING > SQL TUNING METHODOLOGY

4 The run time of run4 is the shortest and all the time is spent on the CPU which was our goal,
take advantage of all the processors and run the batch job as quickly as possible.

NOTE: To view an explanation of the event, hover over the even name in the Event section.

Conclusion:

With the load chart we can quickly and easily identify the bottlenecks in the database, take
corrective actions, and see the results. In the first run, almost all the time is spent waiting, in the
second run we eliminated a bottleneck but we actually spent more time - the bottleneck was
worse. Sometime this happens as eliminating one bottleneck causes great contention on the
next bottleneck.(You can see the width of the run, the time it ran, is wider in run 2). By the third
run, we are using more CPU and the run time is faster and finally by the 4th run all the time spent
is on CPU, no waiting, and the run is the fastest by far.

SQL TUNING METHODOLOGY

1 Verify that the execution path is the optimal for the query
If not either use the tuning directives (such as hints on Oracle) or
Identify why the native optimizer failed to pick the optimal path
2 If the query is still slow then look at adding indexes
3 If the query is still slow, then you know you are going to have to look a the architecture
What information is the query trying to get?
Is this information necessary?
Are there alternative ways to get this information?

DB Optimizer's SQL Tuner can help with 1 and 2. Step 3 will have to be done by a developer or
DBA but knowing that step 1 and 2 have already been validated can indicate to management
that step 3 is necessary and therefore allocate sufficient resources for step 3.

How do we know if the native database optimizer chose the optimal path? How long would it
take to check this by hand?

DB Optimizer's SQL Tuner is a solid fast sanity test to verify the plan chosen by the native
database SQL optimizer. Tuner quickly generates as many alternative paths as possible and
allows the user to execute them to see if there are more efficient execution paths. DB
Optimizer's SQL Tuner is successful at tuning queries that have a suboptimal execution path.

A query has a sub-optimal execution path when the database optimizer has miscalculated the
cost of the various possible access paths and mistakenly chosen a bad path. The access path
calculations can be miscalculated because of the following reasons:

* The table/index statistics are missing or wrong. (For example, the number or rows is missing
or way off.)

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 37

INTRODUCTION TO DATABASE TUNING > SQL TUNER OVERVIEW

® The data is skewed, for example, the number of orders with an open status is usually low
compared to all the orders that have a closed status because the work is complete. (For
example, orders get filled every day, but only a few are open and needing to be processed.)
Looking for open orders should probably use an index and return fewer rows than looking
for closed orders which should probably just do a full table scan.

® The predicates used are correlated. The optimizer treats two predicate filters on a table as
more selective than just one, but this is not always the case such is the case in the query, how
many Swedes speak Swedish which basically returns the same number of results as just
asking for the number of Swedes alone. Another example is how many Swedes speak
Swahili, which is probably more selective than the optimizer would guess.

e Abug in the optimizer

DB Optimizer's SQL tuner will take a query and try to produce as many execution paths as
possible. These alternative execution paths can then be run to see if there is a faster or less
resource expensive execution path. The execution of each alternative case is timed and if the
execution exceeds 1.5 X the original case then its execution is stopped and we move on to the
next case. This avoids wasting time and resources on execution plans that are clearly
suboptimal.

SQL TUNER OVERVIEW

Tuning provides an easy and optimal way to discover efficient paths for queries that may not be
performing as quickly or as efficiently as they could be.

The application enables the optimization of poorly-performing SQL code through the detection
and modification of execution paths used in data retrieval. This process is performed through
the following functions:

® Hint Injection
¢ Index Analysis
e Statistic Analysis (Oracle only)

e Query re-writes such as suggesting joins to eliminate Cartesian joins, adding transitivity
predicates, and unnesting subqueries in the WHERE clause.

Tuning analyzes an SQL statement and supplies execution path directives to the application that
encourage the database to use different paths.

For example, if tuning is selecting from two tables (A and B), it will enable the joining of A to B,
or B to A as well as the join form. Additionally, different joining methods such as nested loops or
hash joins can be used and will be tested, as appropriate. Tuning will select alternate paths, and
enable you to change the original path to one of the alternates. Execution paths slower than the
original are eliminated, which enables you to select the quickest of the returned selections and
improve query times, overall.

This enables the DBA to correctly optimize queries in the cases where the native optimizer
failed.

38 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

INTRODUCTION TO DATABASE TUNING > WHAT'S HAPPENING ON THE DATABASES?

WHAT'S HAPPENING ON THE DATABASES?

Is the database idle, working or bottlenecked?

When a bottleneck happens how can you know which of these problems are causing the
problem? A bottleneck could be caused by:

® An application problem
® An undersized machine
e SQL requiring optimization
* A misconfigured database
All of these can be easily identified from DB Optimizer's performance profiling screen.

Let's look at the components of the performance profiling screen

Hn D Geawm g Eumd L Crde e
L g K- E NS [+ - R L= H B i e R
P e L T LT L) o

"l et enm [T e—— !

w7 ()LOAD

Bomacry B e Bae

The screen has six important parts.
1. Databases. For more information, see Databases.

2. Average Active Sessions (AAS) Load of selected database. For more information,
see Average Active Sessions (AAS) Load of selected database.

3. Maximum CPU line. For more information, see Maximum CPU line.

4. Top SQL. For more information, see Top SQL, Top Bottlenecks, and Top Sessions.

5. Top Bottlenecks. For more information, see Top SQL, Top Bottlenecks, and Top
Sessions.

6. Top Sessions. For more information, see Top SQOL, Top Bottlenecks, and Top Sessions.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 39

INTRODUCTION TO DATABASE TUNING > WHAT'S HAPPENING ON THE DATABASES?

Databases
First, on top left, is a list of our databases we have registered.
Average Active Sessions (AAS) Load of selected database

The most important part of the screen is the Average Active Sessions (AAS) graph. AAS shows
the performance of the database measured in the single powerful unified metric AAS. AAS easily
and quickly shows any performance bottlenecks on the database when compared to the
Maximum CPU line. The Max CPU line is a yardstick for performance on the database. When
AAS is larger than the Max CPU line there is a bottleneck on the database. Bottleneck
identification is that easy.

AAS or the average number or sessions active, shows how many sessions are active on average
(over a 5 second range in DB Optimizer) and what the breakdown of their activity was. If all the
users were running on CPU then the AAS bar is all green. If some users were running on CPU
and some were doing |O, represented by blue, then the AAS bar will be partly green and partly
blue.

Maximum CPU line

The line “Max CPU" represents the number of CPU processors on the machine. If we have one
CPU then only one user can be running on the CPU at a time. If we have two CPUs then only 2
users can be on CPU at any instant in time. Of course users can go on and off the CPU extremely
rapidly. When we talk about sessions on the CPU we are talking about the average number of
sessions on CPU. A load of one session on the CPU thus would be an average which could
represent one user who is consistently on the CPU or many users who are on the CPU for short
time periods. When a CPU becomes a resource bottleneck on the database we will see the
average active sessions in CPU state go over the Max CPU line. The number of sessions above
the max CPU line is the average number of sessions waiting for CPU.

The Max CPU is a yardstick for performance on the database.

From looking at the previous chart the problem is a machine resource problem.

40 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

INTRODUCTION TO DATABASE TUNING > WHAT'S HAPPENING ON THE DATABASES?

Top SQL, Top Bottlenecks, and Top Sessions

In order to know what the problem is, we have to find out where that demand is coming from. To
find out where the demand is coming from we can look at Top SQL and Top Session tables
below the load chart. In our case shown here the load is well distributed over all SQL in Top SQL
and all sessions in Top Session. There is no outlier or resource hog. In this case it's the machine
that's underpowered. What does a case look like where we should tune the application? The
following screenshot depicts such a problem.

Frabie Rraien

WOt P Syt 0 0 e 10 2 kb 18 et et B2 ool guitian [Commt@ Sataerk §Adminwestivs B Cantaraney [Sehidui B0

s S s s fregl

L Msteminb R LT

-] Uit | Ptgree S 1

e
-
EEpEEEEEDEE

In this case, again the CPU demand is more than the machine can supply but if we look at “Top

SQL" we can see that the first SQL statement (with the large green bar) uses up much more CPU
than any of the rest, actually 60%! If we could get it down to 10% CPU then we'd save 50% of the
CPU usage on the machine! Thus in this case it's worth our while to spend a day or week or even
a couple weeks trying to tune that one SQL statement instead of buying a bigger machine.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 41

INTRODUCTION TO DATABASE TUNING > TUNING EXAMPLE

Finally, how do we know when the database configuration is a problem? We know it's a
configuration problem when we are seeing something other than CPU as the bottleneck in Top
Bottleneck section. Here's an example

Sabhisty hisg S el b (il k| 'ty D O D e il S i e B b i it 0

e

In this case we can see the load is higher than the Max CPU line but the load is coming from
brown colored bars and the green CPU colored bars. If we look at Top SQL we see that there is
only one SQL taking up almost all the load, but it's not because of CPU which would be a green
bar, but some other color. What does this other color represent? We can look at the Top
Bottleneck section and see that it is “log file switch (incomplete)” which basically means the log
files are too small, the database is not correctly configured. This bottleneck can be resolved
simply by increasing the log size.

TUNING EXAMPLE

This example is comprised of the following parts:

e The Database is Hanging or the Application has Problems

e The Database Caused the Problem

¢ The Machine Caused the Problem

THE DATABASE 1S HANGING OR THE APPLICATION HAS PROBLEMS

| wonder if you can imagine, or have had the experience of the application guys calling with
anger and panic in their voices saying, “The database is so slow, you've got to speed it up.”

What's your first reaction? What tools do you use? How long does it take to figure out what's
going on?

42 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

INTRODUCTION TO DATABASE TUNING > TUNING EXAMPLE

Let's take a look at how it would work with DB Optimizer.

o Hcmner wpiem = B

We can clearly see that the database is not bottlenecked and there must be a problem on the
application.

Why do we think it's the application and not the database? The database is showing plenty of
free CPU in the load chart, the largest chart, on the top in the image above. In the load chart,
there is a horizontal red line. The red line represents the number of CPUs on the system, which in
this case is two CPUs. The CPU line is rarely crossed by bars which represent the load on the
database, measured in average number of sessions. The session activity is averaged over five
samples over five seconds, thus bars are five seconds wide. The bars above fall mostly about one
average active session and the bars are rarely green. Green represents CPU load. Any other
color bar indicates a sessions waiting. The main wait in this case is orange, which is log file sync,
waits for commits. Why is the database more or less idle and why are most of the waits we do
see for “commit”? When we look at the code coming to the database we see something like
this:

insertinto foovalues ("a");

commit; insert into foo

values ("a"); commit;

insertinto foovalues ("a");

commit; insertinto foo

values ("a"); commit;

insertinto foovalues ("a");

commit; insert into foo

values ("a"); commit;

insertinto foovalues ("a");

commit;

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 43

INTRODUCTION TO DATABASE TUNING > TUNING EXAMPLE

Doing single row inserts and committing after each is very inefficient. There is a lot of time
wasted on network communication which is why the database is mainly idle. When the
application thinks it's running full speed ahead, it is actually waiting mainly on network
communication and commits. If we commit less and batch the work we send to the database,
reducing network communications, we will run much more efficiently. Changing the code to

begin
foriinl..1000 loop insert
into foovalues ("a%);

-—commit;
end loop;
end;

/
commit;

improves the communication delay and now we get a fully loaded database but we run into
database configuration issues.

THE DATABASE CAUSED THE PROBLEM

= S ——

B T T

FEFFFFFFFFFFFFFF |

i

{
11

i

F
L]
4
2

In the above DB Optimizer screen, the same workload was run 4 times. We can see that the time
(width of the load) reduced, and the percent of activity on CPU increased.

Runs:

1. "log file sync”, the orange color, is the biggest color area, which means uses are waiting on
commits, still even though we are committing less in the code. In this case we moved the log
files to a faster device. You can see the checkpoint activity just after run 1 where we moved the

log files.

2 "buffer busy wait”, the burnt red, is the biggest color area. We drilled down on the buffer busy
wait event in the Top Event section and the details tell us to move the table from a normal
tablespace to an Automatic Segment Space Managed tablespace.

44 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

INTRODUCTION TO DATABASE TUNING > TUNING EXAMPLE

3."log file switch (checkpoint incomplete)”, the dark brown, is the largest color area, so we
increased the size of the log files. (You can see the 10 time spent creating the new redo logs just
after run 3.)

4. The run time is the shortest and all the time is spent on the CPU which was our goal, to take
advantage of all the processors and run the batch job as quickly as possible.

THE MACHINE CAUSED THE PROBLEM

Now that the application is tuned and the database is tuned let's run a bigger load:

& R g ES R F 1 a B 5 e

T— B A g A A S S T Sup—
s medly deiab vystem - e & o Fpe e -

e e K

5 . T e T e 6 T (g e [D [e e [Sy emine O o ey [ki T
- 3

We can see that the CPU load is constantly over the max CPU line. How can we have a bigger
CPU load than there are actually CPUs on the machine? Because the demand for CPU is higher
than the CPU available on the machine. In the image above there are 2 CPUs on the machine but
an average of three users think they are on the CPU, which means that on average one user is
not really on the CPU but ready to run on the CPU and waiting for the CPU.

At this point we have two options. In this case we are only running one kind of load, the insert.
For inserts we can actually go even further tuning this insert and use Oracle's bulk load
commands:

declare

TYPE IDX IS TABLE OF Integer INDEXBY BINARY_INTEGER;
MY_IDX IDX;

BEGIN
foriinl..8000 loop

MY_IDX(i):=1;

end loop;
FORALL indx INMY_IDX.FIRST .. MY_IDX.LAST
INSERT INTO foo (dummy)
VALUES (MY_IDX(indx))
COMMIT;

end;

/

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 45

INTRODUCTION TO DATABASE TUNING > TUNING EXAMPLE

But if this was an application that had a lot of different SQL and the SQL load was well
distributed across the system then we'd have a case for adding more hardware to the system.
Making the decision to add more hardware can be a difficult decision because in general the
information to make the decision is unknown, unclear or just plain confusing, but DB Optimizer
makes it easy and clear, which can save weeks and months of wasteful meetings and debates.
For example

Bt = Tl R T Cp e T S—
e lah_vyshem = [- e s
b s L

[T T) PSPy [EAVECY [oerey PR PRI T ey FRCRRVINEN ey [EPERT
"

BT LT o8 T e e e L - ot o

3
®

EEESEaEAFIAT
TAEALRYSRARRE

o

1

If we look in the bottom left, there is no SQL that takes up a significant amount of load, there is
no outlier SQL that we could tune and gain back a lot of wasted CPU. We'd have to tune many
SQL and make improvements on most of them to gain back enough CPU to get our load down
below the max CPU line. In this case, adding CPUs to the machine might be the easiest and
most cost effective solution.

Conclusion:

e With the load chart we can quickly and easily identify the bottlenecks in the database, take
corrective actions, and see the results. In part 1, we had an application problem, in part 2 we
had 3 database configuration issues and in part 3 we had a hardware sizing issue. In all 3
instances DB Optimizer provides a clear and easy presentation of the data and issues
making solutions clear.

46 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

INTRODUCTION TO DATABASE TUNING > FINDING AND TUNING PROBLEM SQL

FINDING AND TUNING PROBLEM SQL

@ S04 Ogstimivabion - 1068 ABORT] 10%_1.oar - Embarcaders B8 Optimicer - {Bocuments, and St ngyindeh optimier workspecr_Miproduction_ion (2 |8 ﬂt
B Bin [pegee Gegrth el fun Eedtw BED
- . s O-Qq- o 4- oo -
By :'.1 HE Ui Tuwg Job 7 B g % “Lingded SOL Lond 4 i TORLABCRCL g
o TORLABDERCLIDG 1= =Dk ¥ RO D ar'e w
e
Feufille Wpanme X,

W P (W B 0 B U 0 Cat I g s I Coonfgpanation B Co et I s I At abod I ot imency 0 Briastular I Otre

¥ & i e
Fe :-:.4: =] 5
¥ D L
) a7
D ricpre "*
i e e | | B
& iy soe e =
3
O e 3
i T .
} Producr .
o [y sse Ea
- -
TR
+ 2 i
M § e

Flcowons Moo 5 rers 7 Samsore | 8 coma Lo

B S eI L it
Slatee! 08 Mty [B OB Alraty [% ey A [L
WErT) At I w6 oG [I — |
o SLECTORL. A0 = 1] ¥ seempsmeesimer [5 =
=] URET f (] Sl .
o = bw e I (] 1 I
L] L] [—
& ity e [
o = LI 2t mame muteer —an SO ']
o TELECT wm B
3 > o P]
Tem e T sox i
o oF SELECT OAD. 5D & (K 5o]
" i (]
10 Ope B 10 Dy P § & » :': »
i :I
Ui Tureng Jot g Jobk %
—— =

DB Optimizer is targeted at finding problem SQL in a running load with the profiler and
then tuning that (or those) specific queries with the tuner.

It's not efficient just to dump a bunch of procedure code into the tuner and then try and
see if any of the SQL in the package or procedure is tunable. Most queries should, by
default, run optimally on a database, so the goal of DBO is to tune those queries that for
one reason or another are not optimally tuned by the database by default. The easiest way
to find those queries is to identify them on a running system. They can be identified on a
running system because they take up a lot of resources. If we find a resource intensive
query then it's worth the time to generate cases and analyze it for missing indexes to see if
there is a way to tune it.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 47

USING DB OPTIMIZER

This section describes how to use the features of DB Optimizer to optimize your database
operations. This section contains an overview of DB Optimizer functionality and also contains
detailed instructions for

¢ Working with Data Sources

e \Working with SOL Projects

Creating and Editing SQL Files (SOL Editor)

Executing SQL Files

Troubleshooting

WORKING WITH DATA SOURCES

The Data Source Explorer provides a tree view of all registered data sources and associated
database objects. When you first start DB Optimizer, a prompt appears and offers to populate
Data Source Explorer from multiple sources on the system. This includes previously-registered
data sources on other IDERA products, and third-party DBMS clients such as TOAD. If DB
Optimizer cannot detect a data source, you can register it manually.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 49

USING DB OPTIMIZER > WORKING WITH DATA SOURCES

Additionally, you can initiate this feature by clicking the Auto-Discovery button on the Toolbar or
via the File > Import > IDERA > Data Sources > Previously Registered IDERA Data
Sources (Registry) command from the Main Menu

94 Data Source B 52 % S5L Project Ex =
TR

[=ERESAManaged Data Sources (4)
=l TORLABORCL10G_2 (Oracle 10,2.0,3)
#-1{3 Database Obijects
|l[_l:| Prafiling Repasitary
=-E& TORLABORCL11g_2 (Oracle 11,1,0.6)
[L_L:: Database Objects
= M Profiling Fepository
= TORLABORCLI1g_2
14, 2012-03-05 18:43:05 (33m)
+-H8 TORLABORCLY 2 (Oracle 2,2,0,1)
+-HE TORLABSQLOS_1 (50U Server 10,0,160,0)
= Prafiling Repositories
il ToRLABORCLIDG 2
=il TORLABORCL11g_2
=l TORLABORCL11g_?
(g 2012-03-05 18:43:05 (33m)
[+ M TORLABORCLS_Z

The Profiling Repository entries in the Data Source Explorer are available only when configured
in the Profile Configuration Dialog for Oracle data sources only. These are saved profiling
sessions that you can share with other DB Optimizer users. For information on configuring the
data source profiles, see Building Profiling Configurations.

REGISTER DATA SOURCES

When DB Optimizer is started, it prompts you to discover data source catalogs that have been
created by any previously installed IDERA products (DBArtisan, Rapid SQL, DB Optimizer), or
other instances of DB Optimizer.

Additionally, the system scans your machine for the client software of all supported third-party
DBMS platforms (TOAD, Eclipse Data Tools Platform, etc.). These data sources are automatically
added to the data source catalog.

50 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING DB OPTIMIZER > WORKING WITH DATA SOURCES

To manually initiate the scan later, click the Discover Data Sources icon [ﬁq] at the top of Data
Source Explorer. The Discover Data Sources dialog appears.

']!_ Discover Data Sources

Discover Data Sources
Select the locations to search for data sources.

Previously registered Embarcadero data sources (Registry)

Fie system and network
Eclipse Data Tools Platform (DTP)

[CJQuest Software (TOAD)

@ ok [_Next> e

1 Choose the type of data sources you want to scan for and click Next. The wizard
automatically returns all data sources it finds on your machine based on the criteria you

specified

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

51

USING DB OPTIMIZER > WORKING WITH DATA SOURCES

*¥ Discover Data Sources

Discovered Data Sources
Select from the data sources decovered in the specified locations.

| | L
= e IR
& [¥]l= 18MDB2 for LW
[V oracle
= (V] Microsoft SQL Server
[¥)54 Datotbzo
] ROMLABSQLOO_1
[~]E ROMLABSQLOS_1
8 TORLABSQLOS_1
® (V= Generic J0BC
1= File system and network,
®] o1p

[seleccal | [peselectal |

=)

[<Bock][mext> || Ensh J[Concel |

2 Choose the data sources you want to add to the DB Optimizer environment and click Finish.
Data Source Explorer automatically populates with the new data source selections.

TIP: To add data sources manually, right-click Managed Data Sources in the Data Source
Explorer tree, select New > Data Source, and enter the connectivity parameters
as prompted.

For additional information on data source connection parameters, see DBMS Connection
Parameters by Platform.

Once registered, the data source appears in the Data Source Explorer view. If you have
created more than one workspace, they all share the same data source catalog.

Once a data source has been registered, the connection parameters are stored locally. In
some cases, a user ID and password are required to connect to a registered data source. DB
Optimizer can encrypt and save user IDs and passwords to connect automatically.

NOTE: In some cases, older versions of DB Optimizer and DB Artisan/Rapid SQL are not
compatible with this version of DB Optimizer, and the methods listed above will not
import these older data source catalogs. If you are experiencing difficulties, you can
import the old data sources via the Windows registry by selecting File > Import... >
IDERA > Data Sources > Previously Registered IDERA Data Sources (Windows
Registry).

52 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING DB OPTIMIZER > WORKING WITH DATA SOURCES

ADD A NEW DATA SOURCE

You can also add a new data source manually.

1 Click File > New > Data Source.

-

#5) Mew Data Source: New data source | =t 2 .|

Register a new data source

Choose the server type and location for your new data source,

[¥] Generate an unique name based on the alias or the host name

Data source name; | Mew data source

Select a server type: Select a data source group:
l"ﬂGeneric IDBC 1= Managed Data Sources
IZ‘IE|IEM DB2 for LLW 1= IBM DB2 LUW
EF4 Microsoft SQL Server = Microsoft SQL Server
£ty Oracle 1=F Oracle
(5% Sybase ASE 1= Other (Generic IDBC)

== Sybasze ASE

[] Create a new server type-specific subgroup

Select a category: | Default I

Configure data source categories

.

2 If you want the system to assign a name to the data sources, select Generate a
unique name based on the alias or the host name.

If you want to enter the data source name, deselect Generate a unique name based on
the alias or the host name and then in the Data source name: field, enter the data
source name.

3 Inthe Select a server type area, select the type you want to add.

4 Inthe Select a data source group area, select the data source group where you want
the new data source to appear in the Data Source Explorer.

5 If you want to assign the new data source to a category, useful if you have a large number of
data sources to manage, click the Select a category: list and choose one of the
categories.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 53

USING DB OPTIMIZER > WORKING WITH DATA SOURCES

Mo category

Select a cakegory:

QDevelnpment

C]Test
[Jon
@ QPdeuctinn

Categorized data sources appear with the color for the designated category on the bottom
left of the data source icon in the bottom of such as 78 for the Test category and &8 for the

Production category.
For information on adding custom categories, see CUSTOMIZING DATA

SOURCE CATEGORIES.

NOTE:

When you open a tuning job or SQL Editor window to create SQL for the categorized data
source you will see that the category color is applied to the top of the window, as follows.

-
| Untitled Tuning Job 4.tun 53

L‘-" Overview P Analysis

£E Overview

[]Perform detail analysis

Tuning Statements Generate cases

6 Click Next.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

54

USING DB OPTIMIZER > WORKING WITH DATA SOURCES

¥ New Data Source: New data source |;| Elf'5__<|

-

Configure a new Oracle data source

Enter Oracle-specific connection and security credential information for the new
data source.,

Cracle
() Use a THS name alias

{*}} IUse a direct conneckion

Host/Inskance: *|
Port: | 1521
Tvpe: {:!' Service name {i} SID

Service/sID name:“|

Security credentials

Lser name: |

Passwiord; |

Conneck as: | normal b

Auto-connect (Saves and encrypts password)

[] allow trusted connections

Test Connection

@

Cancel

7 Complete the data source configuration and then click Test Connection. This will ensure

your configuration is correct. If the connection test fails, make the necessary corrections and
then click Finish.

The new data source appears in the Data Source Explorer.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 55

USING DB OPTIMIZER > WORKING WITH DATA SOURCES

IMPORT AND EXPORT DATA SOURCES

Some IDERA products contain data source catalogs that are shared with DB Optimizer. In other
words, instead of manually adding data sources to the environment, you can import an existing
data source catalog from other IDERA products or third-party DBMS sources.

You import Data Sources via the File > Import command in the Main Menu, expanding the
IDERA folder in the Data Source Selection tree, and choosing Data Sources.

& Import

Select

Import daka sources, | E - 5

Select an import source;

[F-[2 General
= CYs
2= Eml:uaru:a-:leru:u

2| [Er Flun,l'DeI:uug
#- (= Team

The following types of sources can be imported to Data Source Explorer:
e Eclipse Data Tools Platform (DTP)
¢ Previously Registered IDERA Data Sources (File)
e Previously Registered IDERA Data Sources (Registry)
e Quest Software (TOAD)

56 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING DB OPTIMIZER > WORKING WITH DATA SOURCES

Once a data source is registered, it automatically appears in Data Source Explorer. Connection
parameters are stored locally, and DB Optimizer can be set to connect automatically each time
you select the data source from the tree.

Conversely, you can also Export your current data source catalog to a file, which can then be
imported into other instances of DB Optimizer via the Previously Registered IDERA Data
Sources (File) option. This is performed using the File > Export command in the Main Menu,
and then selecting IDERA > Data Sources from the tree view in the Export dialog.

To import data sources:
1 Select File > Import. The Import dialog appears.

2 Choose IDERA > Data Sources from the tree and click Next.

3 Choose a source from which you want to import the data sources. You can choose to import
data sources from the DTP, TOAD, or an existing IDERA data source catalog stored in the
Windows registry or as a file (created via the Export command). Click Next.

4 Specify the location of the import source and click Finish. Data Source Explorer is
automatically populated with the new data sources.

To export data sources:
1 Select File > Export. The Export dialog appears.
2 Choose IDERA > Data Sources from the export tree and click Next.

3 Use the check boxes beside each listed data source to indicate which data sources you want
to export. Click Next.

4 Click Finish.

5 The data sources are automatically exported in the form of an XML file. You can import this
file to other instances of DB Optimizer via the Import command.

CATEGORIZE DATA SOURCES

To make managing a large number of databases easier, you can assign a category to a data
source. Categorized data sources appear with the color for the designated category on the
bottom left of the data source icon in the bottom of such as Fsifor the Test category and s for
the Production category.

NOTE: Forinformation on adding custom categories, see CUSTOMIZING DATA
SOURCE CATEGORIES.

You can categorize a data source when you add a new data source (see Add a New Data Source)
or by editing the properties of an existing data source.

1 In the Data Source Explorer, locate and then right-click the data source you want to add
to a category.

2 Choose Properties.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 57

USING DB OPTIMIZER > WORKING WITH DATA SOURCES

& Properties for DSQUERY _#2 (S0L Server)

Data Source Configuration

t WP f lber bt

- Configusation
Configuration | Advanced |

5L Fikers
Data source name: | DSQUERY _#2
o category ~|

Cateqory:

Microsoft SOL Serw| (1) Development

() Use a network I || Test
Qi
Server slias ﬁﬁu:ﬁ.ﬁhﬂn’

From the Category list, choose the category you want and then click OK.
When you create a tuning job for the categorized data source you will see that the category
color is applied to the top of the tuning job data source details, as follows.

P Overview Fﬂ' Analysis

£ Overview
[]Perform detail analysis

Tuning Statements Generate cases

CUSTOMIZING DATA SOURCE CATEGORIES

DB Optimizer lets you customize your data source category scheme. A data source category

has the following configurable components:
¢ Category name - The name displayed as a selection when selecting a category

¢ Short Name - An abbreviation shown in window components and icons

e Color - The color used to denote a categorized data source in the Explorer tree icons and

window tabs.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

58

USING DB OPTIMIZER > WORKING WITH DATA SOURCES

To customize your datasource categories

1 Select Preferences > Data Source and then select the Datasource Group panel.
2 Take one of the following actions:

e Create a new category by clicking Add and selecting or providing a Full name,
Short name, and Color combination.

e Edit an existing category by selecting the category, clicking Edit and modifying the name
and color combination.

NOTE: The short name for a category cannot be edited.

e Delete an existing category by selecting the category, clicking Delete and verifying the
deletion at the prompt.

BROWSE A DATA SOURCE

You can drill down in the Data Source Explorer tree to view registered databases on a server, and
view tables, and other objects in a database. Additionally, you can view the structure of
individual objects such as the columns and indexes of a table. Right-click the object for a menu
of available commands, such as Extract to Project, which creates a new SQL file containing the
object’s DDL.

In most cases, whenever you browse a data source, DB Optimizer requires login information in
order to connect with the data source. Enter a valid user name and password in the fields
provided. The Auto Connect option retains your login credentials for future connections to the
same data source.

You can turn off the Auto Connect feature by right-clicking on a specified data source and
toggling the Connect on Expand option. By default, when Connect on Expand is active, DB
Optimizer automatically attempts to connect to the server each time you browse a data source.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 59

USING DB OPTIMIZER > WORKING WITH DATA SOURCES

VIEW DATABASE OBJECT PROPERTIES

All objects in Data Source Explorer contain properties as they relate to the DB

Optimizer application.

8 Data Source Expl 53 . &% sQL ProjectExpl |~ |

a Rihhe=2BE T
| | Ba
= 1=F Managed Data Sources [_4'__]

#-1=+ DB2 Servers
= MS 50L Servers
& % datoearl1 (SQL Server)
Sl datoedwina1 (SQL Server 7.0.1094.0)
=-Eis datotb19 (SQL Server 8.0.813.0)
= r}) Databases (41)
=
@ *}* Check Constraints
@ il Defauits
& ¥ Foreign Keys
fx Functions
1B indexes |
';D Primary Keys
: 5; Procedures
& Roles
2 Rules
Tables
{J Triggers
“,',9 Unique Keys
A} User Datatypes

. Users
&3 Views

[+

-6

[+

-850

60

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING DB OPTIMIZER > WORKING WITH DATA SOURCES

DB Optimizer Object Properties are viewed via the Properties dialog. The dialog is accessed by
right-clicking the object in Data Source Explorer.

% Properties for TORLABSCORCL (MOVIES) (Oracle 10.2.0.1) ZIE|E|
I Data Source Configuration v
Canfiguration . > -
2L Fikers Configuration | advanced

Data source name: TORLASSCORCL (MOVIES)
Category: t_]T'#L'J:

£ |

Oracle
(e & TS name alias

() =2 & diresck connection

HostfInstznce: i TORLABSCORCL

Perk: [1521

Type: {3 Service name (=15ID

ServicejSID name: | orl

Sacurity aredentials
Usar name: | MOVIES |

Pasoword: sssses |

Connect &2 norisal v

| fwibo-connact {Saves and encryps pass
P
[alleas trusted connections

[Tast Connaction] l Apphy]

&:' [O H Cancal]

To view Data Source Explorer object properties:
The properties are accessed by right-clicking a data source in Data Source Explorer.
The dialog displays properties with regards to Configuration and SQL Filters.

The Configuration node provides information about the parameters used to initially define the
data source during the data source registration process. For more information on these values
and how to modify them, see Register Data Sources.

The SQL Filter node enables a developer to place filters on data source objects that appear in
the Database Explorer. For more information, see Filter Database Objects.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 61

USING DB OPTIMIZER > WORKING WITH DATA SOURCES

SEARCH FOR DATABASE OBJECTS

Database object searches rely on the Object Index when returning results. By default, caching is
set to configure only parts of a database. To configure the Index to expand object searches, see
Specify Data Source Indexing Preferences.

1 Select Search > Database. By default, the search scope is all currently connected
databases. Under Specify the scope for the search, clear any databases or server check
boxes you do not want to search.

2 Specify the search criteria:

e Type the value to search for in the Search String field. Use the * character to
indicate wildcard string values and the ? character to indicate wildcard character
values.

e Select Case Sensitive to indicate to the search function that you want case sensitivity to be
a factor when searching for appropriate string matches.

® Select Search Indexed Data to indicate that the search function should read the Index.
This increases the performance of the search function and will typically result in faster
returns on any hits the search might make.

e Select Apply SQL Filters to apply any relevant database or vendor filters to the search.

e Choose Declarations, References, or All Occurrences to specify what the search
is restricted to in terms of database objects.

* A Declaration is an instance where an object is declared. For example, an object
is declared in a CREATE table.

* A Reference is an instance where an object is used or referred to. For example, an object
is referred to in a procedure or as a foreign key in a table.

e Choose All Occurrences to return both declarations and references in the search results.

e Use the check boxes beside the database object panel to select and deselect the specific
database objects that you want to be included in the search process.

62 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING DB OPTIMIZER > WORKING WITH DATA SOURCES

3 Click Search.

The results of your search are generated in the Search view. When you open a matched file,
references to the keyword are flagged with yellow arrow icons that appear in the left-hand
column of the editor.

= DELETE FROM Shape Edge Display Ver
o & WHERE Shape Edge Display ID IN
(SELECT do.Cbject_Table Row_ID
FROM Diagram Object do,
Meta Table mt
WHERE mt.Name = 'Shape Edge Display' and
do.Heta Table ID = mt.Meta Table ID and
do.Diagram_ID = EDelDiagramlD)

DELETE FROM Shape Edge Display
WHERE Object_GUID IN
{SELECT do.Object_GUID
FROM Diagram Object do,
Heta Table mt
WHERE mt.Name = 'Shape Edge Display' and
do.Heta Table ID = mt.Meta Table ID and
do.Diagram ID = EDelDiagramlID)

You can navigate between keywords within all returned files using the yellow “up” and
“down" arrows that appear at the top of the Search view.

FILTER DATABASE OBJECTS

Filters can be placed on data sources and corresponding data source objects to restrict their
display in Data Source Explorer. This feature is useful if you have data sources that contain large
numbers of database objects. You can apply filters to view only the schema objects you need for
the development process.

There are two types of data source filters available:

* Global filters that affect all registered data sources in the DB Optimizer development
environment.

e Data Source specific filters affect only the specified data source for which they are
defined.

e On Sybase and SQL Server platforms, you can apply database filters, which enables you to
set different filters on different databases within the same source.

In both cases, data source object filters are defined via the Object Filter Manager, through the
development of filter templates. Once defined, filter templates can be activated and
deactivated as you need them.

Several filter templates can be combined at a global level or applied to a specific data source.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 63

USING DB OPTIMIZER > WORKING WITH DATA SOURCES

See also:
Define Data Source-Specific Object Filters

Define Global Database Object Filters

DEFINE DATA SOURCE-SPECIFIC OBJECT FILTERS
Data source-specific object filters affect only the specified data source.

To define data source-specific filters:
1 In Data Source Explorer, right-click the data source and select Properties.

The Properties dialog appears.

2 Select the SQL Filters node and select Enable data source specific settings. The
other controls on the dialog become enabled.

3 Click New. The Filter Template dialog appears.
4 Specify the parameters of the filter.

¢ In the Name field, enter the name of the filter as you want it to appear in the selection
window on the SQL Filter node.

* The Database Type pane provides a list of data source objects. Deselect the data
source objects that this template filters so that they do not appear in Database Explorer
when displaying data source objects for the data source.

e Click New to add filter parameters for data source object properties. The New SQL Filter
Predicate dialog appears.

e Use the Property and Operator fields to supply the filter criteria. Property specifies
whether the value is a Name or Schema, and Operator specifies the matching type of
the filter syntax. (Equals, Not Equals, Like, Not Like, In, Not In)

e In the Value field, enter the full or partial syntax of the property or properties you want to
filter in Data Source Explorer.

5 Click OK. The filter property specification is added to the Filter Template.

6 When you have finished defining the filter template, click OK. The template name is added
to the Properties dialog. It can be enabled and disabled by selecting or deselecting the
check box beside its name, respectively.

DEFINE GLOBAL DATABASE OBJECT FILTERS

Global filters affect all registered data sources in the DB Optimizer development environment.
When you create and apply a global filter to a platform vendor in DB Optimizer, all databases
associated with that vendor are affected by the filter, as defined.

64 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING DB OPTIMIZER > WORKING WITH DATA SOURCES

Individual global filter templates are separated, by supported data source platform, on tabs in
the SQL Filter window. Select the appropriate tab to view existing filter templates or add new
ones, as needed.

To define a global filter:
1 Select Window > Preferences from the Main Menu. The Preferences dialog appears.

2 Expandthe SQL Development node and select the SQL Filter subnode. The SQL Filter
pane appears.

3 Click New. The Filter Template dialog appears.
4 Specify the parameters of the filter template:

¢ In the Name field, enter the name of the filter as you want it to appear in the selection
window on the SQL Filter node.

e The Database Type pane provides a list of data source objects. Deselect the data
source objects that this template filters so that they do not appear in Database Explorer
when displaying data source objects for the data source.

e Click New to add filter parameters for data source objects properties. The New SQL Filter
Predicate dialog appears.

¢ Use the Property and Operator fields to supply the filter criteria. Property specifies whether
the value is a Name or Schema, and Operator specifies the matching type of the filter
syntax. (Equals, Not Equals, Like, Not Like, In, Not In)

¢ In the Value field, enter the full or partial syntax of the property or properties you want the
template to filter in data source Explorer.

5 Click OK. The filter property specification is added to the Filter Template.

6 When you have finished defining the filter template, click OK. The template name is added
to the Properties dialog. It can be enabled and disabled by selecting or de-selecting the
check box beside its name, respectively.

TIP: Data Source object filters are added and removed from the development environment
by selecting and de-selecting the checkboxes associated with each filter template on
both the global and data source-specific dialogs.

DROP A DATABASE OBJECT

To delete an object permanently from a database, right-click the object in Data Source Explorer
and choose Drop from the menu. The Drop Wizard prompts you to confirm removal of the
object and provides a DDL preview of the deletion code.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 65

USING DB OPTIMIZER > WORKING WITH SQL PROJECTS

WORKING WITH SQL PROJECTS

You create projects to organize and store SQL development files. The purpose of projects is to
keep your work-in-progress files organized, as well as maintain a common directory structure
when developing code and executing files on registered data sources. Once a file has been
developed and is ready for deployment, that file can then be executed on a registered data
source.

SQL Project Explorer is used to view and access files. It uses a tree view to display the project as
a series of folder directories with a folder labeled with the project name as the parent directory,
and with project categories, and associated project files as its children.

53 pata Seurce Expler | 2 50U Project Explare 5 = Im|

G =
.

BT
= i Jacquie

t 4 Comfections
] Creation Scripts

=7 General SOL
=+ Inseet

#% schemahiame. tablehlame
“L-_-;‘} Linkithed 50050
* 3 SOLProject

[# Untitied Tuning Job22.bun
[Untitled Tuning Jobes.tun

All files in an SQL Project project are organized under the following categories:

¢ Connections: List the connections of any given SQL file of a data source associated with
the project.

¢ Creation Scripts: Provide DDL statements and statements that define database objects.

e General SQL: Provide a category for all other SQL files that are not used in database
object creation. This includes DML files, and so on.

e Large Scripts: Contain all files larger than the currently set SQL Editor preference. The file
size limit can be modified on the Preferences panel by selecting Window > Preferences
in the Main Menu.

Physically, the projects and files you create as you work in DB Optimizer are stored under the
Workspace directory you specified at the prompt when DB Optimizer was started. The directory
and files can be shared, and other tools can be used to work on the files, outside the DB
Optimizer development environment.

You can move existing files within a project by clicking and dragging the file you want to move in
the Project Explorer from one node to another, or via the File > Move command.

CREATE A NEW SQL PROJECT

1 Select File > New > SQL Project from the DB Optimizer Main Menu. The New Project
Wizard appears.

66 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING DB OPTIMIZER > WORKING WITH SQL PROJECTS

2 Enter the appropriate information in the fields provided:
e Name: Enter the name of the project as you want it to display in the Project Explorer view.

e DBMS Platform: Select the data source platform to which the new project will be
associated. This enables DB Optimizer to properly parse SQL development code for
project files.

e Location: When selected, the Use Default Location check box indicates the project is to
be created under the currently selected Workspace. Deselect the check box and specify a
new folder path if you do not want to create the project in the currently selected
Workspace.

3 Click Finish. The new project icon appears in the Project Explorer view under the name that
you specified. If you did not select Use Default Location, the project will appear in the
appropriate Workspace when you open it in DB Optimizer.

NOTE: Alternatively, you can select New > SQL Project from the Main Menu or click the New
Project icon in the Tool Bar to create a new project.

OPEN AN EXISTING PROJECT
You can open projects by navigating to SQL Project Explorer and expanding the node of the
project that contains the files you want to access.

Below each project name are a series of nodes that categorize any existing SQL files by
development type:

e Connections: Lists the connections of any given SQL file of a data source associated
with the project.

e Creation Scripts: General data source object development scripts. This node contains DDL
statements and statements that define database objects.

e General SQL: Provides a category for all other SQL files that are not used in database
object creation. DML files, etc.

e Large Scripts: Contains all files larger than the currently set SQL Editor preference. The file
size limit can be modified on the Preferences panel. (Choose Window > Preferences in
the Main Menu to access the panel.)

NOTE: Physically, the projects and files you create as you work in DB Optimizer are stored
under the project directory that you specified at the prompt when the project was
created. The directory and files can be shared, and other tools may be used to work on
the files, completely exempt from the DB Optimizer development environment.

SEARCH A PROJECT
1 Select Search > File.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 67

USING DB OPTIMIZER > WORKING WITH SQL PROJECTS

3 Specify the search criteria:

e Type the value to search in the Containing Text field. Use the * character to indicate
wildcard string values, the ? character to indicate wildcard character values, and the \
character to indicate an escape character for literals (* ? /).

o Select Case Sensitive and indicate to the search function that it should take into
account case when searching for appropriate string matches.

¢ Select Regular Expression to indicate to the search function that the string is a
regular function.

¢ Inthe File Name Pattern field, specify the extension name of the files to search for explicitly.
If the value in this field is a * character, the search function searches all files regardless of
extension. Manually type in the extensions to indicate file type (separate multiple file types
with commas), or click Choose and use the Select Types dialog to select the file extensions
the process will search for the string by.

o Select Consider Derived Resources to include derived resources in the search.

e Select Workspace or Working Set to choose the scope of the search. If you choose
Working Set, specify the name of the defined working set manually, or click Choose and
navigate to the working set you want to search for in the provided string.

3 Click Search. The results of your search are generated in the Search view on the Workbench.

ADD FILES TO A PROJECT

Existing files that reside in directories outside of the workspace can be added to a project via the
following methods:

® Dragging and dropping the file set from a system directory to SQL Project Explorer.
e Copying and pasting the file set from a system directory to SQL Project Explorer.

e Executing the Import command.

To drag/drop or copy/paste files from a system directory to SQL Project Explorer:
1 With the SQL Project Explorer view open, navigate to the directory where the files you want
to add to the project are located on the system.

2 Drag and drop the files you need from Windows Explorer into SQL Project Explorer. The files
appear in the tree view under the appropriate categories.

NOTE: Alternatively, you can use the Copy command on the files you want to add in Windows
Explorer and then right-click the Project Explorer and select Paste from the menu. The
files appear in the tree view under the appropriate categories.

68 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING DB OPTIMIZER > WORKING WITH SQL PROJECTS

To use the Import command:

1 Right-click anywhere on the Project Explorer and select Import. The Import dialog appears.

2 Expand the General node and double-click File System. A dialog containing the
import specification parameters appears.

* In the From directory field, manually type the directory location of the files you want to
import to Project Explorer, or click Browse and navigate to the appropriate folder. The
panels below the field populate with the folder selection and a list of suitable files contained
in that folder. Use the check boxes beside each folder and file to specify what folders/files
you want the import function to add in Project Explorer.

¢ In the Into folder field, manually type the name of the folder within Project Explorer
where you want to import the files specified in the panels above, or click Browse and
navigate to the appropriate folder.

e Select the Overwrite existing resources without warning check box if you do not want
to be prompted when the import process overwrites Project Explorer files that contain the
same name as the imported files.

® Choose Create complete folder structure or Create selected folders only, depending
on whether you want the import process to build the folder structure of the imported
directory automatically, or only create those folders you selected in the panels above,
respectively.

3 Click Finish. The import process moves all selected folders and files into Project Explorer
and thus into the DB Optimizer development environment.

NOTE: In addition to accessing the Import command via the shortcut menu, you can also
access the Import dialog by choosing File > Import... from the Main Menu.

DELETE A PROJECT

You can delete a project by right-clicking its folder in the SQL Project Explorer and selecting
Delete.

When you delete a project, DB Optimizer will prompt you with a Confirm Project Delete dialog
that asks you to confirm the deletion of the project, and offers you the option of deleting the
project from the DB Optimizer interface, or deleting the project from the system.

e |f you select Do not delete contents, the files and directory structure will be removed
from SQL Project Explorer, but they will still exist on your machine.

e |fyou select Also delete contents ..., the files and directory structure will be removed
from SQL Project Explorer and deleted from your machine.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 69

USING DB OPTIMIZER > WORKING WITH SQL PROJECTS

70

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

CREATING AND EDITING SQL FILES (SQL EDITOR)

The SQL Editor is a Workbench interface component that enables the development, viewing,
and formatting of SQL code.

E@Bensun.sql £3 D sglLog.log

CREATE TABLE dbo.ben=on

|
job char (8) HOT HULL,
sal numeric({38,0) HOT HNULL,
loc mnumeric(38,0) HOT HULL,
CONSTRAINT pijob
PRIMLRY KEEY CLUSTERED (job)

)

gqo
IF OBJECT ID('dbo.benson'} IS5 NOT NULL
PRINT '<«<«< CEREATED TABLE dbo.benson >>>'
ELSE
PRoNT '<«<«< FAILED CREATING TABLE dbo.benson >»>>'
o fa}

The Editor supports the following the functionality
¢ Code assist:

¢ Code complete. Type Ahead and Name completion. For more information, see
Understanding Code Assist.

e Code templates. Templates for creation of tables, procedures, etc. For more
information, see Understanding SOL Templates.

¢ Hyperlinks. For more information, see Understanding Hyperlinks.

* Semantic validation. For more information, see Sematic Validation.

® Object hovering. Hover over an error found and an explanation of the cause of the error
appears.

o Code formatter. For more information, see Understanding Code Formatting.

¢ Code correction and transformations. For more information, see Examples
of Transformations and SOL Query Rewrites.

* Object indexing. For more information, see Specify Data Source Indexing Preferences.

e SQL Project Explorer. For more information, see Working with SQL Projects.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 71

USING DB OPTIMIZER > CREATING AND EDITING SQL FILES (SQL EDITOR)

SQL Editor contains context-sensitive command menus that are tailored with pertinent
functionality for the specified file format.

If SQL Editor does not recognize a selected file format, DB Optimizer automatically launches
the file externally in the system default application. External editors are not embedded in the
Workbench. For example, on most machines, the default editor for HTML files is the system Web
browser. SQL Editor does not, by default, recognize HTML files, and opening an HTML file from
the Workbench launches the file in an instance of the Web browser instead of the Editor.

Any number of instances of SQL Editor can be open on the Workbench at the same time.
Multiple instances of SQL Editor displaying different content may be open in the same
Workbench. These instances will be stacked by default, but can also be tiled side-by-side so the
content of various files can be viewed simultaneously for comparison or multi-tasking purposes.
When an instance of SQL Editor is active, the Workbench Main Menu automatically contains
commands applicable to the file format. If a view is active, SQL Editor commands are disabled
automatically, except when commands are still valid between the selected view and the file
displayed in the interface.

Sematic Validation

When working with code in SQL Editor, the window contains a number of features that provide
an increase in the efficiency and accuracy of code development. The following syntax
highlighting changes are automatically applied to code as a user adds lines in the interface.

Code Formatting
Comments Green font, italics SQL
Commands Dark blue font Coding
Errors Red underline

Strings Red font
Non-Executable Command Line Commands | Agqua font

Single line and multiple line comments appear in different colors.

Furthermore, SQL Editor provides two column bars, one on either side of the code window. The
purple change bar in the left-hand column indicates that the line of code has been modified.
Hover over the change bar to display the original code text. The red square in the right-hand
column indicates that there are errors in the code window. Hover the mouse over the square to
view the error count. Click the red bar in this column to navigate directly to the line in which the
SQL Editor detects the error. SQL Editor automatically highlights the appropriate code. Non-
executable command line commands are displayed in a different formatting style than SQL
commands. Syntactic and semantic errors are also highlighted.

SQL Editor also features dynamic error detection, object lookup and suggestion features, code
folding, and auto-formatting. SQL Editor is able to identify different areas in a statement, and
enables users to retrieve subclauses, resolve table aliases, and dynamically return lists of tables,
views, and columns, as needed.

See also Working in SOL Editor.

72 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING DB OPTIMIZER > CREATING AND EDITING SQL FILES (SQL EDITOR)

CREATE AN SQL FILE
1 Create or open a SQL project.

2 Select File > New > SQL File. A blank instance of SQL Editor appears.

NOTE: If you are notin a SQL project when you create a new SQL file, it will not open in SQL
Editor.

OPEN AN EXISTING SQL FILE
1 Open the SQL project containing the file, or that you want to contain the file.

2 If necessary, add the file to the project. See Add Files to a Project.

3 Inthe SQL Project Explorer, double-click the file to open it in SQL Editor.

WORKING IN SQL EDITOR

SQL Editor handles SQOL code formats and contains context-sensitive command menus, tailored
with pertinent functionality for development purposes. Other files may be opened in DB
Optimizer, as well, but these are handled by other editors.

For example, if a text file is opened in the Workbench, DB Optimizer detects and opens the
contents of that file in a text editor viewer with pertinent commands for that file type.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 73

USING DB OPTIMIZER > CREATING AND EDITING SQL FILES (SQL EDITOR)

Any number of instances of SQL Editor can be active on the Workbench at the same time.
Multiple instances of SQL Editor displaying different content may be active on the same
Workbench. These instances will be stacked, by default, but can also be tiled side-by-side, so
the content of various files can be view simultaneously for comparison or multi-tasking purposes.
When an instance of SQL Editor is active, the Main Menu contains commands applicable to the
file format. If a view is active, SQL Editor commands are disabled automatically, except when
commands are still valid between the selected view and the file displayed in the interface.

s}, *Benson.sql &3

~fREATE TABLE dbo.benson
|
job char(8) HOT
sal mumeric(38,0) HOT
loc numeric(38,0) HOT
CONSTRAINT pjob

NULL,
NULL,
NULL,

PRIMARY KEY CLUSTERED (job)
)
oo
ZIF OBJECT ID('dbo.benson') IS5 NOT NULL
PRINT '"«<«<< CRELATED TABLE dbo.benson >>>'
ELSE
PRINT '«<««< FATLED CREATING TABLE dbo.benson >>>'
ga

Among the commands SQL Editor supports via the right-click menu:

® Revert File: Automatically restores the working file to the original text as it appeared the

last time the Save command was issued.

e Shift Right/Shift Left: Indents the line of code in the working file to the right or

left, respectively.

* Toggle Comments: Hides or displays comments in the code of the working file,

depending on the current hide/show state.

74

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING DB OPTIMIZER > CREATING AND EDITING SQL FILES (SQL EDITOR)

e Add Block Comment/Remove Block Comment: A block comment is used to insert a
comment into SQL code that spans multiple lines and begins with a forward slash and
asterisk. While block comments are typically used to insert a command that spans multiple
lines, some developers find them more useful than line comments, especially if a
development team is using different text editors on an individual basis. Moving code from
one text editor to another often breaks line comments in the middle of a line and causes
errors. Block comments can be broken without causing errors.

NOTE: In addition to editing commands, some commands such as extract, drop, and execute
can be accessed by right-clicking over statements in SQL code that are performed on
specific tables, views, and columns. These commands will appear automatically in the
appropriate menu when the code is highlighted. Full information on using these
commands is found elsewhere in this documentation, based on the task each
executable performs.

e Explain Plan: An explain plan details the steps that occur in SELECT, UPDATE, INSERT,
and DELETE statements and is primarily used to determine the execution path followed by
the database in its SQL execution.

See also:

Understanding Automatic Error Detection

Understanding Code Assist

Understanding Hyperlinks

Understanding Code Formatting

Understanding Code Folding

Understanding Code Quality Checks

Understanding SOL Templates

UNDERSTANDING AUTOMATIC ERROR DETECTION

SQL Editor orders and classifies SQL statements. This enables it to edit code as you work within
SQL Editor and highlight errors and typographical errors in “real time”. As you work, SQL Editor
examines each clause in a statement and provides error reporting and other features as
required.

SQL Editor identifies the following clauses and elements:
e SELECT: Specifies the field, constants, and expressions to display in the query results.
* FROM: Specifies one or more tables containing the data that the query retrieves from.

e WHERE: Specifies join and filter conditions that determine the rows that query returns. Join
operations in a WHERE clause function in the same manner as JOIN operations in a FROM
clause.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 75

USING DB OPTIMIZER > CREATING AND EDITING SQL FILES (SQL EDITOR)

e GROUP BY: Specifies one or more columns used to group rows returned by the query.
Columns referenced in the SQL SELECT statement list, except for aggregate expressions,
must be included in the GROUP BY clause. You cannot group by Memo, General or Blob
fields.

* HAVING: Specifies conditions that determine the groups included in the query. If the SQL
statement does not contain aggregate functions, you can use the SQL SELECT statement
containing a HAVING clause without the GROUP BY clause.

e ORDER BY: Specifies one or more items used to sort the final query result set and the order
for sorting the results.

As you develop code in SQL Editor, it automatically detects semantic errors on a line-by-line
basis. Whenever an error is detected, the line is flagged by an icon located in the left-hand
column of the editor.

51 bensan s}, =ADDRESS_ROLE s}, *Benson.sgl &3

ZCREATE TABLE dbo.ben=on
|
job CHAR (8) NOT NULL,
sal NUMERIC (38, 0) NOT NULL,
loc WUMERIC (38, 0) NOT NULL,
CONSTRAINT pjob PRIMARY EEY CLUSTERED (job)

Jo
IF OBJECT ID('dbo.benson' IS5 HOT NHULL
PRINT '<<< CREATED TABLE dbo.benson >>>'
ELSE
a3 PRoNT '<<«< FAILED CREATING TABLE dbo.benson >»>»!
go
S SELECT *

@ FROM gho benson:

76 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING DB OPTIMIZER > CREATING AND EDITING SQL FILES (SQL EDITOR)

Additionally, all semantic errors detected in SQL Editor are displayed in the Problems view.

[%! Problems &2

3 errors, 0 warnings, 0 infos

Description Resource Path Location
= - Errors (3items)
3 An unexpected token << < FAILED CR. Benson.zgl SCL Project 1 line 14
3 An unexpected token ™ was found, Exp File.sql SQL Project 1 line &
3 Table benson cannot be resolved on 'da Benson.zgl SQL Project 1 line 19

Right-click the error and select Go To in order to find the error. DB Optimizer opens and
navigates to the specific line of code containing the specified error.

NOTE: Automatic error detection functions, such as syntax checking and semantic validation
are suspended if #define or #include directives are detected in an editor window. DB
Optimizer does not perform #define/#include substitutions on execution.

UNDERSTANDING CODE ASSIST

When SQL Editor has finished analyzing a partial piece of code, it displays a list of data source
objects for you to select from.

SQL Editor takes the following into consideration when analyzing code for a list of possible data
source objects for insertion:

e Text to be inserted

¢ Original text to be replaced

¢ Content assist request location in original text

e The database object represented by the insertion text

Generally, insertion suggestions use the following format:

<insertion_text> -<qualification_information>

Code assist is available for SELECT, UPDATE, INSERT, and DELETE statements (and MERGE
statements on SQL Server 2008 and above), as well as stored procedures, and functions (built-in
and user defined.)

Additionally, code suggestions can be made for DML statements nested within DDL statements.
This functions in the same manner as code assist for statements that are not nestled, and applies
to CREATE PROCEDURE, FUNCTION, TRIGGER, TABLE, and VIEW statements.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 77

USING DB OPTIMIZER > CREATING AND EDITING SQL FILES (SQL EDITOR)

When the code assist window is open, you can filter out singular object suggestions by pressing
(Ctrl + Spacebar). This removes all objects from the assist window while retaining procedures
and functions. To display objects again, press (Ctrl + Spacebar) again.

The following table displays a list of all possible object suggestions, and the format in which SQL
Editor inserts the suggestions into a statement:

Object and Stored Procedure Suggestions

Object Suggestion Syntax/Example

Table (TABLE) [catalog].[schema]
EMPLOYEE - (TABLE)HR

Alias Table (TABLE ALIAS)

[catalog].[schema]tableName
EMPLOYEE-(TABLE ALIAS)HRJOBS

Column datatype - (Column)
[catalog].[schema].tableName

JOB_TITLE: varchar(20)-
(Column)HRJOBS

Alias Column datatype - (COLUMN ALIAS)
[catalog].[schema].tableName.
columnName

JOB_TITLE:int-(COLUMN
ALIAS)HR.JOBS.JOB_ID

Schema (SCHEMA)) [catalog]
dbo-(SCHEMA)NorthWind

Catalog (CATALOG)

Call Call HR.ADD_JOB_HISTORY

Function Suggestions

Function Suggestion Syntax/Example

Built-in SELECT A FROM HR.DEPARTMENTS
WHERE HR.DEPARTMENTS AVG

User-Defined SELECT + FROM HR.CLIENTS WHERE
HR.F_PERSONAL

NOTE: Function suggestions are only available for Oracle and DB2 platforms.

SQL Editor detects incomplete or erroneous code, processes the code fragments, and then
attempts to apply the appropriate logic to populate the code.

As code is typed into SQL Editor, the application ‘reads’ the language and returns suggestions
based on full or partial syntax input.

78 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING DB OPTIMIZER > CREATING AND EDITING SQL FILES (SQL EDITOR)

Depending on the exact nature of the code, the automatic object suggestion feature behaves
differently; this enables SQL Editor to provide reasonable and ‘intelligent’ suggestions on
coding.

Additionally, semantic validations can be made for DML statements nestled within DDL
statements. This functions in the same manner as validation for top-level statements, and

applies to CREATE PROCEDURE, FUNCTION, TRIGGER, TABLE, and VIEW statements.

The following chart displays the possible statement fragments that SQL Editor will attempt to
suggest/populate with objects:

Statement Fragment Elements Object Suggestion Behavior

SELECT A list of tables, when selected
automatically, prompts the user to
select a column.

UPDATE and DELETE A list of tables appears in the FROM
and/or WHERE clause.

INSERT A list of tables and views appears in the
INSERT INTO and OPEN BRACKET
clause prior to values.

A list of columns based on the table or
view name appears in the OPEN
BRACKET or VALUES clause.

In addition to DML statements, SQL Editor also suggests objects based on specific fragmented
syntax per line of code:

Statement Syntax Object Suggestion Behavior

A partial DML statement (for example | The keyword is completed

SEL ... indicates a fragment of the automatically, assuming SQL Editor
SELECT clause) can match it. Otherwise, a list of

suggested keywords is displayed.

If the preceding character is a period,
and the word prior is a table or view, a
list of columns appears.

If the word being typed is a part of a
table name (denoted by a schema in
front of it) the table name is
autocompleted.

If the word being typed has a part of a
column name (denoted by a table in
front of it) the column name is
autocompleted.

Without typing anything. A list of keywords appears.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 79

USING DB OPTIMIZER > CREATING AND EDITING SQL FILES (SQL EDITOR)

Statement Syntax Object Suggestion Behavior

A period is typed. If the word prior to the period is a
name of a table or view, a list of
columns is displayed.

If the word prior to the period is a
schema name, a list of table names is
displayed.

If the word prior to the period is either
a table name or a schema name, then
both a list of columns and a list of table
names is displayed.

To activate code suggestions:

By default, code suggestions are automatically offered if you stop typing in SQL Editor for one
second. You can turn off the automated suggestion feature on the Code Assist preferences

page.

If automated code suggestion is disabled, you can still access the suggestion window using the
following method:

1 Click the line that you want SQL Editor to suggest an object for.

2 Press (CTRL + Spacebar) on your keyboard. SQL Editor ‘reads’ the line and presents a list
of tables, views or columns as appropriate based on statement elements.

NOTE: On a per platform basis, auto-suggestion behavior may vary. (For example, the WITH
statement on DB2 platforms.)

To modify object suggestion parameters, including setting it from automatic to manual, see
Specify Code Assist Preferences.

You can speed up the performance of the code assist functionality by enabling data source
indexing either when you connect to the data source, see Working with Data Sources or on the
Preferences page, see Specify Data Source Indexing Preferences.

UNDERSTANDING HYPERLINKS

SQL Editor supports hyperlinks that are activated when a user hovers their mouse over a word
and presses the CTRL key. If a hyperlink can be created, it becomes underlined and changes
color. When the hyperlink is selected, the creation script for the hyperlink object is opened in a
new editor.

Hyperlinks can be used to link to tables, columns, packages, and other reference objects in
development code. Additionally, hovering over a hyperlink on a procedure or function of a call
statement will open it. You can also use the hyperlink feature on function calls in DML
statements.

80 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING DB OPTIMIZER > CREATING AND EDITING SQL FILES (SQL EDITOR)

Clicking a hyperlink performs an action. The text editor provides a default hyperlink capability. It
allows a user to click on a URL (for example, https://www.idera.com) and database object links.

Hyperlink options (look and feel) can be modified via the Hyperlinking subnode in the Editors >
Text Editors node of the Preferences panel.

NOTE: Hyperlink functionality relies on certain objects being captured in the Object Index. If
the index is turned off, or has been restricted in what information it captures, users will
be unable to link them (as they are non-existent within the Index.) To specify object
index types, see SPECIFY DATA SOURCE INDEXING PREFERENCES.

UNDERSTANDING CODE FORMATTING

Code formatting provides automatic code formatting in SQL Editor while you are developing
code.

To access the code formatter, select the open editor you want to format and select Ctrl+Shift+F.
The code is formatted automatically based on formatting parameters specified in the Code
Formatter subnode of the SQL Editor node in the Preferences panel.

You can also format an entire group of files from Project Explorer. To do so, select the directory
or file and execute the Format command via the shortcut menu. The files will be formatted
automatically based on your formatting preferences. See Specify Code Formatter Preferences
for more information.

The following examples display a list of code formatting parameters and the resultant output in
SQL Editor, based on the same set of SQL statements.

Custom Code Formatting Example 1

The following chart indicates a list of custom code formatting parameters and their
corresponding values. The chart is followed by the actual syntax as it would appear in SQL
Editor, based on the formatting parameter values. Compare the parameters and formatted code
in Example 2 with this example for a concept of how custom formatting works.

Custom Code Formatting Parameter Value (if applicable)

Stack commas separated by lists? Yes
Stack Lists with ___ or more items. 3
Indent Size? 2
Preceding commas? Yes
Spaces after comma? 1

Trailing commas? -

Spaces before comma? -

Right align FROM and WHERE clauses | Yes
with SELECT statement?

Align initial values for FROM and Yes
WHERE clauses with SELECT list?

Place SQL keywords on their own line? | No

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 81

USING DB OPTIMIZER > CREATING AND EDITING SQL FILES (SQL EDITOR)

Custom Code Formatting Parameter | Value (if applicable)
Indent size? -
Indent batch blocks? Yes
Number of new lines to insert 1
Indent Size 5
Right Margin? 80
Stacked parentheses when they No
contain multiple items?

Stack parentheses when list contains -
___ormore items.

Indent Size? 5
New line after first parentheses? No
Indent content of conditional and Yes
looping constructs?

Number of new lines to insert? 1
Indent size? 5

f@ File. =gl EE\\\E_

Begin

If ==5

SELECT apple

a3 ‘' pear

' prange 'Big OCrange’
' strawberry
' orchard name
' oWner
FROM fruit F, orchard O

WHERE fruit region in (‘latin america’

' ‘france’
' ‘ru=ssiaf
' ‘canada*
V ‘hawaii’)

and orchard not in

(select region

from bad growers bg, (select orchard
from hybrid growers
where us_approved in

82

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING DB OPTIMIZER > CREATING AND EDITING SQL FILES (SQL EDITOR)

Custom Code Formatting Example 2

The following chart indicates a list of custom code formatting parameters and corresponding
values. The chart is followed by the actual syntax as it would appear in SQL Editor based on the
formatting parameter values. Compare the parameters and formatted code in Example 1 with
this example for a concept of how custom formatting works.

Custom Code Formatting Parameter Value (if applicable)
Stack commas separated by lists? Yes

Stack Lists with ___ or more items. 2

Indent Size? 0

Preceding commas? -

Spaces after comma? Yes
Trailing commas? Yes
Spaces before comma? 2

Right align FROM and WHERE clauses with SELECT statement? | No
Align initial values for FROM and WHERE clauses with SELECT -

list?

Place SQL keywords on their own line? Yes
Indent size? 4
Indent batch blocks? No
Number of new lines to insert 1
Indent Size 5
Right Margin? 80
Stacked parentheses when they contain multiple items? Yes
Stack parentheses when list contains ___ or more items. 2
Indent Size? 2
New line after first parentheses? Yes

Indent content of conditional and looping constructs? --

Number of new lines to insert? 1

Indent size? 5

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 83

USING DB OPTIMIZER> CREATING AND EDITING SOL FILES (SOL EDITOR)

B '15le.sql

Begin
IT x=S

SELECT
apple ,
pear ,
orange Big Orange™ ,
strawberry ,
orchard name ,
owner
FRO!1
fruit F ,
orchard O
WHERE
fruit_region in
= latin america”™
'f rance"’ ,
"russia’ ,
‘canada“ ,

84

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING DB OPTIMIZER > CREATING AND EDITING SQL FILES (SQL EDITOR)

UNDERSTANDING CODE FOLDING

SQL Editor features code folding that automatically sorts code into an outline-like structure
within the editor window for easy navigation and clarity while developing code.

| [59 *ADDRESS_ROLE 5% . [5 *Benson.sql
CREATE DEFAULT ET FALSE AS 0
go
@fkF OBJECT ID('PERFCNTR KS.ET FALSE') IS NOT NULL]
go
S CREATE TABLE PERFCNTR KS.ADDRESS ROLE
[

ADDRESS ROLE ID numeric(10,0) IDENTITY (20000,1),
NRME varchar (128) NOT NULL,

DESCRIPTICN varchar (255) NULL,

LIST ORDER int NOT NULL,

IS DEFAULT bit NOT NULL,

IS_SYSTEM REQUIRED bit NOT NULL,

ROWTIMESTAMP datetime CONSTRAINT DF _ADDRESS R ROWTI__ 1BF

CONSTRAINT ADDRESSROLEPE
PRTHMARY KEY CLUSTERED (ADDRESS ROLE TID)

}

go
EXEC sp_]::indefault f PEF.FCE-IT?._KS 5 EI'_]:_;'-'LT_SE s 'E—'L::_:E.ESS_F.C:E . ZS_ZEFEC_T__I' !
go

a3 EX Sp_]::indr'.:lle 'PERFCNTE ES.TRUECRFALSE', 'A::F.ESS_?.C:E i i 3_:EE;L-_T.__T ’
;.{ , 111

The editor window automatically inserts collapsible nodes in the appropriate lines of code for
organizational purposes. This enables you to expand and collapse statements, as needed, while
developing code in particularly large or complicated files.

UNDERSTANDING CODE QUALITY CHECKS
Code quality markers provide annotations that prevent and fix common mistakes in the code.

These notes appear in a window on any line of code where the editor detects an error, and are
activated by clicking the light bulb icon in the margin or by pressing Ctrl + I.

For example, if a statement reads select * from SCOTT.EMP, SCOTT.DEPT, when you click the
light bulb icon or press Ctrl + |, a window appears beneath the line of code that suggests Add
join criteria.

When you click on a proposed fix, the statement is automatically updated to reflect your change.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 85

USING DB OPTIMIZER > CREATING AND EDITING SQL FILES (SQL EDITOR)

The following common errors are detected by the code quality check function in the editor:

Code Quality Check Type Definition

Statement is missing valid JOIN criteria | If a SELECT statement contains missing join criteria, when it is executed, it
can produce a Cartesian product between the rows in the referenced
tables. This can be problematic because the statement will return a large
number of rows without returning the proper results.

The code quality check detects missing join criteria between tables in a
statement and suggests join conditions based on existing foreign keys,
indexes, and column name/type compatibility.

Example
The following statement is missing a valid JOIN criteria:

SELECT*FROMemployeee,customerc, sales_orders
WHERE e.employee_id=c.salesperson_id

The code quality check fixes the above statement by adding an AND
clause:

SELECT*FROMemployeee,customerc, sales_orders
WHERE e.employee_id=c.salesperson_idAND
s.customer_id=c.customer_id

Note: This code quality check is valid for Oracle, DB2, and Sybase-specific
join conditions.

Invalid or missing outer join operator | When an invalid outer join operator exists in a SELECT statement, (or the
outer join operator is missing altogether), the statement can return
incorrect results.

The code quality check detects invalid or missing join operators in the
code and suggests fixes with regards to using the proper join operators.
Example

The following statement is missing an outer join operator:

SELECT * FROM employee e, customer c WHERE

e.employee i1d=c.salesperson_id(+)ANDc.state=

<CA”

The code quality check fixes the above statement by providing the missing
outer join operator to the statement:

SELECT * FROM employee e, customer c WHERE
e.employee_id = c.salesperson_id(+) AND
c.state(+) =“CA”

86 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING DB OPTIMIZER > CREATING AND EDITING SQL FILES (SQL EDITOR)

Code Quality Check Type

Definition

Transitivity issues

The performance of statements can sometimes be improved by adding
join criteria, even if a join is fully defined. If this alternate join criterion is
missing in a statement, it can restrict the selection of an index in Oracle’s
optimizer and cause performance problems.

The code quality check detects possible join conditions by analyzing the
existing conditions in a statement and calculating the missing, alternative
join criteria.

Example

The following statement contains a transitivity issue with an index problem:

SELECT * FROM item i, productp, price pr WHERE
i.product_id=p.product_idANDp.product_id=
pr.product_id

The code quality check fixes the above statement with a transitivity issue by
adding the missing join condition:

SELECT *FROM item i, productp, price pr WHERE
i.product _id=p.product_ idANDp.product_id=
pr.product_idAND i.product_id=pr.product id

Nested query in WHERE clause

It is considered bad format to place sub-queries in the WHERE clause of a
statement, and such clauses can typically be corrected by moving the sub-
query to the FROM clause instead, which preserves the meaning of the
statement while providing more efficient code.

The code quality check fixes the placement of sub-queries in a statement,
which can affect performance. It detects the possibility of moving sub-
queries from the FROM clause of the statement.

Example

The following statement contains a sub-query that contains an incorrect
placement of a WHERE statement:

SELECT*FROMemployeeWHEREemployee 1d=(SELECT
MAX(salary) FROM employee)

The code quality check fixes the above statement by correcting the sub-
query issue:

SELECT employee.* FROM employee (SELECT DISTINCT
MAX(salary) coll FROMemployee) t1 WHERE
employee id=tl.coll

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 87

USING DB OPTIMIZER > CREATING AND EDITING SQL FILES (SQL EDITOR)

Code Quality Check Type

Definition

Wrong place for conditions in a
HAVING clause

When utilizing the HAVING clause in a statement

It is recommended to include as few conditions as possible while utilizing
the HAVING clause in a statement. DB Optimizer detects all conditions in
a given HAVING statement and suggests equivalent expressions that can
benefit from existing indexes.

Example

The following statement contains a HAVING clause that is in the wrong
place:

SELECT col_a, SUM(col_b) FROM table_a GROUP BY
col_aHAVINGcol _a>100

The code check fixes the above statement by replacing the HAVING clause
with equivalent expressions:

SELECT col_a, SUM(col_b) FROMtable aWHEREcol a
> 100 GROUPBY col_a

Index suppressed by a function or an
arithmetic operator

In a SELECT statement, if an arithmetic operator is used on an indexed
column in the WHERE clause, the operator can suppress the index and
result in a FULL TABLE SCAN that can hinder performance.

The code quality check detects these conditions and suggests equivalent
expressions that benefit from existing indexes.

Example

The following statement includes an indexed column as part of an
arithmetic operator:

SELECT * FROM employee WHERE 1 =employee_id -5

The code quality check fixes the above statement by reconstructing the
WHERE clause:

SELECT * FROM employee WHERE 6 = employee_id

Mismatched or incompatible column
types

When the data types of join or parameter declaration columns are
mismatched, the optimizer is limited in its ability to consider all indexes.
This can cause a query to be less efficient as the system might select the
wrong index or perform a table scan, which affects performance.

The code quality check flags mismatched or incompatible column types
and warns that it is not valid code.

Example

Consider the following statement if Table A contains the column col int and
Table B contains the column col 2 varchar(3):

SELECT * FROMa, bWHERE a.col =b.col;

In the above scenario, the code quality check flags the ‘a.col = b.col’ part
of the statement and warns that it is not valid code.

88

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING DB OPTIMIZER > CREATING AND EDITING SQL FILES (SQL EDITOR)

Code Quality Check Type Definition

Null column comparison When comparing a column with NULL, the !=NULL condition may return a
result that is different from the intended command, because col=NULL will
always return a result of false. Instead, the NULL/IS NOT NULL operators
should be used in its place.

The code quality check flags occurrences of the I=NULL condition and
replaces them with the IS NULL operator.

Example
The following statement includes an incorrect col = NULL expression:
SELECT * FROM employee WHERE manager_id =NULL

The code quality check replaces the incorrect expression with an IS NULL
clause:

SELECT * FROM employee WHERE manager_id 1SNULL

UNDERSTANDING SQL TEMPLATES

DB Optimizer provides code templates for DML and DDL statements that can be applied to the
Editor via the (Ctrl + Spacebar) command. When you choose a template from the menu that
appears, SQL Editor automatically inserts a block of code with placeholder symbols that you can
modify to customize the code for your own purposes.

create_t
£i CREATE _TABLE - creates a table with 3 columns [CREATE TABLE schemahlame. tableName

Ei¥ CREATE_TABLE - creates and populates a table w Eﬂummml dataTypel PRIMARY KEY,
E.} CREATE_TRIGGER - creates a database trigger colurmniamez dataTypez |
columniame3 dataType3

S-define other columns

Code templates are available for DML, ALTER, DROP, CREATE, and platform specific
commands.

A comprehensive set of DDL/DML templates are available, with statement alternatives varying
by DBMS and specific DBMS versions. You can modify and create new templates via the SQL
Templates panel on the Preferences dialog. See for more information on how to create and alter
SQL code templates.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 89

USING DB OPTIMIZER > CREATING AND EDITING SQL FILES (SQL EDITOR)

VIEW CHANGE HISTORY

Each time an SQL file is saved, the local history of that file is recorded (changes made). Using the
Local History command, you can view all changes made to the file. Local History is accessed via

90

the shortcut menu of SQL Editor and selecting Compare With > Local History.

T =
Eensnn.sql (test.sgl I,ED Compare Benson.sgl Current and Current Revision &3 —om
TextCumpare [<pl <% fry uh £ T
Local: Benson.sql
FI.REFLTE TABLE dbo.benson CREATE TAELE dbo.benson
[|
Job char(8) NOT NULL Job char (&) HOT |
zal numeric(38,0) NOT NULL sal numeric(38,0) NOT]
loc numeric(38,0) NOT NULL loc numeric (38,0} NHOT |
CONSTRAINT pjob COHSTRATNT pjob
PRIMARY EEY CLUSTERED (job PRIMARY EKEEY CLUSTERED
))
go go
IF CBJECT ID('dbo.benson') IS IF OBJECT ID|('dbo.benszon')
PRINT '<«<«< CREATED TABLE d PRINT '<«<«< CREATED TAB
ELSE ELSE
PRoNT '<<< FAILED CREATING PRoNT '<<< FAILED CREA]
go go
(%] 1 | [i] (%] 1 | [i]
E o il
SQL Log ﬁ&" SOL Erro (& Problem (‘Eﬁ Tasks (Eu] Bookmar EE Outline (@ History &2 = O
; i A =]
Benson.sql ék. <}:~b = 2 ﬂ}} E||E_|

Revision Time

© 05/02/08 11:45 AM
B 04/02/08 11:43 AM

[{_] i | [i]

® The History view displays all recorded times the file was changed since its
inception/introduction into the workspace.

* Double-click a time in the History view to access the Text Compare panel. It displays
the text of the file after the change occurred at the time indicated in the History view.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING DB OPTIMIZER > CREATING AND EDITING SQL FILES (SQL EDITOR)

REVERT TO AN OLD VERSION OF A FILE

The Replace With > Local History command provides you with the ability to revert a SQL
file back to a previously recorded local history.

To replace the contents of a file with the contents of a previously saved version via local history:

1 Right-click the SQL Editor and select Replace With > Local History from the shortcut menu.

The Replace from Local History dialog appears.

£F Compare - |:Q|
/5QL Project 1/Benson.sal =
Revizion Time
£ g402/08 11:43 AM
] | 3]
[£6 Text Compare & 9 &
(5% workspace Fie || B Local Hstory (04/02/08 11:43 AMj 1
COMSTRAINT pich COMSTRATNT pick ~|
PRIMARY EEY CLUSTIERED (jck]} FRIMARY KEY CLUSTERED (jok)
1 }
g0 o —
IF QBJECT_ID("dbo.Benson') IS NWOT NUL IF CEBJECT_ID('dba.Ransea™) I3 NOT
PRINI ‘"«<<< CREATED TABLE dbo.bensz PRINT "<<< CREATED TABLE dbo.
ELSE ELSE =
| DReNT "<<<¢ FAILED CREATING TAELE [— PRINT '<<< FAILED CREATING Tal
o go 1]
| [l
<] I 3 [<] , [>
@ [Raplacs _] [Cancel |

2 Inthe Local History of ... panel, select a previously recorded version of the file by

clicking the appropriate timestamp.

3 Click Replace.

The contents of the currently-opened file revert to the contents of the file at the history

point you selected in the dialog.

Alternatively, from the shortcut menu, select Replace With > Previous from Local History
to replace the contents of the file with DB Optimizer’s last recorded history point.

DELETE AN SQL FILE

To delete a file, right-click its icon in the SQL Project Explorer and select Delete. This will remove
the file from both the SQL project and the file system.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

91

USING DB OPTIMIZER > EXECUTING SQL FILES

EXECUTING SQL FILES

DB Optimizer can execute SQL code directly on registered data sources.

Files are executed via the Execute SQL command in the Run menu, or by clicking the green
arrow button on the toolbar.

When an SQL file is open in the Workspace, select it and choose a database and an associated
catalog on which you want to execute the file via the lists in the Toolbar.

You can click the execute icon to execute code on the specified database and catalog, start a
transaction or commit a transaction, or modify SQL session options prior to execution.

To execute a file:

Open the SQL file you want to run, ensure it is associated with the correct database, and
click Execute. DB Optimizer executes the code on the data source you specified. Results
are displayed in the Results view and can be exported into a file via the Data Export wizard,
or displayed in multiple file formats (HTML, XML, and TXT formats).

To execute a transaction:

To execute transactions, you need to ensure that the auto commit feature is turned off. See
Specify SOL Execution Preferences for more information on how to turn off auto commit.

Open the transaction file you want to run, ensure it is associated with the correct database,
and click Start Transaction. DB Optimizer executes the transaction on the data source you
specified.

Once the transaction runs, you can execute the file as normal.

NOTE: Click Commit or Rollback to finish or cancel a transaction.

To commit a transaction:

Open the transaction file you want to commit, ensure it is associated with the correct database,
and click Commit Transaction. DB Optimizer commits the transaction on the data source you
specified.

TIP: You can set transactions to auto-commit prior to execution on the SQL Execution node
of the Preferences panel.

See Also:
e Associate an SOL File with a Data Source

e Configure an SQL Session

e Execute SQOL Code

¢ View and Save Results

92 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING DB OPTIMIZER > EXECUTING SQL FILES

ASSOCIATE AN SQL FILE WITH A DATA SOURCE

When working with files, SQL Editor enables developers to view and change the data source to
which they are connected.

The bread crumb line in SQL editor is used to display and specify a data source in relation to the
specified SQL Editor file. The menu contains a list of all registered data sources. Additionally, on
platforms that support catalogs, these are displayed as well.

[*untkled SQLS £ -
ki Microsoft SOL Server b [ROMLABSCLOS_1 (9.0.3054.0) # [master = %

select * from dbo.Customers;

Changing a catalog via the drop down lists is the equivalent of issuing a USE DATABASE
command on SQL Server, Sybase, and MySQL platforms. Any change will not affect the current
connection, and the list automatically updates to display the name of the newly selected data
source.

If no registered database is associated with a SQL file (as would be the case if a user started a
new, unsaved file), the list is empty. This indicates that the file is not connected to a registered
data source.

To change or associate a registered data source with a SQL file:

Click the database list and select the name of a registered database from the list provided.
Depending on the state of the code in SQL Editor, DB Optimizer’s behavior differs when the
connection is made:

TIP: If you are receiving multiple syntax errors, always check that the file is associated with
the correct data source and corresponding database/catalog before troubleshooting
further.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 93

USING DB OPTIMIZER > EXECUTING SQL FILES

CONFIGURE AN SQL SESSION

The SQL Session Options dialog provides configuration parameters that indicate to DB

Optimizer how to execute code in the development environment.

ﬁﬂ S0L Session Options

=%

SQL Session Options

Specify the SQL session options for the current editar,

&

Property
[=] Ansi Defaults
Set ansi_nulls
Set ansi_padding
Set quoted_jdentifier
Set ansi_warnings
Set ansi_null_dfit_on
[=] Arithmetic
Ignore Arithmetic Overflow
Abort On Arithmetic Overflow
=l Transactions
Izolation Level
Set implicit_transactions
Set cursor_dose_on_commit
[=IResult Set
Maximum Rows in Result Set

Query Timeout {seconds)

Maximum Mumber of Bytesina ...

Value

false
false
frue

false
false

false
false

Read Committed
false
false

0
2043
0

Finish

] [Cancel

To modify SQL session options:
Click the SQL Session Options icon in the Toolbar.

1

Session options only apply to the corresponding editor and are not retained when executing

The SQL Session Options dialog appears.

Click on individual parameters in the Value column to change the configuration of each

property, as specified.
Click Finish.

The session options will be changed and DB Optimizer will execute the code as specified

when you execute it.

multiple SQL files.

94

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING DB OPTIMIZER > EXECUTING SQL FILES

Execute SQL CODE

Files can be launched from within the DB Optimizer development environment for execution on
a registered data source Files are executed via the commands in the Run menu.

When a SQL file is open in the Workspace, select it and choose a database and an associated
catalog on which you want to execute file using the drop down menus in the Toolbar. You can
click the execute icon to execute the code on the specified database and catalog, start a
transaction or commit a transaction, or modify the SQL session options prior to execution.

To execute code:

Open the SQL file you want to run, ensure it is associated with the correct database and click the
Execute icon. DB Optimizer executes the code on the data source you specified. Results are
displayed in the same tab or in a new tab.

To execute a transaction:

Open the transaction file you want to run and ensure it is associated with the correct
database, and then click the Start Transaction icon. DB Optimizer executes the
transaction on the data source you specified.

To commit a transaction:

Open the transaction file you want to commit, ensure it is associated with the correct
database, and then click the Commit Transaction icon. DB Optimizer commits the
transaction on the data source you specified.

TIP: You can set transactions to auto-commit prior to execution on the SQL Execution node
of the Preferences panel in DB Optimizer.

VIEW AND SAVE RESULTS

Once a file has been executed, the results are displayed in the Results view. Here, you can
examine the outcome of the execution process, as well as save the results in other file formats,
as needed.

You can view results in the following formats:
e HTML
o XML
o TXT

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 95

USING DB OPTIMIZER > TROUBLESHOOTING

To save results:

1 Right-click on the Results view and select Save Data. The Save Data dialog appears.

*F Save Data

Save data to a file
Save data to a specified file type.

Enter or select the parent folder:
| MyProject

=l

@ = MyProject

File name: I result

File type: |Delimited text files (*.csv, *.ppe, *.tab, *.txt)

Exiced Files (*.xls)

[Inchude | files (% xm)
Field delimi HTML Files (*.ht

2 Select the project name to which you want to save the results, enter a file name, choose the
file parameters, and then choose a file format from the drop down menu. You can select
delimited text file, Excel, XML, or HTML file formats.

3 Click Finish. The results are saved in the directory location and format that you specified.

TROUBLESHOOTING

DB Optimizer contains a number of views used exclusively to log and monitor the SQL
development process.

96 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING DB OPTIMIZER > TROUBLESHOOTING

e The SQL Log captures all SQL commands executed by SQL Editor and the system. SQL Log
entries are listed by SQL Statement name, Date issued, Host/Server, Service, User, Source,
and the Time (in milliseconds) it took to execute the command.

all SQLLeg 32 . "W 5L Ermors | (2 Prodlems | ¥ Tasks | L[]} Bookmarks | £E Cutline | (=) History =
25 BeERE
SCL Statement Date HostfServer || DEMS
4| €3 ALTER TABLE dbo.testapps ADD COMSTRAINT OX_123 CHECk 2008-02-04 11:06:12.656 datothid S0l Server
® € CREATE TASLEdbo.benson [jobchar{@) MOTNULL, salm 2005-02-04 11:05:53.00 datothId SQLServer

¥ IF OBIECT ID{rb0.benson) [S MOT NULL PRINT ‘<<< CREATEL 2009-02-04 11:05:53,171 datoth19 SOLServer ¢

]

e The SQL Errors log automatically logs all SQL errors encountered when SQL commands are
executed through DB Optimizer. Errors are listed by Error Code, SQL State, error Details,
Resource, and the Location of the error in the SQL file.

(¥l St Log | B SQLEwors £ [2 Problems | &) Tasks | I} Bookmarks | B outine | &l History o= T 0O
Error Code S0L State Details Resource Location
170 F7000 Ling 4 Incorréct $yntéx nsar PRONT. Bensan. sal ling 13
170 37000 Line &: Incorrect syritas near sdasd’. Bermon.sqgl ine B

® The Problems view captures syntactic and semantic errors and warnings in the files of the
workspace. These entries typically take the form of error messages or warnings issued by the
system over the course of a procedure execution. Problems are organized by Description
(which indicates the type of problem logged), Resource, file Path, and Location. Using the
Problems view, you can apply quick fixes to issues that DB Optimizer detects, as well as
locate other problems that have similar attributes.

=] 5L Log | B squ Errors [[2 Problems 52 &5 Tasks |]l saokmarks | 5T Qutine | 2 Histery & ¥ = 0O
0 rrars, O wernings, 0 infos |
Descipbon = Resource Path Location

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 97

USING DB OPTIMIZER > TROUBLESHOOTING

See Also:

* View Log Details

® Maintain Logs

Filter Logs

Import and Export Error Logs

Find and Fix SOL Code Errors

Find and Fix Other Problems

VIEW LOG DETAILS

The SQL Error Log and Problems views contain functionality that enable you to view details
regarding individual log entries, and in some cases, locate or fix those issues automatically.

To view details about SQL Errors entries:

Right-click the error whose details you want to view and select SQL Error Details.

&1 SQL Error Details

@ Line 4 Incarrect syntax near ‘FRoMNT'.

Reason:
Batch: 2

Line: 12

Position: O

Error Code: 170
S0L State: 37000

Details: Line 4: Incorrect syntax near 'FRoMT',

The SQL Error Details dialog provides information about the specified SQL error.

Additionally, you can double-click the error to view the problem code in SQL Editor.

To view details about Problems

Right-click the entry whose details you want to view and select Properties. The
Properties dialog appears, summarizing the issue.

98 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING DB OPTIMIZER > TROUBLESHOOTING

MAINTAIN LOGS

The SQL Log and SQL Errors views both contain commands that enable you to save, restore, or
otherwise move log entries into files outside of DB Optimizer. Additionally, both views also
contain commands that enable the clearing of the view.

The current editor option will only show users statements as generated by the active editor.

To maintain log entries:

All entries automatically captured by the Error Log are written to a file (.log suffix) that resides in
the Workspace .metadata folder.

Right-click in the SQL Log view and select Clear Log Viewer to remove all messages.

In the shortcut menu, select Delete Log to delete the .log file. If entries are created after the
Delete Log command is issued, DB Optimizer will automatically generate a new .log file in
the .metadata subfolder.

NOTE: Old Error Log entries cannot be recovered once the .log file is deleted. To prevent data
loss, archive the .log file via the Export command prior to deletion.

To clear the Error Log view without deleting the .log file, select Clear Log Viewer from the
shortcut menu. The View will be cleared of entries, but these entries will still be contained in
the .log file.

To restore the Error Log view based on the entries contained in the .log file, select Restore
Log from the shortcut menu. The View is restored based on the entries in the .log file.

FILTER LOGS

Filters can be applied to Problems, SQL Log, and the SQL Errors views to limit searches when
troubleshooting and pinpointing specific processes within the system.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 99

USING DB OPTIMIZER > TROUBLESHOOTING

To filter the SQL Log:

e On the SQL Log view, select the Toolbar Menu icon [=] (the downward-pointing arrow in
the right-hand corner of the view) and choose Filters. The SQL Log Filters dialog

appears.

-~

&4 SOL Log Filters

SQL statement types
successful

Failed

<

Limit display statements to: | 100

[]Show statements with host:

Filter by source

User

[By current editor
[]5ystem generated
Unavailable source

[Ok, H Cancel]

* In the SQL Statement Types frame, select Successful or Failed to filter by the type of Error
Log entries.

e Select Limit display statements to indicate a maximum limit of the number of entries
displayed in the Error Log, and enter the maximum entry value in the corresponding field.

e Select Show statements with host to indicate that only entries from a specific data
source are to be displayed, then type the name of the data source (as it appears in the
Database Explorer) in the corresponding field.

* In the Filter by Source pane, specify User, System Generated or Unavailable Source
to filter statements by the type of source from where they originated.

100 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING DB OPTIMIZER > TROUBLESHOOTING

To view and filter the Problems log:
1 On the Main Toolbar, click Window > Show View > Other > General > Problems.

2 On the Problems view, select the options icon [+] and choose Configure Contents. The
Configure Contents dialog appears.

& Configure Contents

Configurations: « Scope
' [¥] &l Errors |
Warnings on Selection : :
5 Erms';ﬂﬁamings AR s O On any element in same project
Duplicate, ..
] Errors/Warrinas on Proje (0 On selected elementt anly
Remaove OOn selected element and its children
() On working set: Window Working Set

w Description

g (#)On any element

i 1T
Text: | conktaing |

where severityis: [v]Errar [Warning [Info
* Types
Blenr et E=TH
Seleck All
Prablem
SGL Error Marker || Deselect all

Transfarmation Marker

£ >
{3 Match all configurations
(%) Match any configuration

[0]4] [Cancel

The Configure Contents dialog enables you to create multiple filter profiles that you can
apply to the log by clicking the options icon [=], clicking Show, and then choosing the filter
to apply. The Configurations panel on the left-hand side of the dialog displays all existing
filter profiles stored in the Workspace. Selecting a configuration displays its filter
parameters, and selecting the check box associated with its name enables the filter in the
Problems view (only problems that match the criteria defined in the Filters dialog will appear
in the view).

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 101

USING DB OPTIMIZER > TROUBLESHOOTING

The ability to define different profiles enables the selection of multiple filter profiles. For
each profile selected, the profile criterion is applied to the View, concurrently. You can
filter problems by:

e Working Set

Character String

Problem Severity

Problem Type

A combination of the above four filter options

Profile Criteria Description

Working Set The options located in the Scope area of the dialog enable you to filter problems based on
defined Working Sets. A Working Set is a collection of user-defined Project files that you can
organize, as needed, in DB Optimizer. Select an option, and then click Select to define a
Working Set to which the parameters apply. If no Working Sets exist, you need to define one or
more via the New button on the Select Working Set dialog.

Select one or more Working Sets to which you want the criteria to apply. If no Working Sets
exist, or none suitably match the current filter criteria, click New or Edit to define a new
Working Set, or edit an exist Working Set, respectively.

Character String Use the Description list to select contains or doesn't contain, as needed, and type the character
string in the field below the list. The Problems view is filtered to only contain, or omit, problem
descriptions that fully or partially match the string value.

Problem Severity | In the Where severity is area, choose Error, Warning, Info or some combination of the
three check boxes. Only entries whose severity matches the check boxes you have selected
remain visible in the Problems view.

Problem Type The options in the Types list on the right-hand side of the dialog enable you to filter problems
by type. For example, deselect Problem to remove any system entries from the view, or
deselect SQL Error Marker to remove any SQL code entries from the view.

Once you have defined and/or selected the appropriate filter profiles, the profiles will
appear in the Show submenu in the Toolbar Menu of the Problems view. Select or deselect
the profiles from the submenu, as needed.

IMPORT AND EXPORT ERROR LOGS

Error messages are written to a file named .log located in the Workspace directory .metadata
folder. This file can (and should) be cleared periodically via the Delete Log command to prevent
performance issues with regards to system memory and file size. However, the Export command
enables you to archive log files prior to deletion. The files created by the Export command can
then be imported back into the Error Log as needed at a later point in time.

To export the SQL Log:

Right-click the SQL Log view and choose Export Log. The log is saved in the specified
directory path with a .log extension.

102 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING DB OPTIMIZER > TROUBLESHOOTING

To import the Error Log:

Right-click the SQL Log view and choose Import Log. Select the previously exported .log
file. The Error Log view is restored with the entries from the specified export file.

FIND AND Fix SQL CODE ERRORS

The SQL Errors view contains an option that enables you to navigate directly to the resource
associated with an error entry.

kﬂ} Benson.sgl &4 LJ sglLog.log
COMSTEAINT pjob
PRIMARY FEY CLUSTEERED |(job)
)

Qo
IF CBJECT ID|('dbo.benson' I5 HOT HULL

PRINT '<<< CREATED TABELE dbo.benson >>>"
ELSE

PRoNT '«<<«< FATLED CREATING TABLE dbo.benson >»>'

bo

To navigate to the source of a SQL error entry:

Right-click the entry to which you want to navigate and select Go To. The file to which the
error applies automatically opens in a new instance of SQL Editor, and the line is highlighted
in the window.

FIND AND FIX OTHER PROBLEMS

By default, the Problems view organizes problems by severity. You can also group problems by
type, or leave them ungrouped.

The first column of the Problems view displays an icon that denotes the type of line item, the
category, and the description. Click the problem and DB Optimizer will open the SQL file and
automatically highlight the line that triggered the issue.

You can filter Problems to view only warnings and errors associated with a particular resource or
group of resources. You can add multiple filters to the view, as well as enable/disable them as
required. Filters are additive, so any problem that satisfies at least one of the filters will appear.

DB OPTIMIZER™ 3.8/XE5 USER GUIDE 103

USING DB OPTIMIZER > TROUBLESHOOTING

Problems can sometimes be fixed via the Quick Fix command in the shortcut menu. The
Quick Fix dialog enables you to apply a fix to a problem detected by the view. The dialog
also provides a list of similar problems to the one you selected, and enables you to apply a fix
to multiple problems at the same time.

ra

s

s,mmﬂqs,.nﬁos
ription &

i Lisirng the CONVERT() function suppresses index usage
(& Usirug thee LEM) Furction suppresses index usage

v Usineg the LEM) function suppresses index usage

B Using the LEMN) Function suppresses index usage

& Using the ROUND() Function suppresses index usage

1 Lsing the: ROUND() Function suppresses index usage

b Using the SUBSTRIMNG() function suppresses index usage
i Using the SUBSTRING() function suppresses index usage
b Using the SUBSTRING() function suppresses index usage
1 Using the TRUNCE) function suppresses index usage

v Using the TRUNC() Function suppresses index usage

b Using the TRUNCO function suppresses index usage

) Using the TRUNC() function suppresses index usage

& Using the TRUNC() function suppresses index usage

A Using the TRUNCD Function suppresses index usbge

Sybase.sql
Svbase,
Sybase.sql
Svbase,
Sybase sql
Svbase,
Sybase sql
Svbase,
Sybase sql
DE2.5ql
DE2.sql
DE2.sql
DB2.5q
MyFile.sql
MyFile. gl

&1 Quick Fix (<]
Select a fix
Sahact the Fix for “Using the TRUNC
function suppresses index usage”, -
Select & fix:

Problems:
Rasnsco octon)
pez.sql fine 151 '
i Svbase.sql line 181
[#] & sybase.sql fne 167
{8 DB2.sql lire 90 '
[¥] & pBz.sq fine 103
i DB2.5q) fine 146
il

I o | B o i

To apply a quick fix to an issue in the Problem view:

1

Right-click on a problem in the list and select Quick Fix from the menu. The Quick Fix

dialog appears.

Select a fix from the list provided and click OK. DB Optimizer attempts to resolve the

issue.

To find similar issues:

1

104

In the Quick Fix dialog, click Find Similar Problems. The Problems list populates with all
of the issues that are similar to your initial selection.

Use the check boxes beside the problems to select them, and then choose a fix and click
OK. DB Optimizer attempts to resolve all of the specified issues.

DB OPTIMIZER™ 3.8/XE5 USER GUIDE

USING PROFILING

For details on working with profiling, see the following topics:

¢ Understanding Profiling

Understanding the Interface

Running a Profiling Session

Configuring Profiling

Using SOL Load Editor/Tester

UNDERSTANDING PROFILING

Profiling continuously samples the data source to build a statistical model of the load on the
database. Profiling can be used to locate and diagnose problematic SQL code and event-based
bottlenecks. Additionally, profiling enables you to investigate execution and wait time event
details for individual stored routines. Results are presented in the SQL Profiling Editor, which
enables users to identify problem areas and subsequently drill down to individual, problematic
SQL statements.

NOTE: DB Optimizer supports the Oracle Real Application Cluster (RAC). When you want to
profile a RAC you can profile the entire cluster in one profiling session. For more
information, see Building Profiling Configurations.

Profiling filters out well performing, light weight SQL and collects information on heavy weight
SQL. SQL that is heavy weight is either long running queries or queries that are short but run
so often that they put load on the database

Profiler takes snapshots of user and session activity once a second and builds up a statistical
model of the load on the database. The sampled data is displayed in three ways:

® | oad on the database measured in average number of sessions active
e Top Activity - Top SQL, Event, and Sessions, Object I/O, and Procedures
¢ Details - Detail on a SQL statement, Session, Event, Object I/O or Procedure

The graph on the top of the screen shows the load on the database and can quickly indicate
visually how the database is functioning. The database could be

e |dle
e Lightly loaded
® Heavily loaded

® Bottlenecked

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 105

USING PROFILING > UNDERSTANDING PROFILING

Problems can come from any one or more of four areas
e Machine CPU or Engine, slow disks (network)
e Application locks, invalid SQL
e Database cache sizes, log files, etc

¢ |nefficient SQL

Details of profiling sessions can be saved to an .oar file, which you can access through the SQL
Project Explorer, or if you are profiling to an Oracle 9i, 10g, or 11g data source, you can see the
profiling sessions in the Profiling Repository node of the data source in the Data Source Explorer,
or in the Profiling Repositories node. Profiling direct to a repository means the session details
are sent directly to the hard disk of the data source. If you have enough free disk space you can
collect data for a longer time than if you were profiling to a file which accumulates in memory
until you save the session to disk.

106 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > UNDERSTANDING THE INTERFACE

UNDERSTANDING THE INTERFACE

The profiling interface is divided into three major parts:

ET10A ~ hm::-u- W | Fingr by | hione- v T :E)
FProfile Session &g
B B ONCPL B Systam RO W User U0 0 Cluster B Application B Configuraion B Cemmi B Retwork §adminisiathe BConcurancy §Schadular § Other
"R B
=0
c
24
H
[
£,
o \ﬂﬁﬁb tﬂ.-_jﬁ'
BB overvien| B ot (D pvents 7 cacons
[=] &
SOL Statements Events SEREnE
Saerret acnity(w) - & Eveer actty () | B e fProgem SIS | Acterriwy -| &
m a0 [I GG oo I 5513 crored [Eneculor e | 135, 31563 irm
o CELECT COUL.'SYSTEM 715 jeb sthedider...r glave wailt I .80 DRACLE.EVE (CTWR) 155, 3 [__J 2542
«3 DEERT INT.. CAECTID W A0 b fle sequential read | .44 DRACLEENE (C300] 162, 1 [} 2087
B uretioum [303152364) B 1.4% o B paptteend rgad I 138 QRACLE.ENE (pa000) 111, 2054 B 343
0 ursnaom [1345 103937 [E-¥, oy S pgoenla e 0.35 SYSTEM [Sueoctormin 143, 25594) in
-33\5571'3...5'5.;.5&5 Q.53 b file paralel mrite 0.23 CRACLE.ENE [SMON) 4,1 [} 27|
o TRUBICATE .5 DATA_I LR Laizh: By cache .12 CEOTEM fExecutorexe 111, Z2EEY) a3
"% PEERT INTO ., e LR 014 lng M e allad vt 0,32 SYITEM [Enstutorene 9T, 43223] .85
o pehect count . rson ke~ i f el et 003 | GTTEM [Enedudereee 120, 999 0 g
B S iy | sy ey | T e g e A] A e
i Profing Detsis =1 =B
SOL: SLLLCT COUNT]™) FROM (SLLECT USERNAME FRO#M SYS.08A_USIRS WHERE DIFAULT_TABLESPACE="SYSTEM' OR TLMPO..
B son Tewr |§E) Erecs | £ Sessions | W0 Cricren Detnids | o' SOL Detais
L0 Mentfication Optemnizer and Jutiine Parsing Skakivtics Execution Statestics {total) Boecubion Statstics [per eoecution) ™
S0LID D143IIE0S Oty Mocde 8L _ROWS ey 2TRHING et .00 F
SO0 Bddress BSRTIDS Barang User ID & Loads 3 Eoscubons 1
Chill Address SPEE0EHE Cuitire: Calegory Errealadaliong]
lidren 1 e & Ol Bmacis. @
Fian Hagh alue 2063026503 Cuffer Gets @
Besl SubioHEr bl Dlsrig Prosittosdd Q0
Pragram 1D 10064S
Programbines 55 W

® The Load Graph is located on the top section of the editor and provides a display of the
overall load on the system. The bars represent individual aspects of the enterprise, and the
view can be used to find bottlenecks.

® Top Activity is located on the middle section of the editor and displays where the load
originates. Specifically, the top SQL statements, top events that the database spends time
in, as well as the top activity sessions.

e The Profiling Details View is located on the bottom section of the editor and
displays detailed information on any item selected in the middle section. For example,
an SQL statement, an Event, or a Session.

The graphical portion of the profiling editor presents the distribution of sessions executed over
the length of the profiling process, and those that were waiting in DBMS-specific events. It
provides a first and most important step in identifying problem areas. Results can be viewed in
real-time.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 107

USING PROFILING > RUNNING A PROFILING SESSION

The Load Graph and Top Activity Section compose one view in the editor, while the Profiling
Details view is a separate interface component that only activates when an item in the Top
Activity Section is specified.

NOTE: Use a 1280 x 1024 monitor resolution when viewing profiling information. Smaller
resolution sizes can obscure details in the view.

RUNNING A PROFILING SESSION

Profiling provides the continuous monitoring of a data source and builds a statistical model
based of database load based on the user’s state every second. The created profile can then be
saved to file, and the data can be saved, analyzed, and optimized by importing statements into
the tuning component and running a tuning job.

The following list provides the general workflow and overhead tasks, when attempting to
monitor data sources and store query information.

1 Execute a Profiling Session

Work with Session Results

Creating Profiling Reports

2
3
4 Saving Profiling Sessions
5

Import Statements to Tuning

In addition to the workflow tasks outlined above, the profiling interface also enables a number of
important functions to help in statement analysis and diagnosis. This additional, or extra,
functionality can be found in Other Profiling Commands.

Furthermore, in some cases you will need to configure system variables and parameters in order
to get the results you need from the application. See Configuring DBMS Properties and
Permissions for more information on how to configure profiling and your registered data sources
prior to running a session.

108 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

EXECUTE A PROFILING SESSION

Profiling is monitored and managed via profiling’s three major interface components: the Load
Chart, Top Activity Section, and Profiling Details view.

tm TORLABSCORCL ~ processes: I-.ﬁ.l— v | Filter by: | -hlone- v W 0G| @
Profile Session]

',a“N CPU B systerm 0 W User VO 0 Cluster BApplication B Configuration B Commit @ Metwork B Administrative

& toncurrancy 0 Scheduler @ Other

w2

=

= -

E 1 A CPU

an

& [

a 0 T T T T T T T T T

: o o o o] o oo o o o R o

é b o ﬁ"l"ﬁ& D N Wy W aﬁ'q‘n a’i"f} ﬁ‘h"z"n 5‘53‘:‘ P p e N a’ﬁ":p a’ﬂ":ﬁ

Overview o3 50L | €5 Events| &7 Sessions | #00 Object 1/0

SOL Statements Events Sessions
Statement D Event OB ™| Liser | Program A
B3 BEGINEMD_..., :3; END [bl CPL B | SYSMaN f OMS]
+ o7 SELECTL.O..._EXTENTS, [db file sequential read Bl | VOovEES]
=] ¢ SELECT T.0....I0T_NaME [l control file sequential read [SYSTEM |
At N || control file paraliel write] DESNMP | emagent.exe O
o [9h26oom...OT NAME ™ || null event ¥ | ORACLE.EXE (CKPT) b
[T | 5 ||« | 3 |
[—] U

@ Profiling Details &2
§(L: [74r348n219ngh] SELECT T.OWNER,T.I0T_NAME,'YES' FROM SY5.DBA_ALL TABLES T WHERE

0¥ 5L Text | @ SQL Detals | €5 Events | 7 Sessions | T83 Children Details | #0) Obiject 1j0

To execute a profiling session:
1 In Data Source Explorer, right click on the data source you want to profile and select Profile
As from the menu, and then choose Data Source 1.

2 Inthe Profile Configurations dialog, select the configuration to use for this profiling
session. If you haven't already created a profile, see Building Profiling Configurations for a

description of the profiling configuration options you can choose.

The profiling session begins. Alternatively, clicking the Profiling icon on the Toolbar
automatically runs a profiling session for the last data source you selected.

Once a profiling session launches, it runs until you stop it. When a session has run for a
length of time, you can then interpret and analyze the results. See Work with Session

Results.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 109

USING PROFILING > RUNNING A PROFILING SESSION

To stop a profiling session:

You can stop a profiling session at any time by clicking the Stop button [8] in the upper
left-hand side of the Profile Session screen of by clicking the Stop button in the Progress
Window.

N He R B B P Ee e

gpsta 2 sr | T O\ % db2_opusd % dbz_iosgl |k UOWWALT _small.oar

Y2 DT -
|

=

Profile Session

|type filter text | L ‘ ‘

Executing a Session from the Command Line
NOTE: This is not supported when using DB Optimizer InstantOn.

You can launch a profiling session from the command line using the following syntax:
dboptimizer.exe profile ds:ROM*L*ABORCL10G_1 duration:20 tofile:c:\testprofile.oar

In the above command, the user has specified ROM*L*ABORCL10G_1 as the data source, and
indicates a profiling session of 20 minutes. The tofile variable specifies the directory and name of
the file to which the profiling session will be saved.

KILLING AN ORACLE SESSION

For the Oracle platform, you can stop profiling an active user session at any time during the
profiling session by right-clicking the session on the profiling Sessions tab and choosing
Kill Session.

CrErviem 5|:':'|L L {B Events E‘iuﬁessinns

User MNanne Prograrmn SID

SYSTEN ey |30

Copy

E‘j Trace Session

ill Session

110 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

TRACING AN ORACLE SESSION

While profiling an Oracle database you can choose to start a trace on a specific session by
right-clicking the session on the profiling Sessions tab and choosing Trace Session.

£E Owerview EEL SGL @ Events p‘fj Sessions

ser Mame Prograrm SID

Copy

& Trace Session

¥ il session

VWORK WITH SESSION RESULTS

Results are displayed in the Profiling Session editor whenever a profiling session is executed.
Results can appear in real time (if real time profiling is enabled) or once a session as finished its
execution.

Results are displayed in the three major interface components of the editor, which you can use

to analyze the overall efficiency and capacity of queries running on the data source, to various
levels of detail:

The Profiling Ul has three correlated sections:

e Selection in Chart will fill the top activity section data, distributed in Overview/SQL/Events/
Sessions/Object I/0.

e Selection in any tab of Top Activity will fill the Profiling Details with top selection type related
data.

For more information, see:

e Opening an Existing Profiling Session

¢ Filtering Results

Analyze the Load Chart

Analyze the Top Activity Section

Analyze Profiling Details

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 111

USING PROFILING > RUNNING A PROFILING SESSION

OPENING AN EXISTING PROFILING SESSION

Saved profiling session data is stored in either an SQL Project or in a Profiling Repository on an
Oracle data source. You can find profiling sessions saved as .oar files in the SQL Project Explorer.
You can find profiling sessions saved to a profiling repository in the Data Source Explorer, either
in the Profiling Repository node of the data source or in the Profiling Repositories.

To view a saved profiling session, locate it in either the SQL Project Explorer orin the
Data Source Explorer and double-click the icon to open it in the Profiling Session window.

E'EI Daka Source B 63 %L S0L Projeck Ex = 0 E'EI Data Source Expl %L SGL Project Expl 23 = O

weilk 55 Y o & 7
= = sOlProject
BRE=A Managed Data Sources (4] 4 Connections
=8 TORLABORCL10_2 (Oracle 10,2.0,3) ot} Creation Scripts
(&3 Database Cbjects T General SQL
ik Profiing Repositary Ml ToRLABORCLE 22,0
=8 TORLABORCL11g_2 (Oracle 11,1.0.6) M TORLABSOLOO_1_#2. oar
L_l;:;l Database Objects lél Untitled Tuning Job.tun
= M Prafiling Repositary E—l Untitled Tuning Job2.tun
= Sl TORLABORCL11g_2 L#) Untitled Tuning Job22.tun
[2012-03-05 18:43:05 {33m) L1 Untitled Turing Jobw.bun

58| TORLABORCLSI 2 (Oracke 9.2,0.1)
S8 TORLABSGLOB_L (S0L Server 10,0,160,0)
= Prafiling Repositaries
It ToRLABORCLIG 2
=il ToRLABORCL1g 2
=-l| TORLABORCL11g_2
{4 2012-03-05 18:43:05 (33m)
M TORLABORCLS_2

FILTERING RESULTS

You can display filtered subsets of the original profiling results set for each section of profiling
based on DBMS platform type:

e IBM DB/2 for Windows, UNIX, and Linux: Application, Creator ID, Cursor Name,
Package Name, Statement Type, and User Name.

* Microsoft SQL Server: Application, Command, Database, Hostname, NT domain, Net
Address, and User Name.

e Oracle: Processes (Background or User), Action, Application, Hostname, Module, Schema
Name, and User Name. When profiling a RAC, there is also an instance filter that appears to
let you limit the profiling results shown to a specific instance.

e Sybase: Application, Database, Host, IP Address, KPSID, SPID, and User Name.

112 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

You filter results using the filter controls in the upper, right-hand part of the profiling editor.

F‘r-:u:esses: Filter by: |Hostname + | TORLABSCORCL V|q§h | ®

-Mone-

Ackion (—T_-l

Application

n B Configuration @ Commit B Metwa|madule t M Concurrency O Scheduler
Schema Mame
ser Mame

To filter profile editor results:

1 Use the Filter by menu to select a filter type. The second menu becomes active based on
your selection in the first menu.

2 Use the second menu to specify a value.

3 Click Refresh | S] to update the profiling details.
The profiling editor is updated to show only results associated with your choice.

TIP: Select-None- from the Filter by list to restore the unfiltered results.

ANALYZE THE LOAD CHART

The Load Chart is located on the top section of the Profile Session editor and provides a display
of the overall load on the system. The bars represent individual aspects of the enterprise, and
the view is used to discover bottlenecks.

Profile Session & g
'§ BONCPU B System UD BUss WD 1§ Chastar B Applicadon B Configueation B Commit B Matagsk B Administraive B Cancuerancy 0 Schadular B Qthsr
B i
=0
H
= 4
9
w2
i
g0 o & P = @ 3 3 o 7 o 2
o o o o L o ot o i & & o o

The most important part of the previous screenshot is the Average Active Sessions (AAS) graph.
AAS shows the performance of the database measured in the single powerful unified metric
AAS. AAS easily and quickly shows any performance bottlenecks on the database when
compared to the Max Engines (for Sybase) or Max CPU (for Oracle) line. The Max Engines line is
a yardstick for performance on the database. When AAS is larger than the Max CPU line, there is
a bottleneck on the database. Bottleneck identification is that easy.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 113

USING PROFILING > RUNNING A PROFILING SESSION

AAS or the average number or sessions active, shows how many sessions are active on average
(over a 5 second range in DB Optimizer) and what the breakdown of their activity was. If all the
users were running on CPU then the AAS bar is all green. If some users were running on CPU
and some were doing I/O, represented by blue, then the AAS bar will be partly green and partly
blue.

The line Max Engines or Max CPU represents the number of CPU processors on the machine. If
we have one CPU/Engine then only one user can be running on the CPU/Engine at a time. If we
have two CPUs/Engines then only two users can be on CPU at any instant in time. Of course
users can go on and off the CPU/Engine extremely rapidly. When we talk about sessions on the
Engines we are talking about the average number of sessions on CPU/Engine. A load of one
session on the Engine thus would be an average which could represent one uses who is
consistently on the CPU/Engine or many users who are on the CPU for short time slices. When
the number of Engines becomes a resource bottleneck on the database we will the average
active sessions in CPU/Engine state go over the Max Engine/Max CPU line. The number of
sessions above the Max Engine line is the average number of sessions waiting for CPU/Engine.

The Max CPU is a yardstick for performance on the database. The number of CPUs or Engine on
the data source is information DB Optimizer obtains during the profiling process. However,
sometimes the number of CPUs or Engines is not reported. In these cases it might be desirable
to change the default number of CPUs/Engines from one to a number more closely matching
the actual system running the data source. You might also want to change the Max CPU/Engine
line to reflect the performance impact of adding or removing a CPU or Engine from the system.

To change the Max CPU or Max Engine count in the Load Graph:

1 From the Profile Session window, right-click anywhere on the AAS graph and select Edit
Engine Count or Edit CPU Count.

2 Inthe Engine Count dialog that appears select Use a custom value, enter a new value,
and then click OK.

The AAS or Load Chart Max CPU or Max Engine line is updated immediately to reflect
the change.

The Load Chart is designed as a high level entry point to profile session results. Subsequently,
you can use the Top Activity and Profiling Details views to examine more detailed information on
waiting and executing sessions over the length of the session. Alternatively, you can select one
or more bars on the graph to populate the Top Activity section (and subsequently, the Details
View) with information on a specific subset of the graph.

The Load Chart displays the distribution of waiting and executing sessions over the length of a
profiling session.

e Time is displayed on the X axis. You can zoom in and zoom out on the graph via the icons in
the upper right hand corner of the graph, once a profiling session is stopped.

114 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

e The Y axis shows the average number of sessions waiting or executing. Each supported
platform has a specific set of wait event times.

DBMS Wait Event Category

IBM DB2 Fetch, Cursor, Execution, Operation,
Transaction, Connectivity, Lock, Other

Oracle On CPU, System 1/O, User 1/O, Cluster,
Application, Configuration, Commit,
Other

SQL Server CPU, Lock, Memory, Buffer, 1/0, Other

Sybase CPU, Lock, Memory, I/O, Network,
Other

¢ A chart legend displays a color and code scheme for executing and waiting session
categories, in the upper right-hand corner of the view.

ANALYZE THE TOP ACTIVITY SECTION

The Top Activity Section is located in the middle section of the editor and displays where the
load originates. Specifically, the top SQL statements, top events that the database spends time
in, as well as the top activity sessions.

The Top Activity Section is composed of a series of tabs that provide detailed statistics on
individual SQL statements and sessions that were waiting or executing over the length of a
profiling session.

|E_l:| romlabsgldSs_1-sa |E_l:| ramlaborclsi_2 28 =0
% romlaborclgi_Z ¥ Processes; Filker bu: |Llser Mame V|SY5TEM V| I:{;.QQ' [=E| @
Profile Session &}
= Hor CPU W System WD M User VO [0 Cluster B Application B Configuration B Commit @ Other
=
=
‘W
W
[a5)
o
[ak]
z y P E':F' E':FJ Q.I::F' . B . .
2 at art ot W ot s o o W
£< Cwerview E|'_-E|L S0L {B Events éiﬂ Sessions | $0 Object /0
SOL Statements Events Sessions
Statemnent b Ewvent [&8 User | Prograrm L
L3 INSERT INT.. . QINSERTT [|| log file sync B | SvsTEM B
sglect c.na... = u,user# I O CPU B SYSTEM
 HEROT ., lgj|dfiesequentilread W ig) | SYSTEM v
< | 3 ||« | EI|E= >

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 115

USING PROFILING > RUNNING A PROFILING SESSION

® The top SQL tab provides more detailed information than provided on the Overview tab, in

terms of executing SQL statements and procedures. For more information, see Top SOL
Tab.

* The top Execution Activity (DB 2 Specific) tab provides details about the statements and

procedures that ran. This is DB 2 specific. For more information, see Top Execution Activity
Tab (DB2 Specific).

® The top Events tab displays information about wait events profiled by the execution
process. For more information, see Top Events Tab.

e The top Sessions tab displays information about sessions profiled by the execution process.
For more information, see Top Sessions Tab.

e The top Blockers tab (Oracle) displays information about blocking sessions. For more
information, see Top Blockers Tab (Oracle Specific).

¢ The top Object 1/0 tab (Oracle-Specific) tab does not appear in the Top Activity Section
unless the data source being profiled is an Oracle platform. This tab displays information

about the I/O profiled by the execution process. For more information, see Top Object I/0O
Tab (Oracle-Specific).

e The top Procedures tab (Oracle, SQL Server, and Sybase-specific) displays information
about procedures observed during profiling. For more information, see Top Procedures Tab
(Oracle, SQL Server, and Sybase Specific).

When you select any item from the Top Activity tabs, details are displayed in the Profiling Details
view. The tabs that appear in Profiling Details will be different depending on the database
platform and whether you selected a statement, session, or an event. This is to accommodate
the parameter specifics of the item you selected.

116 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

TOP SQL TAB

The Profile editor’s SQL tab shows a representation of all SQL statements that are executing or
waiting to execute over the length of the profiling session or within the currently selected graph
bars.

NOTE: The image below depicts results achieved for a Sybase database. The columns
displayed on this tab differ depending on the database platform.

Profile Session qq
& BCPU OLock BUC B Metwork O Memaory B Other
R !

[T

=

=

"

[

& 1

Z

2° o e

%] o L% * b g _"!-J#L 3% # a3y o

.'='E Qrverview | E':.L S0l f_l_"‘ Events | ,&r' Sessons | ;'ﬁ Procedures

Statements CPU Physical [0 | Memory Usag &

& select count(™) From dbo, TYENDOR, a1, dbo. TVENDOR, a2, dbo. TVENDOR. a3 whiere 1=1] 7
+ TNSERT INTO codruta.t1(fif, i, §, u) VALUES { @i, &, @i, &) 4 3
3 DELETE FROM codruta b1 WHERE jij = (select macifii) from codruta bi) 5 4067
5% WHILE {SELECT COUNT(*) FROM codria 1) = 1 BE.. E jji = (select max(iff) from codriba.tt) END o 263
D ET@i=Gi+1 1 1
52} WHILE @4 <= 1000000 BEGIN INSERT INTO cadeut. . LLES | @6, @i, @6, @i) SET @i= @i+ 1 END 1]
[P R] an s
1] AL | L
Statements

Statements can be grouped by type by right-clicking the view and selecting Organize > By
Type.

TIP: Statements are grouped when they differ only by their clause values. This enables the
roll-up of SQL statements that only differ by a variable value. For example: select * from
emp where empno=1; and select * from emp where empno=2. A '+’ symbol appears
beside rollup statements. You can click the symbol to expand and view the different
statement predicates.

Additionally, the SQL tab displays two other groupings of statements:

Group Description

OTHER Includes all recognized statements other than INSERT, SELECT, UPDATE,
DELETE, and MERGE statements.

UNKNOWN Statements that are not recognized by the application. DB Optimizer has
been improved to query the caching more often and more intelligently so
that UNKNOWN appears less frequently in the Top SQL tab. The system
queries the data source for SQL text in 15 second intervals. Unknown may
still appear infrequently as the SQL text may have been removed by the
database.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 117

USING PROFILING > RUNNING A PROFILING SESSION

All statements are displayed in a tree structure with the following statement components:

Statement Component Description

Subject The DML statement type (and FROM clause, as appropriate).
Predicate The WHERE clause.

Remainder Any statement component following the WHERE clause.

For example, all statements with common subjects are shown as a single entry with multiple
children; one child for each unique predicate. Predicates are similarly broken down by
remainders.

NOTE: Right-clicking the SQL tab and selecting Organize By lets you choose between
Statement Type grouping and None. The None option disables grouping by
statement.

Statistics

Statistics are provided for statements and statement components. The statistics let you evaluate
costs and spot wait event problems not just at the level of entire SQL statements, but also at the
level of statement components. For each subject, predicate or remainder entry, the following
statistics are provided:

NOTE: Columns displayed on the top SQL tab differ depending on the data source platform.

Statistic Shown for Platform | Notes
Executions SQL Server, Oracle, | The number of active executions for the statement or statement
Sybase, DB2 component over the length of the profiling session or the selected
graph bars.
Avg. Elapsed (sec) Oracle, DB2 The average amount of time that elapsed while executing the

statement during the profiling period. This column appears for only
SQL Server, DB2 and Oracle data sources.

DB Activity (%) SQL Server, Oracle, | A graphical representation of the distribution of execution and wait
Sybase, DB2 time for the statement or statement component.
SQLID Oracle The ID value of the SQL statement. This statistic only appears on Oracle

data sources.

Child Number Oracle The child number in the database. This statistic only appears on Oracle
data sources.

Parsing User ID Oracle The ID of the user who parsed the statement. This statist only appears
on Oracle data sources.

Plan Hash Value Oracle The execution value of the statement. This statistic only appears
on Oracle data sources.

TOP EXECUTIONACTIVITY TAB (OB2 SPECIFIC)

In addition to the statistics displayed on the Top SQL tab, DB2 platforms have an additional tab
in the Profile Session editor named Execution Activity, which contains the following statistical
rows: Rows Read, Rows Written, Fetch Count, Statement Sorts, Sort Time, and Sort Overflows.

118 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

TOP EVENTS TAB

The Top Events tab displays information about wait events on the resources involved in the
profiling process. This display is used to tune at the application or database configuration level.
For example, if the top events are locks, then application logic needs to be examined. If top
events are related to database configuration, then database setup should be investigated.

Profile Session

BONCPU B System VO B User 1O O Cluster B Application B Configuration B Commit B Metwo

ciive Sessions (av

22 cvarview | 1 50U {:‘:i Everts-_ 27 sassions | 601 Objet 1O

Ewent Wik Counk A, Per Wl (sac) Class DB Acthty (9) =
O CPU Ol CPU [] 75.23
db File saquential raad 445 0.359 User [JO . 15.01
ST CpU gUantum 218 0,085 Schaduler I} 789
db file paralls| wrika 18 0.458 Sysham [0 061
erig: OF - contention & 1.194 Cither 0,32

NOTE: The columns that display are data source-dependent. For example, the Wait Count and
Avg. Per Wait (sec) columns display only for an Oracle data source.

TOP SESSIONS TAB

The Sessions Tab provides information about individual sessions. This tab provides information
about sessions that are very active or bottlenecked.

EE Owverview E‘ SOL |{Eﬁ Ewents Igﬂ Stsstrnsl
Usar Hame Program 510 Seral= Activity (%] Madhine Session Type

SSTEM Executor.exe 125 32563 I 27.19 EMEARCADERO'ROWERITADL USER

T ORACLEBE (CTwR) 155 3EEE. . 25.43 TORLABORCLIOG_Y BACKGROLWD
ORACLE.EXE (C230) 162 1. 20.67 TORLABCORCL10G_1 BACKGROLMND
ORACLE.EXE (ma0o) 111 229521 3.43 TORLABORCL10G_1 BACHGROLMD

SYSTEM Executor.exe 143 688941 2.72 EMBARCADER CROVEANITUCADL USER
QRACLE.EXE (SMON) 162 il 2-70 TORLABORCL I0G_1 BACKGROLMD

SYSTEM Executor.exe 111 VIBET | 2,37 EMBARCADERCAROVENGVALOL IJSER

SSTEM Evecutor.exe 97 B2z | 1.86 EMBARCADER O\ROVIEMOVACTL USER

SYSTEM ExerUr.ese 120 59995 1.59 EMBARCADEROROVSNOVACOL USER
CRACLE.EXE (m001) 57 43155 1 1.54 TORLABORCL10G_1 BACKGROLMD
AN as S ove furank s a TENI_ ADANT a0s 8 SRR RN

TOP BLOCKERS TAB (ORACLE SPECIFIO)
The Blockers tab provides details on sessions holding blocking locks.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 119

USING PROFILING > RUNNING A PROFILING SESSION

| SYSTEM JDBC T...lient

ORA.WR) 166 10 15.67 ROML...R503 BACK..UMD
| SYSTEM JDBC T..lient 124 26549 || 4.48 rowch...iu02 USER
' ORA..OM) 161 1 0.75 ROML...R503 BACK..UMND

: User Mame | Program SID | Serial® | Blocking (%) = | Machine | Session Type | Client Info

The following parameters are displayed on the Blockers tab:

Value Description

User Name The user name under which the session was run.

Program The name of the executable under which the session was run.

SID The SID value of the session.

Serial The serial number of the machine from which the session executed.
Blocking (%) A graphical representation of the percentage of total blocked sessions

being blocked by a blocking session.

Machine The machine name and network location of the machine from which the
session executed.

Session Type The type of session.

Client Info The name/type of the client from which the session initiated.

For more detailed information, see Viewing Details on the Blockers Tab (Oracle).

TOP OBJECT 1O TAB (ORACLE-SPECIFIO)

The Object 1/O Tab is specific to the Oracle data source platform, and displays information

about Oracle I/O loads on the profiled data source.

22 overvien | B 56 | (B Bvents | €0 sessions | 900 Obect Lio |

Ohinct | Type DF Activity (%) = | Tahlesmamce Fie ID
ENF TAELE I 10000 SYSTEM 1

B lozal wn
W read by
B db il
B db fil=:
O directr
0 directy
W directe
0l drectp
B Unco

0 other

120 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

The following parameters are displayed on the I/O tab:

Value Description

Object The name of the data source object affecting the Oracle I/O.

Type The object type. For example, table, partition, or index.

DB Activity (%) Use the color chart on the right-hand side of the 1/O tab to view the I/O
load on the data source during the profiling session.

Tablespace The name of the tablespace where the object resides.

File ID The unique ID value of the file from where specified object resides.

TOP PROCEDURESTAB (ORACLE, SQL SERVER, AND SYBASE SPECIFIC)

The Procedures tab is specific to Oracle, SQL Server, and Sybase data source platforms. It
displays information about Procedure loads on the profiled data source.

£ Overview | 'r|'-_q|" a0L |{9 Events |§1 Sessions l_;?_u, Prnceduresl

Procedure Mame | Database Mame | Procedure ID | Executions | DB Ackivity (%) = |
{TEST_PROCE codruta 550099035 1 50.00
TEST_PROCI codruta 1542102572 1 I 50,00

The following parameters are displayed on the Procedures tab:

Value Description

Procedure Name The name of the procedure affecting the database performance.

Database Name (SQL Server, Sybase only)| The name of the database where the procedure resides.

Owner (Oracle only) The owner of the schema in which the procedure resides.
Procedure ID A unique ID created when the procedure is created.
Executions (SQL Server, Sybase only) The number of times the procedure was executed during the session.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 121

USING PROFILING > RUNNING A PROFILING SESSION

ANALYZE PROFILING DETAILS

The Profiling Details view displays detailed information on any item selected in the Top Section
View, such as an SQL statement, an Event, a Session or a Procedure.

[Brofing Ceteis 5 =" m|
SqL: INSERT INTG PERFCHTR_DATA_1(QUERYID, VALUEL) SELECT 951, COUNT (<) FROM SYSV_SLOCK L SYS.DBA_OBIECT...

B i Tesit | oty 5L Detail | €8 Bvants | 27 sessians | BB chicren Detals

SO Tdentification optimizer and Outhne Execution Statistics (total) per execution — PeFFow

EQLID 1135735065 Opbimizer Mode ALL_ROWS Fabches 0,00 0.00 0,00
&5 FIRECESD Fargng Liser 1D 5 Evecuborns 1 1.040 1.0

Child Address GABAASID Ourthne Categary Sarks 0 0,00 0,00
Childran 1 Cutdine 5D 0 Disk Reads 1004 1,5004.00 1,004,030
Blan Hash Value 3582252508 Buffer G=tx 13261 13,2600 13,2500
Farsing Statistcs i
Magulz Exeouborexs - Pores Processed 1 1,00 Lo0
At Memary 162433 OPU Tme 93, 750,00 o3, 753,00 a3, 750,00
50 Cp=rabion Cod= 2 Loacs 134 Slapzed Time A0, 279, 820,00 70,279,320.00 70,275, 820,00
Program ID 101644 Invalidatiors 132

Frogram Line= 195

Depending on the data source platform you have specified, the tabs that appear in the view will
be different, in order to accommodate the parameter specifics of the statement you have
selected.

Depending on the top activity selected and the profiled platform types, some tabs may not be
available.

Statement Selected

When a Statement is selected, the following Profile Detail tabs are available.

Tab Name | Description Supported Platform
Oracle |Sybase |[DB2 |SQL
Server
SQL text Displays the full code of the selected SQL statement. yes yes yes |yes
SQL Details | Provides details on statement, like execution statistics. yes yes
Events Provides database activity details about events the statementis | yes yes yes |yes
associated with.
Sessions Shows which sessions executed this statement. yes yes yes |yes
Blockers Shows which sessions held blocking locks against the session yes

associated with this statement.

Double-clicking an entry on this tab opens that session in the
Top Blockers tab, letting you find more information on the
blocking session. For details, see Top Blockers Tab (Oracle

Specific).
Children Lists all copies of the cursor or SQL query, if Oracle has cached | yes
Details multiple copies of the same statement.
Object I/0O | If the SQL query has done physical I/0, then these are the yes

objects, such as tables, and indexes that were read to satisfy the
query. Temporary objects with not have values in Object and
Type columns.

122 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

Tab Name | Description Supported Platform
Oracle |Sybase |[DB2 |SQL
Server
Procedures | Shows which procedures contain the selected statement. yes yes
Bind Shows bind variable information for SQL captured during the | yes
Variable Profiling session.
Details

Event Selected

When an Event is selected, the following Profile Detail tabs are available.

Tab Name | Description Supported Platform
Oracle |Sybase |DB2 |SQL
Server
SQL Shows which SQL statements waited on this event. yes yes yes |yes
Sessions Provides information about the sessions associated with the yes yes yes |yes
event.
Blockers Shows which sessions held blocking locks against the session yes

associated with this event.

Double-clicking an entry on this tab opens that session in the
Top Blockers tab, letting you find more information on the
blocking session. For details, see Top Blockers Tab (Oracle

Specific).

Procedures | Shows which procedures contain the selected event. yes yes

Raw Data | Raw data that was sampled from the database, specifically the | yes
following:

e Sample time
*SID

e Serial #

® User name

® Program

e SqlID

o P1

* P2

*P3

Analysis Displays for "buffer busy waits” and “cache buffer chains latch” | yes
waits. The analysis shows data and documentation to assist in
solving these bottlenecks.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 123

USING PROFILING > RUNNING A PROFILING SESSION

Session Selected
When a Session is selected, the following Profile Detail tabs are available.

Tab Name | Description Supported Platform
Oracle | Sybase |DB2 |SQL
Server

Sessions Provides parameters regarding the session. For example, yes yes yes

database server connection information, and data regarding the

client tool and application.
Blockers Shows which sessions held blocking locks while this session was | yes

active.

Double-clicking an entry on this tab opens that session in the Top

Blockers tab, letting you find more information on the blocking

session. For details, see Top Blockers Tab (Oracle Specific).
SQL Shows which SQL statements this session ran. yes yes yes |yes
Events Shows which events this session waited on. yes yes yes |yes
Procedures | Shows which procedures ran the selected session. yes yes

NOTE: When right-clicking on a SQL statement in the Top Activity Section in Profiling, if the

SQL statement is run by a different user than the user who is running DBO, than the
User Mismatch dialog appears, with an example of the following message: “This query
was executed by [SOE] and you are currently connected as [system]. We recommend
you reconnect as [SOE] to tune the SQL. Would you like to continue anyway?” This
message indicates that the statement is being tuned by a user other than the user who
originally ran the query, and tables may be missing based on the different schemas.
Click OK to run the query, or click Cancel and run tuning under the original user.

Blocking Session Selected

When a Blocking Session is selected, the following Profiling Detail tabs are available.

Tab Name | Description Supported Platform
Oracle | Sybase |[DB2 | SQL
Server
Blocked Provides identifier and V$SESSION session information on the yes no no no
Sessions sessions being locked by the blocking session.
Session Provides parameters regarding the session. For example, yes no no no
Details database server connection information, and data regarding the
client tool and application.
SQL Shows the SQL statements associated with the lock yes no no no
Events Shows which events the blocking session waited on. yes no no no

124

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

Procedure Selected

When a Procedure is selected, the following Profile Detail tabs are available.

Tab Name | Description Supported Platform
Oracle | Sybase |DB2 |SQL
Server
SQL Text Shows the SQL text of the selected procedure. yes yes
SQL Shows which SQL statements this procedure ran. yes yes
Events Shows which events the selected procedure waited on. yes yes
Sessions Provides parameters regarding the session. For example, yes yes
database server connection information, and data regarding the
client tool and application.

This section also addresses the following topics:

® Viewing Details on the SQOL Tab

® Viewing Details on the Sessions Tab

e Viewing Details on the Events Tab

¢ Viewing Details on the Procedures Tab

VIEWING DETALS ON THE SCL TAB

In the Top Activity Session, selecting a statement entry on the SQL tab displays information
in the Profiling Details view. The graph portion and details on the event category tabs on the
new editor pertain only to the selected statement. Additionally, new tabs become available:

e SQL Text tab: Shows the full code of the SQL statement. For more information, see SQL
Text.

* SQL Details tab: Displays execution details. This tab is only displayed for Oracle
data sources. For more information, see SQL Details.

e Events tab: Displays information about the events the selected statement is associated with.
For more information, see Events.

e Sessions tab: Displays information about the sessions that the selected statement is
associated with. This tab is displayed only for Oracle data sources. For more information, see
Sessions.

® Procedures tab: Displays information about the procedures that contain the selected
statement. This tab is displayed only for SQL Server and Sybase data sources. For more
information, see Procedures.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 125

USING PROFILING > RUNNING A PROFILING SESSION

To select a SQL tab statement entry:

* Onthe SQL tab, click on a statement with no child nodes or on a leaf node in the statement
structure.

The new profiling editor page opens, as reflected by the bread crumb trail at the top left of the
editor. You can continue to drill down into the statement, as needed.

SQL Text
The SQL Text tab displays the full code of the SQL statement.

3 New SQL Text =B =

Add Tuning Statement 5 u L

Add a SQL staterment, U

SELECT 4
First,
La=st
FROM
Employee
WHEERE
Gender = "F"

Apply

b OKd [Concel

126 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

SQL Details

USING PROFILING > RUNNING A PROFILING SESSION

The SQL Details tab provides information and the execution of the statement and other
information related to how it is running. It is only applicable to Oracle data sources:

G Profing Detaiks 53

SOL: THSERT INTO PERFONTR_DATA_1(QUERVID, VALUEL) SELECT 854, COUNT(™) FROM SYSV_&LOCK LEVS.DRA_ORIECT..

Bt 50 Text | o 50 Detats | 53 Everts| 47 sessions | B chicren Detals

S0 Identfication Optimizer and Outline Execution Stabistics (total] [er execulion Perrow
SQLID 1135355565 Optimizer Made ALL_POWS Fetthes 0,00 000 0,00
501 Address 5998CES0 Parsing User 100 5 Exmoutions 1 1.00 1.0
CThid Adcress G85AA520 Cutime Categaory Sorta O 0.00 0,00
Children & Qutine 510 0 Gisk Reads 1004 1,604.00 1,004,040
Flan Hagh Valus 3582282405 i i Buffer Cets 13261 13,2600 13,26 1.00
- Parsing Skatishics
Module Sxecutarexe — Riows Processed 1 1.00 100
Actian Memary 152433 CFU Tim= 93, 750.00 23,750.00 93,750.00
0L Op=rakon Jode 2 Loads 134 Eapged Time 70,275420,00 70,273,:320.00 70,273 820,00

Program 1D L1644
Frogram Line= 185

Irmvaidations 132

SQL Details include:

Parameters

Description

SQL Identification Values

The SQL ID value of the statement.

Optimizer and Outline Values

Optimizer-specific values pertaining to the parsing user ID value and
outline SID.

Parsing Statistics

Information regarding memory, loads, and invalidation values.

Execution Statistics

The execution statistics of the statement. This category includes disk reads,
buffer gets, rows, and values that represent CPU and elapsed time.

Events

The Events tab provides details about the events that the statement is associated with.

| @ Profing Detaia 3

S0L: INSERT INTO PERFCNTR_DATA_1({QUERYID, VALUEL) SELECT 951, COUNT(*) FROM SYS.N_SLOCK L5YS.DBA_OBIECT...

it 5L Text | @ 5QL Details | (D) Events| £ sessions | 0 Children Detais |

Ewent
db file s=quental read
db file scattered read

Actvity (%) ~ |
| 3.8
0.50

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 127

USING PROFILING > RUNNING A PROFILING SESSION

Sessions
The Sessions tab provides information about any sessions the statement is associated with:
B Profing Detais £ =08

5L INSERT INTO PERFCNTR_DATA_1{QUERYID, VALLEL) SELECT 951, COUNT(*] FROM 5Y5.N_SLOCK L,5Y5.084_0BIECT...

Bt =0 et | g 50U Detals €5 Events | £ seacions | FB Chikden Details

User hlame Sragram k] Sanal= Actity (%] Machins Session Type
SYSTEM Execubar.exs 145 S:B0 I 3,12 EMBARCADERRSWEROVACD L LISER,
SYETEM Exeruboreng 145 2242 0.35 EMBARCADEADADWERDVAZD L LIEER,

Session details include information on different parameters, depending on the platform. For
example, on Oracle platforms, the following parameters are displayed: User Name, Program,
SID, Serial #, Activity (%), Network Machine Name, and Session Type.

Procedures

The Procedures tab provides information about any procedures containing the selected
statement.

@ Profing Detais &3 =8
SOL: WHILE (SELECT COUNT{*) FROM codrutat1) > 1 BEGIN DELETE FROM codruta.t] WHERE §jj = (select man(j)...
ﬁ SO bext ':E]' Events | 47 Sesziors J'I;l Praceduras

Procedure Mame Database Name Fracedure 1D Executions DB Aoty (%)
TEST_PROGCZ codruts ASO0IA0IE 1 I 16,14

The following parameters are displayed on the Procedures tab:

Value Description

Procedure Name The name of the procedure that contains the selected statement.

Database Name The name of the database where the procedure resides.

Procedure ID The unique ID value of the file where the specified procedure resides.

Executions The number of times the procedure was executed.

DB Activity (%) Use the color chart on the right-hand side of the Procedures tab to view the
procedures load on the data source during the profiling session.

128 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

VIEWING DETAILS ON THE SESSIONS TAB

In the Top Activities Section, selecting a statement entry on the Sessions tab displays
information in the Profiling Details view. The graph portion and details on the event

category tabs on the new editor pertain only to the selected statement. Additionally, new tabs
become available.

Selecting an event type entry on an event category tab opens a new profiling editor page. The
graph portion and details on the Sessions tab and event category tabs on the new editor page
pertain only to the selected wait event and to SQL statements that waited in that event.

e Session Details tab: Shows system details about the selected session. For
more information, see Session Details.

e SQL tab: Displays information about the SQL files that the selected session is associated
with. This tab only appears on Oracle platforms. For more information, see SQL.

e Events tab: Displays the time and parameter information about the selected session. For
more information, see Events.

® Procedures tab: Displays the details of any procedures run in the selected session. For SQL
Server and Sybase data sources only. For more information, see Procedures.

Session Details

The Session tab provides further information about the selected session. The following are
examples of the session details provided for different platforms.

NOTE: The fields that display vary depending on the database platform.

Oracle Profiling Details

i@ Frofilng Detats 21 =B

Session: 145, 9180

EE seasion Detaile | 5 50L _'fl Events
Database Sarver Connection Chient Tool Application
S0 145 rogram Exepusor.exs SOLID 15453493752
Serals Q1R 105 User MT AUTHORITTARNCHYMOLUS LOGON SQL Operation Code 3
Ltzer Kame SYSTOX o5 Process ID TBT2i76T0 Lask Cal Bapsed Time 86

O 1425832 Hast EMEARCADERCIROWEMNOVACDL Modu'e Exscutor.sxs

Timg 200§-12-18 17:25:06.0 Terminal ROWSNOVACDL Actian
Logged On For 00:=03:27.0 Clent ID S0L Trace DISABLED
Connection Type DEDICATED Client Infa

Sasgion Typs USER

Regauros Cansumer Group

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 129

USING PROFILING > RUNNING A PROFILING SESSION

Microsoft SQL Server

@ Profiling Detals 53

Session: 55_2009-09-30 09:40:34.940 (5a f Executor Module)

= session Detais | 5 5L | (5 Everts|

Database Server Connection Client Application
SPID 55 Appicetion neme Exeoutor Module
KPID 4,048 NT domain
Databass 10 109 NT wsermane
User ID O Host pracess 100 3552
Lowgin Eime 20009-09=30 054034 .94 Hostname TORLABDEMOO1
et address 000C295921 368
Met torary TCRIIP

SQL

The SQL tab displays information about the statements associated with the session.

igh Profiing Detals 33

EE fmcmon Deteds T 'E.l e {H Events

Session: 145, 9180

Sketement Exeoubors | Acthity 088) | SO | Chidburber | PasnglieerID Plaibeshiee
SMERT“‘TGPERK“TU"I‘D-EJ-"—“‘QEJM'-F'-“‘__‘l+f'5?35’955'5' 5 dewses 4
MWZERT INTC FERFCHTR _D... LISER= FROM SY5.USERS LR 0.20 530002544 a 5 4007535571
' SELUECT COUNT{™) FROM 5Y, . HERE STATLS = TRLTNE Ll 0.05 S45343752 a 5 Z510734404
o L L} 005 3440472121 n (Y

SQL statements are listed by the following parameters:

Value Notes
Statement The name of the statement.
Executions The number of times the statement was executed during the session.

Activity (%)

A graphical representation of the distribution of execution and wait time
for the statement or statement component.

SQL D

The SQL ID value of the statement.

Child Number

The child number in the database.

Parsing User ID

The ID of the user who parsed the statement.

Plan Hash Value

The execution value of the statement.

130

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

Events

USING PROFILING > RUNNING A PROFILING SESSION

The Events tab provides details about the events that the session is associated with.

9 ProfingDetais 11

Sessiom: 145, 9180

local write wait

EE Session Details | ESL S0L IEE" E'-rentsl
Event | Actvity (%) 7|
i db file sequential read 2.79
db file scattered read 0,60
0.05

Events are listed by the following values:

Value

Notes

Event Name

The name of the event.

Activity (%)

A graphical representation of the distribution of execution and wait time
for the statement or statement component.

Procedures

For SQL Server and Sybase data sources only, the Procedures tab provides details about the

procedures that the session is associated with

PR -0
session: 112, 5505108 (sa)
EE session Dexails | T 501 (D) Events |) Procedures |
Frocedure Home | DotabsseMame | FrocedueID | Executions | DB Aty (%) *
TEST_PROCZ codruts BE0CAG0IE 1 IR 100.00
131

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

The following parameters are displayed on the Procedures tab:

Value Description

Procedure Name The name of the procedure that ran during the selected session.

Database Name The name of the database where the procedure resides.

Procedure ID The unique ID value of the file where the specified procedure resides.

Executions The number of times the procedure was executed during the session.

DB Activity (%) Use the color chart on the right-hand side of the Procedures tab to view the
procedures load on the data source during the profiling session.

Bind Variable Details

For Oracle data sources, profiling captures the bind variables and their attributes. Select an SQL
statement in the Profiling Session and the details of the captured bind variables for that
statement are displayed here.

& Profiing Details &3
SQL: SELECT COUNT{DISTINCT A.TITLE) FROM MOYIETITLE A, MOVIECOPY B, RENTALITEM C WHERE
E3 s0L Text | o' SQL Detalls | (5} Events | &7 sessions | T80 Children Dstails | 803 Object 1/0 | iy Bind Varisble Details

SQLID Child Mumber Position Variable Name Variable Type Variable Value
delansuihe pft 0 1 MNUMEBER 625

The following parameters are displayed on the Bind Variable Details tab:

Value Description
SQL ID SQL identifier used by the data source.
Child Number A new child number is generated for the SQL ID of the query whenever the

plan changes, for example the value of a bind variable is changed, and the
query is executed again.

Position The position of the variable within the SQL text. For example, given the
query, select * from T1 where C1 =:a and C2 = :b and C3 = :cand C4 = :d,
the position of ais 1,bis 2, cis 3and d is 4.

Variable Name The name of the variable.
Variable Type The data type of the variable.
Variable Value The value of the variable.

VIEWING DETALS ON THE BLOCKERS TAB (ORACLE)

In the Top Activities Section, selecting an entry on the Blocked Sessions tab
displays information on sessions holding blocking locks in the Profiling Details view.

Blocked Sessions

The Blocked Sessions tab provides general information on blocked sessions and the details
identifying the specific row locked.

132 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

@ Profiling Details 52 Fim

Session: 124, 26549 (SYSTEM/JDBC Thin Client)

ﬁ Blocked Sessions | EE Session Details| 5 5QL| 5 Events|

| UserName | SID ~| ROW_ WAIT OB} | ROW_WAIT FILE# | ROW_WAIT_B..K# NUMBER | ROW. ... ROW#

| SYSTEM 137 1 0 0 0
SYSTEM 136 3 0 0 0

| SYSTEM 110 K 0 0 0
| SYSTEM 107 -1 0 0 0
| SYSTEM 100 1 0 0 0
0 0 0

| SYSTEM 96 5

This tab provides the following columns for each blocked session:

Value Notes

User Name The user name under which the blocking session was run.

SID The SID value of the blocking session.

ROW_WAIT_OBJ# Object ID of the table containing the row specified in ROW_WAIT_ROW#.

ROW_WAIT_FILE# Identifier of the datafile containing the row specified in
ROW_WAIT_ROWH#.

ROW_WAIT_BLOCK# Identifier of the block containing the row specified in ROW_WAIT_ROW#.

ROW_WAIT_ROW# The current row being locked.

Session Details

The Session Details tab provides information on the server connection, client, and application
associated with the blocking session.

rad f— &
@ Profiling Details &2 B
Session: 124, 26549 (SYSTEM/JDBC Thin Client)
ﬁ Blocked Sessions [%% Session Detailsl 'rr':u'L SQLl {B Events|
: Database Server Connection Client Tool Application i
SID 124 Application JDBC Thin Client SQLID cuprduuungesh
Serial 26549 05 User Catalinb SQL Operation Code 3
User Mame SYSTEM 05 Process [0 1234 Last Call Elapsed Time 00:16:13.0 |
Process Q5 PID 5780 Hostname rowcbulgariu(2 Module JDBC Thin Client|
Legged On Time 2012-10-31 05:54:54 Terminal unknown Action
Legged On For 00:17:03.359 Client ID SOL Trace DISABLED
Connection Type DEDICATED Client Info =
Session Type USER =

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 133

USING PROFILING > RUNNING A PROFILING SESSION

SQL

The SQL tab displays information about the statements associated with the blocking session.

=
@ Profiling Details &3

.

= {E

Session: 124, 26549 (SYSTEM/JDEC Thin Client)

ﬁ Blocked Sessions EE Session Details I EEL SQLI {9 Events|

[
Statement

Executions | Awg. Elapsed (sec) | DB Activity (%) = | SQLID | Child Mumber
9 P ty

" o SELECT CO...TIME ID 52

490.385 [N 100.00 cuj...csb 0

SQL statements are listed by the following parameters:

Value Notes

Statement The name of the statement.

Executions The number of times the statement was executed during the session.
Activity (%) A graphical representation of the distribution of execution and wait time

for the statement or statement component.

SQL ID The SQL ID value of the statement.

Child Number The child number in the database.
Events

The Events tab provides details about the events that the blocking session is associated with.

-
i@ Profiling Details 3

o

==

Session: 124, 26549 (SYSTEM/JDBC Thin Client)

a Blocked Sessions |EZ Session Details | & SQL 5 Eventsl

i Event Wait Count | Awvg. Per Wait (sec) Class DB Activity (%) =
: direct path read temp 789 0179 User/O I o :2
| ON CPU ON CPU =] 19.68
I read by other session 2 0.205 User/O 051

134

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

Events are listed by the following values:

Value Notes

Event The name of the event.

DB Activity (%) A graphical representation of the distribution of execution and wait time
for the statement or statement component.

VIEWING DETALS ON THE EVENTS TAB

In the Top Activities Section, selecting a statement entry on the Event tab displays
information in the Profiling Details view. The graph portion and details on the event category
tabs on the new editor pertain only to the selected statement. Additionally, new tabs become

available.

Selecting an event type entry on an event category tab opens a new profiling editor page. The
graph portion and details on the Events tab and event category tabs on the new editor page
pertain only to the selected wait event and to SQL statements that waited in that event.

e SQL tab: Shows the statements involved in the selected event. For more information, see

SQL.

e Sessions tab: Displays information about the sessions that the selected event is associated
with. For more information, see Sessions.

® Procedures tab: Displays information about the procedures that ran during the selected
event. For more information, see Procedures.

SQL
The SQL tab displays information about the SQL statements involved in the selected event.
@ Profing Detsis 52 |
Event: wait for someone else bo finish reading in mass
S 0L £ Sessions | B Procedures
Skakements CPU Physical 10 | Memary Usage Execu
_H CELETE FROM codruta.b] WHERE j5i = (sedect macd1i) from codruta,bl) 1] 303 8
,:t WHILE (SELECT COUNT(™) FROM codruta,tl) = 1 BE...E jjj = (select mac(i) from codruta.bl) END 1] 1625 B
Value Notes
Statement The name of the statement.
SQL ID The ID value of the SQL statement.
Child Number The child number in the database.

Parsing User ID

The ID of the user who parsed the statement.

Plan Hash Value

The execution value of the statement.

CPU

Cumulative CPU time for the process. (measured in “ticks”, an arbitrary unit
of time)

Physical IO

Cumulative disk reads and writes for the process. (total count)

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 135

USING PROFILING > RUNNING A PROFILING SESSION

Value Notes

Memory Usage Number of pages in the procedure cache that are currently allocated to
this process. A negative number indicates that the process is freeing
memory allocated by another process.

Executions The number of times the statement was executed.

Activity (%) A graphical representation of the distribution of execution and wait time
for the statement or statement component.

Sessions
The Sessions tab displays the sessions and related information regarding those that were
associated with the selected event.
i@ Profiing Dataik £2 M
| Event: O CFL

| B 5o | 47 sessians | 421 Ravi Data

| Ugar [ams Program i) . Ceral= Achvrby {35) r Madire Sezgon Type

(FSTSTEM Eweoutocewe 35 GaGAI MM 31,92 EMSWRCADEROROWERITAOL UsER -
QRACLEEXE {CTWR) 156 3 I 29,43 TORLAIORCLIDG_1 BACKGROLND
GORACLE EXE ﬂJH'F.'L::i 167 1 0.75 'IU‘{lAHu?.LLL;’JE_L BACKGAGUND

| QRACLEZXE (MMIOM) 161 1 0,45 TORLAIORCL 106 _1 BACKGRIUND

I | IGNITE QRACLE.ZKE {002) 145 26503 0,10 TORLAIORCLIDG_1 USER

| QRACLEEXE :EM:h:I 14 1 0.10 TOALAIORCL1AG_1 BACKGRCUND

| QRACLE EXE (PR 168 1 0.10 TORLASORCL10G 1 BACKGRIUND

||| IGHITE QRACLESKE (2015) 118 1 0,05 TORLAFCRCL1DG_1 USER

| 57s QRACLEEXE {007) 124 &m0 0.05 TORLAIORCLI3G_1 LISER

|| svsTEM Ewmriibor s 128 G242 005 EMBARCADERO RO ENaUADH LSER

IENITE QRACLEZXE (2000) 158 5 0,05 TORLAIORCLIDG_1 LSER

The following parameters are displayed on the Sessions tab:

Value Notes

User Name The user name under which the session was run.

Program The name of the executable under which the session was run.

SID The SID value of the session.

Serial Number The serial number of the machine from which the session executed.
Activity (%) A graphical representation of the distribution of execution and wait time

for the statement or statement component.

Machine The machine name and network location of the machine from which the
session executed.

Session Type The type of session.

136 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

Procedures

The Procedures tab displays the procedures and related information regarding those that were
associated with the selected event.

i@ Profing Detais 2 =g
Ewent: waiting for disk write to complete
B 5oL | 27 Sessions 5"‘,:-' Procedures
Frocedure Mama Database Name Frocedurs 10 Executions D Actrviy (%)
TEST_PRC1 codruty 1842102572 1 [|). ()
The following parameters are displayed on the Procedures tab:
Value Notes
Procedure Name The name of the procedure that ran during the event.
Database Name The name of the database where the procedure resides.
Procedure ID The unique ID of the procedure.
Executions The number of times the procedure ran during the event.
DB Activity (%) A graphical representation of the distribution of execution and wait time
for the procedure.

VIEWING DETAILS ON THE PROCEDURESTAB

In the Top Activities Section, selecting a procedure entry on the Procedure tab displays
information in the Profiling Details view. The graph portion and details on the procedure
category tabs on the new editor pertain only to the selected procedure. Additionally, new tabs
become available.

Selecting a procedure type entry on a procedure category tab opens a new profiling editor
page. The graph portion and details on the Procedure tab and procedure category tabs on the
new editor page pertain only to the selected procedure and to SQL statements that waited in

that procedure.

e The SQL Text tab shows the SQL of the procedure. For more information, see SQL Text.
e The SQL shows the statements involved in the procedure. For more information, see SQL.

e The Events displays the time and parameter information about the selected procedure. For
more information, see Events.

* The Sessions displays information about the sessions that the selected procedure is
associated with. For more information, see Sessions.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 137

USING PROFILING > RUNNING A PROFILING SESSION

SQL Text
The SQL Text tab displays the full code of the procedure.

@ Profing Detals 1

Procedure: TEST_PROC1

Cooson et B s | (5D Everts | 47 Sessions

CREATE PROCEDURE dbo.TEST PROC1 AS
DECLARE Bi INT
BEGIN
SET Bd = 1
VHILE
Bi <= 1000000
BEGIN

SQL

[»

The SQL tab displays information about the SQL statements involved in the selected procedure.

@ Profiing Detaie £
Procedure: TEST_PROCI

LB oo Tt | B 50 | (5 Evenks | @0 sessions

=0

Skatements CPU Physical IO | Memary Usage Execu
¥ TNSERT INTO codruta. 10 fii, i, 1, u) VALUES @4, @, @i, &) z 3 &
D% WHILE @i <= 1000000 BEGIN INSERT INTC codruk.,, LUES | @i, @4, @, @i) SET @i= @i + 1 END 1 0 8
ChSET@i=gi+ 1 1 0 8
The SQL tab displays the following parameters about the statement:

Value Notes

Statement The name of the statement.

SQL ID The ID value of the SQOL statement.

Child Number The child number in the database.

Parsing User ID The ID of the user who parsed the statement.

Plan Hash Value The execution value of the statement.

CPU Cumulative CPU time for the process. (measured in “ticks”, an arbitrary unit
of time)

Physical IO Cumulative disk reads and writes for the process. (total count)

Memory Usage Number of pages in the procedure cache that are currently allocated to
this process. A negative number indicates that the process is freeing
memory allocated by another process.

Executions The number of times the statement was executed.

Activity (%) A graphical representation of the distribution of execution and wait time
for the statement or statement component.

138 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

Events

USING PROFILING > RUNNING A PROFILING SESSION

The Events tab provides details about the events that the session is associated with.

| @ Profing Detsis £

DB s Teet | 2 sou (D) Evarte | |

Event
wasiting For disk wirite to complete

wasiting for network s=rd b complate
wagiting for camaphore

wagiting on run gueus after sleep
wiziting on run gueue afbear yisld

Procedure: TEST_PROCI

HETWORE B 1969
Lok 0.83
cPU (| 2,46
fu-1)] 10.92

Events are listed by the following values:

Value

Notes

Event Name

The name of the event.

Class The wait group the event in the selected procedure belongs to.
Activity (%) A graphical representation of the distribution of execution and wait time
for the event.
Sessions

The Sessions tab displays the sessions and related information regarding those that were
associated with the selected procedure.

| @ Profing Detais £

-0

8 oon Tet | B o (D) Everes | 27 Sessions

User Name Applicaton

Procedure: TEST_PROCL

KPID Active (%) v Hast Name IP Address
40) siiiees I i00.00 TCAMMVESH 10.40,30, 155

The following parameters are displayed on the Sessions tab:

Value Notes

User Name The user name under which the session was run.

Program The name of the executable under which the session was run.
SID The SID value of the session.

Serial Number

The serial number of the machine from which the session executed.

Activity (%) A graphical representation of the distribution of execution and wait time
for the statement or statement component.
Machine The machine name and network location of the machine from which the

session executed.

Session Type

The type of session.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 139

USING PROFILING > RUNNING A PROFILING SESSION

For the Oracle Platform, you can kill a session by right-clicking the entry on the Sessions tab and
choosing Kill Session. You can start a trace on a session by right-clicking the entry on the
Sessions tab and choosing Trace. For more information, see Killing an Oracle Session and
Tracing an Oracle Session.

CREATING PROFILING REPORTS

After profiling a data source you can create an HTML or PDF Report of the profiling session. You
can choose the details to include in the report.

1 At the top right corner of the Profiling tab, click the Export Report button.

|'[E] Unkiled Tuning Job 4.tun |E_Il] ROMLABORCLS 2 [

“s ROMLABORCLOi_2 Processes: -4k | Fiterbyi [lone: v | / @

Profile Session Export Report
= BOoMCPU Bsystem 10 BUserv0 OCuster BApplication BConfiguration B Commit B Other
o Maeer
o 1
=
(=1
w
W
a
w
g ° o o o] 3] o o R
g A1 A W 'a' W A B A o
< o o Lo o o o o 7

140 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

The Export a Profile Report dialog appears.

@ Export a Profile Report |:|@

Export a Profile Report) -
Configure and expaort a profiling report incvarious Farmats, /%
1B
Repart Title: Data Source Profile Repart |
Report Descripkion:
Prafile Report Options
v 50QL 5
50L
Repart only the top rows
Include detail information for kop | 25 > | rows
F Events
F Sessions
e ol 4
General Report Options
Formak Layouk Paper Size
(%) PDF (%) PORTRAIT (%) Letker (3.5 % 11, 216 x 279)
CIHTML () LAMDSCAFE () Legal (8.5 = 14, 216 x 356)
(a4 (3.3 % 11.7, 210 % 297)
Ilse defaulk export location
® [Export] [Cancel

2 Enter a Report Title and Description.

3 Inthe Profile Report Options area, click the triangles to expand the options.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

141

USING PROFILING > RUNNING A PROFILING SESSION

4 Select your options, enter the location for the report, and then click Export.

A report in PDF format will resemble the following:

Baokinarks

i T,
B 1-osts source \x
E] 2 - Profie Load chart | Data Source Frofile Report
B 2-Top 550 Jarwany 37, 2011 11:43 AM
Stamments
1- Data Souwrce

Hane: LE14013

Platorm Cracie 15301

Slart: Sy IT. 3011 1130 AM
End. Jarwaary 17, 2011 1121 AM
Dusrabion: %m Fla

2 - Profile Load Chart

RO SR B Semiormn T B Ubgan B0 [Ciustor A piic aden B Cordgusation B Commn i B Kehasd B &dminbsdatin B Canognareg 3 8 hedular [OF e

T F o o o *

. . - ~F

Aactiog EpEEkong vyl
¥

SAVING PROFILING SESSIONS

The profiling session is saved automatically or when you try to close it according to the choices
made in the Profile Configuration dialog. For information on configuring profiling sessions, see
Building Profiling Configurations. Profiling sessions can be saved in the current workspace in
an archive file with a .oar suffix or for Oracle users, into a Profiling Repository.

The .oar archive file is named with a default file name of:

® The name of the data source if the session was not initiated from a named launch
configuration

® The name of the launch configuration if the session was initiated from a named launch
configuration.

142 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

If you are using an Oracle data source and have configured DB Optimizer to automatically save
profiling sessions in a Profiling Repository within an Oracle data source, then the profiling
session is saved in the Profiling Repository under the name of the data source. Each profiling
session for that data source is named using a date and time stamp. As you can see below, the
duration of the profiling session is also saved with the session data.

By Data Source B 52 |.§:—u::f S0L Project Ex = [
LR

SRE=Y Managed Daka Sources (4]
= Efs| TORLABORCLIOG_Z (Cracle 10,2.0,3)
[|,__|:1 Dakabase Objects
M Profiling Repository
=58 TORLABORCLI1g_2 (Oracle 11,1,0,6)
[L_l:: Database Objects
= |l[_l:| Profiling Repositaory
=-Hi TORLABORCL11g_2
4 2012-03-05 18:43:05 (33m)
58 TORLABORCLY 2 (Oracle 2,2,0,1)
- E8 TORLABSQLOS_1 (501 Server 10.0,160,0)
=] Prafiling Repositories
il ToRLABORCLIOG 2
= il TORLABORCLL1g 2
= | TORLABORCL11g_2
(& 2012-03-05 18:43:05 (33m)
= M TORLABORCLS_2

For information on working with the Profiling Repository, see Work with the Profiling Repository.

The time period of the saved session is the amount of data on the chart. The maximum amount
of data on the chart is determined when profiling is started (1 hour default). You can specify the
amount of time to profile the data source in the Profile Configurations dialog and you can also
stop the profiling at any time.

Saving the profile lets you open the archive at a later time for subsequent analysis by yourself or
by other DB Optimizer users. Use standard DB Optimizer file techniques to save, open, or close
SQL Profiling archives.

If you open a profiling archive on a machine on which the associated data source is not
registered, a Data source not available warning appears in the profiling editor header. Use
the associated control to specify a data source already defined on the machine or to register a
new data source.

! 9 EXTDUMHHBDE o QDiaksicairca nak aiizilzhkla
Atkach Existing Dakta Source ..,

Profile Session Akkach Mew Daka Source ...

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 143

USING PROFILING > RUNNING A PROFILING SESSION

WORK WITH THE PROFILING REPOSITORY

NOTE: Saving wait-time statistics to the Profiling Repository is not supported in Developer Editions
of DB Optimizer.

The Profiling Repository is only available when profile session data is saved to an Oracle data
source. You can specify a profiling repository on any Oracle 9i, 10g, or 11g data source. For
information configuring profiling repositories, see Specify Profile Repositories Preferences. You
can specify which profiling to save a session to using the Profile Configurations dialog. For more
information, see Building Profiling Configurations. When the system is configured to
automatically save profiling information to a Profiling Repository DB Optimizer can profile 24
hours a day 7 days a week, thus providing much more statistical data for analysis. Also, since a
Profiling Repository resides on a data source and not on the local disk, other DB Optimizer users
can also view and analyze the profiles.

144 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

To start saving profile sessions to the Profiling Repository:

1 From the Data Source Explorer right-click the data source you want to profile for and select
Profile As from the menu, then choose Profile Configurations.

The Profile Configurations dialog appears.

& Profile Configurations

Create, manage, and run configurations

B X |8 - Maene: | TORLABORCLIDG_?
g Profle .] Common
SR TH| Dt Saurce Proifiing Targst
] Test Dk source: TORLABORCLS_Z (Orack) |

- k| TORLABORCLID 2
JIET T IFINME DR

L 5L Stered Routine I
) Same o disk {.OAR Fle)

[res Application Chester (RACH mode

() Save bo data scurce: | TORLABOROLSI_2 (Orack) v

TORLABORCLLDg_2 (Drack)
TORLABORCLL LG 2 (Crack)

Configure data source reg

Realtime profibng TORLAECRCLS 2 (Crack)
Shiow daka while profiing s2ssion s In prograss
Pefresh inkerval: |5 2 | saconds

[_eotr |[Revet |

Fiker matched 5 af Sitems

@ [Fofle J[Clos= |

o

2 Inthe Name field of the Profile tab, enter a name for the profile session for this data source.
3 In the Profiling Target Data source field, select a data source from the list.

4 In the Profiling Repository area of the Profile tab, click Save to data source and then
from the list of registered profiling repositories, choose the Oracle data source to which you
want to store the profiling session information.

5 Click Apply and then click Profile to start a profiling session immediately.

Any new profiling session that you start continue until you manually stop it. The profile
session can be for as long as you like, days or weeks even. When the profiling session has
been stopped a profile file is stored in the profile group for this data source. The name of
the profile file is the date and time when the profile finished.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 145

USING PROFILING > RUNNING A PROFILING SESSION

To delete profile sessions saved in the Profiling Repository:
1 Inthe Data Source Explorer, locate and then click the Profiling Repository.

TIP: You access the profile repositories either in the Managed Data Sources node or in the
Profiling Repositories.

[=-T=F Managed Data Sources (5)
l==* IEM DBZ for LUW (1)
[=1-T=F Oracle (5)

58 TORLABORCLI0g_2 (Cracle 10.2,0,3.0)
= Ef&| TORLABORCL11g_2 (Cracle 11.1,0,6.0)
L_[J Database Cbjects
= |l1_EI Profiling Repositary
=-H TORLABORCL11g_2
14, 2012-03-05 15:43:05 (33m)
I8 TORLABORCLY_Z (Oracle 9.2.0.1.0)
EE TORLABSCORCL (Oracle 10.2.0,1.00
Sl TORLABSQLOG_1 (S0L Server 1000, 16
I=F 501 Server (1)
1= Svbase (1)
= Profiling Repositories
lil] ToRLABORCLIOG 2
SRR TORLABCORCLL TG " Refresh
= Hl TORLABORCL1
4, 2012-03-08
M TORLABODRCLY_2

Bl Progress 54 = GaInto

cad Properties

- S0L Errars 22
SCL Errors are nok available * Clean

Delete Al

If the data source is not already connected, DB Optimizer connects to the Profiling
Repository data source.

2 To delete all sessions in the Profiling Repository, right-click Profiling Repository and
then select Delete All.

To delete a specific profiling session, expand the Profiling Repository and the data source
containing the profiling session, and right-click the name of the profiling session, and then
select Delete.

The profiling session data is deleted, however, some information about the data source is
retained in order to expedite future profiling on this data source. If you are certain you will
not want to retain this information, right-click the Profiling Repository and then select
Clean.

NOTE: You can also delete the profiling sessions saved to a repository by unregistering the
repository. For more information see Specify Profile Repositories Preferences.

146 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

IMPORT STATEMENTS TO TUNING

The profiling feature lets you submit one or more SQL tab statements for tuning by the tuning
feature. This lets you take advantage of tuning’s hint-based and transformation-based
suggestions, detailed execution statistics, and explain plan costing, in tuning a statement.

SOL

£E Overview o S0l {5 Events pfﬂ Sessions | #0) Chiect [/O

SOL Statements
Statement DB Activity (%)
| rSESCniCSianiiEiee | HE |

L3 hor Organize By r m .57
B3 pec g o
5; :EE <87 Explain Plan |I 1 —

N

ﬁ Tune

To open a tuning job on a statement appearing on the SQL tab of the profiling editor:

e Select one or more statements, right-click and select Tune from the context menu. Tuning
opens on the selected statement.

For more information, see Tuning SQL Statements in the Using Tuning section of this guide.

OTHER PROFILING COMMANDS

In addition to the default viewing options provided by the views, profiling also provides the
following features and functionality:

e Zooming In and Out. For more information, see Zooming In and Out.

e Filtering Results. For more information, see Filtering Results.

ZOOMING IN AND OUT

To zoom in or out on the Load Graph:
In the upper right-hand corner of the Load graph, click the Zoom In or Zoom Out icons,
respectively.

NOTE: The Zoom In and Zoom Out commands are only available when a session has been
stopped.

By default, the information contained on the Load Chart spans the entire length of the profiling
session. You can select one or more bars of the graph to have the tabbed view populated with
statistics for only the selected subset of the graph.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 147

USING PROFILING > RUNNING A PROFILING SESSION

To display statistics for one or more bars on the graph, use one of the following methods:

Click-drag across one or more bars.

CONFIGURING PROFILING

This section addresses the following topics:

e Configuring DBMS Properties and Permissions

e Building Profiling Configurations

e Specify Profile Alerts Preferences

® Specify Profile Repositories Preferences

CONFIGURING DBMS PROPERTIES AND PERMISSIONS
Profiling supports the following DBMS platforms:

¢ |[BM DB/2 for Windows, UNIX, and Linux
* Microsoft SQL Server

¢ Oracle

e Sybase

The following describe how to set up a platform to utilize Optimizer on supported database
platforms:

e Configuring IBM DB/2 for Windows, UNIX, and Linux

e Configuring Microsoft SOL Server

e Configuring Oracle

e Configuring Sybase

148 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

CONFIGURING IBM DB/2 FOrR WINDOWS, UNIX, AND LINUX
NOTE: The connected profiling user should be a member of the DB2 SYSMON group.

By default, DB2 Monitor flags are set to OFF. As a result, when attempting to launch a Profile job
on a DB2 data source, users may encounter the following message: “One or more errors have
occurred that prevent session profiling against this data source.” Examine the details below and
consult your data source administrator and/or the data source documentation to resolve the
problem(s).”

You can resolve this error using one of two methods:

e Enabling DB2 Monitor Flags via IDERA DBArtisan

¢ Command Line Option

To resolve the error through DBArtisan:
1 Ensure the following DB2 Monitor Flags are turned on in DB2:

e dft_ mon_uow

e dft_mon_stmt

e dft_mon_lock

e dft_mon_bufpool

e dft_mon_sort

e dft_mon_table

e dft_mon_timestamp

You can set view and set Monitor Flags via DBArtisan. Ensure that the New Value field for
each variable is set to Yes, as shown below.

Edit Configuration for TEP1ESE

Parameter: | dft_rnan_bufpoal |

Current Walue: |EIFF |

Hew Y alue: 3

|1/ (1] 4 | |% Cancel | |r:, Help |

2 Restart the DB2 data source to enable the changes, then launch DB Optimizer and begin
profiling.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 149

USING PROFILING > RUNNING A PROFILING SESSION

To resolve the error through the command line:

This solution must be performed from DB2 CLP, on the DB2 server. If you attempt to perform
these tasks through a client, an error message will result.

1 Navigate to start > Programs > IBM DB2/COMMAND LINE TOOLS > COMMAND
LINE PROCESSOR.

2 Turn the monitor switches on using the following commands:
db2 update dbm cfgusing dft_mon_Jlock on dft_mon_bufpool ondft_mon_sorton
dft_mon_stmtondft_mon_table on timestamp on dft_mon_uowon
db2stop
db2start

3 Ensure that the switches are turned on by connecting to the server with the following
command:

Db2 connectto database username password password

The following screenshot provides an example of the input and output from the server:

db2 => connect to gim user dbZadmin
Enter current password for dbZadmin
dbZ => get monitor swWwitches

Monitor Recording Switches

Switch li=st for db partition number 0

Buffer Pool Actiwvity Information (BUFFERPOOCL) = ON 03052009 19:14:06.61:
Lock Information (LOCK) = OM 03/05/2009 19:14:06.61:
Sorting Information (SORT) = ON 03/05/2009 19:14:06.61:
5QL Statement Information (STATEMENT) = ON 03/05/2009 19:14:06.61:
Table Activity Information (TRBLE) = ON 03052009 19:14:06.61:
Take Timestamp Information (TIMESTAME) = ON 03/05/2009 18:50:44.00(
Unit of Work Information (UCW) = ON 03/05/2009 19:14:06.61:

CONFIGURING MICROSOFT SQL SERVER
Perform the following tasks to ensure that SQL Server is compatible with Optimizer:

e |f you are setting up SQL Server 2000, ensure the current user is a member of the sysadmin
group.

e |f you are setting up later versions of SQL Server, the current user must meet one of the
following requirements:

® Be a member of sysadmin, or have the VIEW SERVER STATE permission enabled.

e Be a member of sysadmin, or have the SELECT permission enabled.

150 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

On SQL Server 2000 only:
You can enable profiling to capture more SQL by adding the following flag:

DBCC TRACEON(2861)

Trace flag 2861 instructs SQL Server to keep zero cost plans in cache, which SQL Server would
typically not cache (such as simple ad-hoc queries, set statements, commit transaction and
others). In other words, the number of objects in the procedure cache increases when trace flag
2861 is turned on because the additional objects are so small, there is a slight increase in
memory that is taken up by the procedure cache.

Ensure you restart the server for your changes to take effect.

CONFIGURING ORACLE

Oracle users need access to V$ views. In order to configure Oracle to provide users with these
privileges:

e |f you are setting up Oracle 10 or later, ensure you are logged in as sys or system with the
sysdba role, or the SELECT_CATALOG_ROLE has been granted to user_name.

e |f you are setting up an earlier version of Oracle, ensure you are logged in as sys or system
with the sysdba role.

CONFIGURING SYBASE
Perform the following tasks to ensure that Sybase is compatible with Optimizer:

e Ensure the following system configuration properties are activated:
¢ Enabling Monitoring (sp_configure “enable monitoring”, 1)
e Wait Event Timing (sp_configure “wait event timing”, 1)
e SQL Batch Capture (sp_configure “SQL batch capture”, 1)

® Max SQL Text Monitored (sp_configure “max SQL text monitored”, 2048) 2048 is the
suggested value, must be greater than 0. This defines the maximum size a SQL statement
that can be captured.

The following options are specific to Sybase 15.0.2 and higher.
e SQL Text Pipe Active (sp_configure “sgltext pipe active”, 1)

e SQL Text Pipe Max Messages (sp_configure “sqgl text pipe max messages”, 512) 512 is the
suggested value, must be greater than 0. This defines the maximum number of SQL
statements that Sybase tracks at any given time. You may want to increase this number if
you observe a lot of UNKNOWN statements in the Profile Editor.

e Statement Statistics Active (sp_configure “statement statistics active”, 1)

e Per Object Statistics Active (sp_configure “per object statistics active”, 1)

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 151

USING PROFILING > RUNNING A PROFILING SESSION

Additionally, perform the following tasks, as necessary:

e |f a user does not have mon_role enabled, the user will not be able to access Adaptive
Server's monitoring tables.

e |f the monProcess table is missing, the user will not be able to view currently connected
sessions.

e |f the sysprocesses table is missing, the user will not be able to view information about
Adaptive Server processes.

e |f the monWaitEventinfo table is missing, the user will not be able to view information about
wait events.

e |f the monProcessSQLText table is missing, the user will not be able to view currently
executing SQL statements.

NOTE: These packages should only be installed by the DBA.

Profiling enables you to create a set of launch configurations to store the basic properties for
each profiling session that you run on a regular basis. A launch configuration enables you to start
profiling sessions from a single menu command, rather than re-define configuration parameters
each time you want to run one.

BUILDING PROFILING CONFIGURATIONS

Profiling enables you to store parameters related to specific profiling sessions, in a profile
configuration for stored routines. Multiple configurations can be created for each data source in
your enterprise and saved with unique names that identify them in the application.

NOTE: On all supported platforms, support for stored routines includes functions and
procedures. On Oracle, stored routine support also includes package functions and
package procedures.

152 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

To create a profile configuration:

1 Right-click the data source you want to build a configuration for and select Profile As from
the menu, then choose Profile Configurations.

The Profile Configurations dialog appears.

& Profile Configurations

Create, manage, and run configurations

Uig % | B3~ Nerne! | TORLABORCL11g 2
[tves ke tee 3 Prcfle 1 Common
=il Data Source Profiling Taroet
L+
- Jf ToRLaBoRCLIIG 2 Diaka saurce:| TORLABCACLIDG_Z (Crack) 3

[scx pored Routine [] el agplication duster (RAC) mods

Profile Rapositonas
C)Save to disk (OAR file)

(%) Save to data source: | R ERIE R

Configure data source repositorks from the Profile Reposkotes preference page,

Realtime profiing
[+#] =howe data while profiling session & in progress

Fafrash inkarea: ' 5 % seconds

Filter matched 3 of 3 kers

[Apply]I Riavert]

":'_3:' [Profils H Jose |

2 Select the name of the data source and modify the parameters on the Profile tab, as
needed.

3 Inthe Name field, provide a name for the launch configuration. You should select a name
that will make the launch configuration unique and easily identified once it is saved in the
application.

4 In the Profiling Target area, click Real Application Cluster (RAC) mode if the target
database is an Oracle RAC. This enables you to profile the entire cluster in one profiling
session. (In general, profiling a RAC entails querying the GV$ views.)

TIP: When profiling a RAC, you can also filter the profiling details to show only the details
for a selected instance. At the top of the Profiling view, click the Instances list and
choose the instance you want to examine.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 153

USING PROFILING > RUNNING A PROFILING SESSION

5 Inthe Profiling Repository area, choose to save the profile session to disk or if you are
profiling an Oracle data source then you can choose to save the profile session to a data
source registered as a Profiling Repository.

If you choose to save the session to disk, in the Time interval length area specify the
length of the profiling session. When you try to close the Profile Session, you will be
prompted to save the file and can then name the file as desired.

A .oar file saved to disk opens very quickly from File > Open dialog and has a limit of just
under 1000 hours of profiling data. Profiling to a data source directly allows the system to
capture more data for a longer period of time, until you decide to stop the profiling session.
The profiling session is automatically saved to the Profiling Repository where other DB
Optimizer users can also view the session for their own analysis.

6 Click Apply. The launch configuration is stored in the application.

Once a launch configuration is defined, you can execute it in profiling. For more
information, see Running a Profiling Session.

NOTE: The parameters provided when you select the data source name in the left pane control
session parameters for the specified data source. To set these controls, see
Configuring DBMS Properties and Permissions.

The following describes fields and options of the Profile tab that require further explanation.
¢ Name indicates the name of the profile configuration.

¢ Data source indicates the name of the data source to which the profile applies.

154 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

¢ Save to disk/Save to data source gives you the option to save your profiling session to a
.oar file which you can access from within DB Optimizer or you can save the profiling session
to a data source of your choice if you are using an Oracle data source. DB Optimizer will
create a Profiling Repository, similar to the following on the selected Oracle data source. The
structure of the Profiling Repository is created from the name of the data source and the
date and time of each specific profiling session.

E'EI Data Source Explorer 259 % SOL Project Explorer =0
T

=I{=F Managed Data Sources (5}
+ 1=+ IBM DEZ For LW (1)
=I-l=F Oracle (5)
+- 58 TORLABORCLI0g_2 (Cracle 10,2,0,3.00
=58 TORLABORCLI1g_2 (Cracle 11.1,0,6.0)
+ [_fj Database Objecks
= |h_E| Prafiling Repositary
=S| TORLAEORCL11g_2
g 2012-03-05 15:43:05 (33m)
+ & TORLABORCLY_Z (Oracle 9.2,0,1.0)
+ EE TORLABSCORCL (Oracle 10.2.0,1.00
+ S TORLABSQLOZ_1 (S0L Server 10,00, 1600)
+-T=F SOL Server (1)
+-=F Swbase (1)
= Profiling Repositaries
it ToRLABORCLIOG 2
=Rl TORLABORCL11g_2
=i TORLABORCLI1g_2
[q 2012-03-05 18:43:05 (33m)
+ M TORLABORCLS_2

Saving your profiling sessions to a live data source enables you to better organize your
profile session data for later review.

e Time Interval Length indicates how many hours of the session to save to disk. Since the
profile session continues until you manually stop it the session length may exceed the time
interval length. For example, the time interval length is set to four hours but the profiling
session continues for 10 hours. In this case only the last four hours of data is retained. This
parameter also indicates the total width of the time load graph. The longer a profile is, the
larger the saved file will be. For heavily loaded databases, the time interval length value
should not exceed eight hours.

® The Show Data While Profile Session is in Progress check box enables “real time”
profiling, which refreshes the data of the session as profiling runs. The Refresh
Interval specifies how often in seconds profiling updates this data.

NOTE: Profiling can run sessions based on ad hoc parameters you designate before executing
the profiling process. However, by building profile launch profiles, it is a much more
efficient method of managing standard, frequent, or common profiling sessions.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 155

USING PROFILING > RUNNING A PROFILING SESSION

SPECIFY PROFILE ALERTS PREFERENCES

You can configure DB Optimizer to send you an alert via email if during a profiling session
it detects that database activity has met or exceeded the threshold that you specified.

1

& Preferences (Filtered)

Select Preferences> Profile Alerts.

156

(= S0L Development
=8 Profile Alerts
Email Contacts

Email Settings

Profile Alerts

BX

b

- Marnz Conkext Descripkion

Mew. ..

Alerts reset after | 5

A” o
« | minutes

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

2 To create a profile alert, click New.
To edit an existing profile alert, select the alert you want to modify and then click Edit.

The Create Profiling Alert or Edit Profiling Alert dialog appears.

% Create Profiling Alert

€3 alert name must be specified,

Mame:! | | |
Ciaka source: |TORL.C'.BSQLEIEI_1 (SOL Server 8.0.2039.0) w |
Fire alert when (%) Active sessions meet or exceed (5 III

{:!' Sessions in waik: |:| I:I

{:} Sessions in waik class;

() all active sessions not on CPU

Send email when alert: fires
Display system nokification when alert fires

Cancel

3 Complete the create/edit profiling alert dialog as required and then click OK.
4 In the Preferences tree, click Email Contacts.

If you select Display system notification when alert fires, you will receive an
alert notification in your Windows system tray when the alert fires.

If you select Send email when alert fires, you must specify email contacts and email
server settings.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 157

USING PROFILING > RUNNING A PROFILING SESSION

5 To create a new email contact, click New.

To edit an existing email contact, select the contact you want to modify and then click Edit.

¥ Create Email Contact

@ Specify the details of the contact to add,

Mame: | Jacquie |

Email address: | jacqueline@embarcadera, com |

Data Sources

TORLAESOLO0_1 (SOL Server 5.0,2039.00

[] TORLABSOLOD 1 #7 (SOL Server 5.0,2039,00
[] sfvpclbol .embarcadero, com {Oracle 10,2.0,1)
[] TORLABORCLE 3 {Oracle)

[] TORLABORCLE 2 (Oracle §.1.7.4)

[] ROMLABORCLEI_1 (Oracle 8.1.7.4)

[] ROMLABORCLSI 2 (Crade 9.2.0.1)

[] TORLABORCLSI 1 {Cracle)

[] DQUERY {SQL Server)

[] HOBO {SQL Server)

[] local {50L Server)

Select Al] [Deselect Al]

[Ok H Cancel]

6 From the list of Data Sources, select the data sources for which this contact should receive
an email notification that. an alert has fired, and then click OK to save this contact.

7 To configure your email settings, click SQL Development > Profile Alerts > Email
Settings.

158 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

% Preferences (Filtered) |;||E| f'5__<|

| | Email Settings el -

= S9L Development
[=- Prafile Alerts
Ernail Conkacks SMTP Host: | |

Email Settings SMTP Bart: | 75 |

Ermnail Configuration

Sender Address: | |
Authorization Required

Username: | |

Password: | |

® 0] 4 H Cancel]

8 Complete the Email Settings as required and click Apply.

e Sender Address: This is an email user configured on your email server. DB Optimizer
uses this address to send alerts to the email contacts defined.

SPECIFY PROFILE REPOSITORIES PREFERENCES

Use the Profile Repositories preferences to register and unregister Oracle 9i, 10g and 11g data
sources as profiling repositories. A data source must be added to the list of DB Optimizer
Managed Data Sources before it can be used as a repository.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 159

USING PROFILING > RUNNING A PROFILING SESSION

To access the Profile Repositories Preference, select Preferences > Profile Repositories.

& Preferences (Filtered)

= S5L Development
Profile Repositories

®@

Profile Repositories

MName:

TORLABORCL11g_2 Cracle 11.1.0.6
TORLABORCL9i_2

Tvpe Version | Reqister

Cracle 9.2.0.1

Apply

Ok] [Cancel]

Register a profile repository
To register a new profile repository, in the Profile Repositories Preferences dialog, click Register.

The Register a data source as a repository dialog appears that displays the managed
data sources that may be used.

¥ Register a data source as a repository

3

Mame

TORLABORCL10g_Z
TORLAEORCL11g_Z
TORLABORCLSi_2

TORLABSCORCL

Tvpe

Cracle
Cracle
Cracle
Cracle

Version

10.2.0.3.0
11.1.0.6.0
9.2.0.1.0

10.2.0.1.0

Cancel

Select the data source you want to register as a profile repository and then click OK and

then click OK again.

160

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

A data source registered as a profile repository appears in the Profiling Repositories
node of the Data Source Explorer and also has a Profile Repository child node in under
its entry in the Managed Data Sources folder. Profiling sessions are saved in the

repository under a name that is comprised of the date, time, and duration of the profiling
session.

By Data Source B 52 |.§:—u::f S0L Project Ex = [

"IN

RIS [Managed Data Sources (4)
= Efs| TORLABORCLIOG_Z (Cracle 10,2.0,3)
[[_;_; Dakabase Objects
|E_l;| Profiling Repository
=58 TORLABORCLI1g_2 (Oracle 11,1,0,6)
[Lu Database Objects
= |E_l:| Profiling Repositaory
= j.j TORLABORCL11g 2
4 2012-03-05 18:43:05 (33m)
58 TORLABORCLYI_Z (Oracle 9.2,0,1)
I8 TORLABSQLOG_1 (50 Server 10,0,160,0)
=] Prafiling Repositories
rm TORLABORCL1Og 2
= M TORLABORCL11g_ 2
= j.ﬂ TORLABORCL11g_ 2
(& 2012-03-05 18:43:05 (33m)
It ToRLABCRCLEI_Z

When you next choose to profile a data source, using the Profile As > Profiling
Configurations option, you can specify the profile repository in which you want to save

the profiling session data. You can also access the Profile Repository Preferences from this
dialog.

& Profile Configurations

Create, manage, and run configurations

(fE % B 3e- Narne: | TORLABORCLIDG_?
f I b Profils . [Common
=il pata source Profiling Target
I e D source: TORLABORCLSI_Z (Orack) v
' ﬁ :gﬂ?gﬁ&;?‘z [CIred Aplication Chuster (RAC) mode

L] 5oL Stared Rautine Profie Repcsitories

i Sawe to disk {.08R Flg)

() Save tn data source: | TORLABORCLS_2 {Drack) v

Configure dat el IURLRBDRCLU'.‘G_E (Orack)
e L e Y OPLABORCL L 1 2 (Orack)

Realtime profibng TORLABORCLS 2 [Oracle)
Shiowe data while profiing s=ssion s in prograss
Refrash incarval: |5 2 | saconds

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 161

USING PROFILING > RUNNING A PROFILING SESSION

Unregister a profiling repository

To unregister a profiling repository, in the Profile Repositories Preferences dialog, select a profile
repository from the list and then click Unregister.

Unregistering a data source prompts you to optionally delete all sessions on the repository.

Unregister repository [$_<|

\..?/ Do you want o delete all sessions on the repository?

[Yes H Mo H Cancel]

If you choose not to delete the profiling sessions, they will still be available from either the
Profiling Repository node in the data source entry in Managed Data Sources or from the Profiling
Repositories node. You will not be able to save profiling sessions to the unregistered repository
until you register it.

Using SQL Loab EpiTor/TESTER

File Edit Search Preferences Window Help

o (o BB &S BB 0 -

The load editor can be run either with File > New > SQL Load or with the New SQL Load
icon shown above in the red square.

162 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

The icon depicts an RPM meter on a car with a red line. The idea behind the icon is that we can
run a load on a database and stress the database with the load similar to red lining.

it ToRLABSCORCL it ToRLABDBZ97_1 7 *Untitled SQL Load 52 10 = B

il TORLABORCL 1].Q_E Change data source

& adhoc 5L () SOLfile

begin Mumber of parallel sessions: 15 =
for o in [(select id from outel
for i in (zelect id from [#]Execution end condition:
null; G} Time: | 0 : hours
end loop:
end loop; 10 % | minutes
end; .
a'“|) Mumber of executions:
Sleep bebtween executions
() Fixed delay: 250 % ims

) Random inkerval:

< > e

The load editor page has space on the left to show the SQL to be run. The SQL can be typed in
or pasted in or read from a file if the SQL File option at the top right-hand side of the window is
selected.

On the right are options on how to run the SQL
e Number of parallel sessions
® Length of test
e Number of executions
Sleep between executions
* Nosleep
e Fixed sleep

e Random sleep between a max and min

Methodology
e Write SQL with Editor

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 163

USING PROFILING > RUNNING A PROFILING SESSION

Set up Load with Load Editor

Kick off profiling the database

Run the load in the Load Editor

Verify the database load profile to see if there are any major issues

The SQL Load Editor/Tester enables you to configure and execute SQL code against a data
source.

This feature enables you to specify a data source against which the code will be executed, and
then provides options that enable you to choose a period of time that you want the script to
execute for, and at what intervals the execution “loop” occurs.

On execution, SQL Load Editor/Tester runs in the background. It can therefore be run in
conjunction with a profiling session in order to analyze the effects of the executing load against
the specified data source. Once you run a SQL script via Load Editor, you can start the SQL
Profiling function and analyze the results of the load.

The SQL Load Editor/Tester is accessed via the New SQL Load icon on the Toolbar:

File Edit Search Preferences ‘Window Help

RO ja] k- B iES RO

When you open SQL Load Editor/Tester, click Select Data Source to specify the data
source against which you want the SQL script to run.

Choose Ad hoc SQL and manually type (or copy/paste) the SQL code into the window provided,
or select SQL file and navigate to the SQL file you want to run. The window populates with the
code from the selected file.

The following configuration parameters are set with SQL Load Tester/Editor prior to executing
the SQL script:

Configuration Parameter Description

Number of Parallel Sessions Specifies the number of jobs that the
execution script will operate on.

Execution End Condition Specifies if the script execution process
runs for a set amount of time or script
executions.

Choose Time if you want the script to
execute over a specific period of time,
or Number of Executions if you want
the script to execute a specific number
of times.

164 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

Configuration Parameter Description

Sleep Between Executions Specifies if Load Editor will wait before
running the execution script again.
Select the check box and choose Fixed
Delay or Random Interval, depending
on whether you want the script to
execute at a specific time, or at
random intervals within a specified
range of time.

To run Load Editor:

1 Access SQL Load Editor/Tester by selecting the icon on the Toolbar. The SQL Load
Editor/ Tester opens.

2 Click Change Data Source and choose a data source you want to run the SQL code against.

3 Choose Ad hoc SQL or SQL file, and then copy/paste or manually type the code you
want to execute in the window provided, or navigate to the location of the file, respectively.

4 In the right-hand panel, choose the execution configuration parameters to specify how you
want SQL Load Editor/Tester to handle the script.

5 Click the Execute icon in the lower right-hand corner of the screen. The script starts to
execute against the specified data source, using the configuration parameters you selected.

6 Ifyou are profiling a data source, start and run a new profiling session on the data source you
specified in Load Editor. The session will reflect how your SQL script executes against the
specified data source.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 165

USING PROFILING > RUNNING A PROFILING SESSION

166 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

USING TUNING

This section provides information on tuning, its functionality, and is structured so a user can
follow the information provided to fully tune their enterprise in terms of more efficient query
paths at the SQL statement level of individual data sources.

Tuner has three parts
* Query rewrites and quick fixes
¢ Alternative execution plans generated via optimizer directives
* Analysis of Query showing
¢ Indexes used, not used, missing (suggested to create)
® Graphic display of query

The SQL tuner will take a query and add database optimizer directives to change the execution
path of the query. A list of all the unique execution paths will be generated with all duplicates
eliminated from the list. The final list of alternative paths can be executed. Any path that takes
more than 150% of the base case will be canceled because we are only interested on paths that
could be faster than the base case so no need to waste time and resources continuing to run
cases that are slower than the original. After the cases have been executed they can be sorted in
order of elapsed time. If a better path is found then those optimizer directives can be included in
the original query to achieve optimal response time.

You can save the entire content of a tuning job for later analysis or for sharing with other users.
This section contains the following topics:

e Understanding the Tuner Interface

Tuning SQL Statements

Using Platform-Specific Features

Additional Tuning Commands

Configuring Tuning

Examples of Transformations and SOL Query Rewrites

DBMS Hints

UNDERSTANDING THE TUNER INTERFACE

In the application interface, tuning is composed of two tabs:

* Overview
* Analysis
NOTE: When using tuning on Oracle sources, several additional tabs appear on the

Analysis and Outlines tabs. For more information on utilizing these extra features,
see Using Platform-Specific Features.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 167

168

USING PROFILING > RUNNING A PROFILING SESSION

UNDERSTANDING THE OVERVIEW TAB

Inputting SQL to tune

Click the SQL button on the Overview tab to specify the source of SQL statements you

want to tune.

. *uckkkn Tunng b £ B3 ekt

=8
b O drace b SR TORLABORCLLLG 2(LL.1.0.6.0]
= Dverview | b firealyses
== Owerview 3 - | 1B | @
| "B e S0 T) & -
Tuning Stalements [#] Germrate casas b detai anabysia [gmose each g [Stract fram Datahase Chiect w {!j
| 23 poet From Pk (woeksaace)
. e : ! e | [Tt From Pk (Systam) |
Hamne Scheina Taxt | Tabkes Waps Elepesald f51 | Dmigroeesd [3) |
i Esec: smhofom

| e Scan Qrale SG4 T

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

e New SQL Text: From the SQL button menu, select New SQL Text, and then copy/paste
SQL statements to the SQL Text dialog or write queries by hand and then click OK.

& SOl Text =3

SELECT ~
A.COMPANTY,
. PAYGROUF,
.OFF_CYCLE,
.3EPCHE_FLAG,
. TAX METHOD,
. TAX PERIODS,
.RETROPLY ERNCD,
SUM (C.AMOUNT DIFF) SUM_AMOUNT
FROM
PS PAY CALENDAR 1,
WE_JOE B,
WE_RETROPAY EARNS C,
PS _RETROPAY ROQST D,
PS RETROPAYPGM TEL E

LI I = I o B o I

WHERE
A.RUN ID = 'PD2' AND
L.PALY CONFIRM RUN = 'N' AND
E.COMPANY = A.COMPANY AND
E.PAYGROUP = AL.PATGROUP AND
E.OFF CYCLE = L.PAY OFF CYCLE CAL AND
BE.EFFDT = (SELECT /*+ gb name(wb hi) */

<

[ok] [Cancel

TIP: You can also input SQL by clicking anywhere in the Tuning Statements area and
pressing Ctrl-V.

Once you have input the SQL and click OK, you can later edit the text by right-clicking an
entry in the Tuning Statements area and selecting Edit.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 169

USING PROFILING > RUNNING A PROFILING SESSION

e Extract from Database Objects: Search for and then select (Ctrl-click) data base objects
containing SQL that you want to tune from the selected data source. DB Optimizer will
search through the database to find objects matching your input and presents matches for
you to choose. In order for this option to work, you must enable Data Source Indexing in the
properties for the database. If the data source has not already been indexed you will receive
a message indexing that no indexing information is available. You can configure the
database Properties dialog from the Data Source Objects Selection dialog by clicking
Configure data source indexing....

& Data Source Objects Selection i:.@

Enter objeck name prefix or pattern (7 = anyv character, * = any string): -

E |
Makching objects:

& COUNT_TIME_INTERVAL (Package) - SYSTEM
=~ DEMS_REPCAT_AUTH (Package) - S¥STEM
%' DR3 (Package)

- DRGS (Package) - SYSTEM
Z (Package) - SYSTEM
%’ DRGS5 (Package)

[¥

= FMP_ACTIONS (Package) - SYSTEM

iCran MERT CATA el ant

(£

Confiqure daka source indexing. ..

® [. H Cancel]

For information on setting data source indexing properties, see Specify Data Source
Indexing Preferences.

® Import from File (Workspace) and Import from File (System): Browse the workspace
or file system and select an SQL file from which to extract statements to tune.

170 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

e Scan Oracle SGA: For the Oracle platform only, you can also scan the System Global Area
(SGA\) for statements to tune. Bind variables are extracted automatically.

& Scan SGA |_,®
SGA filters .
Specify the filkering criteria for active SQL in the SGA, DJ

Filter Criteria

Maximum retrieved queries:ﬂ| -

Sort by |CPU Time v|

Advanced Filkers

User: | hd |

Parsing Schema:

Module: | b |
Ackion: | % |
Service:

® You can also drag and drop Materialized Views, Procedures, and Views from the Data Source
Explorer to the Tuning Statements grid and they will be added to the list of statements to
tune.

Running a Tuning Job

Once you click the Run Job icon on the top right-hand side of the Overview tab, the Overview
tab provides the list of statements that were analyzed by the Tuner, as well as the cases
suggested by the execution process to improve them. Additional information may include
statement Name, Text, Source, Cost, and Elapsed Time values, depending on the platform.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 171

USING PROFILING > RUNNING A PROFILING SESSION

Only the Elapsed Time statistic appears on all supported platforms. On Oracle and DB2 LUW
platforms, Execution Statistics and Other Execution Statistics columns will appear. When
determining the best possible path using the Overview tab, it is best to use the Elapsed Time
value as the guideline. The faster the path, the more optimized the query will become.

Lt *romesaoroE_t (L8] *unttied Tuning Job e 7 =i
b O race b m ROMLABCROLEL] (8.0,7.4]

| [Uverveew | B analysis |

8@ Overview | e deterted o E | | @
Tuning Statements & Gererate cases Cparform datal anadysis [#lExmcubs sach crrmrated case | 3 | imes 1\-:} t-_lJ
Stabemant Time Anglyis e
Tdarme: Schema Text Tables tinas Elopsed [5) | oproved () Coses Treckorzss
AEECT 3] selach from sye.jobg i
*, Mseects s select From Fetf, s o
#5 [AsziecTs 5 seduct friom pendng_trars 0
#. PASEECTS il select from svs.cbif — 18 =)
Gererated Cases >
501 Sratemerts and Cases M Cost | BExendl_lsts |8 ke Brenubion Sratks |
e Tk b Lleps=d Time {5y Fhyscel Fesds | Locical Reads CEU Tiree= {57
_7:, = && SELECT 1 sedprk from SYSTEMLDEFS_ACALL 058 u} 0,00
w=l TNDES _<COiBINE L.0 063 i} 11 0,00
=] INDES Eze.D o.87] 0.co
mel RLLE 077 il q 0,00
_E__. '*—_|SELECT 3 sel=ck from svs.obf
E| F5SELECT 4 seleck from Fetf, tsh
El SELECTS sedaik from pandng_trarsd
El i_.hLI.LLI b saf=ck from svs.obd, svsoesE, ndd,

There are three tuning options to choose from before clicking Run Job:
To analyze the SQL statement, click Generate cases.

To perform the analysis that populates the Analysis tab now, click Perform detail analysis.
Otherwise, the analysis tab is populated when you click the Analysis tab.

To have the system generate execution statistics, click Execute each generate case and
then select the number of time the system should execute each generated case. Multiple
executions can verify that the case results are not skewed by caching. For example, the first
time a query is run, data might be read off of disk, which is slow, and the second time the
data might be in cache and run faster. Thus, one case might seem faster than another but it
could be just benefiting from the effects of caching. Generally, you only need to execute the
cases once, but it may be beneficial to execute the cases multiple times to see if the
response times and statistics stay the same.

172 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

Creating Tuning Reports
After tuning SQL you can create an HTML or PDF Report of the tuning session. You can

choose the details to include in the report.

1 At the top right corner of the Tuningtab, clickthe Export Report button.

Il TORLABORCLIDG 2(1) k] TORLABORCL10g 2.0ar |L5| *Unkitled Tuning Job £ (%) Select.sal | =y
o

b £} Oracle » ﬁTORLm«CLlig_Zﬂl.l.l].ﬁ.ﬂ) ILJ_‘|

i ¥ Overview | P Analysis

EE Overview L=, B’ e

[(Pesform detal ar [Execute each generated case | | A w Export Report

Tuning Staten [¥] Generate cases

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 173

USING PROFILING > RUNNING A PROFILING SESSION

The Export a Tuning Report dialog appears.

¥ Export a Tuning Report

Export a Tuning Report e
Configure and export a tuning report in various Formats, | Q

Report Title: | Data Source Tuning Report

Report Descripkion: |

Tuning Cases | Configuration

Mame Generated Cases | Exec... | énal..

SN SELECT 1 © 10j26 (16 fit...
[MO_INDEX & 0/3 (3 filkered)
[¥] INDE¥_55 © 0j2 (2 Fikered)

INDEY_FFS
FIRST_ROWS
= |:| [Missing a walid join c @ 5/16 (11 fiber...

[Juse_nL _
[] ORDERED &) 0f1 (1 fitered)
T lrem 1 1ce Bn N nie o FilkavsdY e

General Report Options

Format Layout Paper Size
() POF (*) PORTRAIT (¥) Letter (8.5 % 11, 216 = 279)
COHTML () LAMDSCAPE (O Legal (3.5 % 14, 216 % 356)

(Oa4(8.3x11.7, 210 % 297)

Use default export location

® [Export H Cancel

2 Enter a ReportTitle and Description.

3 On the Tuning Cases tab, choose the cases you want to report on. Click the + to
expand the cases.

174 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

4 On the Configuration tab, choose the content you want to include in the report.

P Export a Tuning Report = @

Export a Tuning Report t#?_a

Configure and export a buning report in various Formats,

Report Title: Data Source Tuning Report

Report Description:

' Tuning Cases | Configuration |

[

[]Run full job prior to generating report
Cwerview Information
Execution Details
Cost H
Execution Statistics
[] other Execution Statistics

SQL Text =

5 Select the General Report options, enter the location for the report, and then click Export.

You will see the progress of the report generation in the Progress pane.

E5 Progress ol & ~ — O

| 3enerating kuning report. ..
| O Semew)

Streaming data to report cache. ..

When complete, the report is stored at the top level of your workspace.

176 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

A report in PDF format will resemble the following:

|'|_ Dookrarks [
EE E' E:' o
I 2- Dotz sorce: \\ Data Source Tuning Repart
& IF - cnerviw | Warch & 2012 10,07 AM
E-{F 2 case SELECT 1 Tast mpert

1 - Dty saource:

Marrs: TORLABORCLI g 2

Fiatform: Orosde 11,1000

Tusing St Hadre: Urided Tuning ki

2 - Owerview

Hars Sourme Schwrra Tasd Tabb Wiws Elgmad bproed Caen hzezen
Timsas) Tmesy) SAnalpmed A

SEIECT1 ComomCms SYSTEM asiecyomHRENPLOTEES HIt DEFARTHE u

1 - Cass SELECT 1

34 - Generaled Cases

Mara Tt Gt Papned Roem
Rl T fs] Aetamed

FELECT sideat froen HA EMPLOYESS, HA DEFWATMENTS a0

FIRST_ROWE: &

“ramizeasas

NOEX_FF5 o

BDEE 25 Eal

32 - 500 Text

HELECT™

FROM
HRSWMFLOYEES
HRGEPARTMENTS

3.3 - Cagse FIRST_ROWS

3314 - Generated Cases

Harm el Coxt Sopsed Rows
Femlt Tk fs) Aetared
FIRGT_ROWS 40

3.3.2 - 80 Text

B BT s FIRST_REWE 10)%
.

FROM
LT Sam reasE

UNDERSTANDING THE ANALYSIS TAB

Index analysis is started when you either generate cases with Perform detail analysis
selected on the Overview tab, or when you click the Analysis tab. If any columns referenced
in the WHERE clause of the tuning candidate are not the first column of an index, tuning will
recommend that you create an index on that column.

The color-coded Index Analysis feature highlights missing indexes as well as shows which
indexes are used and which are not used in the default execution path. The Index Analysis
feature highlights issues where the database optimizer might not be using the preferred
indexes. DB Optimizer also lists indexes on the tables that do not have fields in the WHERE
clause helping the designer to see if adding an additional predicate in the WHERE clause might
make use of an existing index.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 177

USING PROFILING > RUNNING A PROFILING SESSION

The layout of the Analysis tab shows the SQL text and Visual SQL Tuning (VST) diagram on the
top and the indexes on the tables in the query below.

Forcratk B O TORLABSCORCL (10,2.0.1)
1 P Overview | .l" ﬂm!y\:m
I : :
| B SOL Analysis Seloct statemert af nteiest: | SILECT Ll w | >moor »o-B E @
~ — . ol
SELECT T HwEagaq
2. emplo 5."EE_1IZ!,
e.jon_id,
e.manager_id, 3
e.deparcpent_id,
d. lacst .'i.cm_:i.d,
l.countey_ id,
e .:Eil:st_na.m: S
e.last n=me,
=.=alary, : g
e.comsission_pot, FHL
d.departwent _name,
3.9ob_title, [E3] LOCATIONS (L)
L.eney, . =
l.omate provinoe, ﬁm
CLOOUNTEY hoddd,
r.Ceylo LOB Pl
FROH w T COUNTRIES (C) 7
oA
Index dnelysis | [Table Statistics | 52 Column Statistics Ard Histograms | [Outines
Colleck and oreats indexs=s A [Ej
- Tnebes Mame | Table owner | Table Hame Caheen Plame Tndes # THslnrzagu {s'_ga-ﬁrﬁzlj;a m_iin'n :
v o o == & n present in the pradicate, soit ooy
o El-c,l_hrp.._c__m_px HR: COUNTRIES _,l:nT_p.._m Lricus b m By s lstabass epibivizer
& [JDERT LOCATION I HE: DEPARTHENTS LOCATION ID Mormal =\ Lben you run the satemert.
o [Jioe 10 P HE: 4 S 108 10 Lrigue — |
& [JLoC_COwITRY 1% HE: LOCATIONS COUKTRY D Mormal »
& [JrEG_ID R HE: REGICHS REGICH_ID Lnigus
i [ess REBADTAEMNT 1w ue ErdBi s ES FESABTRAERT 1T Filmawnwl
£ ¥

The Analysis tab has five important components as depicted in the previous illustration:

1 Statement selector, if there are multiple statements in the tuning set. Here you can
select the statement and the generated case you want to analyze.

2 Statement text for selected statement.
3 Graphical diagram of the SQL statement.

4 Index analysis, statistics, and settings relating to the SQL statement and referenced
elements.

178 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

5 Description of the selected index, including the reasoning behind DB
Optimizer recommendations.

NOTE: Tabs are platform-specific. For example, against Oracle data sources, Table Statistics,
Column Statistics And Histograms, and Outlines tabs are available. For more
information, see USING PLATFORM-SPECIFIC FEATURES.

TIP: The text, diagram, and analysis sections can be resized or expanded to take up the
whole page.

The Analysis tab suggests missing indexes, indicates which indexes are used in the execution
path and lists all indexes that exist on all the tables in the query. Indexes on the table are listed
on the Analysis tab and color coded as follows:

Text Color Interpretation

Index is used in the query

Index is usable but not used in the current execution path.

This index is missing. DB Optimizer recommends that you create this index.

This index exists on the table but not usable in this query as it is written.

In the Collect and Create Indexes table, orange-highlighted entries indicate missing
indexes that DB Optimizer recommends be created to improve performance. Clicking on that
index, displays text to the right outlining the rationale behind this recommendation.

For more information on using the Analysis tab, see Using the Analysis Tab.

TUNING SQL STATEMENTS

A tuning job enables you to view the cost details of SQL statements on a registered data source
and then select the best, or most efficient, array of execution path directives in order to make
query execution faster, therefore improving the entire enterprise, overall.

A tuning job consists of a set of SQL statements and any analysis results you generate against a
data source using tuning. The SQL statements and analysis results that compose a tuning job
can be saved in a tuning file (.tun). This enables you to open a tuning job at a later time for
inspection and analysis, to add, delete, or modify the SQL statements, or generate new
execution statistics.

The following topics provide a high-level overview of the tuning process:

1 Create a New Tuning Job

2 Specify a Data Source

3 Add SQL Statements

4 Run a Tuning Job

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 179

USING PROFILING > RUNNING A PROFILING SESSION

5 Analyze Tuning Results

6 Modify Tuning Results

NOTE: For additional commands that fall outside the general tuning workflow, but may still be
helpful, see Additional Tuning Commands.

TIP: Forinformation on working with data sources such as adding and browsing them, see
Working with Data Sources.

CREATE A NEW TUNING JOB
You can create a new tuning job via the File > New > Tuning Job command, or by importing
statements directly from profiling. The New Tuning Job icon is also available on the Toolbar.
To create a new tuning job via the Menu or Icon command
Select File > New > Tuning Job, or click the New Tuning Job icon on the Toolbar.
Tuning opens.

You can now proceed to set up the parameters of the new job.

To create a new tuning job from profiling

After you have run a profiling session, in profiling’s Profiling Details tab, select one or
more statements, right-click, and select Tune from the context menu. Tuning opens, pre-
populated with parameters based on the statements you selected.

To open an existing tuning job
Navigate to the SQL Project tab and double-click the name of the existing tuning job.

To name a job, save it

Ensure you specify a meaningful name that identifies the job in other views and dialogs. You
can save the job by selecting File > Save or File > Save All from the Menu bar. Once a
job is saved, it is added to the SQL Project view.

SPECIFY A DATA SOURCE

The bread crumbs at the top of the tuning job window identify the data source where the SQL
statements to be tuned reside. The default data source is the one that was selected when the
new tuning job was initiated. For example in the following image, we see that the data source is
TORLACSCORCL, which is part of the Oracle data source group. The color of the bar at the top
of the tuning window shows the category of the data source as defined in the data source
configuration properties.

b) Oracle P FE TORLABSCORCL (10,2.0.1)
Overview | B> Analysis

£ Overview

|

180 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

You can change the data source of a tuning job by clicking a bread crumb triangle and then
navigating to the data source or using the filter to locate and then select a data source. In the

following screenshot, Microsoft SQL Server was clicked and T was entered in the filter text area,
which resulted in several matches.

=l = Data Source Group
=1 =F Microsoft SQL Server
=I1=F Microsoft SQL Server
i

/8| TORLABSQLOD_1_#/'™)

Click the name of the desired data source to affect the change.

NOTE: Multiple tuning jobs can be saved against the same data source. You can therefore set

up your tuning jobs organizationally. You might for example, set up a tuning job to tune
only SQL associated with procedures or a set of SQL sources that are functionally
related. Alternatively, your tuning jobs may be organized by application.

ADD SQL STATEMENTS

Once you have created a tuning job and named it, using File > Save As, you need to add SQL
statements to the job that are to be tuned. All standard DML statements can be tuned (SELECT,
INSERT, DELETE, and UPDATE as well as MERGE on SQL Server 2008 and higher).

Statements are added to tuning via the Overview pane.

L Urkked Tuning Job 1 1% Seloct)
3

=8
ol Tracle b S TORLABCACLLLG 2{11.1.0.6.0}
| B Overview | F analyses I

== Dverview FIR Y _[:P | 5

) T e S0L Ter gl
Tuning Slatenenls Gl:u:r:'.l:: [#=CE T Dp\:l'hl'llllH.di-:lld_".*b [Esece each g E Eetract Fram Dotabase Ohjact '_‘:'J '-_lj

[k et From Pl QRorksaoce)
L] | . e [ee et From Fls (Systam)

i Hamng Suhema Taxt Tabkes WiEE Elepsal (21 g ceewd [2) -";:Er'an oradesgn 00 [
o PASEECTL srleck: From N

There are several different methods for adding SQL statements to a job, as reflected by the
option in the New SQL text menu.

* New SQL Text enables tuning via manual entry, or cutting and pasting into the
tuning window.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 181

USING PROFILING > RUNNING A PROFILING SESSION

e Extract from Database Objects enables you to select stored SQL from the data source to
which you are connected. You can either drag and drop objects from the Data Source
Explorer or you can add database objects matching specified filers. For example, entering t
in the filter area of the Data Source Objects Selection dialog, can match functions,
materialized views, procedures, and views, whose name begins with t. You can then drag
and drop the matches from the Data Source Explorer to the Tuning Statements grid.

® The Import from File (Workspace) and Import from File (System) options enables you
to choose an SQL file saved in your workspace or elsewhere on your computer or network.

® The Scan Oracle SGA option is available for the Oracle platform only. It enables you to scan
for and select active SQL in the System Global Area (SGA). For more information, see Tuning
SQL Statements in the System Global Area (Oracle).

To add an ad hoc SQL statement:

Select the New SQL Text option and manually type an SQL statement in the window,
or copy/paste the statement from another source.

To add a database object:
1 Select the Extract from Database Objects option

The Data Source Object Selection dialog appears where you can search for and then select
the object you want to tune.

2 Type an object name prefix or pattern in the field provided. The Matching objects window
automatically populates with all statements residing on the specified data source that match
your criteria. Database objects include functions, materialized views, packages, package
bodies, procedures, stored outlines, triggers, and views.

NOTE: In order to find matching objects, data source indexing must be enabled. To enable
data source indexing, click Configure data source indexing, select Enable indexing,
and then click OK.

3 Click the object you want to add. Ctrl-click to add more than one object to the job.
4 Click OK.

NOTE: Alternatively, after clicking the Database Objects tab, you can drag and drop objects
from Data Source Explorer into the Database Objects window. As long as the dragged
object is a valid object type, it will be added to the Database Objects tab.

To add an SQL file:

1 From the New SQL Text menu, select either Import from File (Workspace) or Import
from File (System), depending on where the file you want to add is stored:

* Workspace files are files that reside in the application, meaning project files or
other objects generated or stored in the system.

e File System files are files that reside on your machine or the network.

182 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

2 Select a file from the dialog that appears. It is automatically added to the job.

To add SQL from the Oracle SGA
1 From the New SQL Text menu, select Scan Oracle SGA.

2 The system scans for SQL text which you can filter on the Scan SGA dialog that appears.

3 Choose the statement to be tuned and then click Finish.

MANAGING BIND VARIABLE ERRORS

When you try to tune a statement containing a bind variable you will be warned that either the
type is not set or the value is not set. Mouse over the error to learn what problems were
detected.

|#) *Maview Tuning Jobut |L2] *Untidled Tuning Job | i) ToRLABDBZ97 1 |LE] *Untitled Tuning Jab |12
b ¢'F} IBM DBZ for LU b B TORLABDEZ97_1 {09,07,0003)

B> B

'@ Overview 30erors detected

SELECT 1: The value is nok set for DECHAR
Tuning Statements [\SELECT 1: The value is nat set For DEDATETIME i
SELECT 1: The value is nok st for DEDECIMAL
SELECT 1: The walue is nok set for DEIMTEGER |
SELECT 1: The value is nok st for DEMUMERIC
SELECT 1: The value is nok set for DEREAL u

Name Schi<ELECT 1: The value is not set for DESMALLINT 1
S E N B0 <L ECT 1: The value is not set for DEVARCHAR. |
Eﬁﬂ SELECT = SELECT 1: The value ?s rok set for dbchar :
5.;53 SELECT 3 SELECT 1: The value is not set for dl:udatn_atlme
5[SELECT 1: The value is not set for dbdecimal
ﬁ!] SELECT 4 SELECT 1: The value is nat set for dbinteger
S8l FMAccicerc SELECT 1: The value is not set for dbnumeric

SELECT 1: The value is nok set for dbreal
SELECT 1: The value is not set for dbsmallint
SELECT 1: The value is not set for dbvarchar
SELECT 2: The walue is not set for DEREAL
SOQLSELECT 2 The walue is not set for dbreal
SELECT 3: The walue is not set for dbdouble

Generated Cases

L BT

Bl—rmm

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 183

USING PROFILING > RUNNING A PROFILING SESSION

You can use the Bind Variable Editor to set the types or variables.

1 Click the Edit Bind Variable icon as shown below.
(&l -1=ie

The Edit Bind Variables dialog appears.

& Edit Bind Variables

Edit Bind Variables aL
tManage bird variable data types and values. t_u
All Tuning Statements
hlame MLILL Data Twpe ialue

DECHAR a characker
DECATETIME O timestamp
DECECIMAL O decimal
DEINTEGER, O integer
DEMUMERTC O decimal
DEREAL O smalint
DESMALLIMT O real
DEVARCHAR a varchar
dhbigint a hiaink
dbchar O character
dbdatetime O date

<) dodecimal O decimal
dbdouble O double
diofloat O float
dhinteqger O integer
dhlanachar a lona varchar
dbrumeric O rwmeric
dbreal O real
dbsmallin O smalint
AkFima m Firno

o

You can either set the bind variables for all tuning statements at once or you can set the
bind variables for each select statement individually. If you set the bind variable in the All
Tuning Statement section, you can still override that setting for an individual select
statement.

2 Set the bind variable by clicking the Null box, clicking in the Data Type column and
selecting the data type from the list, or by clicking in the Value column and entering the
value.

184 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

3 If you want to set the bind variable for an individual select statement, click the expand
button to see all the select statements. The expand button is marked with a red box in the
previous image.

SELECT 11 { select from MOVIES, CUSTOMER, MOYIES. MOYIERENTAL)

Mame RIILL Daka Tvpe Yalue
CECHAR: _ character " -
dbchar O date A
dbl h integer I
Anaenar O bigint
blob
boolean o

|

In this manner you can set the bind variables from all tuning statements and then override
that setting by setting the bind variable for a specific select statement.

You may find it easier to set the bind variables when you can see the tuning statement. In
the Generated Cases section, you can double click a statement and an editor appears
where you can edit the SQL statement and set the variable data types and values.

& Fdit Case - SELECT 1

Edit Tuning Statement SdadL
Uniahe the S0L stabement besk as wel as manage varizble data bypasivalues, DJ
kELZCT ~
oE . clustomer 1d,
zE.firstnamne,
2. lasthsme,
e . rentalid,
wir . dusdate,
B, Totaleharge,
1. lnemnumaet
F RO =
ROV IES . customer os,
AOVIES movierental mc,
HAOVIEZ.centalitem i,
{ZELEZT
DISTINCT
AWG [rocsloharge] COL10O
FRON MOWIES.movierental) T31
WHERE
5. FIRSTHANE = dbohar AED
oa.Eip > odbvnrchor &0D
rlh=wml lane ¥ = cn=eomeeracd BN ‘_‘I.
Fame | PLL Data Type Walue e
DHCHAR O choacter
DEBATETIME O tivestang
DHGECINAL O de=cms
DHIHTEGER: O integer
DEHUMERTC O dedmd
DEREAL O smalink
DESMALLIT O resd
DEVARCHAR O varcha
dbchar O character
dbdamesine O dats
dhdacinal O dedma
dhintager OO integer
plhra i M [l t
el m L)
Zancsl

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

185

USING PROFILING > RUNNING A PROFILING SESSION

RUN A TUNING JOB

As you add SQL statements to the job on the Overview tab of the tuner, tuning-supported DML
statements (SELECT, INSERT, DELETE, and UPDATE as well as MERGE on SQL Server 2008 and
above) are parsed from the statements and added to the Overview tab in preparation for the
tuning function execution.

Each tuning source statement is listed by Name, Schema, Text, Tables and Views. For SQL Server
and Sybase platforms, there is also a Catalog column. Additionally, each statement will have
Time and Analysis values that approximate how efficiently they execute on the specified data
source.

In the Generated Cases area of the Overview tab of a tuning job, the Cost and Execution
Statistics columns let you compare the relative efficiency of SQL statements or statement cases.
While the explain plan Cost for a statement or case is calculated when you add SQL to a tuning
job, the Elapsed Time and Execution Statistics (and Other Execution Statistics columns, if
available) columns are not populated until you execute that statement or case.

If the Tuning Status Indicator indicates that a statement or case is ready to execute, you can
execute one or more statements on the Overview tab. Alternatively, the Tuning Status Indicator
may show that you have to correct the SQL or set bind variables before you can execute.

Once the tuning job has run, the Overview tab provides a series of cases, per statement, that
you can select and modify based on your results.

In some cases, automatic case generation might be disabled (via the Preferences panel). If this is
true, or if you have otherwise modified the Generated Cases table and can no longer generate a
specific case, you can instead explicitly generate a case for specific statements.

[“]Execute each generated case | 1 % | times r f) T |

To execute a tuning job:

1 Ensure you have registered and selected a data source. For more information, see Register
Data Sources and Specify a Data Source.

2 Ensure you are connected to the database by double clicking the database name in the
Data Source Explorer.

3 Click the tuning icon on the toolbar, or click File > New > Tuning Job.
4 On the Overview tab, specify the SQL you want to tune:

5 Modify the number of times to execute each statement in the Execute each
generated case field at the top right of the tuner, as needed.

-
6 Click the execution button [r‘u)] on the right side of the case generation field.

The tuning job runs, exacting and analyzing each statement and providing values in the
appropriate columns.

186 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

To explicitly generate a case for a specific statement:

1 Ensure you are connected to the database by double clicking the database name in the Data
Source Explorer.

2 Click the Overview tab.

3 Inthe Generated Cases area, right-click in the Name field of a statement or
transformation case and select Generate Cases from the context menu, or click the
Overview Run Job icon. The specified case is generated.

To view the generated cases for a specific statement

1 Inthe Tuning Statements area, click the checkbox to the left of the tuning source
statement name.

A check mark appears in the checkbox and the cases displayed in the Generated Cases area
are filtered to display only those cases related to the selected source statement.

i *romsacraet (L8 sunttked Tuning bz 2 =]
b O Crace b m ROMLABCROLEL D (8.1,7.4)

| = Uwerveew | ;-.- Amalysis |

8 Overview | e deteded ey @
Tuhing Statements & Gererate cases CPerform detal andlysis [#lExmubs sach cermrated case |3 - | imes 1\-\‘:} B
SLatemeani Timmes Anddyas e
Tdame: Schema Text Tables timas Elopsed 50 | mproved (5 Coses Trckr=ns
= [FAEECT 3] seluch from sye.jobg i
*, Mseecta 55 select from Fetf, msf i
#y [AsEEcTS 5 sedect from pandng_trans$ 0
[% [AssiEcTs S5 zeleck From svs.obif. _ L |
Gemerated Cases k-
501 Sratemerts and Cases B Cost | Ewendl s | % Cithe EeoLbion Shotises |
Tilerie T ahas Eleps=d T {5} Fhyacal Fesds | Locical Reads CEU Torves 57
= && SELECT | sedrct from SYSTELDERS 0o ALl 058 0] .00
THLES_COMBINE L.0 0.53 o] 11 .00
INDES EZE.0 .87 o] o.co
RULE 077 u] q 0,00

sel=ct from sys.obf
scdect from Fetf, tsf

y SELECT 5 selach from pandng_trarsd
i_.hLI.LI’.I b sel=ct from svs.obif, svsoossrE, rof,

I) o e e £

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 187

USING PROFILING > RUNNING A PROFILING SESSION

ANALYZE TUNING RESULTS

Once you have executed a tuning job, the Overview tab reflects tuning analysis of the specified
statements. The Analysis tab shows the resulting analysis of the query, including indexes used,
not used, and missing (or suggested to create). For more information on using the Analysis tab,

see Understanding the Analysis Tab.

Tuning Status Indicator Column Set Run/Cancel Job
Enable Execution Expand/Collapse Controls
Check Box Control
Increase/Decrease
Catalog and Pane Size Control
) Schema Selector
|,“-> Owverview F‘* Analyfis l
-.!_, Dvew oW 1 Aaming detected |§.E: 5 - @ @
[Jtenerate fcases [rerform ditail analysis [¥]Exefute sach generated case @ t_-)
SEmtamant J Time J An
V| . Schema Text Thbles Views Elapsed (5] | Improved (s} Cases Inde:
T MseecT2 MOVIES o select from BROKER, 5.32 6.32 0
W EsaecT 0.00 0.00 10
< | >
Generated Cases Generated Case { Filter Control —pggm 3
Expand/Collapse-Control
L Statements and Casss | » cast $Exequt,.istics | Other

el 21 Text \ Valug Elapsed Time (s) | Physical Reads | Lo
el = select from BROKER, CLIENT ACTION, 33014.0 6.32 2
el ..sformation 274.0 0.03 0
oel Ef SRECT1 select from chent_transaction, dient, 4.0 0.0 i}
e USE_HASH 14.0 0.00 o
e ORDERED 8.0 0.00 o
E"_;_j NO_USE_ML 16.0 .04 1]
=] LEADING4 f e gi‘;{gﬁigs@ 8.0 0.00 0
E LEADING3 Transformation Case 10.0 0.01 a
= LEADING2Z Hint-Based 7.0 .01 1}
23 "LEADING1 / Cases 4.0 0.00 0
gl TMOEX_FFS 8.0 0.0 o
s FLLL 54,0 0.00 o
el -FIRST_ROWS 4,0 .04 1]

e The Generated case Expand/Collapse control lets you hide or display the hint-based
cases and transformation-based case generated for a statement.

e The Perform detail analysis and Execute each generated case check boxes let you
enable multiple statements or cases for simultaneous execution while the Run/Cancel Job
controls let you start and stop simultaneous execution.

188

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

Use the Schema and Catalog Selectors to select a schema and catalog for the tuning job.
The catalog selector is available only for SQL Server and Sybase data sources. By specifying
the schema and catalog, the tuner can use the paths of the schema and catalog selected to
find the tables queried in the job rather that use the paths of the schema and catalog used
to connect to the data source. If you change the schema or catalog used in a tuning
statement you will need to refresh the tuning statements in order for new cases to be
generated, which take into consideration the schema used. Right-click a tuning statement,
and then select Refresh Tuning Statements.

The Column set Expand/Collapse controls let you expand a column set to display more
of the columns within the table.

The Tuning Status Indicator indicates whether a statement or case is ready to execute
or has successfully executed. The following table provides information on the Tuning
Status Indicator states:

lcon Description

E The case has not been executed. There are no errors or warnings and the case is ready to be executed.
E;=J The case has been successfully executed.

E Execution for this case failed or was cancelled due to execution time exceeding 1.5 of original case time.

Hovering the mouse over the Tuning Status Indicator displays a tip that notes the nature of a
warning or error.

NOTE: If awarning ! indicates that one or more tables do not have statistics, you can right-
click the statement and select Analyze Tables to gather statistics. A warning may also
indicate that the tuning statements are out of sync, in which case you can right-click a
tuning statement and select Refresh Tuning Statements.

A warning can indicate an object caching error. For example, a table may not exist or not be
fully qualified. Cases cannot be generated for the associated statement.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 189

USING PROFILING > RUNNING A PROFILING SESSION

The explain plan-based Cost field can be expended to display a graphical representation of
the values for statements or cases. Similarly, after executing a statement or case, the
Elapsed Time field can be expanded to display a graphical representation. The bar length
and colors used in the representation are intended as an aid in comparing values,
particularly among cases. For example:

I:I-?B —
1,345 I
D.E‘ES L

0,490

Du?g? L

0.823 I

In the case of both Cost and Elapsed Time, the values for the original statement are
considered the baseline values. With respect to color-coding for individual case variants,
values within a degradation threshold (default 10%) and improvement threshold (default
10%) are represented with a neutral color (default light blue). Values less than the
improvement threshold are represented with a distinctive color (default green). Values
greater than the degradation threshold are shown with their own distinctive color (default
red).

With respect to bar length, the baseline value of the original statement spans half the width
of the column. For child-cases of the original statement, if one or more cases show a
degradation value, the largest degradation value spans the width of the column. Bar length
for all other children cases is a function of the value for that case in comparison to the
highest degradation value.

NOTE: Forinformation on specifying colors, and the improvement threshold and degradation
threshold values used in these graphical representations, see Specify Tuning Job
Editor Preferences.

Additionally, once results have been generated you can:

190

Compare Cases. For more information, see Compare Cases.

Filter and Delete Cases. For more information, see Filter and Delete Cases.

Visual SQL Tuning. For more information, see Visual SOL Tuning.

Create an Outline. For more information, see Create an Outline.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

COMPARE CASES

You can compare cases between an original statement and one of its tuning-generated
statements, or another statement case via the Compare to Parent and Compare
Selected commands, respectively.

& Compare Statements E@@

28R

r 1

0B selecT 2: DB Transformation (SELECT 2):
—— BROXER &, A
BROKER A&, Br s i T O
CLIENT TRANSACTICN B, S A E“T B,
OFFICE TOCATION o OFFICE LOCATION C,
SR ‘-_FH—_ = L - iy T T OTYWE AT T -
INVESTMENT I o=
T':'EE::\.E WilEhE
L.BROKER ID = B.BROKER ID AN B e b
A.OFFICE_LOCATION ID = C.OFF]—— A L A R
R B B.INVESTMENT ID = I.INVES
.. BROKER GROUP B [
L SLONEE A.BROEKER_ID,
% . BEOKER A.BROKER LAST NAME,
4. OF WL E — =
4 g FIRST NAME,
Fo = U FTDM
C. 1 FIBRM, 3
< > < >

To compare a case side-by-side with its parent:

Right-click in the Name field of a case and select Compare to Parent from the
context menu.

To compare two cases:

Select the two cases, and then right-click in the Name field of either case. Select Compare
Selected from the context menu.

FILTER AND DELETE CASES

You filter cases from the Generated Cases table via the Filter icons on the Generated Cases
Toolbar of the Overview tab.

ik

Filter the cases on the Overview tab so that hints that are not improvements on the original
statement are not displayed. You can filter:

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 191

USING PROFILING > RUNNING A PROFILING SESSION

¢ Non-optimizable statements

Optimized statements

* \Worst cost cases

Worst elapsed time cases

When filtering, the criteria remain in effect until you change the criteria. That is, as new cases are
generated, only those cases that do not satisfy the filtering criteria are displayed. To restore an
unfiltered set of cases, open the Filter dialog and deselect the filtering options.

When removing cases, the criteria you set has no effect on cases subsequently generated.

To filter cases from the Overview table:
1 Click the Filter button, respectively. A Filters dialog opens.

2 Use the check boxes to select your filtering and then click OK.

To delete cases from the Overview table:

1 Right-click on the row of the case you want to delete and select Delete. A Delete dialog
opens.

2 Use the check boxes to select your filtering and then click OK.

When removing cases, the criteria you set has no effect on cases subsequently generated.

CREATE AN OQUTLINE

If SQL is executed by an external application or If you cannot directly modify the SQL being
executed but would like to improve the execution performance, you can create an outline on the
Oracle platform. An outline instructs the Oracle database on the execution path that should be
taken for a particular statement.

To create an outline for a change suggested by a case:

1 On the Overview tab of a tuning job, right-click in the Name field of a case and select
Create Outline from the context menu.

A New Outline wizard opens.

2 On the first panel, provide an Outline name, select an Outline category, and then click
Next.

A Preview Outline panel opens previewing the SQL code to create the outline.

3 Select an Action to take option of Execute or Open in new SQL editor and then click
Finish.

For more information, see Using the Outlines Tab (Oracle).

192 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

MODIFY TUNING RESULTS

As you add SQL source to the Overview tab of a tuning job, the supported DML statements are
automatically parsed out and a numbered statement record for each statement is added to the
Overview tab.

Cases generated from tuning candidates are alternative forms of the original statement that
have been optimized or otherwise “fixed” by the tuning function. Once you have executed a
tuning job, tuning automatically generates all SQL optimizer hint-based variations that can be
applied to the statement: If you change the schema of a statement

e All SQL Optimizer hint-based variations that can be applied to a statement.

¢ A transformation-based case, if any of the eight common quick fixes can be applied to an
SQL statement. This feature leverages the DB Optimizer Code Quality Check functionality.
See Understanding Code Quality Checks for more information on the eight quick fixes. A
transformation case, in turn, has its own set of SQL Optimizer hint cases. For information on
query rewrites, see DB2, Oracle, SOL Server, Sybase Query Rewrites. For information on
other transformations, see Examples of Transformations and SOL Query Rewrites.

e SQL Query Rewrites may be suggested when tuning. For example, a recommended rewrite
for EXISTS may be IN. For information on query rewrites, see DB2, Oracle, SQL Server,
Sybase Query Rewrites.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 193

USING PROFILING > RUNNING A PROFILING SESSION

L'i-" Overview P‘ Analysis

== i 9] soL
£E Overview & T
Tuning Stateme Generate cases []Perfarm detail ana []Execute each generated case | 2 - @
Skaterment | Tirne |
| Marme | Schema Texk Tables Wigws Elapsed (=) Improved (=) r
|y | 0 SELECT 1 MOVIES |selectfromeustomer, | | | | [
T SELECT 2 select from
%5
Generated Cases
S0l Statements and Cases *r Cost #rExecuti, , istics ¥
Ll LR L | Velue | ElapsedTime () | Phys
= Sy SELECT 1 select from customer, movierental, rentalitem
-~ #I[IN_TO_FXL.. [Rewrits - SOlueryewrites
- [+ [BETWEEN_...Rewrite
- INDE®
DYMAMIC_SAMPLING
FLILL
- INDE¥_55 Hint-basedases
- IMDEY,_FFS
INDEY_CCMEBIME
M0 _INDEY
[+l [Expressia,. sformation <@——— Transformation-based¢ase
‘ 5[—':]" SELECT 2 select from movies. customer,

| e

Hint-based cases and the transformation-based cases are a special case of the statement
records added to the Overview tab as you add candidates to a tuning job. With the exception of
the Text, Source, and Index Analysis fields, cases are identical to the standard statement record.
Similarly, execution, statistics collection, and other options available for basic statement records
are available for individual cases.

Once cases have been generated, if you have the required permissions on the specified data
source, you can apply the changes suggested by hint and transformation based cases in the
Overview table.

194 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

DB2, ORACLE, SOL SERVER, SYBASE QUERY REWRITES

The following query rewrites or transformations may be recommended during tuning. The
examples below are for Oracle data sources. The implementations for DB2, SQL Server, and
Sybase data sources are slightly different. These rewrites are available on all four platforms
except for those noted for ORACLE and DB2 only.

Before

After

select * from t1 where
EXISTS
(select null from t2 where t2.key = t1.key);

select * from t1 where t1.key
IN
(select t2.key from t2);

select * from t1 where
NOT EXISTS
(select null from t2 where t2.key = t1.key);

select * from t1 where t1.key
NOT IN
(select t2.key from t2 where t2.key is not null);

select * from t1 where t1.key
IN
(select t2.key from t2);

select * from t1 where
EXISTS
(select null from t2 where t2.key = t1.key);

select * from t1 where t1.key
NOT IN
(select t2.key from t2 where t2.key is not null);

select * from t1 where
NOT EXISTS
(select null from t2 where t2.key = t1.key);

select * from t1 where
NOT EXISTS
(select null from t2 where t2.key = t1.key);

select t1.* from t1, t2 where t1.key = t2.key(+) and t2.key
is null

select * from t1 where t1.key
NOT IN
(select t2.key from t2 where t2.key is not null);

select t1.* from t1, t2 where t1.key = t2.key(+) and t2.key
is null;

select column BETWEEN X AND Y

select (column <= X AND column >=Y)

select column NOT BETWEEN X AND Y

select (column < X AND column >)

select (column<= X AND column >=Y)

select column BETWEEN X AND Y

select (column < X AND column >Y)

select column NOT BETWEEN X AND Y

select t1.* from t1, t2 where t1.key = t2 key
and
t2.col = 10;

select t1.* from t1,
(select * from t2 where t2.col = 10) inline_alias
where t1.key= inline_alias.key;

For DB2 and Oracle only

select t2.* from t1, t2 where t1.key = t2.key
and
t1.col is null

select * from t2 where t2.key
IN
(select t1.key from t1 where t1.col is null)

USING THE ANALYSIS TAB

The Analysis tab provides detailed information about statements and cases selected from the
Overview tab, after a tuning job has been executed. It also shows filter ratio, and table and join

sizes.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

195

USING PROFILING > RUNNING A PROFILING SESSION

The Analysis tab contains information about the statement or case, its full SQL code, a diagram
of the SQL statement, and Index Analysis.

L2 *Lntited Tuning Job 23 =i
| b o Orade b 5 TORLABSCORCL

B Overview

| B S0L Analysis Select skatement of interest: | SELECT 1 v | -INToENSTS)SQRewke | - B | @

" ﬁ-ll-n|'|-"1]

SELECT e
c2. customerid,
s, firstnome, &, SUBCUERY (1)
&3, lagtnams, !

b . rentalld,
we . dusdace, &
we . totalechacge, i ;
Ei.itemnurer 3 MOVIERENTAL (MR) &l WOT TN 2
FRON W
HOVTIES. customer oS, '
NOWIES.movierencal wmr, ¢
HOVIES. rentalitem i
WHERE 1&] CUSTOMER (C35)
LENGTH (c=.laschname] = 5 AND
oF.2ip » TE062 AWHD
i1 £ cs.customerid + 2 AND
=, phone EETWEEN 9625569300 AND S
ROMND (ri.cencmlid) > 10 AND
TRINC (ri.itemnumber) > 1 AND [
4 | 2
Collegt and reste indexes wh ‘g_]
Tndes Mame Table Cwner Table Mame o [
EH—I DiL‘lP: MOYIERENTAL_O [RHOIES MOVIERENTAL OTALCH
o [customes_px MCVIES CLISTOMER. CLISTOME
o CImMovIECOR_pi: POIES HONIECORY MOVIECO [
" [JRENTALITEM_FEL MCWIES REWTALITEM REMTALIC
@ [cusTomer_IE1 MOVIES CLSTOMER LSTHAMI
< »

Additionally, for the Oracle and SQL Server platforms there are Table Statistics, Column Statistics
and Histograms, and Outlines/Plan Guides tabs. For more information, see Using Platform-
Specific Features.

Statement analysis is performed when you click Perform detail analysis on the Overview
tab and then click Run Job or when you click the Analysis tab. In order to view and analyze
statement statistics, select the tab (Index Analysis, Table Statistics, Column Statistics and
Histograms, or Outline) and the statements whose statistics you want to analyze.

Next to the Select statement of interest list at the top, you choose to see an analysis of the -
>ROQOT statement, or you can click the list and see an analysis of any one of the generated
cases produced by running the tuning job from the Overview tab.

For more information, see Visual SOL Tuning.

196 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

IMPLEMENTING INDEX ANALYSIS RECOMMENDATIONS

Once you have added tuning candidates to a tuning job, DB Optimizer can analyze the
effectiveness of the indexes in the database and recommend the creation of new indexes where
the new indexes can increase performance.

In the Collect and create indexes table, any indexes DB Optimizer recommends you create
are marked in orange.

E| fndew Aralems | 5] Table Seabistics | mem ok Soabstics dnd Histoarans E:l Cukres

Colect and et oeas wh |0
Inde=: fisrms Table Oy Teble Hare Colunin bams [redec Type | Tabls MOVIES MOVIERENTAL is scarned #| Create
AW | [0¥ MOVIERENTAL 0 MEWIES | WCWIERENTAL | TOTALCHARGE Pl o | ;’:: ful.-ll '::: b :’:L':_["“ afitet Index
fis ¥ L =
o [custarer_m FEWIES OLETOMER CLSTCRAERID Lnicue i (hct.:hm*g‘:ﬁrnmr-ﬂurl;;.lrrmhnrt:f:l
o ClmouEcor MCHIES MCNIECORY MORIECERYED Unioue 4 onic end we aeetad a vituel index
o CIRENTALITEM_FKL HCHIES RENTALITEM REATALID Horms 10 MOUIERENTAL O uwihich the optinizer

E picked up, 5o we sugoest molemarbng
] D L LR _ILL PravILZ (RN e | Loz Thiahis Moms

To accept the suggestion and have tuning automatically generate an index:

1 For any recommended index, click the checkbox to the left of the index.

Optionally, modify the Index type by clicking in the Index Type column and then selecting a
type from the list.

2 Click the Create Indexes button.
The Index Analysis dialog appears.

To view the index SQL in an editor for later implementation, click the statement and then
click Open in a SQL editor.

To run the index SQL and create the index on the selected database, click Execute.

VisuaL SQL TUNING
NOTE: Visual SQL Tuning is not available in DB Optimizer Developer.

DB Optimizer can now parse an SQL query and analyze the indexes and constraints on the
tables in the query and display the query in graphical format on The Visual SQL Tuning (VST)
diagram, which can be displayed in either Summary Mode or Detail Mode. This helps
developers, designers and DBAs see flaws in the schema design such as Cartesians joins,
implied Cartesians joins and many-to-many relationships. The VST diagram also helps the user
to more quickly understand the components of an SQL query, thus accelerating trouble-
shooting and analysis.

This section is comprised of the following topics:

e Changing Diagram Detail Display

¢ |nterpreting the VST Diagram Graphics

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 197

USING PROFILING > RUNNING A PROFILING SESSION

CHANGING DIAGRAM DETAIL DISPLAY
This section is comprised of the following topics:

e Choosing the Tuning Statement and Generated Case to Analyze

Viewing the VST Diagram Legend

¢ Viewing Table Counts and Ratios

* Viewing the Explain Plan

¢ Viewing the VST Diagram in Summary Mode

e Viewing the VST Diagram in Detail Mode

e Changing Detail Level for a Specific Table

¢ Viewing All Table Fields

¢ Viewing Diagram Object SOL

e Expanding Views in the VST Diagram

¢ Viewing the Oracle Explain Plan Overlay

CHOOSING THE TUNING STATEMENT AND GENERATED CASE TO ANALYZE

If, from the Overview tab, you have run the tuning job using more than one tuning statement,
from the Analysis tab, you can choose to see the SQL analysis of any one of the tuning
statements.

1 On the Analysis tab, click the Select statement of interest list and choose the
tuning statement you want to see analyzed here.

[Z] *untted Tuning 3ok £3 = ||
b rhorade b R TORLABSCORCL

;'-‘- Overwiew ¥ Analysis
El S0 Analysis Sefieck skabement of inbarest: SELECT 1 W -z ROOT “ s -E B ®
4T e Al [IELECT 2

Notice that next to the statement of interest box another list ->ROOT. This shows that the
statement being analyzed is the original statement, without any of the generated cases. This
is the default selection.

198 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

2 To choose the generated case to be analyzed, click the second Select statement of
interest list and choose a generated case.

L5 *unititled Tuning Job 223 7
bt Oracle b Hg| TORLABSCOALCL

|_,--' fnalysis |

= Uverview

= i gment of inkerast e || -z wi| o [E2 & 7

B SOL Analysis Sefect statement of terast; | SELECT 1 =ROOT ; =@
= ROOT A

SELECT A - [IM_TO_EXISTS] SCLPewrte

cs.customerid,
ca.Cirsrnams, o, SUBQUERY (1)

©2. lagcname, | FULL

mr.cencnlid, | - IHDEY COMEINE

me . duedats, = ﬁLL_P\E'!'!"i

nmr.cocalchargs, ; } .-"'ff-l = THDEX_FF3 =

After you make your selections, a new analysis is performed taking into consideration the
statement and case you chose. A new diagram is displayed and the Index Analysis, Table
Statistics, Column Statistics And Histograms, and Outlines are recalculated and updated.

VIEWING THE VST DIAGRAM LEGEND
Click the Diagram Legend toggle [El1 to view the legend and then click it again to hide
it. All the icons used in the VST diagram are identified and in the Diagram Legend.

Diagram Legend A
Tahle
G Miew
= Materiglized Wiew
&G Sub-query
[cTEl Cornmon Table Expression
22 Column
Index
B Primary Key
s Unique Key
[@ Fikered object
Z—= Mary ko Many (M)
—== Parent to Child (1:M)
Unigue (1:1)
4 CUTER J0IN
= ExI5TS) IN v

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 199

USING PROFILING > RUNNING A PROFILING SESSION

VIEWING TABLE COUNTS AND RATIOS
To view or hide table counts, two table join sizes and filtered result set ratios, click the Ratios

and Counts icon [12:-].

1 10000
& SUBQUERY (1) | 3 RENTALITEM (RI)
"Jf"' T00%:
|
15?1 10000 10000
cooo 4\ i}
| B MOVIERENTAL (MR) | & NOT IN (2)

Looo

[

| (3 cusTOMER (C5)
To0%:

Green numbers at top left of table represent the total number of rows in that table. In the above
the MOVIERENTAL (MR) table has 5000 rows.

Blue percentage at the bottom right of the table represent the percentage of rows in that table
that meet the selection criteria. In the above example, 100 percent of the rows in the
RENTALITEM (RI) table have met the selection criteria.

The numbers on the table joins indicate the total number of rows that meet the selection criteria
for both tables.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 201

USING PROFILING > RUNNING A PROFILING SESSION

You can also view the SQL Query that created a relationship by hovering over the
relationship. Ifthe tooltip content is larger than the size of the tooltip rectangle, you can
hover the mouse on top of the tooltip for a second, and then it will turn into a dialog you
can re-size, scroll in, and select text from to copy into the Clipboard.

1 100000
5000 |_E| RENTALITEM (RI)
%] MOVIERENTAL | /T Tom
159 0 Cardinality: Master-Detail
‘\»ﬁ Joined Row Count: 10000
c000 "
MOVIERENTAL (MI N S—
ri.RENTALID = mr.RENTALID
Columns:

5““"’ MOVIERENTAL .RENTALID

c> REMNTALITEM.RENTALID

|_m CUSTOMER (C5: SQL Count Statement:

100} SHECT COUNT (%)
FROM
MOVIES.MOVIERENTAL MR,
MOVIES.RENTALITEM RI
WHERE ri.RENTALID = mr RENTALID

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 201

USING PROFILING > RUNNING A PROFILING SESSION

VIEWING THE EXPLAIN PLAN

NOTE: The Explain Plan is available only for the Oracle 10g platform.

Hover the mouse over the VST diagram to see the Explain Plan icon [¥£and then click it to
view the Explain Plan Overlay. Click the Explain Plan icon again to hide the overlay.

The additional nodes shown in the Explain Plan overlay provide details on the flow of the
query plan, with operations (such as nested loops, sorts, and joins) showing connecting

tables and other operations..

| £¥ ML

| REP;JTFI.LITEM (RI) |
»*

oo [t
|13 MOVIECORY (MC) |

| B movierenTAL |

Hover the mouse over the objects or relationships in the overlay to view additional details.

VIEWING THE VST DIAGRAM IN SUMMARY MODE

By default the diagram displays Summary Mode, showing only table names and joins, as seen in

the following illustration

| (3 RENTALITEM (RI}|
*

[F]
& MOT I (2)

| B2 MOVIERENTAL (MR) |

| (3 CusTOMER (C5) | & SUBQUERY (1)

202

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

VIEWING THE VST DIAGRAM IN DETAIL MODE
By default, the VST diagram displays in Summary Mode, but by clicking the Detail

Mode/Summary Mode switch.
g2 N] Q

| I3 RENTALITEM (R1)|
¥

DetaiModeBummaryode

[Switch
| B MovIERENTAL (MR) | S NOT IN (2)

|13 cusTOMER (C5)| & SUBQUERY (1)

Additional details of the tables display, including table columns and indexes

€ HQ Q!

REMTALITEM (RI)

[3E ITEMNUMEER.: NUMEER:
22 MOVIECOPYID: MUMBER
[3E RENTALID: NUMBER:

REMTALITEM_FK1
REMTALITEM_FKZ
“B REMTALITEM_PK

&
MOVIERENTAL (MR &5 NOT IN (2)
= CUSTOMERID: MUMBER [5E COPYCOMDITION: CH

CHANGING DETAIL LEVEL FOR A SPECIFIC TABLE
You can also switch between Summary Mode and Detail Mode for a specific table or view, by

double-clicking the object name.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 203

USING PROFILING > RUNNING A PROFILING SESSION

VIEWING ALL TABLE FIELDS

By default, only fields that are used in the WHERE clause are displayed in detail mode; however,
if you right-click the table you can choose to display even unused columns as follows:

ri
MOWIERENTAL (MR}
CUSTOMERID: NUMEBER:
UEDATE: DATE
REMTALID: NUMBE

wi Reset Layout
22 TOTALCHARGE: N

MOVIERENTAL_FK
MOYIERENTAL_FK; %8 Show Explain Plan
MOVIERENTAL_IE]
MOVYIERENTAL _IE?

o MOVIEREMTAL _PE ::mi Summary Mode
Expand All
~~ Show Unused Columns

+I+ Lawout Direction r

2“; Show RatiosCounks

L show Object Owners

™ Show Query Mames

(ﬂ Zoarm In
a Zoarn Cuk

All the columns in the table are shown, and not just the ones used in the WHERE clause of the
SQOL statement.

MOVIEREMTAL (MR

£ CUSTOMERID: MUMEER
LEDATE: DATE
REMTALIC: MUMEER.

== TOTALCHARGE: MUMEBER.

MOYIERENTAL_FK1
MOYIEREMTAL_FK2
MOYIERENTAL_IE1
MOYIERENTAL_IEZ
W MOYIEREMTAL_PK

204 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

VIEWING DIAGRAM OBJECT SOL

While in Detail Mode, hovering the mouse over the sub query, table name, field, or index
displays the SQL required to create that object.

REMTALITEM (RI)

[5E ITEMNUMEER:: NUMEER
£= MOYIECOPYID: NUMEBER
[5E RENTALID: NUMBER,

REMTALITEM_Fk1

[E rEMTALITRIY—=
7 rentarrel] 5| RENTALITEM_FK2

CREATE IMDEX MOVIES.RENTALITEM_FR2
OM MOVIES. RENTALITEM{MOVIECOPYID)

TABLESPACE USERS

LOGGEING

Hovering over the join between two tables displays the relationship between the two tables.

RENTALITEM (RI)

[5E ITEMNUMEER.: NUMEER.
£2 MOVIECORYID: MUMEER.
[5E REMTALID: NUMBER,

REMTALITEM_FK1
REMTALITEM _FKz2
% RENTALITEM_PK

Cardinality: Master-Detail
Relations:

CUSTOMERID: MUMpER | Columns:

DUEDATE: DATE E COPYFORMAT: CHAR

REMTALID: MUMEER.
== TOTALCHARGE: MUMBER

ID¥_MOYIERENTAL_D

EXPANDING VIEWS IN THE VST DIAGRAM

If there are views in the Visual SQL Tuning diagram, they can be expanded by right clicking the
view name and choosing Expand View.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 205

USING PROFILING > RUNNING A PROFILING SESSION

Right click on the view, and choose Expand View.

&% EMP_DETAILS_VIEW

- epodien |

1 Reset Layout

1+ Layout Direction r
1 :
2 Show Ratios/Counts

0] Detail Mods

Expand al

££ Show Unused Columns
L show Object Cwners

™ Show Query Mames

(ﬂ Zoarm In

Now we can see the objects in the view:

&4 EMP_DETAILS WIEW

| & empLoveEs (6)|

| B DEPARTMENTS (D) |
W

| B2 LocaTions ()|
Y

| & counrriEs ()
R

RESIONS (R}

You can further expand the sub-view within the original view also.

The following is an example of view expansion along with the Explain Plan to the left.

206 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

Notice in the view expansion a list of all the indexes on all the underlying tables in the views and

sub views and which of those indexes is used in the default execution plan.
(123 e Tuning o0 5, L
P rfiorack ¥ i TORLABSCORCL

B Overview | = Analysis l

B 50L Analysis Seluct skabemenk of inteensk; | SELECT 1 | DYNAMIC_SAPLING R -

=

SELECT SOUNT (=) o winld g

B rece dnpiomis | I Tl Samsees | I S Sentancs e Mamageas] s BEcuinT

| [rEEL S
Lolect and aale rgtues T T —— 2
trins tama otk Ovoet Toiy Hwe. P | | RO
o [lousnT e . T B cLineT LasT s
¥ B i | [
& Do Bfcun
& O | (a8
ol T
KO Bl
kO M T
kO I .! =
tﬂ. a e

VIEWING THE ORACLE EXPLAIN PLAN OVERLAY
NOTE: This option is only available for Oracle versions 10 and higher.

Click the Explain Plan toggle [], you can choose to view or hide the Explain Plan details.
The additional nodes shown irtthe Explain Plan overlay provide details on the flow of the
query plan, with operations (such as nested loops, sorts, and joins) showing connecting
tables and other operations. Hover the mouse over the objects or relationships to view
additional details.

2 [0 |

IND_STATS (15T)|

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 207

USING PROFILING > RUNNING A PROFILING SESSION

EXPANDING SUBQUERIES AND NESTED SUBQUERIES

Double-click queries to expand them or right-click the query and select Expand Query from
the menu that appears. The following shows several layers of nesting queries.

[l RENTALITEM (R}
7 =

e

[F] MOYIECORY (2]
'y

E]

[Z] MOYIETITLE (MT)
¥

=
[22] MONTECATE GORY (1MC)
MCWIECATEGORY

SE CATEGORYID: NUMBER

=2 RENTALPRICE: NVEER, A8 0 il
| EE RENTALPRICE: MUMEER
R MOUTECATEGORY _PK
PR MOVIECATEGORY UK

";ﬂ MOVIECATEGORY _PK
YR MOVIECATEGORY_LIK

%

INTERPRETING THE VST DIAGRAM GRAPHICS
This section contains the following topics that will help you understand the graphics in VST
diagrams:

e Viewing the Diagram Legend

e Colors

e Connecting Lines/Joins

208 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

VIEWING THE DIAGRAM LEGEND

Click the Diagram Legend Toggle button as shown in the diagram below to see a
description of the icons and relationship lines used in VST diagrams.

Diagram Legend
Table

Viewy

Materialized Yiew

1B m@m

Sub-gquery

m,
=

E

Al

[cTel Cornmion Table Expression

EE Column

Index

Primary Key

Lnique Kesy

Filkered object
Z—== Many to Many (M)
—== Parent ko Child {1:M)
Unique {1:1)

4o CUTER 101N

43—+ EXISTS | IN

AR NOT EXISTS | WOT IN

2YYH

COLORS
The color of the index entries in the Collect and Create Indexes table is interpreted as follows:

Text Color Interpretation

Index is used in the query.

Index is usable but not used by the current execution path.

This index is missing. DB Optimizer recommends that you create this index.

This index exists on the table but not usable in this query as it is written.

CONNECTING LINES/JOINS

Joins are represented with connecting lines between nodes. You can move tables in the diagram
by clicking and dragging them to the desired location. The position of the connecting lines is
automatically adjusted. The following describes when a particular type of connecting line is used
and the default positioning of the line.

Connecting Lines When used

+—t One-to-One Join relationships are graphed horizontally using blue lines. For more
information, see One-to-One Join.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 209

USING PROFILING >

RUNNING A PROFILING SESSION

Connecting Lines

When used

One-to-Many Join relationships are graphed with the many table above the one table. For
more information, see One-to-Many Join.

Cartesian Join shows the table highlighted in red with no connectors to indicate that it
is joined in via a Cartesian join. For more information, see Cartesian Join.

IiL

Many-to-Many Join relationships are connected by a red line and the relative location is not
restricted. For more information, see Many-to-Many Join.

Indirect Relationship. For more information, see Indirect Relationship.

Outer Join: For more information, see Outer Join.

Unique: For more information, see Unique.

—f— Not Exists and Not in relationship lines connect the subquery to the table being queried.
Notice that when you click this relationship line, the SQL text creating the relationship is also
selected. For more information, see Not In or Not Exists Join.

BB E—_ Exists and In relationship lines connect the subquery to the table being queried. Notice that

when you click this relationship line, the SQL text creating the relationship is also selected. For
more information, see In or Exists Join.

ONE-TO-ONE JOIN

If two tables are joined on their primary key, then graphically, these would be laid out side-by-
side, with a one-to-one connector:

| &2 muvesTENT_TvRE - [oFFICE_LOCATION |

ONE-TO-MANY JOIN

This is the default positioning of a one-to-many relationship, where INVESTMENT_TYPE is the
master table and INVESTMENT is the details table.

INVESTMENT |

| B mwesTvENT_TYPE |

210

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

The following is an example of a query that consists of only many-to-one joins, which is more
typical:

SELECT

ct_action, c.client_id,
i.investment_unit,
it.investment_type_name

FROM
client_transactionct,
clientc,
investment_typeit,
investment i

WHERE
ct.client_id=c.client_idAND
ct.investment_id=i.investment_ idAND
i.investment_type_id=it.investment_type_idand
client_transaction_id=1

| B cLEnT_TRANSACTION |

| E cuen | | & mwesTvenT |

| B INVESTMENT _TYPE |

CARTESIAN JOIN
A Cartesian join is described in the following example where the query is missing join criteria on
the table INVESTMENT:

SELECT

A_BROKER_IDBROKER_ID, A.BROKER_LAST_NAME
BROKER_LAST_NAME, A_BROKER_FIRST_NAME
BROKER_FIRST_NAME, A.YEARS_WITH_FIRM
YEARS_WITH_FIRM, C.OFFICE_NAME
OFFICE_NAME, SUM (B.BROKER_COMMISSION)
TOTAL_COMMISSIONS

FROM
BROKERA,
CLIENT_TRANSACTIONB,
OFFICE_LOCATIONC,
INVESTMENT I

WHERE

A.BROKER_ 1D =B.BROKER_I1D AND

A.OFFICE_LOCATION_ID=C_.OFFICE_LOCATION_ID
GROUP BY

A.BROKER_ID,

A.BROKER_LAST_NAME,

A.BROKER_FIRST_NAME,

A.YEARS_WITH_FTRM,

C.OFFICE_NAME;

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 21

USING PROFILING > RUNNING A PROFILING SESSION

Graphically, this looks like:

| B CLIENT_TRANSACTION |

| BROKER

[E9 oFF1ce_LocaTIoN|

INVESTMENT is highlighted in red with no connectors to indicate that it is joined in via a
Cartesian join.

Possible missing join conditions are displayed in the Overview tab under Generated Cases
in the transformations area. DB Optimize recommends that you create these joins.

* 50U Statements and Cases | ¥ Cost WExemui,, isbcs | 2 Sther Exsqution Stetfistics
fiame Text Valua Elapsad Time {=) =hl.-5i:.a Peads | Logical Reads CPUT
o 'Msange valid join criberia] transformatian 2740 004 0
FULL 34018.0 £.29 0 173
LEADING] 340170 8,25] 182
ALL_RuO0NE 34014.0 E.3% Q 170
LEADTHES 390170 B.41 0 170
INDEX 34392.0 £.58 o 414
LEADIMGE 3B143.0 794 0 17
ORDERED 3470 B.51 Q 170
USE_ML IELEE.0 2.03 0 37516
4 2

NOTE: Transformations are highlighted in yellow.

IMPLIED CARTESIAN JOIN

If there are different details for a master without other criteria then a Cartesian-type join is
created:

SELECT *

FROM
investmenti,
brokerb,

clientc

WHERE
b.manager_id=c.client_idand
i.investment_type_id=c.client_id;

212 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

| & sroxer | | B mvesTMENT

CLIEMT

The result set of BROKER to CLIENT will be multiplied by the result set of INVESTMENT to
CLIENT.

MANY-TO-MANY JOIN

If there is no unique index at either end of a join then it can be assumed that in some or all cases
the join is many-to-many; there are no constraints preventing a many-to-many join. For example,
examine the following query:

SELECT *
FROM
client_transactionct,
clientc
WHERE
ct.transaction_status=c.client_marital_status;

There is no unique index on either of the fields being joined so the optimizer assumes this is a
many-to-many join and the relationship is displayed graphically as:

| E cLIENT_TRANSACTION |
7

CLIENT

If one of the fields is unique, then the index should be declared as such to help the optimizer.

INDIRECT RELATIONSHIP

Indirect relationships are produced by the following SQL, where BIG_STATEMENT2 is a
Materialized View.

SELECTCS.*

FROM
MOVIES.CUSTOMERCS,
MOVIES.MOVIERENTAL MR,
MOVIES.RENTALITEMRI,
OE.BIG_STATEMENT2

WHERE
CS.ZIP> "75062" AND MR.RENTALID=RI_.RENTALIDAND
RI.ITEMNUMBER =OE.BIG_STATEMENTZ2. ITEMNUMBER AND

MR .CUSTOMERID =CS.CUSTOMERID;

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 213

USING PROFILING > RUNNING A PROFILING SESSION

The following diagram produced by the SQL above shows that an indirect relationship exists
between the RENTALITEM(RI) tables inside and outside the materialized view,
BIG_STATEMENT2. An indirect relationship also exists between MOVIERENTAL (MR) inside
BIG_STATEMENTZ2 and MOVIERENTAL(MR) inside the RENT_VIEW1 view.

[Z= WOVIEREWTAL (WA}

e

B BI;E_'ST.ﬁ.'I:EHEﬂTz

[F cusTOMWER (Cs)

[72 WMIOWIEREWTAL (M)
" o

[7= REWTALITEM (P

2]
&L WO T IH (2

\
\

W

M
[F wovIerEnTAL

&3 RENT_WIEW1L

IN OR EXISTS JOIN

The following SQL contains a nest IN subquery (shown in bold text) that is graphically
represented with the Subquery summary icon and the IN join.

SELECT
cs.customerid,
cs.firstname,
cs. lastname,
mr.rentalid,
mr .duedate,
mr.totalcharge,
ri.itemnumber

FROM

SELECT

cl.customerid,

cl.firstname,

cl.lastname,

cl._phone
FROMMOVIES.customer cl
WHERE EXISTS (SELECT NULL

214

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

FROMMOVIES.customer c2

WHERE
cl.customerid<>c2.customerid AND
cl.lastname=c2. lastname AND
cl.phone BETWEEN O AND 9999569900)

)
cs,
(
SELECT
customerid,
rentalid,
duedate,
totalcharge,
rentaldate
FROMMOVIES.movierental
WHERE totalcharge>10
)
mr,
MOVIES.rentalitemri
WHERE
LENGTH (cs. lastname) =10 AND
-l<cs.customerid AND
ROUND (ri.rentalid)>10 AND
TRUNC (ri.itemnumber) >1 AND

mr.totalcharge > (SELECT AVG (totalcharge) FROM
MOVIES.movierental WHERE
TOTALCHARGE >=40) AND
ri.moviecopyid NOT IN (SELECT mc.moviecopyid
FROMMOVIES .moviecopy mc
WHERE
mc.copyformat = "vhs® AND
mc.copycondition= "new" AND
mc.movieid IN (SELECT mt.movieid
FROMMOVIES.movietitlemt
WHERE mt.year <1990 AND
mt.rating IN("pg”, "r") AND
mt.categoryid IN (SELECT
mc.categoryid
FROM
MOVIES.moviecategorymc
WHERE
mc.rentalprice = (SELECT MAX (rentalprice)

FROMMOVIES .moviecategory

WHERE categoryid =mc.categoryid)))) AND
mr.CUSTOMERID =cs.CUSTOMERID AND

ri _.RENTALID = rnr.RENTALID

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 215

USING PROFILING > RUNNING A PROFILING SESSION

Graphically, this would display as the following when the MOVIECOPY (MC) subquery is

expanded:

EC ﬁ; REMTALITEM (RT)

o
F

MR,

L

||3] MOVEECCEY (MC)
[1

=3
lillit<)

fi}110MERENTAI

216 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

OUTER JOIN
The bold SQL predicate in the statement below defines the outer join between customer and
movierental.

selectcs.™
from MOVIES.customer

cs,
MOVIES.movierental mr
where
length (cs.lastname) =8 and
cs.zip>75062 and
l1<cs.customerid+2 and
cs.phone between 9625569900 and 9999569900 and
mr.rentalid =(select max (ri.rentalid)

from
MOVIES.rentalitemri,
MOVIES .moviecopy mc

where
ri.itemnumber>1 and
mc.moviecopyid =700) and

mr.customerid (+) =cs.customerid ;

The following screen shot illustrates how the outer join is displayed in the VST diagram.

W L’ TP
T8 e n] @

&t SUBQUERY (1)

| B MovIERENTAL (MR) |

Cardinality: Outer Join
Relations:
mr.customerid (+) = cs.customerid

Columns:

|3 cusToMER (C5) |

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 217

USING PROFILING > RUNNING A PROFILING SESSION

UNIQUE
The subquery below illustrates a unique relationship between two primary keys.

...select max (rentalprice) from
MOVIES.moviecategory where
categoryid = mc.categoryid...

MOYIECATEGORY (MC)

Cardinality: One-to-One
Relations:
categoryid = mc.cateqoryid
| B moviEcaTEGORY Columns:

NoOT IN OrR NOT EXISTS JOIN

The following SQL contains a NOT IN subquery (shown in bold below) that is graphically
represented with the Subquery summary icon and the NOT IN join.

SELECTCS.*

FROM
MOVIES.CUSTOMERCS,
MOVIES .MOVIERENTAL MR

WHERE
CS.ZIP> "75062" AND
MR.RENTALID NOT IN (SELECT MAX (MOVIES.BIG_STATEMENT5.CUSTOMERID)

FROM
MOVIES.RENTALITEMRI,
MOVIES.MOVIECOPY MC,
MOVIES.BIG_STATEMENTS
WHERE RI.ITEMNUMBER >
1 AND
MC.MOVIECOPYID =700) AND
MR .CUSTOMERID =CS.CUSTOMERID;

218 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

Graphically, this statement would look like this:

| B MOVIERENTAL (MR)|

|3 cusTOMER (C5)| S MOT IN (1)
== may (MOVIES.BIG_STATEMENTS. CUSTOMERID): NUMEER

E ITEMMUMBER.: MUMBER.
E MOWIECOPYID: NUMEER.

VIEWING OBJECT SQL
Hover over the name of an object to view the object SQL as shown in the diagram below.

" [&8 RENT VIEWL 1
2 RENTALID: K &3 RENT_VIEW1
g CREATE OR REPLACE VIEW MOVIES

RENTALID,
REMTALDATE,

REFRESHING TUNING STATEMENTS

At times you may see an error on the Overview page, which when you mouse over it, indicates
that the tuning statements are out of sync and need to be refreshed. This can happen, for
example, if you tune a statement, then delete it, and insert another SQL query for tuning.

To refresh the tuning statements
In the Tuning Statements area of the Overview tab, right-click the tuning statement and select

Refresh Tuning Statements.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 219

USING PROFILING > RUNNING A PROFILING SESSION

d b Overview 1 warning detecked

Tuning Statements Gzenerate ca

l:m—m_
B Refresh Tuning Statements h -

Uy Generake Cases

Detail Analysis

Execuke

lsal, Edit

— [Z Copy
E |z Paste
EE ¥ Delete et

Bl Rename

Clone Case

<82 Explain Plan

Preferences, .,

REFRESHING THE VST DIAGRAM

There are two refresh options available: Refresh and Refresh All. Click the Refresh list as
shown below to gain access to these options.

- B B ®
r;;?‘i Full Refresh ! ‘

e Refresh: Regenerates the Analysis tab including the VST diagram. Any changes made on
the tab are reflected in the diagram.

® Full Refresh: Re-caches all objects used in (or related to) the query, then regenerates the
Analysis tab including the VST diagram. This option is typically used when the underlying
objects have been recently changed.

220 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

USING PLATFORM-SPECIFIC FEATURES

This section describes the tuning features specific to individual platforms.

e Using the Table Statistics Tab (Oracle and SOL Server)

Using the Column Statistics And Histograms Tab (Oracle and SOL Server)

Using the Outlines Tab (Oracle)

Using the Plan Guides Tab (SQL Server)

Tuning SOL Statements in the System Global Area (Oracle)

USING THE TABLE STATISTICS TAB (ORACLE AND SQL SERVER)

The Table Statistics area of the Analysis tab indicates when and if table statistics were last taken.
Using the Table Statistics you can view the information the optimizer uses to choose a path and
assess the validity of the various hints presented on the Overview tab.

[E] tndee Anabyss | 3 Table Skatistics | 22 Column Skatstics and Histoarams | [E] Gutires

Wi table statstics ';?' £|_|
chjact ¥ Statistics |3 moriteding ® Abtrbutes -~
Table Cuarier Table Name Stekighcs Statis Dais SINCe SEats TaEnR Mariteing Cathe
E [Jevstem PS_RETRCPANPGW TBL Statiches OF 20 YES n
e PSPy CALENDAR Stabises OF o ovEs T Moo
O svstem WE_IDE Stakistics Ok 200 YES]
DSH'E!TEM WE_RETROPAY EARMS Stelighics Ok 200 YE3]
: [[p— P e e R T TS an laes T > bt

This table draws attention to:

* Missing statistics: Missing statistics can cause the optimizer to choose the wrong path
because the optimizer uses table statistics to make decisions. If the statistics are missing,
you can click the select a table and then click Collect Statistics j on the far right of
the tab. This sends a request to the database to analyze the table and calculate the
statistics.

e Out-of-date statistics: Like missing statistics, out-of-date statistics can also cause the
optimizer to choose the wrong path. You can update the statistics by selecting a table, and

o

then clicking Display Statistics W , which refreshes the statistics from the database or by
clicking Collect Statistics A1 , which requests the database to analyze the table and

calculate the statistics.

NOTE: Collecting Statistics may be time-consuming, depending on how many tables the
database is analyzing and the number of rows in each table.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 221

USING PROFILING > RUNNING A PROFILING SESSION

e Useful statistics: The number of rows in a table and whether the table has been
modified since the statistics were last collected can help you to determine which hints you
should implement in the SQL code. These statistics can help the DB Administrator to
better understand the database.

TIP: You can right-click anywhere in a row and choose options such as Collect Statistics,
Display Statistics, and Copy from the short-cut menu.

USING THE COLUMN STATISTICS AND HISTOGRAMS TAB (ORACLE
AND SQL SERVER)

Histograms are special statistics that exist for a limited number of columns and are created by
the database administrator. Column histograms should be created only when there are highly-
skewed values in a column, such as is the case of an order details table with an Order Status
column where the number of closed orders for a business operating for several years is far
greater than the number of open orders. The Order Status column therefore meets the criteria of
a useful target for a histogram because the data is highly skewed. Using histograms the
optimizer determines that a full-scan is recommended when searching for closed orders, but an
index scan is more useful when searching for open orders.

ORACLE-SPECIFIC COLUMN STATISTICS AND HISTOGRAMS TAB EXAMPLE

DB Optimizer looks at the columns that have histograms and using statistics tries to determine
whether the column is a good or bad candidate for a histogram and presents this information on
the Column Statistics and Histograms tab.

[E] brdese dribyss | T2 Tabls Shatistice 22 Cojmn Shatistics dod Hebograme, [£] Cutines

e column shatishics i | g0
Objsct | Histograms
Sather | Dwop Tebke Hame Colann Mlanne Histograim & Euckets Filker Top Ircexed Median vaboe Deviation & Detinec Walue
a O P5_PAY_CALEHDAR P&Y_CONFIRM_RLUY MOHE L Uteral Equaky =]
a a P53 RETROPAY POT RETROFAY SEQ MO MIRE I Join Equeksy Vas L
a a P5_RETROPAYPEM TEL OFF_CWCLE HIHE L Join Equalts Ha
a a P5_PAY_CALERHCER PATERCIF HIKE L Join Equdty Vs
? ﬁ AT AETAOANNATTE TR nETMCMY e M [1lall 3 1 Amim e ey L > 4

The row shading indicates the following:
® Green: Good histogram candidate
¢ Red: Bad histogram candidate

* No shading: Not determined to be a good or bad histogram candidate

Median Value Deviation

For columns that have histograms, the median value deviation is presented. Understanding the
median value deviation can help you determine whether an index scan or a full-table scan would
be more efficient.

222 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

The median value deviation represents the number of values that have duplicates away from the
median. In the case or the Order Status column, there are only three possible values, open,
processing, and closed. Consider the following:

10 open orders
100, 000 closed orders
1 order in processing

In this case the median is the middle value, 10. The number of closed orders is 10,000 times the
median which indicates that the column data is highly skewed. In this case the value in the
Median Value Deviation column would be presented as

1,0,0,0,1,0,0,0

There are 1's at the first and 5th spot in the median value deviation field indicating one column
value (value of orders in the processing state which appears once) is 1 factor of 10 away from the
median and there is a 1 at the 5th position indicating there is a column value (orders in the
closed state) that appears 5 factors of 10 more often (10,000) than the median value of 10.

A column with a median value deviation of 0, 0, 0, 0, O, 0, 0, O indicates that the column data is
not skewed and it is a bad candidate for a histogram, and therefore a full scan of the table would
more efficiently satisfy a query than an index scan.

To update the statistics of any object, you can select Gather for that column and then click
Display Statistics or Collect Statistics.

To stop gathering statistics for an object, such as a bad candidate for a histogram, select Drop
for that column and then click Display Statistics or Collect Statistics.

TIP: If you are gathering statistics for a column for which the statistics were missing or out-
of-date, then once the statistics collection is complete, you should return to the
Overview tab and rerun the cases, because the characteristics of the column may have
changed, so the hints to improve performance would also change.

USING THE OUTLINES TAB (ORACLE)

The Outlines tab provides detailed information about outlines created by the query during the
statement execution process on the Overview tab.

It provides information including the SQL statement name, if the outline is enabled or not, and
the Name, Category, and Hints associated with the outline. Additionally, the Drop parameter
specifies if it is dropped or not at execution time.

[E2 Indox Analysis | 3] Table Statistics | £ Cakumn Statissics And Histograms | [E] Outlines

Wiz authnes
A Enabled Drop Mame Cateqgory Hirks
o | SYe_0... 20684 DEFALLT FULL{i SELE2™
=] o FULL TEST SWAP JOIN_INFUTS(m SELS1"

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 223

USING PROFILING > RUNNING A PROFILING SESSION

In order to view outlines, the session needs to have USE_STORED_OUTLINES=true set prior to
execution. Outlines in tuning are created for the DEFAULT category, by default. Use the
following commands to enable outlines with the default settings:

alter systemset USE_STORED_OUTILNES=true;
alter systemset USE_STORED_ OUTLINES=“DEFAULT”;
alter sessionsetUSE_STORED OUTLINES=true;

Additionally, in order for a session to USE_STORED_OUTLINES, the user requires the create any
outline role. Use the following command to set up the proper permissions:

grantcreate any outline to [user];

USING THE PLAN GUIDES TAB (SQL SERVER)

This tab displays any existing plan guides on the server for the statements being tuned. This can
be useful when trying to determine whether a plan guide is, or should be, used for a query, or
conversely, finding plan guides that have become obsolete.

Index Anal},rsisl Table Statistics%%é Column Statistics And Histograms i Plan Guides-l

Yiew Plan Guides

Enabledi Drop | Mame | Statement | Type I Madule / Batch : P‘arametersi Hints |
TUMER_PLAN_GUIDE | SELECT[ShiftID]

224 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

In addition to the Enabled and Drop controls, each plan guide entry on the tab shows columns
corresponding to the sp_create_plan_guide call arguments the plan guide was created with.

Column Description

Name The name given the plan guide when it was created.
Statement The text of the Transact-SQL statement

Type The type of entity in which the statement occurs:

OBJECT - in the context of a stored procedure, scalar function, multistatement table-
valued function, or DML trigger in the current database.

SQL - in the context of a stand-alone statement or batch.

TEMPLATE - specifies that this plan guide applies to any query that parameterizes to the
specified statement form. Only the PARAMETERIZATION { FORCED | SIMPLE } hint can
be specified if a Type of TEMPLATE is specified.

Module/Batch Specifies either the name of the object in which the statement occurs or the batch text in
which the statement appears.

Parameters Specifies the definitions of all parameters in the statement.

Hints Can be one of the following:

- An OPTION clause containing any valid sequence of query hints
- A query plan in XML format to be applied as a hint
- NULL

NOTE: For a detailed understanding of the Parameters and Hints values, particularly when
using the edit plan guide functionality described below, see the Microsoft SQL Server
documentation.

You can modify any plan guide listed on the Plan Guides tab. You can enable or disable the plan
guide, drop it, or specify parameters or hints.

To drop a plan guide

e Select the Drop check box for that plan guide entry and then click the Apply button £ on
the far right of the tab.

To enable or disable a plan guide
e Enable by selecting the Enabled check box (or deselect Enabled to disable) for the plan

guide entry and then click the Apply button £ on the far right of the tab.

To edit a plan guide
1 Right-click a plan guide entry and select Edit to open the Edit Plan Guide.

2 In the Parameters field, provide a valid sp_create_plan_guide stored procedure call
@params = argument.

3 Inthe Hints field, provide a valid sp_create_plan_guide stored procedure call @hints =
argument.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 225

USING PROFILING > RUNNING A PROFILING SESSION

4 Click Next to preview the generated stored procedure calls.

5 Click Finish.

TUNING SQL STATEMENTS IN THE SYSTEM GLOBAL AREA (ORACLE)
On Oracle platforms, SQL statements that reside in the SGA can also be tuned. When you
create a tuning job and specify an Oracle source, an additional tab appears in the Tuning
Candidates section of tuning, named Active SQL in SGA.

The SGA contains all the SQL since the database has been started up, except for those that
have been purged when the system runs out of memory. When analyzing the causes of a
database bottleneck, it is perhaps more useful to view and tune the SQL statements most
recently run, than those that have run in the last month, for example. DB Optimizer cannot tell
you which statements have most recently run by looking in the SGA. However, by profiling the
database using DB Optimizer Profiling and then optimizing the code by executing and running
the generated cases, you will be able to see which paths are most likely causing a bottleneck
and can be altered to enhance performance. Also, you can use IDERA Performance Center to
continually monitor a database over a longer period of time to help you analyze and optimize
database performance.

& Scan SGA

SGA filters
specify the filkering criteria for active S0L in the 3GA,

Filter Criteria

Mazximurm retrieved queries:ﬂ| -

Sork by |Executi-:nns L |

Advanced Filkers

| 5
Parsing Schema: | v|
Module: | v|
Action: | v|
Service: | v|

©

226 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

To add a statement active in the SGA:
1 From the Overview tab, click the SOL icon and select Scan Oracle SGA.

The Scan SGA wizard appears.

2 Set the filtering criteria for an SGA scan and then run the wizard. It returns all active
statements on the Oracle source.

3 Choose the specific statements and add them to the tuning job.

ADDITIONAL TUNING COMMANDS

In addition to tuning, the interface provides additional commands and functionality that enables
you to view source code, statements, and other information regarding the data source.

® View the Source Code of Tuning Candidates

¢ View Statement or Case Code in SOL Viewer

e Open an Explain Plan for a Statement or Case

e Executing a Session from the Command Line

VIEW THE SOURCE CODE OF TUNING CANDIDATES

You can view the source code of a tuning candidate as follows:

® On the Ad hoc SQL tab of the Input tab, you can see the SQL statements you typed
or pasted into that tab.

¢ On the Database objects, SQL Files, and Active SQL in SGA tabs of the Input tab, you
can double-click the name of any object added to that tab and an SQL session will open that

displays the SQL of that database Object. The SQL editor in use is actually Rapid SQL, an
IDERA product that is integrated with DB Optimizer.

VIEW STATEMENT OR CASE CODE IN SQL VIEWER

The Tuning job’s Overview tab let you open a statement in an SQL Viewer if you want to
perform either of the following tasks:

* View the entire SQL statement.

e Set bind variables. If the Tuning Status Indicator indicates a statement or case has invalid
bind variables, you must set those variables before executing the statement or case.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 227

USING PROFILING > RUNNING A PROFILING SESSION

To view or set bind variables in a statement or case:

1 Right-click a statement or case and select Edit.

2 Use the Data Type and Value (or NULL) controls to specify the type and value for each
bind variable.

After setting bind variables, you can execute a case.

NOTE: Setting the bind variables in a parent statement sets the bind variables in all generated
cases for that statement.

OPEN AN EXPLAIN PLAN FOR A STATEMENT OR CASE

Any valid SQL statement added to the Overview tab shows a calculated explain plan cost in the
Cost field of the statement or case record. You can open an explain plan on these statements to
view the sequence of operations used to execute the statement and the costs and other explain
plan details for each operation.

On Oracle version 9 and higher, DB Optimizer attempts to get the Explain Plan from
V$SQL_PLAN when possible. Otherwise, the Explain Plan is generated by the Oracle EXPLAIN
PLAN command.

To initially open an explain plan on a valid SQL statement on the Overview tab:
1 Right-click in the Name field of any statement record showing a value in the Cost field.
2 Select Explain Plan from the context menu.

An Explain Plan tab opens below the Overview tab.

TS0l Erare = SOL Lag @ Enor Leg + Seanch & Explain Fisn
sedect from cata.chentl, cata fcturl, cata.liniifact], < Nested Tables: cata liniifactl =
byps filter toxt .
Plan Cost i Estimated Stakistics = Actual Statistics s o
Operation Cost Operation Cost Result Cardinality Bytes | OPUCost [0 Cost | Optimizer Starts
 SELECT STATEMENT 253.0 [LA] 37 Z183 102..100 235 ALL..WS
P COORDIMATOR
4 P SEND - SYS, TG10004 2530 oo 37 2183 202...107 23%
] 2530 0.0 i7 FIEZ 102...107 218
AP RECEIVE 2510 0.0 17 Z1E3 102...107 235
5P SEND = S5, TQI000% 2550 a.0 R 2183 102,107 235
“HASH 1830 10 kX 2163 10L..107 35
¥HASH I 2520 1.0 7951 470879 95195351 235
= FX RECEIVE &7.0 0 37 703 24604129 63
ol P SEHD - TIQA0001 &67.0 0.0 37 703 24604129 63
» P BLOCK 67.0 oo 7 703 24604129 53
T TABLE a., JENTIL 7.0 570 37 703 24604129 #3 AHA, ED
HASH X 184.0 1.0 11706 488240 GTIETITE 173 ™~

Explain plan operations are shown in a typical tree structure showing parent-child
relationships. The following table describes the column groups shown for each operation on
the Explain Plan tab.

With the Explain Plan tab open, you can quickly switch the view to an explain plan
for another SQL statement.

228 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

To change the Explain Plan tab display to another SQL statement:

1 Click in the Name field of another statement record showing a value in the Cost field.

EXECUTING A SESSION FROM THE COMMAND LINE

You can launch a tuning job from the command line using the following syntax:
dboptimizer.exe tune ds:ROMLABORCL10G_1 sqlfile: C:\dboptimizer\workspace\test.sql

In the above command, the user has specified ROMLABORCL10G_1 as the data source, and
indicates a tuning session using the test.SQL script.

SAVING A TUNING JOB

A tuning session can be saved to a file with a . tun suffix. This enables you to open the file at a
later time for analysis and to share the tuning job results with other users.

& Save fs .; @

Save As

Save a tuning job

Enter or select the parent Folder:
SQLProject

% SQLProject

Job 3.tun

'@1 l OFK H Cancel I

Tuning sessions can be saved as .tun files for use at a later time.

Once you have saved a tuning session to disk as a .tun file, it appears in the SQL Project Explorer
under the name you saved it as. It can be opened again by double-clicking the project name.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 229

USING PROFILING > RUNNING A PROFILING SESSION

To save a tuning session:

Select the tuning session and then choose File > Save As.... Specify the project location you
want to save the file in and modify the file name, as needed. Click OK. The tuning job project is
added to SQL Project Explorer.

CONFIGURING TUNING

This section contains information on configuring tuning. It provides information on setting up
your data sources to work with tuning functionality, as well as information regarding preferences
within the application for the customization of various features and functionality.

This section is comprised of the following topics:

e Set Roles and Permissions on Data Sources

e Specify Tuning Job Editor Preferences

e Specify Case Generation Preferences

e Specify VST Diagrams Tuning Preferences

230 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

SET ROLES AND PERMISSIONS ON DATA SOURCES

In order to take advantage of all tuning features, each user must have a specific set of
permissions. The code below creates a role with all required permissions. To create the required
role, execute the SQL against the target data source, modified according to the specific needs
of your site:

/*Create therole*/ CREATEROLE
SQLTUNING NOT IDENTIFIED

/ GRANT SQLTUNING TO

""CONNECT"™"

/ GRANT SQLTUNING TO
SELECT_CATALOG_ROLE

/ GRANT ANALYZE ANY TO
SQLTUNING

/ GRANT CREATE ANY OUTLINETO
SQLTUNING

/ GRANT CREATE ANY PROCEDURE TO
SQLTUNING

/ GRANT CREATE ANY TABLE TO
SQLTUNING

/ GRANT CREATE ANY TRIGGER TO
SQLTUNING

/ GRANT CREATE ANY VIEWTO
SQLTUNING

/ GRANT CREATE PROCEDURE TO
SQLTUNING

/ GRANT CREATE SESSIONTO
SQLTUNING

/ GRANT CREATE TRIGGER TO
SQLTUNING

/ GRANT CREATEVIEWTO
SQLTUNING

/ GRANT DROP ANY OUTLINE TO
SQLTUNING

/ GRANT DROP ANY PROCEDURE TO
SQLTUNING

/ GRANT DROP ANY TRIGGER TO
SQLTUNING

/ GRANT DROP ANY VIEWTO
SQLTUNING

/ GRANT SELECT ON SYS.V_$SESSIONTO
SQLTUNING

/ GRANT SELECT ON SYS.V_$SESSTAT TO
SQLTUNING

/ GRANT SELECTONSYS.V_$SQLTO
SQLTUNING

/ GRANT SELECT ON SYS.V_$STATNAME TO
SQLTUNING

/

Once complete, you can assign the role to users who will be running tuning jobs:

/*Create asampleuser*/ CREATE USER TUNINGUSER IDENTIFIEDBY
VALUES "0O5FFD26E95CF4A4B*
DEFAULT TABLESPACE USERS
TEMPORARY TABLESPACE TEMP
QUOTA UNLIMITED ON USERS
PROFILE DEFAULT ACCOUNT
UNLOCK
/ GRANT SQLTUNING TO
TUNINGUSER
/ ALTERUSER TUNINGUSER DEFAULT ROLE
SQLTUNING
/

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 231

USING PROFILING > RUNNING A PROFILING SESSION

SPECIFY TUNING JOB EDITOR PREFERENCES

Tuning job editor preferences let you control certain aspects of the appearance of items in the
tuning job editor as well as default behaviors.

1 Using the SQL Optimization perspective, select Preferences > Tuning Job Editor.

& Preferences (Filtered]

- BX

Tunihg Job Editor

= 50L Development
=+ Turing Job Editor Conrect bo the buning sowrce automaticaly

rAlways O hever (5 Prompt

Color schere for plan cost

Baselne: @

tmprovernene:) Threshold (%): | 10 2|

Degradation: [MEEEM| Threshold (%) |10 3|

Case execution
For necve relisbée resuks, it is recommended to average the execution statistics ower multiple runs,

Murnber of iberations: | 1 2z

Result set febch size: | 10 O

Wirap Oracle case executions in; SEL L Case_query
| Cracl SELECT COUNTC) FROM ([]

2 Make your changes and then to save your changes, click Apply.

The following describes the options available:

General Preferences

Connect to the tuning source automatically: When you open a tuning perspective,
it automatically opens the last saved tuning jobs that were open when you closed the
application. This option lets you specify whether, in addition, you want to automatically
connect to the data sources associated with these tuning jobs. If you typically review
existing tuning job archives rather than run new tuning jobs, you may wish to explicitly
connect to a data source rather than connect automatically. The options are:

® Always: Automatically connects to data sources associated with tuning jobs that were open
last time you shut down tuning.

® Never: Automatically opens tuning job archives that were open last time you shut down the
application but does not automatically connect to the associated data sources.

® Prompt: Prompts you to connect to data sources associated with tuning jobs that were
open last time you shut down the application.

232 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

Color scheme for plan cost: In the graphical representations of explain plan cost and
elapsed time, tuning uses a color scheme to highlight differences among generated cases.
Values for the original statement are treated as a baseline, and values for individual cases
that are within a specified threshold range of the baseline value are represented with a
Baseline color. For cases whose values are outside the threshold range, Improvement and
Degradation colors are used to represent values in those cases.

TIP: You can set the threshold in the application preferences, by selecting Window >

Preferences > Tuning Job Editor and then changing the threshold levels as
required.

Case execution: Lets you dictate how execution statistics are gathered.

See Also

Specify Case Generation Preferences

Specify VST Diagrams Tuning Preferences

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 233

USING PROFILING > RUNNING A PROFILING SESSION

SPECIFY CASE GENERATION PREFERENCES

Additionally, the Generated Case preference page lets you enable or disable the automatic
generation of SQL Optimizer hint-based cases of SQL statements added to a tuning job. It also
lets you indicate which specific hint types are generated when the feature is enabled.

& Preferences {(Filtered)

= S0L Developrent
Data Source Indexing
- Profile Alarts
[+ S0 Editor
SOL Execution
SOL Filters
(= Tuning Job Editor
Case Generakion
W5T Diagrams

@

Case Generation

[]Generate cases automatically after extracting buning candidates

| Orade |Microsoft SQL Server || IBMDB2for LUW | SybaseAsE|

Select the hints to be considered when generating cases:

Hinik

I Walues |: Select Al

=[] ORACLE_ACCESS_PATHS

O ano_EcuaL
OcLuster

[l FuLL

OxasH

| o

O mpeEx_asc

[l mpEx_comeinE
O mcex_pesc

A mioEs_FrFs
FmDE: 101N

| Dieselect Al

¥ | 200out aof 80 selected

Description:

1

[Rﬂstnre DeFaLiJ:sl [Apply

I

I O i [Canicel

J

Using the SQL Optimization perspective, select Preferences > Tuning Job Editor > Case

Generation.

Use the Case Generation option automatically after extracting tuning candidates control to
enable or disable automatic generation of hint-based cases, and then select the check
boxes to specify the hint-based cases that are generated for a statement added to a tuning

job.

234

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

About Statement Records

Column or column set Description

SQL Statements and Cases Identifiers for the generated statement or case:

Name: Statements are assigned a numbered identifier based on the order in
which they were added to a tuning job.

Text: An excerpt of the statement or case based on the statement type. For
details on how to view the entire statement or case.

Cost An explain plan-based cost estimate. This field is populated as soon as the
statement is added to the Overview tab.

This column set can be expanded to display a graphical representation of the
cost to facilitate comparisons among cases.

Index Analysis Tuning automatically detects indexes that require optimization and offers you
the option to automatically optimize the index. For more information, see
Implementing Index Analysis Recommendations.

Elapsed time The execution time during the most recent execution. This column set is not
populated until you execute the statement or case.

This column set can be expanded to display a graphical representation of the
elapsed time to facilitate comparisons among cases.

Other Execution Statistics Against Oracle datasources, the default, collapsed view has Physical Reads
and Logical Reads columns. Expanded, there are also Consistent Gets,
Block Gets, and Rows Returned, CPU time(s), Parse CPU Time(s), Row
Sorts, Memory Sorts, Disk Sorts, and Open Cursors columns.

For details on these statistics, refer to your DBMS documentation.

Against DB2 LUW datasources, the default, collapsed view has Pool
Physical Reads and Pool Logical Reads columns. Expanded, there are
also Direct Reads, CPU Time (s), Sorts, Sort Time, and Sort Overflows
columns.

This column set is not populated until you execute the statement or case.

SPECIFY VST DIAGRAMS TUNING PREFERENCES

The preferences on this page allow you to change the default presentation of count information
and sub-query names in Visual SQL Tuning diagrams.

Using the SQL Optimization perspective, select Preferences > Tuning Job Editor >
VST Diagrams.

® Show count information: If enabled, shows the ratios and count information when the VST

diagram is generated. If not enabled, you must click the Ratios/Counts icon ['%2] on the VST
diagram to view ratio and count information.

¢ Hide sub-query names when expanded: If enabled, shows the sub-query name when
the VST diagram is generated. If not enabled, you must right-click anywhere in the VST and
from the menu that appears, choose Show Query Names.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 235

USING PROFILING > RUNNING A PROFILING SESSION

EXAMPLES OF TRANSFORMATIONS AND SQL QUERY REWRITES

Cartesian Product Elimination: Detects Cartesian Joins and propose corrections based on
analysis of statement, for example suggesting dept.deptno = emp.deptno if emp and dept had

no join criteria.

Expression Transformation: Identifies actions on predicates that might suppress index
usage such as “where empid + 1 = 1", should be “where empid=0"

Invalid Outer Join: Identifies invalid outer joins and suggests more efficient alternatives.

Before

After

SELECT * FROM employee e, customer ¢
WHERE e.employee_id = c.salesperson_id (+)
AND c.state = 'CA'

SELECT * FROM employee e, customer c
WHERE e.employee_id = c.salesperson_id (+)
AND c.state(+) = 'CA'

Transitivity:

Before

After

SELECT * FROM item i, product p, price pr

WHERE i.product_id = p.product_id AND
p.product_id = pr.product_id

SELECT * FROM item i, product p, price pr

WHERE i.product_id = p.product_id AND
p.product_id = pr.product_id

AND i.product_id = pr.product_id

Move Expression to WHERE Clause

Before

After

SELECT col_a, SUM(col_b) FROM table_a
GROUP BY col_a HAVING col_a > 100

SELECT col_a, SUM(col_b) FROM table_a
WHERE col_a > 100 GROUP BY col_a

NULL Column

Before

After

SELECT * FROM employee
WHERE manager_id != NULL

SELECT * FROM employee
WHERE manager_id IS NUL

Push Subquery

Before

After

SELECT *
FROM employee

WHERE employee_id = (SELECT MAX(salary)
FROM employee)

SELECT employee.*

FROM employee, (SELECT DISTINCT MAX(salary)
col1 FROM employee) t1

WHERE employee_id = t1.col1

Mismatched column types: identify joins type
which might suppress use of Index.

236

mismatch such as number = character

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

DBMS HINTS

Users can provide hints to a specified platform in order to instruct data source optimizer on the
best way to execute SQL statements. Tuning automatically generates cases using these hints.

Hints can be enabled or disabled when cases are being generated by tuning on the Window >
Preferences > Tuning Job Editor > Case Generation pane. Choose a tab as it pertains to
the platform you want to modify and use the check boxes to select and de-select the hints you
want to enable or disable, respectively.

& Preferences {(Filtered)

| Case Generation = -

= SQL Developrment

Daka Source ndexing [] Generake cases automaticaly after exbracting buning candidakes

[+ Profile alerts f . i f
Oracle | Microsoft SQL Server | 18M DB2 For LUW | Sybase ASE |
& SOL Edtar J QL Server | | Syb ,
SOL Exeeution Select the hints to be considered when generaking cases:
S0L Filters 5
i b Edi rint | values | & Select Al
& Tuning Job Ecior = [Pl ORACLE_ACCESS_PATHS
Case Generakion O ano_EqUAL e | eaa
YT Diagrans D CLUEIER
[l FuLL
OxasH
INDEX
O mpex_asc
] INDEY,_COMBINE
[mCoEx_DESC
[l MDEX_FFs
FMNDE: 101N v | 20 out of 80 selected
Description:

| Restore Defauts | | apoly |

® I O “ Cancel J

The following topics describe platform hints that are packaged in tuning to provide optimal
efficiency when executing jobs:

e Oracle Hints

e SQL Server Hints

e DB2 Hints

e Sybase Hints

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 237

USING PROFILING > RUNNING A PROFILING SESSION

ORACLE HINTS

NOTE: Hint Analysis through SQL hint injection for Oracle data sources is not supported in DB
Optimizer XE Developer.

The following table highlights Oracle hints based on Oracle hints optimization:

Category Hint Available For Notes
ACC PATH AND_EQUAL /*+ CLUSTER (tablespec) */ -
ACC PATH CLUSTER /*+ FULL (tablespec) */ Use on Clustered Tables only
ACC PATH FULL /*+ HASH (tablespec) */ Forces a table scan even if there are
indexes.
ACC PATH HASH /*+ INDEX (tablespec [TAL: Only to tables stored in a table
indexspec]) */ cluster.
ACC PATH INDEX /*+ INDEX_ASC (tablespec If no indexspec is supplied, the
[TAL: indexspec]) */ optimizer will try to scan with each
avail index.
ACC PATH INDEX_ASC /*+ INDEX_COMBINE Essentially the same as INDEX.

(tablespec [indexspec [TAL:
indexspec]...]) */

ACC PATH INDEX_COMBINE /*+ INDEX_DESC (tablespec [Forces the optimizer to try multiple
indexspec [TAL: indexspec]...]) | boolean combinations of indexes.
*
/
ACC PATH INDEX_DESC /*+ INDEX_DESC (tablespec [Essentially the same as INDEX.
indexspec [TAL: indexspec ... |)
*
/
ACC PATH INDEX_FFS /*+ INDEX_FFS (tablespec | Forces an index scan using
indexspec [TAL: indexspec ...]) | specified index(es).
*
/
ACC PATH INDEX_JOIN /*+ INDEX_JOIN (tablespec | Indexes used should be based on
indexspec [TAL: indexspec]...]) | columns in the where clause.
*
/
ACC PATH INDEX_RS_ASC /*+ INDEX_RS([@queryblock] Instructs the optimizer to perform
<tablespec> <indexspec>) */ an ascending index range scan for

the specified table.

ACC PATH INDEX_RS_DESC I+ INDEX_RS([@queryblock] Instructs the optimizer to perform a
<tablespec> <indexspec>) */ descending index range scan for

the specified table.

ACC PATH INDEX_SS /*+ INDEX_SS (tablespec| Useful with composite indexes
indexspec [TAL: indexspec]...]) | where the first column is not used in
*/ the query, but others are.

ACC PATH INDEX_SS_ASC /*+ INDEX_SS_ASC (tablespec| | Essentially the same as INDEX_SS.
indexspec [TAL: indexspec ... |)
*/

ACC PATH INDEX_SS_DESC /*+INDEX_SS_DESC (tablespec | Essentially the same as INDEX_SS.
[indexspec [TAL: indexspec]...])
*/

238 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

Category Hint Available For Notes

ACC PATH NO_INDEX /*+ NO_INDEX (tablespec [Directs the Optimizer not to use
indexspec [TAL: indexspec]...]) | specified index(es).

*
/

ACC PATH NO_INDEX_FFS /*+ NO_INDEX_FFS ([tablespec | Directs the Optimizer to exclude a
[indexspec [TAL: indexspec]...]) | fast full scan of the specified
*/ index(es).

ACC PATH NO_INDEX_SS /*+ NO_INDEX_SS (tablespec[| Directs the Optimizer to exclude a
indexspec [TAL: indexspec ...]) | skip scan of the specified index(es).
*

/

ACCPATH | ROWID : :

JOIN OP HASH_AJ - -

JOIN OP HASH_SJ - -

JOIN OP MERGE_AJ - -

JOIN OP MERGE_SJ - -

JOIN OP NL_AJ - -

JOIN OP NL_SJ - -

JOIN OP NO_USE_CUBE /*+ Instructs the optimizer to exclude
NO_USE_CUBE([@queryblock] | cube joins when joining each
<tablespec>) */ specified table to another row

source using the specified table as
the inner table.

JOIN OP NO_USE_HASH /*+ NO_USE_HASH (tablespec | Negates the use of hash joins for
[TAL: tablespec]...) */ the table specified.

JOIN OP NO_USE_MERGE /*+ NO_USE_MERGE (Negates the use of sort-merge joins
tablespec [TAL: tablespec]...) */ | for the table specified.

JOIN OP NO_USE_NL /*+ NO_USE_NL (tablespec Negates the use of nested-loop
[TAL: tablespec]...) */ joins for the table specified.

JOIN OP USE_CUBE /*+ USE_CUBE([@queryblock] When the right-hand side of the join
<tablespec>) */ is a cube, this hint instructs the

optimizer to join each specified
table with another row source using
a cube join. If the optimizer decides
not to use the cube join based on
statistical analysis, you can use
USE_CUBE to override that
decision.

JOIN OP USE_HASH /*+ USE_HASH (tablespec [TAL: | Directive to join each table
tablespec]...) */ specified using a hash join.

JOIN OP USE_MERGE /*+ NO_USE_MERGE (Directive to join each table
tablespec [TAL: tablespec]...) */ | specified using a sort--merge join.

JOIN OP USE_NL /*+ NO_USE_NL (tablespec Directive to use a nested-loop join
[TAL: tablespec]...) */ with the specified tables as the

inner table.

JOIN OP USE_NL_WITH_INDEX /*+ USE_NL_WITH_INDEX (Directive to use a nested-loop join

tablespec [indexspec [TAL:
indexspec]...]) */

with the specified table as the inner
table using the index specified to
satisfy at least one predicate.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

239

USING PROFILING > RUNNING A PROFILING SESSION

Category Hint Available For Notes

JOIN ORDER | LEADING /*+ LEADING (tablespec) */ Directive to join the tables in the
order specified.

JOIN ORDER | ORDERED /*+ ORDERED */ Directive to join tables in the order
found in the FROM clause.

JOIN ORDER | STAR - -

OPT ALL_ROWS /*+ ALL_ROWS */ Indicates the goal is overall

APPROACH throughput.

OPT CHOOSE - -

APPROACH

OPT FIRST_ROWS /*+ FIRST_ROWS (integer) */ The goal is to retrieve the first row(s)

APPROACH as fast as possible.

OPT RULE /*+ RULE */ Used to disable the COST based

APPROACH optimizer.

OTHER APPEND_VALUES /*+ APPEND_VALUES */ Instructs the optimizer to use direct-
path INSERT with the VALUES
clause.

OTHER CACHE /*+ CACHE (tablespec) */ Should be used with the FULL hint.
Places data in the most-recently
used area of the buffer cache.

OTHER APPEND /*+ APPEND */ Directs the optimizer to INSERT
data at the end of the existing table
data using direct path I/0.

OTHER CURSOR_SHARING_EXA | /*+ CURSOR_SHARING_EXACT | Directs the Optimizer to ignore

CT */ previously parsed SQL that
matches, but uses bind variables.
Forces the SQL to be parsed unless
an exact match is found.

OTHER DRIVING_SITE /*+ DRIVING_SITE (tablespec) | Used when data is joined remotely

*/ via DBLink. Normally data at the
remote site is returned to the local
and joined. This hint directs the
optimizer to send the local data to
the remote site for resolution of the
join.

OTHER DYNAMIC_SAMPLING /*+ DYNAMIC_SAMPLING Only used in simple SELECT

([TAL: tablespec]integer) */ statements with a single table to
approximate cardinality if there are
no existing statistics on the table.

OTHER GATHER_OPTIMIZER_STA | /*+ Instructs the optimizer to enable

TISTICS GATHER_OPTIMIZER_STATISTI | statistics gathering during CREATE

CS*/ TABLE... AS SELECT and INSERT
INTO ... SELECT bulk loads.

OTHER MODEL_MIN_ANALYSIS | /*+ MODEL_MIN_ANALYSIS */ | Used with spreadsheet and model
analysis to minimize compile time.

OTHER NO_GATHER_OPTIMIZER | /*+ Instructs the optimizer to disable

_STATISTICS NO_GATHER_OPTIMIZER_STAT | statistics gathering during CREATE

ISTICS */ TABLE... AS SELECT and INSERT
INTO ... SELECT bulk loads.

240 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

Category

Hint

Available For

Notes

OTHER

NO_PUSH_PRED

/*+ NO_PUSH_PRED [TAL:
(tablespec)]*/

Opposite of PUSH_PRED, it directs
the Optimizer not to try to push the
predicate into the view.

OTHER

NO_PUSH_SUBQ

/*+ NO_PUSH_SUBQ] */

Opposite of PUSH_SUBQ, it directs
the Optimizer not to try and
evaluate the subquery first.

OTHER

NO_RESULT_CACHE

/*+ NO_RESULT_CACHE */

Disables caching of results for the
current query.

OTHER

NO_UNNEST

/*+ NO_UNNEST */

Subqueries in the WHERE clause
are considered nested. A subquery
can be evaluated several times for
multiple results in the “parent”.
Unnesting evaluates the subquery
once and merges the results with
the body of the “parent”. This hint
directs the Optimizer NOT to
unnest.

OTHER

NOAPPEND

/*+ NOAPPEND */

Directs the Optimizer to utilize
existing space in a table and
negates parallel processing.

OTHER

NOCACHE

/*+ NOCACHE (tablespec) */

Should be used with the FULL hint.
Places data in the least-recently
used area of the buffer cache.

OTHER

OPT_PARAM

OTHER

OPTIMIZER_FEATURES_E
NABLE

ALTER SESSION

Directive to force query execution
to be done at a different site than
that selected by Oracle.

OTHER

ORDERED_PREDICATES

OTHER

PUSH_PRED

/*+ PUSH_PRED [TAL:
(tablespec)]*/

Used when one of the tables in a
join is an in-line view. Forces the
predicate used to join the table and
the view into the view.

OTHER

PUSH_SUBQ

/*+ PUSH_SUBQ *

Used with an EXISTS or IN subselect
to force evaluation of the subquery
rather than the default behavior of

the last.

OTHER

RESULT_CACHE

/*+ RESULT_CACHE */

Caches the result set of the current
query, ensuring that another session
issuing the same query will be
returned results from the cache.

OTHER

UNNEST

/*+ UNNEST */

Subqueries in the where clause are
considered nested. A subquery
could be evaluated several times for
multiple results in the “parent”.
Unnesting evaluates the subquery
once and merges results with the
body of the "parent”.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

241

USING PROFILING > RUNNING A PROFILING SESSION

Category Hint Available For Notes

PARALLEL NO_PARALLEL /*+ NO_PARALLEL (tablespec) | Directs the Optimizer not to parallel
*/ the specified table.

PARALLEL NO_PARALLEL_INDEX /*+ NO_PARALLEL_INDEX Directs the Optimizer not to parallel
(tablespec [indexspec [TAL: the specified index(es).
indexspec ... 1) */

PARALLEL NO_PQ_CONCURRENT_ | /*+ Instructs the optimizer to disable

UNION NO_PQ_CONCURRENT_UNIO | concurrent processing of UNION

N(@queryblock) */ and UNION ALL operations.

PARALLEL NO_PQ_SKEW /*+ Advises the optimizer that the
NO_PQ_SKEW([@queryblock] distribution of values of the join
<tablespec>) */ keys for a parallel join is highly

skewed. The table specified in
tablespec is the probe table of the

hash join.
PARALLEL NO_PX_JOIN_FILTER /*+ NO_PX_JOIN_FILTER Directs the Optimizer not to try and
(tablespec) */ join bitmap indexes in parallel.
PARALLEL NO_STATEMENT_QUEUI | /x Lets a st atement bypass the parallel
NG NO_STATEMENT_QUEUING */ | statement queue regardless of the
PARALLEL_DEGREE_POLICY set-
ting.
PARALLEL NOPARALLEL /*+ NOPARALLEL (tablespec) */ | Directs the Optimizer not to parallel
the specified table.
PARALLEL NOPAARALLEL_INDEX /*+ NOPARALLEL_INDEX Directs the Optimizer not to parallel
(tablespec [indexspec [TAL: the specified index(es).
indexspec ... 1) */
PARALLEL PARALLEL /*+ PARALLEL (tablespec | Number specifies degrees of
integer | TALDEFAULT]) */ parallelism (how many processes).
PARALLEL PARALLEL_INDEX /*+ PARALLEL_INDEX Number specifies degree of
(tablespec [indexspec [TAL: parallelism (how many processes).
indexspec]...] integer |
DEFAULT) */
PARALLEL PQ_CONCURRENT_UNIO | /*+ Instructs the optimizer to enable
N PQ_CONCURRENT_UNION(@q | concurrent processing of UNION
ueryblock) */ and UNION ALL operations.
PARALLEL PQ_DISTRIBUTE /*+ PQ_DISTRIBUTE(tablespec | Used in parallel join operations to
outer_distribution indicate how inner and outer tables
inner_distribution) */ of the joins should be processed.

The values of the distributions are
HASH, BROADCAST, PARTITION,
and NONE. Only six combinations
table distributions are valid.

242 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

Category Hint Available For Notes

PARALLEL PQ_FILTER /*+ PQ_FILTER([SERIAL] SERIAL: Process rows serially on the
[HASH]INONE]J[RANDOM) */ left and right sides of the filter. Use
this option when the overhead of
parallelization is too costly for the

query.

NONE: Process rows in parallel on
the left and right sides of the filter.
Use this option when there is no
skew in the distribution of the data
on the left side of the filter and you
want to avoid distribution of the left
side.

HASH: Process rows in parallel on
the left side of the filter using a hash
distribution and serially on the right
side of the filter. Use this option
when there is no skew in the
distribution of data on the left side
of the filter.

RANDOM: Process rows in parallel
on the left side of the filter using a
random distribution and serially on
the right side of the filter. Use this
option when there is skew in the
distribution of data on the left side

of the filter.
PARALLEL PQ_SKEW /*+ PQ_SKEW(@queryblock] Advises the optimizer that the
<tablespec>) */ distribution of values of the join

keys for a parallel join is highly
skewed. The table specified in
tablespec is the probe table of the

hash join.
PARALLEL PX_JOIN_FILTER /*+ PX_JOIN_FILTER (tablespec) | Directs the Optimizer to try and join
*/ bitmap indexes in parallel.
PARALLEL FACT /*+ FACT (tablespec) */ In the context of STAR

transformation, this table should be
considered a FACT table (as
opposed to a DIMENSION).

PARALLEL MERGE /*+ MERGE ([view | tablespec) | Use with either an in-line view that
*/ has a Group by or Distinctin it as a
joined table, or with the use of IN
subquery to "merge” the “view"”
into the body of the rest of the
query.

PARALLEL NO_EXPAND /*+ NO_EXPAND */ Used when OR condition (including
IN lists) is present in the predicate
to not consider transformation to
compound query.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 243

USING PROFILING > RUNNING A PROFILING SESSION

Category Hint Available For Notes

PARALLEL NO_FACT /*+ NO_FACT (tablespec) */ In the context of STAR
transformation this table should not
be considered a FACT table.

PARALLEL NO_MERGE /*+ NO_MERGE [([view | Directs the Optimizer not to

TAL:tablespec)] */ "merge” the view into the query.

PARALLEL NO_QUERY_TRANSFOR /*+ Directs the Optimizer not to

MATION NO_QUERY_TRANSFORMATIO | transform OR, in-lists, in-line views,
N */ and subqueries. Try it whenever any
of these conditions are present.

PARALLEL NO_REWRITE /*+ NO_REWRITE */ Directs the Optimizer not to use a
Materialized View, even if one is
available.

PARALLEL NO_STAR_TRANSFORMA | /*+ Directs the Optimizer not to try a

TION NO_STAR_TRANSFORMATION | Star Transformation.
*/
PARALLEL NO_XML_QUERY_REWRI | /*+ NO_XML_QUERY_REWRITE | Use only if the query is using XML
TE */ functionality.

PARALLEL NO_XMLINDEX_REWRITE | /*+ NO_XMLINDEX_REWRITE */ | Use only if the query is using XML
functionality.

PARALLEL NOFACT /*+ NOFACT (tablespec) */ In the context of STAR
transformation, this table should not
be considered a FACT table.

PARALLEL NOREWRITE /*+ NOREWRITE Directs the Optimizer not to use a
Materialized View, even if one is
available.

PARALLEL REWRITE /*+ REWRITE Directs the Optimizer to use a

[(view [TAL: view]...)]*/ l\/lateria.lized View instez.aol of the
underlying tables. Specify REWRITE
without additional parameters.
Oracle will determine if it can us a
Materialized View or not.

PARALLEL STAR_TRANSFORMATIO | /*+ STAR_TRANSFORMATION | Directs the Optimizer to try Star

N */ Transformation. Only try with a 3
table or more join.

PARALLEL STATEMENT_QUEUING | /*4 STATEMENT_QUEUING */ | Enables the queuing mechanism for
the current query even if that
feature is disabled.

PARALLEL USE_CONCAT /*+ USE_CONCAT */ Used when the OR condition
(including IN lists) is present in the
predicate to transform the query
into a compound UNION ALL.

QUERY EXPAND_GSET_TO_UNIO | /*+ EXPAND_GSET_TO_UNION | Performs transformations on

TRANS N */ queries that have GROUP BY into
Unions.

QKSFM_ALL | NATIVE_FULL_OUTER_JO | /*+ A directive that instructs the

IN

NATIVE_FULL_OUTER_JOIN */

optimizer to use native full outer
join.

244

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

spec>) */

Category Hint Available For Notes
QKSFM_ALL | NO_NATIVE_FULL_OUTE | /*+ A directive that instructs the
R JOIN NO NATIVE FULL OUTER JOI optimizer to exclude the native
- N */ - - - execution method when joining
specified tables.

QKSFM_ALL | NO_USE_HASH_AGGREG | /*+ A directive that disables hash

ATION NO_USE_HASH_AGGREGATIO | aggregation.
N */

QKSFM_CUR | BIND_AWARE /*+ BIND_AWARE*/ Makes the cursor aware of bind

SOR_SHARIN values.

G

QKSFM_CUR | NO_BIND_AWARE /*+N)_ BIND_AWARE*/ Disables bind peeking for the

SOR_SHARIN current query.

G

QKSFM_IND | NO_USE_INVISIBLE_INDE | /x4 Makes invisible indexes unusable by

EX XES NO_USE_INVISIBLE_INDEXES the current query.

*
/

QKSFM_XML | NO_XML_DML_REWRITE | /*+ NO_XML_DML_REWRITE */ | A directive that explicitly disables

_REWRITE XML DML operator rewrite.

QKSFM_TRA | PRECOMPUTE_SUBQUER A directive that instructs the

NSFORMA- | vy /*+ PRECOMPUTE_SUBQUERY | optimizer to execute the subquery

TION */ before executing the outer query.

QKSFM_ALL | USE_HASH_AGGREGATI /*+ A directive that enables hash

ON USE_HASH_AGGREGATION */ | aggregation.

QKSFM_IND | USE_INVISIBLE_INDEXES | /«1- USE_INVISIBLE_INDEXES */ | Makes invisible indexes usable by

EX the current query.

REAL TIME MONITOR /*+ MONITOR */ Effective only if STATSTICS_LEVEL
initialization parameter is either set
to ALL or TYPICAL and
CONTROL_MANAGEMENT_
PACK_ACCESS is set to
DIAGNOSTIC+TUNING. Turns on
features of the Oracle Database
Tuning Pack.

REAL TIME NO_MONITOR /*+ NO_MONITOR */ See MONITOR hint.

Online CHANGE_DUPKEY_E | /*+ Unambiguously identifies a unique

Application RROR_INDEX CHANGE_DUPKEY_ERROR_IND | key violation for a specified index or

Upgrade EX ({table, index | table set of columns.

Hints (column [, column]...) '})*/

Online Appli- | IGNORE_ROW_ON_DUP | /x, Attempts to insert duplicate key

cation KEY_INDEX IGNORE_ROW_ON_DUPKEY_| values arg silently ignored, rather

Upgrade NDEX(<tablespec>, <index- than causing an ORA-0001 error.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

245

USING PROFILING > RUNNING A PROFILING SESSION

Category Hint Available For Notes

Online RETRY_ON_ROW_C | /*+RETRY_ON_ROW_CHANGE | Retries the operation when the
Application | HANGE */ ORA_ROWSCN for one or more
Upgrade rows in a set has changed from the
Hints time the set of rows to be modified

is determined, to the time the block
is actually modified.

SQL SERVER HINTS
The following table highlights SQL hints based on MS SQL Server hints optimization:

Category | Hint Available For Notes

QUERY IGNORE_NONCLUSTER | SELECT/INSERT/UPDATE/ This hint lets you disable use of a
ED_COLUMNSTORE_IN | DELETE/MERGE nonclustered xVelocity memory optimized
DEX columnstore index.

JOIN LOOP SELECT/UPDATE/DELETE Not applicable for RIGHT OUTER or FULL
joins.

JOIN HASH SELECT/UPDATE/DELETE -

JOIN MERGE SELECT/UPDATE/DELETE -

JOIN REMOTE SELECT/UPDATE/DELETE Only for INNER JOINs. Not applicable
with COLLATE

QUERY RECOMPILE SELECT/UPDATE/DELETE -

QUERY FORCE ORDER SELECT/UPDATE/DELETE -

QUERY ROBUST PLAN SELECT/UPDATE/DELETE -

QUERY KEEP PLAN SELECT/UPDATE/DELETE -

QUERY KEEPFIXED PLAN SELECT/UPDATE/DELETE -

QUERY EXPAND VIEWS DML Statements Only for statement containing views.

QUERY HASH GROUP SELECT Only when GROUP BY, COMPUTE and
DISTINCT clauses are used.

QUERY ORDER GROUP SELECT/UPDATE/DELETE Only when GROUP BY, COMPUTE and
DISTINCT clauses are used.

QUERY MERGE UNION SELECT Only for statements chained using UNION

QUERY HASH UNION SELECT Only for statements chained using UNION

QUERY CONCAT UNION SELECT Only for statements chained using UNION

QUERY LOOP JOIN SELECT/UPDATE/DELETE -

QUERY MERGE JOIN SELECT/UPDATE/DELETE -

QUERY HASH JOIN SELECT/UPDATE/DELETE -

Table FORCESCAN SELECT/UPDATE/COMPLETE | Forces the optimizer to use an index scan
operation as the access path to the
referenced table or view.

246 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

Category | Hint Available For Notes

Table FORCESEEK SELECT/UPDATE/COMPLETE | Forces the optimizer to use an index seek
operation as the access path to the
referenced table or view.

TABLE INDEX() DML Statements Only for tables and views with indexes.

TABLE KEEPIDENTITY INSERT Only for INSERT statements using
OPENROWSET clause with BULK option.

TABLE KEEPDEFAULTS INSERT Only for INSERT statements using
OPENROWSET clause with BULK option.

TABLE HOLDLOCK DML Statements Not applicable for SELECT statements
using FOR BROWSE clause.

TABLE IGNORE_CONSTRAINT | INSERT Only for INSERT statements using

S OPENROWSET clause with BULK option.

TABLE IGNORE_TRIGGERS INSERT Only for INSERT statements using
OPENROWSET clause with BULK option.

TABLE NOLOCK SELECT/UPDATE/COMPLETE | Not applicable for the target table in
UPDATE/DELETE statements.

TABLE NOWAIT DML Statements -

TABLE PAGLOCK DML Statements -

TABLE READCOMMITED DML Statements -

TABLE READCOMMITEDLOCK | SELECT/UPDATE/COMPLETE | -

TABLE READPAST SELECT/UPDATE/COMPLETE | Not applicable for the target table in
UPDATE/DELETE statements.

TABLE READUNCOMMITED SELECT/UPDATE/COMPLETE | Not applicable for the target table in
UPDATE/DELETE statements.

TABLE REPEATEABLEREAD DML Statements -

TABLE ROWLOCK DML Statements -

TABLE SERIALIZABLE DML Statements Not applicable for SELECT statements
using FOR BROWSE clause.

TABLE SPATIAL_WINDOW_MA | DML Statements Specifies the maximum number (1 - 8192)

X_CELLS of cells to use when tessellating a

geometry or geography object.

TABLE TABLOCK DML Statements -

TABLE TABLOCKX DML Statements -

TABLE UPDLOCK DML Statements -

TABLE XLOCK DML Statements -

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

247

USING PROFILING > RUNNING A PROFILING SESSION

DB2 HINTS

The following table highlights SQL hints based on IBM DB2 hints optimization:

Category Hint Notes

Command SET OPTIMIZATION LEVEL For top-level SELECT statements
only

Clause optimize for <n> rows For top-level SELECT statements
only

Clause fetch first <n> rows only For SELECT statements only

SYBASE HINTS

The following table highlights SQL hints based on Sybase hints optimization:

Category Hint Notes

Logical distinct No explicit implementation

Logical group No explicit implementation

Logical g_join No explicit implementation

Logical nl_g_join Not applicable for: statements with chained
queries; select statements with group by
clause and having clause or group by clause
and order by clause

Logical m_g_join Not applicable for: statements with chained
queries; select statements with group by
clause and having clause or group by clause
and order by clause

Logical join No explicit implementation

Logical nl_join Not applicable for: select statements with
group by clause and having clause or group
by clause and order by clause

Logical m_join Not applicable for: select statements with
group by clause and having clause or group
by clause and order by clause

Logical h_join Not applicable for: select statements with
group by clause and having clause or group
by clause and order by clause

Logical union No explicit implementation

scan No explicit implementation

Logical scalar_agg Only used in combination with other
operators. It does not change the execution
plan itself.

Logical sequence Is a keyword that will be used in the
implementation of scalar_agg operator.

Logical hints We don't support a combination of hints

Logical prop Uses a set of pre-defined values.

248 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

Category

Hint

Notes

Logical

table

Used only in combination with other
operators, when referring tables from
subqueries

Logical

work_t

This operator is applicable only together
with store operator

Logical

Used only in combination with other
operators, when referring tables from
subqueries

Logical

subqg

Used only in combination with other
operators, when referring tables from
subqueries

Physical

distinct_sorted

Only for SELECT statements containing
DISTINCT, and only for tables

Physical

distinct_sorting

Only for SELECT statements containing
DISTINCT, and only for tables

Physical

distinct_hashing

Only for SELECT statements containing
DISTINCT, and only for tables

Physical

group_sorted

Only for SELECT statements (not working for
views) with no having and no order by clause.

Physical

group_hashing

Only for SELECT statements (not working for
views) with no having and no order by clause.

Physical

group_inserting

Not implemented

Physical

append_union_all

Not applicable for: UNION chained clauses,
nested sub-selects in a from clause, if a
group by clause is present or if scalar
aggregation is present

Physical

merge_union_all

Not applicable for: UNION ALL chained
clauses, nested sub-selects in a from clause,
or if a group by clause is present.

Physical

merge_union_distinct

Not applicable for: UNION ALL chained
clauses, nested sub-selects in a from clause,
or if a group by clause is present.

Physical

hash_union_distinct

Not applicable for: UNION ALL chained
clauses, nested sub-selects in a from clause,
if a group by clause is present, or if scalar
aggregation is present.

Physical

i_scan

Applied to all table references in the from
clause of the main select and of the sub
select statements except: 1. statement has
sub-selects. 2. table references has no
indexes.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

249

USING PROFILING > RUNNING A PROFILING SESSION

Category

Hint

Notes

Physical

t_scan

Applied to all the table references in the
from clause of the main select and of the sub
select statements except: On Sybase 12.5
not applied for tables in the main query if: 1.
statement has chained queries. 2. Sub
queries have group by and having clauses;
and not applied to the tables in sub selects
if: 1. has select statements in from clause of
the main select. 2. sub queries have group by
and having clauses. 3. statement has select
statements in select clause. 4. statement has
parent statement and insert statement; on
Sybase 15 not applied for tables in sub
selects if: 1. has select statements in from
clause of the main select. 2. statement has
chained queries.

Physical

m_scan

Applied for all tables if in the where clause
there is a condition like:
table1.indexedColumn1 condition body OR
table1.indexedColumn2 condition body; Not
applied if the LIKE operator is used. For
columns that belong to a primary key only
the first column is considered.

Physical

store

Physical

store_index

Physical

sort

Physical

xchg

250

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

REFERENCE

USING PROFILING > RUNNING A PROFILING SESSION

The following topics provide reference details:

e Database Objects

e DBMS Connection Parameters by Platform

DATABASE OBJECTS

The following table describes the database objects displayed in DB Optimizer and contains
information regarding each one, including object name, DBMS platform, and any notes
pertaining to the specified object.

In DB Optimizer, database objects are stored in Data Source Explorer as subnodes of
individual, pertinent databases.

Database Object

DBMS Platforms

Notes

Aliases

DB2

An alias is an alternate name that references a table, view, and
other database objects. An alias can also reference another
alias as long as the aliases do not reference one another in a
circular or repetitive manner.

Aliases are used in view or trigger definitions in any SQL
statements except for table check-constraint definitions. (The
table or view name must be referenced in these cases.)

Once defined, an alias is used in query and development
statements to provide greater control when specifying the
referenced object. Aliases can be defined for objects that do
not exist, but the referenced object must exist when a
statement containing the alias is compiled.

Aliases can be specified for tables, views, existing aliases, or
other objects. Create Alias is a command available on the
shortcut menu.

Check Constraints

All

A check constraint is a search condition applied to a table.
When a check constraint is in place, Insert and Update
statements issued against the table will only complete if the
statements pass the constraint rules.

Check constraints are used to enforce data integrity when it
cannot be defined by key uniqueness or referential integrity
restraints.

A check condition is a logical expression that defines valid
data values for a column.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

251

USING PROFILING > RUNNING A PROFILING SESSION

Database Object DBMS Platforms Notes

Clusters Oracle A cluster is a collection of interconnected, physical machines
used as a single resource for failover, scalability, and
availability purposes.

Individual machines in the cluster maintain a physical host
name, but a cluster host name must be specified to define the
collective as a whole.

To create a cluster, you need the CREATE CLUSTER or
CREATE ANY CLUSTER system privilege.

Database Links Oracle A database link is a network path stored locally, that provides
the database with the ability to communicate with a remote
database.

A database link is composed of the name of the remote
database, a communication path to the database, and a user
ID and password (if required).

Database links cannot be edited or altered. To make changes,
drop and re-create.

Foreign Keys All A foreign key references a primary or unique key of a table (the
same table the foreign key is defined on, or another table and
is created as a result of an established relationship). Its
purpose is to indicate that referential integrity is maintained
according to the constraints.

The number of columns in a foreign key must be equal to the
number of columns in the corresponding primary or unique
key. Additionally, the column definitions of the foreign key
must have the same data types and lengths.

Foreign key names are automatically assigned if one is not
specified.

Functions DB2, Oracle A function is a relationship between a set of input data values
and a set of result values.

For example, the TIMESTAMP function passes input data
values of type DATE and TIME, and the result is TIMESTAMP.

Functions can be built-in or user-defined. Built-in functions are
provided with the database. They return a single value and are
part of the default database schema. User-defined functions
extend the capabilities of the database system by adding
function definitions (provided by users or third-party vendors)
that can be applied in the database engine itself.

A function is identified by its schema, a function name, the
number of parameters, and the data types of its parameters.

Access to functions is controlled through the EXECUTE
privilege. GRANT and REVOKE statements are used to specify
who can or cannot execute a specific function or set of
functions.

Groups All Groups are units that contain items. Typically, groups contain
the result of a single business transaction where several items
are involved.

For example, a group is the set of articles bought by a
customer during a visit to the supermarket.

252 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

Database Object

DBMS Platforms

Notes

Indexes

All

An index is an ordered set of pointers to rows in a base table.

Each index is based on the values of data in one or more table
columns. An index is an object that is separate from the data in
the table. When an index is created, the database builds and
maintains it automatically.

Indexes are used to improve performance. In most cases,
access to data is faster with an index. Although an index
cannot be created for a view, an index created for the table on
which a view is based can improve the performance of
operations on that view.

Indexes are also used to ensure uniqueness. A table with a
unique index cannot have rows with identical keys.

DB2: Allow Reverse Scans, Percent Free (Lets you type or
select the percentage of each index page to leave as free
space when building the index, from 0 to 99), Min Pct Used
(Lets you type or select the minimum percentage of space
used on an index leaf page. If, after a key is removed from an
index leaf page, the percentage of space used on the page is
at or below integer percent, an attempt is made to merge the
remaining keys on this page with those of a neighboring page.
If there is sufficient space on one of these pages, the merge is
performed and one of the pages is deleted. The value of
integer can be from 0 to 99.

Oracle: The Logging, No Sort, Degrees, and Instances
properties are documented in the editor.

Java Classes

Oracle

A model or template, written in Java language, used to create
objects with a common definition and common properties,
operations and behavior.

Java classes can be developed in Eclipse (or another Java
development environment such as Oracle JDeveloper) and
moved into an Oracle database to be used as stored
procedures.

Java classes must be public and static if they are to be used in
this manner.

When writing a class to be executed within the database, you
can take advantage of a special server-side JDBC driver. This
driver uses the user’s default connection and provides the
fastest access to the database.

Java classes become full-fledged database objects once
migrated into the database via the loadjava command-line
utility or the SQL CREATE JAVA statement.

A Java class is published by creating and compiling a call
specification for it. The call spec maps a Java method’s
parameters and return type to Oracle SQL types.

Once a Java class is developed, loaded, and published -- the
final step is to execute it.

Java Resources

Oracle

A Java resource is a collection of files compressed in a .jar file.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

253

USING PROFILING > RUNNING A PROFILING SESSION

Database Object DBMS Platforms Notes

Libraries Oracle A library is a configurable folder for storing and sharing
content with an allocated quota. Multiple libraries may exist in
the same database environment.

A library is a special type of folder in Oracle Content Services.
Unlike Containers and regular folders, each library has a Trash
Folder and an allocated amount of disk space.

A library is composed of a name (mandatory), description,
quota, path, and library members.

The library service allows you to create folders, list quotas, and
manage categories, workflow, trash folders, and versioning.
The Library service does not allow you to create or upload
files.

Materialized Views Oracle A database object that contains the results of a query. They are
local copies of data located remotely, or are used to create
summary tables based on aggregations of table data.
Materialized views are also known as snapshots.

A materialized view can query tables, views, and other
materialized views. Collectively, these are called master tables
(a replication term) or detail tables (a data warehouse term).

For replication purposes, materialized views allow you to
maintain copies of remote data on your local node. These
copies are read-only. If you want to update the local copies,
you need to use the Advanced Replication feature. You can
select data from a materialized view as you would from a table
or view.

For data warehousing purposes, the materialized views
commonly created are aggregate views, single-table
aggregate views, and join views.

Materialized View Logs | Oracle Because Materialized Views are used to return faster queries (a
query against a materialized view is faster than a query against
a base table because querying the materialized view does not
query the source table), the Materialized View often returns
the data at the time the view was created, not the current table
data.

There are two ways to refresh data in Materialized Views,
manually or automatically. In a manual refresh, the Materialized
View is completely wiped clean and then repopulated with
data from the source tables (this is known as a complete
refresh). If source tables have changed very little, however, it is
possible to refresh the Materialized View only for changed
records -- this is known as a fast refresh.

In the case of Materialized Views that are updated via fast
refresh, it is necessary to create Materialized View Logs on the
base tables that compose the Materialized View to reflect the
changes.

If the number of entries in this table is too high, it is an
indication that you might need to refresh the Materialized
Views more frequently to ensure that each update does not
take longer than it needs.

Select owner, then select from tables with Materialized Views,
etc.

254 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

Database Object

DBMS Platforms

Notes

Oracle Job Queue

Oracle

The Oracle Job Queue allows for the scheduling and
execution of PL/SQL stored procedures at predefined times
and/or repeated job execution at regular intervals, as
background processes.

For example, you could create a job in the Oracle Job Queue
that processed end-of-day accounting -- a job that must run
every weekday, but can be run unattended, or you could
create a series of jobs that must be run sequentially -- such as
jobs that might be so large, that in order to reduce CPU usage,
only one is run at a time.

Runs PL/SQL code at specified time or on specified schedule,
can enable/disable.

Outlines

Oracle

Oracle preserves the execution plans of “frozen” access paths
to data so that it remains constant despite data changes,
schema changes, and upgrades of the database or application
software through objects named stored outlines.

Outlines are useful for providing stable application
performance and benefit high-end OLTP sites by having SQL
execute without having to invoke the cost-based optimizer at
each SQL execution. This allows complex SQL to be executed
without the additional overhead added by the optimizer when
it performs the calculations necessary to determine the
optimal access path to the data.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

255

USING PROFILING > RUNNING A PROFILING SESSION

Database Object DBMS Platforms Notes

Packages All A package is a procedural schema object classified as a PL/
SQL program unit that allows the access and manipulation of
database information.

A package is a group of related procedures and functions,
together with the cursors and variables they use, stored
together in the database for continued use as a unit. Similar to
standalone procedures and functions, packaged procedures
and functions can be called explicitly by applications or users.

DB applications explicitly call packaged procedures as
necessary with privileges granted, a user can explicitly execute
any of the procedures contained in it.

Packages provide a method of encapsulating related
procedures, functions, and associated cursors and variables
together as a unit in the database. For example, a single
package might contain two statements that contain several
procedures and functions used to process banking
transactions.

Packages allow the database administrator or application
developer to organize similar routines as well as offering
increased functionality and database performance.

Packages provide advantages in the following areas:
encapsulation of related procedures and variables, declaration
of public and private procedures, variables, constraints and
cursors, separation of the package specification and package
body, and better performance.

Encapsulation of procedural constructs in a package also
makes privilege management easier. Granting the privilege to
use a package makes all constructs of the package assessable
to the grantee.

The methods of package definition allow you to specify which
variables, cursors, and procedures are: public, directly
accessible to the users of a package, private, or hidden from
the user of the package.

Package Bodies Oracle A package body is a package definition file that states how a
package specification will function.

In contrast to the entities declared in the visible part of a
package, the entities declared in the package body are only
visible within the package body itself. As a consequence, a
package with a package body can be used for the construction
of a group of related subprograms in which the logical
operations available to clients are clearly isolated from the
internal entities.

256 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

Database Object

DBMS Platforms

Notes

Primary Keys

All

Akey is a set of columns used to identify or access a row or
rows. The key is identified in the description of a table, index,
or referential constraint. The same column can be part of more
than one key.

A unique key is a key that is constrained so that no two of its
values are equal. The columns of a unique key cannot contain
NULL values.

The primary key is one of the unique keys defined on a table,
but is selected to be the key of the first importance. There can
only be one primary key on a table.

Oracle: If an index constraint has been defined for a table, the
constraint status for the table's primary key cannot be set to
Disabled.

Procedures

All

A procedure is an application program that can be started
through the SQL CALL statement. The procedure is specified
by a procedure name, which may be followed by arguments
enclosed within parenthesis.

The argument or arguments of a procedure are individual
scalar values, which can be of different types and can have
different meanings. The arguments can be used to pass values
into the procedure, receive return values from the procedure,
or both.

A procedure, also called a stored procedure, is a database
object created via the CREATE PROCEDURE statement that
can encapsulate logic and SQL statements. Procedures are
used as subroutine extensions to applications, and other
database objects that can contain logic.

When a procedure is invoked in SQL and logic within a
procedure is executed on the server, data is only transferred
between the client and the database server in the procedure
call and in the procedure return. If you have a series of SQL
statements to execute within a client application, and the
application does not need to do any processing in between
the statements, then this series of statements would benefit
from being included in a procedure.

Profiles

Oracle

Profiles are a means to limit resources a user can use by
specifying limits on kernel and password elements.
Additionally, Profiles can be used to track password histories
and the settings of specific profiles may be queried.

The following kernel limits may be set: maximum concurrent
sessions for a user, CPU time limit per session, maximum
connect time, maximum idle time, maximum blocks read per
session, maximum blocks read per call, and maximum amount
of SGA.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

257

USING PROFILING > RUNNING A PROFILING SESSION

Database Object DBMS Platforms Notes

Roles Oracle Arole is a set or group of privileges that can be granted to
users to another role.

A privilege is a right to execute a particular type of SQL
statement or to access another user’s object. For example: the
right to connect to a database, the right to create a tale, the
right to select rows from another user’s table, the right to
execute another user’s stored procedure.

System privileges are rights to enable the performance of a
particular action, or to perform a particular action on a
particular type of object.

Roles are named groups of related privileges that you grant
users or other roles. Roles are designed to ease the
administration of end user system and object privileges.
However, roles are not meant to be used for application
developers, because the privileges to access objects within
stored programmatic constructs needs to be granted
directly.

Sequences DB2, Oracle A sequence generates unique numbers.

Sequences are special database objects that provide numbers
in sequence for input into a table. They are useful for
providing generated primary key values and for the input of
number type columns such as purchase order, employee
number, sample number, and sales order number.

Sequences are created by use of the CREATE SEQUENCE
command.

Structured Types DB2 Structured Types are useful for modeling objects that have a
well-defined structure that consists of attributes. Attributes are
properties that describe an instance of the type.

A geometric shape, for example, might have as attributes its
list of Cartesian coordinates. A person might have attributes of
name, address, and so on. A department might have a name
or some other attribute.

Synonyms Oracle A synonym is an alternate name for objects such as tables,
views, sequences, stored procedures, and other database
objects.

A synonym is an alias for one of the following objects: table,
object table, view, object view, sequence, stored procedure,
stored function, package, materialized view, java class, user-
defined object type or another synonym.

Tables All Tables are logical structures maintained by the database
manager. Tables are composed of columns and rows. The rows
are not necessarily ordered within a table.

A base table is used to hold persistent user data.

A result table is a set of rows that the database manager
selects or generates from one or more base tables to satisfy a
query.

A summary table is a table defined by a query that is also used
to determine the data in the table.

258 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

Database Object

DBMS Platforms

Notes

Tablespaces

DB2, Oracle

A tablespace is a storage structure containing tables, indexes,
large objects, and long data. Tablespaces reside in database
partition groups. They allow you to assign the location of
database and table data directly onto containers. (A container
can be a directory name, a device name, or a file name.) This
can provide improved performance and more flexible
configuration.

Triggers

All

A trigger defines a set of actions that are performed when a
specified SQL operation (such as delete, insert, or update)
occurs on a specified table. When the specified SQL operation
occurs, the trigger is activated and starts the defined actions.

Triggers can be used, along with referential constraints and
check constraints, to enforce data integrity rules. Triggers can
also be used to cause updates to other tables, automatically
generate or transform values for inserted or updated rows, or
invoke functions to perform tasks such as issuing alerts.

Undo Segments

Oracle

In an Oracle database, Undo tablespace data is an image or
snapshot of the original contents of a row (or rows) in a table.
The data is stored in Undo segments in the Undo table space.

When a user begins to make a change to the data in a row in
an Oracle table, the original data is first written to Undo
segments in the Undo tablespace. The entire process
(including the creation of the Undo data is recorded in Redo
logs before the change is completed and written in the
Database Buffer Cache, and then the data files via the
database writer (DBW) process.)

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

259

USING PROFILING > RUNNING A PROFILING SESSION

Database Object DBMS Platforms Notes

Unique Keys All A unique key is a key that is constrained so that no two of its
values are equal. The columns of a unique key cannot contain
null values. The constraint is enforced by the database
manager during the execution of any operation that changes
data values, such as INSERT or UPDATE. The mechanism used
to enforce the constraint is called a unique index. Thus, every
unique key is a key of a unigue index. Such an index is said to
have the UNIQUE attribute.

A primary key is a special case of a unique key. A table cannot
have more than one primary key.

A foreign key is a key that is specified in the definition of a
referential constraint.

A partitioning key is a key that is part of the definition of a
table in a partitioned database. The partitioning key is used to
determine the partition on which the row of data is stored. If a
partitioning key is defined, unique keys and primary keys must
include the same columns as the partitioning key, but can have
additional columns. A table cannot have more than one
partitioning key.

Oracle: You cannot drop a unique key constraint that is part of
a referential integrity constraint without also dropping the
foreign key. To drop the referenced key and the foreign key
together, check the Delete Cascade option for the foreign key.

Clustered: A cluster composes of a group of tables that share
the same data blocks, and are grouped together because they
share common columns and are often used together.

Filegroup: Lets you select the filegroup within the database
where the constraint is stored.

Fill Factor: Lets you specify a percentage of how large each
constraint can become.

Views All A view provides an alternate way of looking at the data in one
or more tables.

A view is a named specification of a result table and can be
thought of as having columns and rows just like a base table.
For retrieval purposes, all views can be used just like base
tables.

You can use views to select certain elements of a table and can
present an existing table in a customized table format without
having to create a new table.

260 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

DBMS CONNECTION PARAMETERS BY PLATFORM

The following topics provide connection details:
e |BM DB2 LUW
® Microsoft SQL Server

JDBC Connection Parameters

Oracle Connection Parameters

Sybase Connection Parameters

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 261

USING PROFILING > RUNNING A PROFILING SESSION

IBM DB2 LUW

Connection Parameter

Description

Use Alias from IBM Client or Generic
JDBC Configuration

If you choose to use the alias from the IBM client, select the appropriate
alias name. Otherwise, choose Generic JDBC Configuration and enter the
connection parameters, as specified.

Schema ID (Optional)

The name of the database schema.

Function Path

Optional. Enter an ordered list of schema names to restrict the search
scope for unqualified function invocations.

Security Credentials

The log on information required by DB Optimizer to connect to the data
source.

Auto Connect

Automatically attempts to connect to the data source when selected in
Data Source Explorer, without prompting the user for connection
information.

JDBC Driver (Advanced)

The name of the JDBC Driver utilized by DB Optimizer to initiate a
JDBC standard access connection.

Connection URL (Advanced)

Used by the JDBC Driver to connect with a data source. Often contains
host and port numbers, as well as the name of the data source to which it
connects.

For example:

jdbc:postgresql://host:port/database

jdbc:derby://host:port/database

Custom JDBC Driver Properties
(Advanced)

The name and property value of any custom JDBC drivers associated with
the data source.

MICROSOFT SQL SERVER

Connection Parameter

Description

Use Network Library Configuration

If the data source utilizes a network library, select this parameter. The
corresponding connection parameter fields become available. Otherwise,
choose Generic JDBC Configuration and enter the connection parameters,
as specified.

Host/Instance (JDBC Configuration)

The name of the data source.

Port (JDBC Configuration) (optional)

The listening port used in TCP/IP communications between DB
Optimizer and the data source.

Protocol (JDBC Configuration)

The communication mechanism between DB Optimizer and the data
source. Choose TCP/IP or Named Pipes.

Default Database (Optional)

The default SQL database name, as defined by the schema.

Security Credentials

The log on information required by DB Optimizer to connect to the data
source.

Auto Connect

Automatically attempts to connect to the data source when selected in
Data Source Explorer, without prompting the user for connection
information.

Allow Trusted Connections

Enables trusted connections to the data source from DB Optimizer.

262

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

Connection Parameter

Description

JDBC Driver (Advanced)

The name of the JDBC Driver utilized by DB Optimizer to connect and
communicate with the database.

Connection URL (Advanced)

Used by the JDBC Driver to connect with a database. Often contains host
and port numbers, as well as the name of the database to which it
connects.

For example:
jdbc:postgresql://host:port/database

jdbc:derby://host:port/database

Custom JDBC Driver Properties
(Advanced)

The name and property value of any custom JDBC drivers associated with
the data source.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 263

USING PROFILING > RUNNING A PROFILING SESSION

JDBC CONNECTION PARAMETERS

Connection Parameter

Description

Connect String

Used by the JDBC Driver to connect with a database. Often contains host
and port numbers, as well as the name of the database to which it
connects.

For example:
jdbc:postgresql://host:port/database

jdbc:derby://host:port/database

Data Source Name

The name of the data source to which you want DB Optimizer to
connect.

ORACLE CONNECTION

PARAMETERS

Connection Parameter

Description

Use TNS Alias

If the data source is mapped to a net service name via tnsnames.ora, select
this parameter. Otherwise, choose Generic JDBC Configuration and enter
the connection parameters, as specified.

Host/Instance (JDBC Configuration)

The name of the host machine on which the data source resides.

Port (JDBC Connection)

The listening port used in TCP/IP communications between DB
Optimizer and the data source.

Type (JDBC Configuration)

Indicates if the data source is defined via a system identifier (SID) or a
service name.

Service/SID Name (JDBC
Configuration)

The name of the system identifier (SID) or service name that identifies the
data source.

Security Credentials

The log on information required by DB Optimizer to connect to the data
source.

Auto Connect

Automatically attempts to connect to the data source when selected in
data source Explorer, without prompting the user for connection
information.

Allow Trusted Connections

Enables trusted connections to the data source from DB Optimizer.

JDBC Driver (Advanced)

The name of the JDBC Driver utilized by DB Optimizer to connect and
communicate with the database.

Connection URL (Advanced)

Used by the JDBC Driver to connect with a database. Often contains host
and port numbers, as well as the name of the database to which it
connects.

For example:
jdbc:postgresql://host:port/database

jdbc:derby://host:port/database

Custom JDBC Driver Properties
(Advanced)

The name and property value of any custom JDBC drivers associated with
the data source.

264

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

SYBASE CONNECTION

USING PROFILING > RUNNING A PROFILING SESSION

PARAMETERS

Connection Parameter

Description

Use Alias Information from your
SQL.INI File

If the data source is mapped to a name via SQL.INI, select this parameter
to use that name for connection. Otherwise, choose Generic JDBC
Configuration and enter the connection parameters, as specified.

Host/Instance (JDBC Connection)

The name of the host machine on which the data source resides.

Port (JDBC Connection)

The listening port used in TCP/IP communications between DB
Optimizer and the data source.

Default Database (JDBC Connection)
(Optional)

The default database name, as defined by the schema.

JDBC Driver (Advanced)

The name of the JDBC Driver utilized by DB Optimizer to connect and
communicate with the database.

Connection URL (Advanced)

Used by the JDBC Driver to connect with a database. Often contains host
and port numbers, as well as the name of the database to which it
connects.

For example:
jdbc:postgresql://host:port/database

jdbc:derby://host:port/database

Custom JDBC Driver Properties
(Advanced)

The name and property value of any custom JDBC drivers associated with
the data source.

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

265

USING PROFILING > RUNNING A PROFILING SESSION

266 DB OPTIMIZER™ 2016+/16.5 USER GUIDE

Index

A

archives, profiling
opening/saving 142
associating 93
Average Active Sessions (AAS) 113
Average Active Sessions (AAS) graph 113

B

Bind Variable 132
bind variable 183

C

Case Generation 234

cases, generated
filtering/removing unwanted 191
opening in context 227

Catalog Selector 189

categories 57

categories, data source
customizing 58

change history 90

Clean 146

code folding 85

code formatting 81

D

data source 49
data source categories 53, 57
data source category 57
data source groups 57
data source properties
category 57
database objects 63, 251
DB2 LUW 262
delete 69
Diagram Legend 199
E
editing 73
error 103
error detection 75
error logs 102
execute 95
Exists 210
Explain Plan 202, 228
explain plans
opening from tuning job 228
F

files 68
filtering profile results 112
filters 63

G

global filters 64
grouping data sources 53

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION

H

hints
opening in context 227
hyperlinks 80

IBM DB2 LUW 262

Import 69

In 210

index analysis, SQL Tuner 197
Indirect Relationship 213

J

JDBC connection 264
K

Kill Session 110

L

license 12

Load Chart 113

Load Chart legend 115
local history 91

log 102

M

Max CPU 114
Max Engine 114

N

Nested Subqueries 208
new_project_wizard_page 66
Not Exists 210

Notin 210

O

object properties 60
objects 60
opening 67
Oracle 264

P

permissions, SQL Profiler 148
permissions, SQL Tuner 231
Preference
Profile Repositories 30, 159
Profile Repository
Register 30, 159
Unregister 30, 159
Profiling
Kill Oracle session 110
Tracing an Oracle session 111
profiling alerts 156
Profiling Reports 140
Profiling Repository 144
profiling sessions
configuring DBMS for 148
filtering results 112
opening/saving 142
submitting tuning sessions from 147
Projects 66

267

USING PROFILING > RUNNING A PROFILING SESSION

R

Ratios/Counts 235
Real Application Cluster (RAC) mode 153
Refresh Tuning Statements 189
Register Profile Repository 30, 159
Reports 140

Tuning 173
roles, SQL Tuner 231

S

Saving
Tuning Job 229
Saving Tuning Job 167
Schema Selector 189
Show Query Names 235
Show Sub-Query Names 235
SQL
tuning 179
Viewing Diagram SQL 219
SQL file 73
SQL Query Rewrites 193, 195
SQL Server 262
Statements
grouping 117
Sybase 265
T
Top Activity 115
Top Object I/O Tab (Oracle-Specific) 116
Top Procedures Tab (SQL Server and Sybase Specific) 116
Trace Oracle Session 111
transformations 195
Tuning Job
Saving 229
tuning jobs
editor preferences 30, 232
index analysis 197
introduced 179
opening explain plans from 228
roles/permissions required 231
understanding generated statements 235
Tuning Reports 173
tuning sessions
opening from profiling session 147
Turning Preferences
VST Diagrams 235

U

UNKNOWN statements 117
Unregister Profile Repository 30, 159

Vv

Visual SQL Tuning
Preferences 235
VST Diagram 202
VST diagram
Diagram Legend 199
VST Diagrams
Tuning Preferences 235

268

DB OPTIMIZER™ 2016+/16.5 USER GUIDE

USING PROFILING > RUNNING A PROFILING SESSION
INDEX

wW

Wait Event 115
workspace 12

DB OPTIMIZER™ 2016+/16.5 USER GUIDE 269

	WELCOME TO DB OPTIMIZER
	ABOUT THIS DOCUMENT

	CONFIGURING DB OPTIMIZER
	INITIAL SETUP
	SPECIFY A WORKSPACE
	LICENSE DB OPTIMIZER

	CUSTOMIZING DB OPTIMIZER (PREFERENCES)
	SPECIFY DATA SOURCES PREFERENCES
	SPECIFY SQL DEVELOPMENT PREFERENCES
	SPECIFY SQL EDITOR PREFERENCES
	SPECIFY CODE ASSIST PREFERENCES
	SPECIFY CODE FORMATTER PREFERENCES
	SPECIFY CODE QUALITY PREFERENCES
	SPECIFY RESULTS VIEWER PREFERENCES
	SPECIFY SQL TEMPLATES PREFERENCES
	SPECIFY SYNTAX COLORING PREFERENCES

	SPECIFY SQL EXECUTION PREFERENCES
	SPECIFY SQL FILTERS PREFERENCES
	SPECIFY DATA SOURCE INDEXING PREFERENCES
	SPECIFY PROFILE ALERTS PREFERENCES
	SPECIFY PROFILE REPOSITORIES PREFERENCES
	SPECIFY TUNING JOB EDITOR PREFERENCES
	SPECIFY VST DIAGRAMS TUNING PREFERENCES
	SPECIFY FILE ENCODING PREFERENCES

	INTRODUCTION TO DATABASE TUNING
	INTRODUCTION TO DB OPTIMIZER’S TUNER
	SQL TUNING METHODOLOGY
	SQL TUNER OVERVIEW
	WHAT'S HAPPENING ON THE DATABASES?
	TUNING EXAMPLE
	THE DATABASE IS HANGING OR THE APPLICATION HAS PROBLEMS
	THE DATABASE CAUSED THE PROBLEM
	THE MACHINE CAUSED THE PROBLEM

	FINDING AND TUNING PROBLEM SQL

	USING DB OPTIMIZER
	WORKING WITH DATA SOURCES
	REGISTER DATA SOURCES
	ADD A NEW DATA SOURCE
	IMPORT AND EXPORT DATA SOURCES
	CATEGORIZE DATA SOURCES
	CUSTOMIZING DATA SOURCE CATEGORIES
	BROWSE A DATA SOURCE
	VIEW DATABASE OBJECT PROPERTIES
	SEARCH FOR DATABASE OBJECTS
	FILTER DATABASE OBJECTS
	DEFINE DATA SOURCE-SPECIFIC OBJECT FILTERS
	DEFINE GLOBAL DATABASE OBJECT FILTERS

	DROP A DATABASE OBJECT

	WORKING WITH SQL PROJECTS
	CREATE A NEW SQL PROJECT
	OPEN AN EXISTING PROJECT
	SEARCH A PROJECT
	ADD FILES TO A PROJECT
	DELETE A PROJECT

	CREATING AND EDITING SQL FILES (SQL EDITOR)
	CREATE AN SQL FILE
	OPEN AN EXISTING SQL FILE
	WORKING IN SQL EDITOR
	UNDERSTANDING AUTOMATIC ERROR DETECTION
	UNDERSTANDING CODE ASSIST
	UNDERSTANDING HYPERLINKS
	UNDERSTANDING CODE FORMATTING
	UNDERSTANDING CODE FOLDING
	UNDERSTANDING CODE QUALITY CHECKS
	UNDERSTANDING SQL TEMPLATES

	VIEW CHANGE HISTORY
	REVERT TO AN OLD VERSION OF A FILE
	DELETE AN SQL FILE

	EXECUTING SQL FILES
	ASSOCIATE AN SQL FILE WITH A DATA SOURCE
	CONFIGURE AN SQL SESSION
	EXECUTE SQL CODE
	VIEW AND SAVE RESULTS

	TROUBLESHOOTING
	VIEW LOG DETAILS
	MAINTAIN LOGS
	FILTER LOGS
	IMPORT AND EXPORT ERROR LOGS
	FIND AND FIX SQL CODE ERRORS
	FIND AND FIX OTHER PROBLEMS

	USING PROFILING
	UNDERSTANDING PROFILING
	UNDERSTANDING THE INTERFACE
	RUNNING A PROFILING SESSION
	EXECUTE A PROFILING SESSION
	KILLING AN ORACLE SESSION
	TRACING AN ORACLE SESSION
	WORK WITH SESSION RESULTS
	OPENING AN EXISTING PROFILING SESSION
	FILTERING RESULTS
	ANALYZE THE LOAD CHART
	ANALYZE THE TOP ACTIVITY SECTION
	ANALYZE PROFILING DETAILS

	CREATING PROFILING REPORTS
	SAVING PROFILING SESSIONS
	WORK WITH THE PROFILING REPOSITORY

	IMPORT STATEMENTS TO TUNING
	OTHER PROFILING COMMANDS
	ZOOMING IN AND OUT

	CONFIGURING PROFILING
	CONFIGURING DBMS PROPERTIES AND PERMISSIONS
	CONFIGURING IBM DB/2 FOR WINDOWS, UNIX, AND LINUX
	CONFIGURING MICROSOFT SQL SERVER
	CONFIGURING ORACLE
	CONFIGURING SYBASE

	BUILDING PROFILING CONFIGURATIONS
	SPECIFY PROFILE ALERTS PREFERENCES
	SPECIFY PROFILE REPOSITORIES PREFERENCES
	USING SQL LOAD EDITOR/TESTER

	USING TUNING
	UNDERSTANDING THE TUNER INTERFACE
	UNDERSTANDING THE OVERVIEW TAB
	Inputting SQL to tune
	Running a Tuning Job
	Creating Tuning Reports

	UNDERSTANDING THE ANALYSIS TAB

	TUNING SQL STATEMENTS
	CREATE A NEW TUNING JOB
	SPECIFY A DATA SOURCE
	ADD SQL STATEMENTS
	MANAGING BIND VARIABLE ERRORS
	RUN A TUNING JOB
	ANALYZE TUNING RESULTS
	COMPARE CASES
	FILTER AND DELETE CASES
	CREATE AN OUTLINE

	MODIFY TUNING RESULTS
	DB2, ORACLE, SQL SERVER, SYBASE QUERY REWRITES

	USING THE ANALYSIS TAB
	IMPLEMENTING INDEX ANALYSIS RECOMMENDATIONS

	VISUAL SQL TUNING
	CHANGING DIAGRAM DETAIL DISPLAY
	EXPANDING SUBQUERIES AND NESTED SUBQUERIES

	INTERPRETING THE VST DIAGRAM GRAPHICS
	VIEWING OBJECT SQL
	REFRESHING TUNING STATEMENTS
	REFRESHING THE VST DIAGRAM

	USING PLATFORM-SPECIFIC FEATURES
	USING THE TABLE STATISTICS TAB (ORACLE AND SQL SERVER)
	USING THE COLUMN STATISTICS AND HISTOGRAMS TAB (ORACLE AND SQL SERVER)
	ORACLE-SPECIFIC COLUMN STATISTICS AND HISTOGRAMS TAB EXAMPLE

	USING THE OUTLINES TAB (ORACLE)
	USING THE PLAN GUIDES TAB (SQL SERVER)
	TUNING SQL STATEMENTS IN THE SYSTEM GLOBAL AREA (ORACLE)

	ADDITIONAL TUNING COMMANDS
	VIEW THE SOURCE CODE OF TUNING CANDIDATES
	VIEW STATEMENT OR CASE CODE IN SQL VIEWER
	OPEN AN EXPLAIN PLAN FOR A STATEMENT OR CASE
	EXECUTING A SESSION FROM THE COMMAND LINE
	SAVING A TUNING JOB

	CONFIGURING TUNING
	SET ROLES AND PERMISSIONS ON DATA SOURCES
	SPECIFY TUNING JOB EDITOR PREFERENCES
	SPECIFY CASE GENERATION PREFERENCES
	SPECIFY VST DIAGRAMS TUNING PREFERENCES

	EXAMPLES OF TRANSFORMATIONS AND SQL QUERY REWRITES

	DBMS HINTS
	ORACLE HINTS
	SQL SERVER HINTS
	DB2 HINTS
	SYBASE HINTS

	REFERENCE
	DATABASE OBJECTS

	DBMS CONNECTION PARAMETERS BY PLATFORM
	IBM DB2 LUW
	MICROSOFT SQL SERVER
	JDBC CONNECTION PARAMETERS
	ORACLE CONNECTION PARAMETERS
	SYBASE CONNECTION PARAMETERS

